

Quick Assembly Two and Three Channel Optical Encoders

Technical Data

Features

- Two Channel Quadrature Output with Optional Index Pulse
- Quick and Easy Assembly
- No Signal Adjustment Required
- External Mounting Ears Available
- Low Cost
- Resolutions Up to 1024 Counts Per Revolution
- Small Size
- -40°C to 100°C Operating Temperature
- TTL Compatible
- Single 5 V Supply

Description

The HEDS-5500/5540, HEDS-5600/5640, and HEDM-5500/ 5600 are high performance, low cost, two and three channel optical incremental encoders. These encoders emphasize high reliability, high resolution, and easy assembly.

Each encoder contains a lensed LED source, an integrated circuit with detectors and output circuitry, and a codewheel which rotates between the emitter and detector IC. The outputs of the HEDS-5500/5600 and HEDM-5500/ 5600 are two square waves in quadrature. The HEDS-5540 and 5640 also have a third channel index output in addition to the two channel quadrature. This index output is a 90 electrical degree, high true index pulse which is generated once for each full rotation of the codewheel.

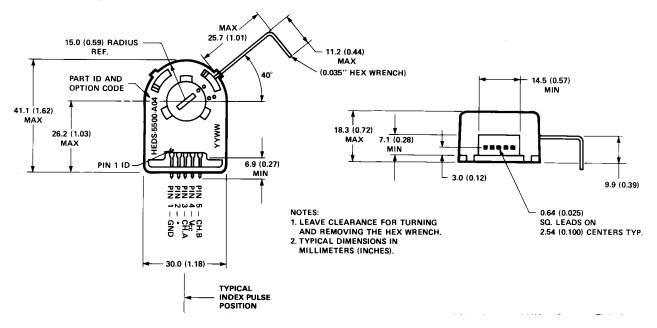
The HEDS series utilizes metal codewheels, while the HEDM series utilizes a film codewheel allowing for resolutions to 1024 CPR. The HEDM series is nont available with a third channel index.

These encoders may be quickly and easily mounted to a motor. For larger diameter motors, the HEDM-5600, and HEDS-5600/ 5640 feature external mounting ears.

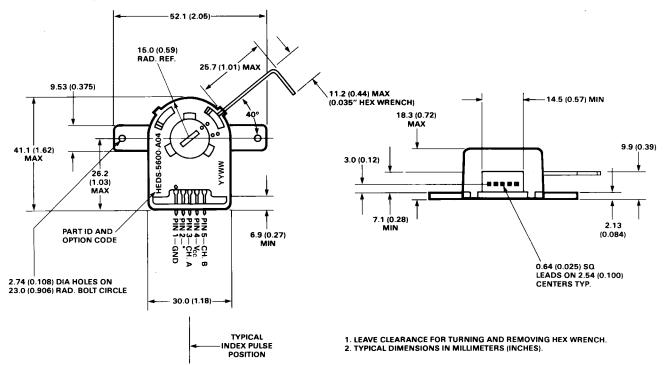
The quadrature signals and the index pulse are accessed through five 0.025 inch square pins located on 0.1 inch centers.

Standard resolutions between 96 and 1024 counts per revolution are presently available. Consult local Agilent sales representatives for other resolutions.

HEDM-550x/560x HEDS-550x/554x HEDS-560x/564x


Applications

The HEDS-5500, 5540, 5600, 5640, and the HEDM-5500, 5600 provide motion detection at a low cost, making them ideal for high volume applications. Typical applications include printers, plotters, tape drives, positioning tables, and automatic handlers.


Note: Agilent Technologies encoders are not recommended for use in safety critical applications. Eg. ABS braking systems, power steering, life support systems and critical care medical equipment. Please contact sales representative if more clarification is needed.

Package Dimensions

HEDS-5500/5540, HEDM-5500

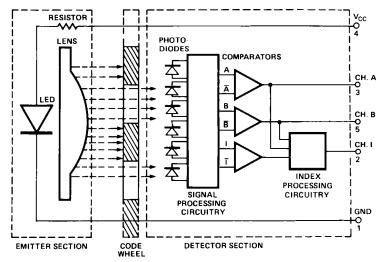
*Note: For the HEDS-5500 and HEDM-5500, Pin #2 is a No Connect. For the HEDS-5540, Pin #2 is CH. I, the index output.

