December 2000

LM333 3-Ampere Adjustable Negative Regulator

General Description

The LM333 is an adjustable 3-terminal negative voltage regulator capable of supplying in excess of -3.0A over an output voltage range of -1.2V to -32V. This regulator is exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM333 features internal current limiting, thermal shutdown and safe-area compensation, making them substantially immune to failure from overloads.

The LM333 serves a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM333 is an ideal complement to the LM150/LM350 adjustable positive regulators.

Features

- Output voltage adjustable from -1.2V to -32V
- 3.0A output current guaranteed, -55°C to +150°C
- Line regulation typically 0.01%/V
- Load regulation typically 0.2%
- Excellent rejection of thermal transients
- 50 ppm/°C temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- Standard 3-lead transistor package
- Output is short circuit protected

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Operating Junction Temperature Range LM333 Storage Temperature Lead Temperature (Soldering, 10 sec.)	T _{MIN} to T _{MAX} −40°C to +125°C −65°C to +150°C
TO-3 Package ESD Suscentibility	300°C TBD
	100

Power Dissipation Input-Output Voltage Differential

Electrical Characteristics LM333

Specifications with standard typeface are for $T_J = 25^{\circ}C$, and those with **boldface type** apply over the full operating temperature range. (Note 3)

35V

Internally Limited

Parameter	Conditions	Typical	Min	Max	Units
			(Note 2)	(Note 2)	
Reference Voltage	I _L = 10 mA	-1.250	-1.225	-1.275	V
	$3V \le V_{IN} - V_{OUT} \le 35V$	-1.250	-1.213	-1.287	1
	10 mA \leq I _L \leq 3A, P \leq P _{MAX}				
Line Regulation	$3V \le V_{IN} - V_{OUT} \le 35V$	0.01		0.04	% /V
	I _{OUT} = 50 mA (Note 4)	0.02		0.07	
Load Regulation	$10 \text{ mA} \le I_L \le 3A, P \le P_{MAX}$	0.2		1.0	%
	(Notes 4, 5)	0.4		1.5	
Thermal Regulation	10 ms Pulse	0.002		0.02	% /W
Temperature Stability	$T_{MIN} \le T_J \le T_{MAX}$	0.5			%
Long Term Stability	$T_{J} = 125^{\circ}C$, 1000 Hours	0.2			%
Adjust Pin Current		65		95	μA
		70		100	
Adjust Pin Current	$10 \text{ mA} \leq I_L \leq 3A$	2.5		8	μA
Change	$3.0V \le V_{IN} - V_{OUT} \le 35V$				
Minimum Load	$ V_{IN} - V_{OUT} \le 35V$	2.5		10	mA
Current	$ V_{IN} - V_{OUT} \le 10V$	1.5		5.0	
Current Limit	$3V \le V_{IN} - V_{OUT} \le 10V$	3.9	3.0		
(Note 5)	$ V_{\rm IN} - V_{\rm OUT} = 20V$	2.4	1.0		A
	$ V_{\rm IN} - V_{\rm OUT} = 30V$	0.4	0.20		
Output Noise	10 Hz to 10 kHz	0.003			% (rms)
(% of V _{OUT})					
Ripple Rejection	V _{OUT} = 10V, f = 120 Hz				
	$C_{ADJ} = 0 \ \mu F$	60			dB
	$C_{ADJ} = 10 \ \mu F$	77			
Thermal Resistance	TO-3 Package (K STEEL)	1.2		1.8	°C/W
Junction to Case	TO-220 Package (T)	3		4	1
Thermal Shutdown		163			°C
Temperature					
Thermal Resistance	K Package	35			
Junction to Ambient	T Package	50			°C/W
(No Heatsink)					

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device outside of its stated operating conditions.

Note 2: All limits are guaranteed at either room temperature (standard type face) or at temperature extremes (bold typeface) by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods.

Note 3: Unless otherwise specified: $|V_{IN}$ – $V_{OUT}|$ = 5V, I_{OUT} = 0.5A, $P_{DISS} \leq$ 30W.

