
Plastic Fiber Optic Blue LEDs

APPLICATIONS

- ► Optical Sensors
- ► RGB Light Sources
- Color Separation for Process Control
- Medical Instruments
- ► Analog and Digital Data Links
- ► Robotics Communications
- ► Display Indicators
- ► Electronic Games
- ► Wavelength Multiplexing
- ► Fluorescent Instruments

MAXIMUM RATINGS

 $(T_A\!=\!25^\circ C)$

Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 60°C
Junction Temperature (T_J) 85°C
Soldering Temperature (2 mm from case bottom)
$(T_{\rm S}) t \le 5 s \dots 240^{\circ} C$
Reverse Voltage (V_R)5 V
Power Dissipation
$(P_{TOT}) T_{A} = 25^{\circ}C \dots 60 \text{ mW}$
De-rate Above 25°C1.1 mW/°C
Forward Current, DC (I_F)35 mA
$\begin{array}{l} \text{Surge Current (I}_{FSM}) \\ t \leq 10 \ \mu\text{s} \ldots75 \ \text{mA} \end{array}$

DESCRIPTION

The IF-E92A and IF-E92B are blue LEDs housed in a "connector-less" style plastic fiber optic package. The IF-E92A contains a Silicon Carbide die with a spectral output peaking at 430 nm and the IF-E92B die is made from Gallium Nitride peaking at 470 nm. The device package features an internal micro-lens and a precision-molded PBT housing to ensure efficient optical coupling with standard 1000 μ m core plastic fiber cable.

APPLICATION HIGHLIGHTS

These LEDs are low-cost alternatives to other light sources for producing a narrowband blue light output that can be efficiently coupled into a fiber cable. They can be used in a variety of sensor and display applications that require a narrowband optical light source whose intensity can be easily adjusted or modulated without changing optical spectrum. When combined with red and green LEDs the IF-E92A and IF-92B provide an RGB source for generating white or multicolored light. Applications include process control for color identification/ separation and demonstration of wavelength division multiplexing for educational purposes. The IF-E92A and IF-E92B are also capable of digital data rates of 1 Mbps and 800 kbps respectively. The electrical drive circuit design is the same as that of other LEDs, making the IF-E92A and IF-E92B cost-effective light sources in a variety of analog, digital sensor and lighting applications.

FEATURES

- Easily Adjusted or Modulated Blue Optical Output
- Fast Transition Times
- ◆ No Optical Design Required
- Mates With Standard 1000 μm Core Jacketed Plastic Fiber Cable
- ◆ Internal Micro-Lens for Efficient Optical Coupling
- ◆ Inexpensive Plastic Connector Housing
- Connector-Less Fiber Termination

Characteristics ($T_A = 25^{\circ}C$)

Parameter	Symbol	IF-E92A	IF-E92B	Unit
Peak Wavelength	λ _{PEAK}	430	470	nm
Spectral Bandwidth (50% of I _{MAX})	Δλ	65	25	nm
Output Power Coupled into Plastic Fiber (1 mm core diameter). Distance Lens to Fiber ≤ 0.1 mm, 10 cm polished fiber, I _F =10 mA	Φ_{\min}	25 -16	75 -11	µW dBm
Switching Times (10% to 90% and 90% to 10%) (R_L=47 $\Omega,~I_F{=}10$ mA)	t _r , t _f	.5	.6	μs
Capacitance (V _F =0, F=1 MHz)	C ₀	100	100	pF
Forward Voltage (I _F =20 mA)	V _f	4.5 max	4.0 max	V
Temperature Coefficient, APEAK	ΤC _λ	.16	.16	nm/K

IF-E92

Plastic Fiber Optic Blue LEDs

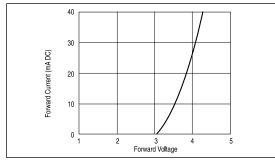


FIGURE 1. Forward current versus forward voltage.

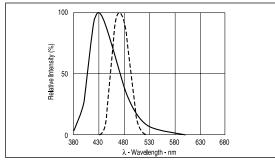
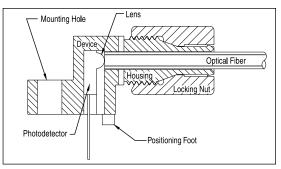



FIGURE 2. Typical spectral output vs. wavelength.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

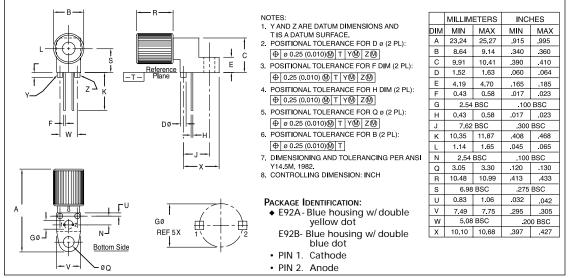


FIGURE 4. Case outline.