HEDS-5600/5640, HEDM-5600

*Note: For the HEDS-5600 and HEDM-5600, Pin #2 is a No Connect. For the HEDS-5640, Pin #2 is CH. I, the index output.

2

Theory of Operation


The HEDS-5500, 5540, 5600, 5640, and HEDM-5500, 5600 translate the rotary motion of a shaft into either a two- or a threechannel digital output.

As seen in the block diagram, these encoders contain a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single polycarbonate lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the codewheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in A, A, B and B (also I and I in the HEDS-5540 and 5640). Comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

In the HEDS-5540 and 5640, the output of the comparator for I and I is sent to the index processing circuitry along with the outputs of channels A and B.

Block Diagram

NOTE: CIRCUITRY FOR CH. I IS ONLY IN HEDS-5540 AND 5640 THREE CHANNEL ENCODERS.

The final output of channel I is an index pulse P_0 which is generated once for each full rotation of the codewheel. This output P_0 is a one state width (nominally 90 electrical degrees), high true index pulse which is coincident with the low states of channels A and B.

Definitions

Count (N): The number of bar and window pairs or counts per revolution (CPR) of the codewheel.

One Cycle (C): 360 electrical degrees (°e), 1 bar and window pair.

One Shaft Rotation: 360 mechanical degrees, N cycles.

Position Error $(\Delta \Theta)$: The normalized angular difference between the actual shaft position and the position indicated by the encoder cycle count.

Cycle Error (ΔC): An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of 1/N of a

revolution.

Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally 180°e or 1/2 cycle.

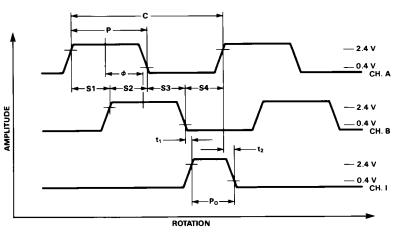
Pulse Width Error (ΔP): The deviation, in electrical degrees, of the pulse width from its ideal value of 180°e.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally 90°e.

State Width Error (ΔS): The deviation, in electrical degrees, of each state width from its ideal value of 90°e.

Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally 90°e for quadrature output.

Phase Error $(\Delta \phi)$: The deviation of the phase from its ideal value of 90°e.


Absolute	Maximum	Ratings
----------	---------	---------

Parameter	HEDS-55XX/56XX	HEDM-550X/560X
Storage Temperature, T_S	-40°C to 100°C	-40° C to $+70^{\circ}$ C
Operating Temperature, T _A	-40°C to 100°C	-40°C to +70°C
Supply Voltage, V_{CC}	-0.5 V to 7 V	-0.5 V to 7 V
Output Voltage, V _O	-0.5 V to V_{CC}	-0.5 V to V_{CC}
Output Current per Channel, I _{OUT}	-1.0 mA to 5 mA	-1.0 mA to 5 mA
Vibration	20 g, 5 to 1000 Hz	20 g, 5 to 1000 Hz
Shaft Axial Play	± 0.25 mm (± 0.010 in.)	± 0.175 mm (± 0.007 in.)
Shaft Eccentricity Plus Radial Play	0.1 mm (0.004 in.) TIR	0.04 mm (0.0015 in.) TIR
Velocity	30,000 RPM	30,000 RPM
Acceleration	$250,000 \text{ rad/sec}^2$	$250,000 \text{ rad/sec}^2$

Direction of Rotation: When the codewheel rotates in the counterclockwise direction (as viewed from the encoder end of the motor), channel A will lead channel B. If the codewheel rotates in the clockwise direction, channel B will lead channel A.

Index Pulse Width (P_O): The number of electrical degrees that an index output is high during one full shaft rotation. This value is nominally 90°e or 1/4 cycle.