Note 4: Load and line regulation are measured at constant junction temperature, using low duty cycle pulse testing (output voltage changes due to heating effects are covered by the Thermal Regulation specification). For the TO-3 package, load regulation is measured on the output pin, 1/s" below the base of the package. **Note 5:** The output current of the LM333 is guaranteed to be \geq 3A in the range $3V \leq |V_{IN} - V_{OUT}| \leq 10V$. For the range $10V \leq |V_{IN} - V_{OUT}| \leq 15V$, the guaranteed minimum output current is equal to: 30/ ($V_{IN} - V_{OUT}$). Refer to graphs for guaranteed output currents at other voltages.

High-Current Adjustable Regulator

*Control regulator must have the largest $\mathsf{V}_{\mathsf{REF}}$

**Full output current requires 5V≤|V_{IN}-V_{OUT}| ≤10V. At higher input-output voltages, load current will be less (see guaranteed curves)

*The 10 μ F capacitors are optional to improve ripple rejection.

THERMAL REGULATION

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since the power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of V_{OUT} , per watt, within the first 10 ms after a step of power is applied. The LM333's specification is 0.01%/W, max.

In *Figure 1*, a typical LM333's output drifts only 2mV (or 0.02% of $V_{OUT} = -10V$) when a 20W pulse is applied for 10 ms. This performance is thus well inside the specification limit of 0.01%/Wx20W = 0.2% max. When the 20W pulse is ended, the thermal regulation again shows a 2 mV step as the LM333 chip cools off. Note that the load regulation error of about 1 mV (0.01%) is additional to the thermal regulation error. In *Figure 2*, when the 20W pulse is applied for 100 ms, the output drifts only slightly beyond the drift in the first 10ms, and the thermal error stays well within 0.1% (10mV).

FIGURE 1.

FIGURE 2.

$$-V_{OUT} = -1.25V\left(1 + \frac{R2}{120\Omega}\right) + \left(-I_{ADJ} \times R2\right)$$

 $^{\dagger}C1 = 1 \ \mu F$ solid tantalum or 10 μF aluminum electrolytic required for stability.

 $*C2 = 1 \ \mu F$ solid tantalum is required only if regulator is more than 4" from power supply filter capacitor.

Output capacitors in the range of 1 μ F to 1000 μ F of aluminum or tantalum electrolytic are commonly used to provide lower output impedance and improved transient response.

www.national.com

Email: support@nsc.com

www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Français Tel: +33 (0) 1 41 91 8790

Email: ap.support@nsc.com

National Semiconductor

November 1995

LM133/LM333 3-Ampere Adjustable Negative Regulators

General Description

The LM133/LM333 are adjustable 3-terminal negative voltage regulators capable of supplying in excess of -3.0A over an output voltage range of -1.2V to -32V. These regulators are exceptionally easy to apply, requiring only 2 external resistors to set the output voltage and 1 output capacitor for frequency compensation. The circuit design has been optimized for excellent regulation and low thermal transients. Further, the LM133 series features internal current limiting, thermal shutdown and safe-area compensation, making them substantially immune to failure from overloads.

The LM133/LM333 serve a wide variety of applications including local on-card regulation, programmable-output voltage regulation or precision current regulation. The LM133/ LM333 are ideal complements to the LM150/LM350 adjustable positive regulators.

Features

- Output voltage adjustable from -1.2V to -32V
- 3.0A output current guaranteed, -55°C to +150°C
- Line regulation typically 0.01%/V
- Load regulation typically 0.2%
- Excellent rejection of thermal transients
- 50 ppm/°C temperature coefficient
- Temperature-independent current limit
- Internal thermal overload protection
- P⁺ Product Enhancement tested
- Standard 3-lead transistor package
- Output is short circuit protected

© 1995 National Semiconductor Corporation TL/H/9065

RRD-B30M115/Printed in U. S. A.