Output Waveforms

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Temperature HEDS Series	T _A	-40		100	°C	
Temperature HEDM Series	T _A	-40		70	°C	non-condensing atmosphere
Supply Voltage	V _{CC}	4.5	5.0	5.5	Volts	Ripple < 100 mV _{p-p}
Load Capacitance	CL			100	pF	$2.7 \text{ k}\Omega$ pull-up
Count Frequency	f			100	kHz	Velocity (rpm) x N/60
Shaft Perpendicularity Plus Axial Play (HEDS Series)				± 0.25 (± 0.010)	mm (in.)	6.9 mm (0.27 in.) from mounting surface
Shaft Eccentricity Plus Radial Play (HEDS Series)				0.04 (0.0015)	mm (in.) TIR	6.9 mm (0.27 in.) from mounting surface
Shaft Perpendicularity Plus Axial Play (HEDM Series)				± 0.175 (± 0.007)	mm (in.)	6.9 mm (0.27 in.) from mounting surface
Shaft Eccentricity Plus Radial Play(HEDM Series)				0.04 (0.0015)	mm (in.) TIR	6.9 mm (0.27 in.) from mounting surface

Recommended Operating Conditions

Note: The module performance is guaranteed to 100 kHz but can operate at higher frequencies. $2.7 \text{ k}\Omega$ pull-up resistors required for HEDS-5540 and 5640.

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances unless otherwise specified. Values are for the worst error over the full rotation.

Part No.	Descrip	tion	Sym.	Min.	Typ.*	Max.	Units
HEDS-5500	Pulse Width Error		ΔΡ		7	45	°e
HEDS-5600	Logic State Width Er	ror	ΔS		5	45	°e
(Two Channel)	Phase Error		Δφ		2	20	°e
	Position Error		$\Delta \Theta$		10	40	min. of arc
	Cycle Error		ΔC		3	5.5	°e
HEDM-5500	Pulse Width Error		ΔΡ		10	45	°e
HEDM-5600	Logic State Width Er	ror	ΔS		10	45	°e
(Two Channel)	Phase Error		$\Delta \phi$		2	15	°e
	Position Error		$\Delta \Theta$		10	40	min. of arc
	Cycle Error		ΔC		3	7.5	°e
HEDS-5540	Pulse Width Error		ΔΡ		5	35	°e
HEDS-5640	Logic State Width Er	ror	ΔS		5	35	°e
(Three	Phase Error		$\Delta \phi$		2	15	°e
Channel)	Position Error		$\Delta \Theta$		10	40	min. of arc
	Cycle Error		ΔC		3	5.5	°e
	Index Pulse Width		Po	55	90	125	°e
	CH. I rise after CH. A or CH. B fall	-40℃ to +100℃	t_2	-300	100	250	ns
	CH. I fall after CH. B or CH. A rise	-40℃ to +100℃	t_2	70	150	1000	ns

Note: See Mechanical Characteristics for mounting tolerances. *Typical values specified at V_{CC} = 5.0 V and 25 °C.

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range.

Part No.	Parameter	Sym.	Min.	Typ.*	Max.	Units	Notes
HEDS-5500	Supply Current	I _{CC}		17	40	mA	
HEDS-5600	High Level Output Voltage	V _{OH}	2.4			V	$I_{OH} = -40 \ \mu A \ max.$
	Low Level Output Voltage	V _{OL}			0.4	V	$I_{OL} = 3.2 \text{ mA}$
	Rise Time	t _r		200		ns	$C_L = 25 \text{ pF}$
	Fall Time	t_{f}		50		ns	$R_L = 11 \ k\Omega \ pull-up$
HEDS-5540	Supply Current	I _{CC}	30	57	85	mA	
HEDS-5640	High Level Output Voltage	V _{OH}	2.4			V	$I_{OH} = -200 \ \mu A \ max.$
HEDM-5500	Low Level Output Voltage	V _{OL}			0.4	V	$I_{OL} = 3.86 \text{ mA}$
HEDM-5600	Rise Time	t _r		180		ns	$C_L = 25 \text{ pF}$
	Fall Time	t_{f}		40		ns	$R_L = 2.7 \text{ k}\Omega \text{ pull-up}$
HEDM-5500	Supply Current	I _{CC}	30	57	85	mA	
HEDM-5600	High Level Output Voltage	V _{OH}	2.4			V	$I_{OH} = -40 \ \mu A \ max.$
	Low Level Output Voltage	V _{OL}			0.4	V	$I_{OL} = 3.86 \text{ mA}$
	Rise Time	t _r		180		ns	$C_L = 25 \text{ pF}$
	Fall Time	t_{f}		40		ns	$R_L = 3.2 \text{ k}\Omega \text{ pull-up}$

*Typical values specified at V_{CC} = 5.0 V and 25°C.

Parameter	Symbol	Dimension	Tolerance ^[1]	Units
Codewheel Fits These Standard Shaft Diameters		$ \begin{array}{ccccccccccccccccccccccccccccccccc$	+0.000 -0.015	mm
		5/32 1/8 3/16 1/4	+0.0000 -0.0007	in
Moment of Inertia	J	0.6 (8.0 x 10 ⁻⁶)		$g-cm^2$ (oz-in-s ²)
Required Shaft Length ^[2]		14.0 (0.55)	± 0.5 (± 0.02)	mm (in.)
Bolt Circle ^[3]	2 screw mounting	19.05 (0.750)	± 0.13 (± 0.005)	mm (in.)
	3 screw mounting	20.90 (0.823)	± 0.13 (± 0.005)	mm (in.)
	external mounting ears	46.0 (1.811)	± 0.13 (± 0.005)	mm (in.)
Mounting Screw Size ^[4]	2 screw mounting	M 2.5 or (2-56)		mm (in.)
	3 screw mounting	M 1.6 or (0-80)		mm (in.)
	external mounting ears	M 2.5 or (2-56)		mm (in.)
Encoder Base Plate Thickness		0.33 (0.130)		mm (in.)
Hub Set Screw		(2-56)		(in.)

Notes:

1. These are tolerances required of the user.

2. The HEDS-55X5 and 56X5, HEDM-5505, 5605 provide an 8.9 mm (0.35 inch) diameter hole through the housing for longer motor shafts. See Ordering Information.

3. The HEDS-5540 and 5640 must be aligned using the aligning pins as specified in Figure 3, or using the alignment tool as shown in "Encoder Mounting and Assembly". See also "Mounting Considerations."

4. The recommended mounting screw torque for 2 screw and external ear mounting is 1.0 kg-cm (0.88 in-lbs). The recommended mounting screw torque for 3 screw mounting is 0.50 kg-cm (0.43 in-lbs).

Electrical Interface

To insure reliable encoding performance, the HEDS-5540 and 5640 three channel encoders require 2.7 k Ω (± 10%) pull-up resistors on output pins 2, 3, and 5 (Channels I, A, and B) as shown in Figure 1. These pull-up resistors should be located as close to the encoder as possible (within 4 feet). Each of the three encoder outputs can drive a single TTL load in this configuration.

The HEDS-5500, 5600, and HEDM-5500, 5600 two channel encoders do not normally require pull-up resistors. However, $3.2 \text{ k}\Omega$

pull-up resistors on output pins 3 and 5 (Channels A and B) are recommended to improve rise times, especially when operating above 100 kHz frequencies.

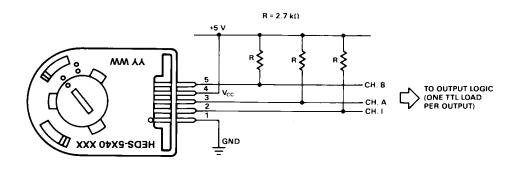
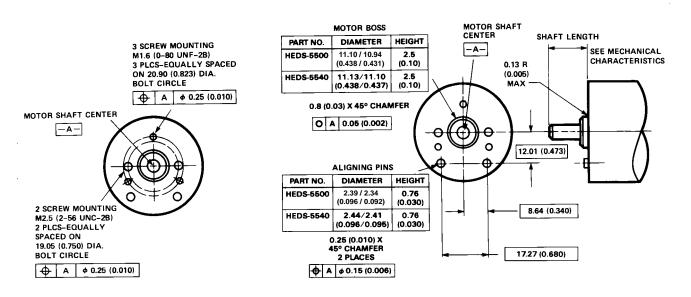


Figure 1. Pull-up Resistors on HEDS-5X40 Encoder Outputs.


Mounting Considerations

The HEDS-5540 and 5640 three channel encoders and the HEDM Series high resolution encoders must be aligned using the aligning pins as specified in Figure 3, or using the HEDS-8910 Alignment Tool as shown in Encoder Mounting and Assembly.

The use of aligning pins or alignment tool is recommended but not required to mount the HEDS-5500 and 5600. If these two channel encoders are attached to a motor with the screw sizes and mounting tolerances specified in the mechanical characteristics section without any additional mounting bosses, the encoder output errors will be within the maximums specified in the encoding characteristics section.