LM133/LM333 3-Ampere Adjustable Negative Regulators

Absolute Maximum Ra	tings (Note 1)			
If Military/Aerospace specified de please contact the National Se	evices are required, emiconductor Sales	Storage Temperature	-65°C to +150°C	
Office/Distributors for availability and specifications.		TO-3 Package	300°C	
Power Dissipation	Internally Limited	TO-220 Package	260°C	
Input-Output Voltage Differential	35V	ESD Susceptibility	TBD	
Operating Junction Temperature Ran LM133 LM333	ge T _{MIN} to T _{MAX} -55°C to +150°C -40°C to +125°C			

Electrical Characteristics LM133 Specifications with standard typeface are for T _J = 25°C, and those with
boldface type apply over the full operating temperature range. (Note 3)

Parameter	Conditions	Typical	Min (Note 2)	Max (Note 2)	Units
Reference Voltage	$I_L = 10 \text{ mA}$	-1.250	-1.238	-1.262	V
	$\begin{array}{l} 3V \leq \left V_{IN} - V_{OUT} \right \leq 35V \\ 10 \text{ mA} \leq I_L \leq 3A, P \leq P_{MAX} \end{array}$	- 1.250	- 1.225	- 1.275	V
Line Regulation	$\begin{array}{l} 3V \leq \left V_{IN} - V_{OUT}\right \leq 35V \\ I_{OUT} = 50 \text{ mA (Note 4)} \end{array}$	0.01 0.02		0.02 0.05	% /V
Load Regulation	10 mA \leq I_{OUT} \leq 3A, P \leq P_{MAX} (Notes 4, 5)	0.2 0.4		0.5 1.0	%
Thermal Regulation	10 ms Pulse	0.002		0.01	% /W
Temperature Stability	$T_{MIN} \leq T_{J} \leq T_{MAX}$	0.4			%
Long Term Stability	$T_{J} = 125^{\circ}C$, 1000 Hours	0.15			%
Adjust Pin Current		65 70		90 100	μΑ
Adjust Pin Current Change	$\begin{array}{l} 10 \text{ mA} \leq I_L \leq 3A \\ 3.0V \leq \left V_{IN} - V_{OUT}\right \leq 35V \end{array}$	2		6	μΑ
Minimum Load	$ V_{\text{IN}} - V_{\text{OUT}} \le 35V$	2.5		5.0	mΔ
Current	$ V_{IN} - V_{OUT} \le 10V$	1.2		2.5	
Current Limit	$3V \leq \left V_{\text{IN}} - V_{\text{OUT}}\right \leq 10V$	3.9	3.0		
(Note 5)	$ V_{IN} - V_{OUT} = 20V$	2.4	1.25		A
	$ V_{IN} - V_{OUT} = 30V$	0.4	0.3		
Output Noise (% of V _{OUT})	10 Hz to 10 kHz	0.003			% (rms)
Ripple Rejection	$\label{eq:VOUT} \begin{array}{l} V_{OUT}=10V, f=120 \text{ Hz} \\ C_{ADJ}=0 \ \mu\text{F} \\ C_{ADJ}=10 \ \mu\text{F} \end{array}$	60 77			dB
Thermal Resistance Junction-to-Case	TO-3 Package (K STEEL)	1.2		1.8	°C/W
Thermal Shutdown Temperature		163	150	190	°C