The HEDS-5500 and 5540 can be mounted to a motor using either the two screw or three screw mounting option as shown in Figure 2. The optional aligning pins shown in Figure 3 can be used with either mounting option.

The HEDS-5600, 5640, and HEDM-5600 have external mounting ears which may be used for mounting to larger motor base plates. Figure 4 shows the necessary mounting holes with optional aligning pins and motor boss.

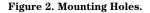


Figure 3. Optional Mounting Aids.

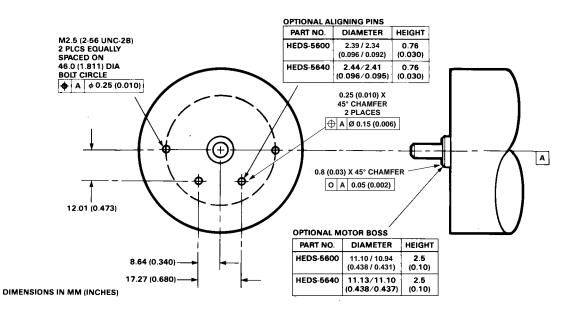
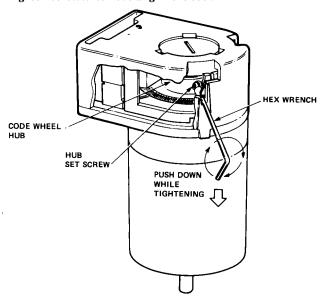
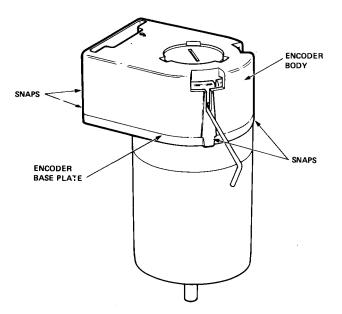
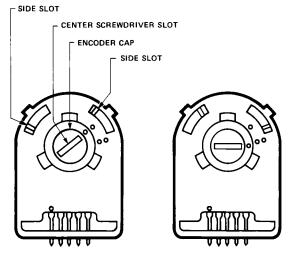


Figure 4. Mounting with External Ears.




ENCODER BASE PLATE

Encoder Mounting and Assembly


1. For HEDS-5500 and 5600: Mount encoder base plate onto motor. Tighten screws. Go on to step 2.

1a. For HEDS-5540, 5640 and HEDM-5500, 5600: Slip alignment tool onto motor shaft. With alignment tool in place, mount encoder baseplate onto motor as shown above. Tighten screws. Remove alignment tool.

2. Snap encoder body onto base plate locking all 4 snaps.

ONE DOT POSITION

TWO DOT POSITION

3a. Push the hex wrench into the body of the encoder to ensure that it is properly seated into the code wheel hub set screws. Then apply a downward force on the end of the hex wrench. This sets the code wheel gap by levering the code wheel hub to its upper position.

3b. While continuing to apply a downward force, rotate the hex wrench in the clockwise direction until the hub set screw is tight against the motor shaft. The hub set screw attaches the code wheel to the motor's shaft.

3c. Remove the hex wrench by pulling it straight out of the encoder body.

4. Use the center screwdriver slot, or either of the two side slots, to rotate the encoder cap dot clockwise from the one dot position to the two dot position. Do not rotate the encoder cap counterclockwise beyond the one dot position.

The encoder is ready for use!

Connectors

Manufacturer	Part Number
AMP	103686-4 640442-5
Dupont/Berg	65039-032 with 4825X-000 term.
Agilent (designed to mechanically lock into the	HEDS-8902 (2 ch.) with 4-wire leads
HEDS-5XXX, HEDM-5X0X Series)	HEDS-8903 (3 ch.) with 5-wire leads
Molex	2695 series with 2759 series term.