Parameter	Conditions	Typical	Min (Note 2)	Max (Note 2)	Units
Reference Voltage	$I_L = 10 \text{ mA}$	-1.250	-1.225	-1.275	
	$\begin{split} & 3V \leq \left V_{IN} - V_{OUT}\right \leq 35V \\ & 10 \text{ mA} \leq I_L \leq 3A, P \leq P_{MAX} \end{split} \label{eq:VIN}$	- 1.250	- 1.213	- 1.287	V
Line Regulation	$\begin{array}{l} 3V \leq V_{IN} - V_{OUT} \leq 35V \\ I_{OUT} = 50 \text{ mA (Note 4)} \end{array}$	0.01 0.02		0.04 0.07	% /V
Load Regulation	10 mA \leq I_L \leq 3A, P \leq P_MAX (Notes 4 and 5)	0.2 0.4		1.0 1.5	%
Thermal Regulation	10 ms Pulse	0.002		0.02	% /W
Temperature Stability	$T_{MIN} \leq T_J \leq T_{MAX}$	0.5			%
Long Term Stability	$T_{J} = 125^{\circ}C$, 1000 Hours	0.2			%
Adjust Pin Current		65 70		95 100	μΑ
Adjust Pin Current Change	$\begin{array}{l} 10 \text{ mA} \leq I_L \leq 3A \\ 3.0V \leq \left V_{IN} - V_{OUT}\right \leq 35V \end{array}$	2.5		8	μΑ
Minimum Load	$ V_{\text{IN}} - V_{\text{OUT}} \leq 35 V$	2.5		10	mA
Current	$\left V_{IN}-V_{OUT}\right \leq 10V$	1.5		5.0	
Current Limit (Note 5)	$3V \le \left V_{IN} - V_{OUT} ight \le 10V$	3.9	3.0		A
	$ V_{IN} - V_{OUT} = 20V$	2.4	1.0		
	$ V_{IN} - V_{OUT} = 30V$	0.4	0.20		
Output Noise (% of V _{OUT})	10 Hz to 10 kHz	0.003			% (rms
Ripple Rejection	$\label{eq:VOUT} \begin{array}{l} V_{OUT} = 10V, f = 120 \; Hz \\ C_{ADJ} = 0 \; \muF \\ C_{ADJ} = 10 \; \muF \end{array}$	60 77			dB
Thermal Resistance Junction to Case	TO-3 Package (K STEEL)	1.2		1.8	•C/W
	TO-220 Package (T)	3		4	
Thermal Shutdown Temperature		163			℃
Thermal Resistance	K Package	35			
Junction to Ambient	T Package	50			°C/W

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device outside of its stated operating conditions.

Note 2: All limits are guaranteed at either room temperature (standard type face) or at temperature extremes (bold typeface) by production testing or correlation techniques using standard Statistical Quality Control (SQC) methods.

Note 3: Unless otherwise specified: $|V_{IN}$ - $V_{OUT}|$ = 5V, I_{OUT} = 0.5A, P_{DISS} \leq 30W.

Note 4: Load and line regulation are measured at constant junction temperature, using low duty cycle pulse testing (output voltage changes due to heating effects are covered by the Thermal Regulation specification). For the TO-3 package, load regulation is measured on the output pin, $\frac{1}{6}$ " below the base of the package. Note 5: The output current of the LM333 is guaranteed to be \geq 3A in the range $3V \leq |V_{IN} - V_{OUT}| \leq 10V$. For the range $10V \leq |V_{IN} - V_{OUT}| \leq 15V$, the guaranteed minimum output current is equal to: $30/(V_{IN} - V_{OUT})$. Refer to graphs for guaranteed output currents at other voltages.

THERMAL REGULATION

When power is dissipated in an IC, a temperature gradient occurs across the IC chip affecting the individual IC circuit components. With an IC regulator, this gradient can be especially severe since the power dissipation is large. Thermal regulation is the effect of these temperature gradients on output voltage (in percentage output change) per watt of power change in a specified time. Thermal regulation error is independent of electrical regulation or temperature coefficient, and occurs within 5 ms to 50 ms after a change in power dissipation. Thermal regulation depends on IC layout as well as electrical design. The thermal regulation of a voltage regulator is defined as the percentage change of V_{OUT}.

per watt, within the first 10 ms after a step of power is applied. The LM133's specification is 0.01%/W, max.

In *Figure 1*, a typical LM133's output drifts only 2 mV (or 0.02% of V_{OUT} = -10V) when a 20W pulse is applied for 10 ms. This performance is thus well inside the specification limit of 0.01%/W×20W = 0.2% max. When the 20W pulse is ended, the thermal regulation again shows a 2 mV step as the LM133 chip cools off. Note that the load regulation error of about 1 mV (0.01%) is additional to the thermal regulation error. In *Figure 2*, when the 20W pulse is applied for 100 ms, the output drifts only slightly beyond the drift in the first 10 ms, and the thermal error stays well within 0.1% (10 mV).

FIGURE 1

Physical Dimensions inches (millimeters)

FIGURE 2

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Ational Semiconductor Corporation 111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0.180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tei: (+49) 0.180-530 85 85 English Tei: (+49) 0.180-532 78 32 Français Tei: (+49) 0.180-532 78 32 Italiano Tei: (+49) 0.180-532 78 58 Italiano Tei: (+49) 0.180-532 78 6	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2736-9960 Fax: (852) 2736-9960	National Semiconducto Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408
---	---	--	---

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.