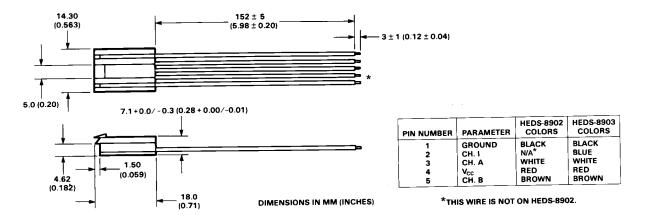
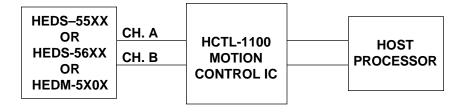
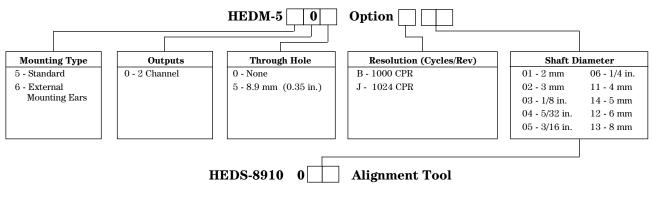
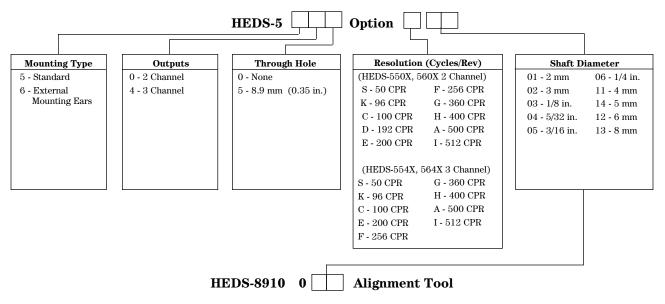



Figure 5. HEDS-8902 and 8903 Connectors.


Typical Interfaces

HEDS-55XX OR HEDS-56XX OR HEDM-5X0X	СН. А СН. В	HCTL-2016/ 2020 QUADRATURE DECODER/ COUNTER		HOST PROCESSOR
---	----------------	---	--	-------------------


Ordering Information

Encoders with Film Codewheels

(Included with each order of HEDM-550X/560X two channel encoders)

Encoders with Metal Codewheels

(Included with each order of HEDS-554X/564X three channel encoders)

12

		01	02	03	04	05	06	11	12	13	14
				və	V4	00		*			
HEDM-5500	B	*	*				*	*	*	*	*
	J						*		~	*	~
HEDM-5505	B				*						
	J			*			*			*	
HEDM-5600	B						*			*	
	J						*				
HEDM-5605	B						*				
	J						*				
HEDS-5500	Α	*	*	*	*	*	*	*	*	*	*
	C	*	*	*	*	*	*	*	*	*	*
	E		*		*	*	*	*	*		*
	F	*	*		*	*	*	*	*		*
	G		*			*	*		*		*
	H					*	*		*		*
	I	*	*	*	*	*	*	*	*	*	*
	K S				*	*	*	*		*	
	-										
HEDS-5505	A				*		*		*	*	*
	C E				*		*		*		*
	E F				*		*				*
	G				*		*				
	H						*				*
	I				*		*			*	
	K				*						
HEDS-5540	Α	*	*	*	*	*	*	*	*	*	*
	C	*	*				*	*	*	*	*
	E						*	*			
	F	*						*			*
	G						*				
	H						*				*
	I	*	*				*	*	*	*	*
HEDS-5545	A								*		*
	C								*		
	H						*				*
	I										
HEDS-5600	A						*		*	*	*
	C						*		*		*
	E G						*			*	
	H H						*		*	•	
	I	*						*			
	1										

		01	02	03	40	05	06	11	12	13	14
HEDS-5605	Α						*			*	
	C						*				
	Ε						*				
	F									*	
	G						*				
	H						*				*
	Ι						*				
HEDS-5640	Α						*		*	*	
	E						*				
	F						*				
	Η						*				
HEDS-5645	Α						*		*	*	
	C									*	
	Ε									*	
	G									*	
	H						*		*		*
	Ι									*	

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or (408) 654-8675

Europe: +49 (0) 6441 92460 China: 10800 650 0017

Hong Kong: (+65) 271 2451

India, Australia, New Zealand: (+65) 271 2394

Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)

Korea: (+65) 271 2194

Malaysia, Singapore: (+65) 271 2054 Taiwan: (+65) 271 2654

Data subject to change. Copyright © 2002 Agilent Technologies, Inc. Obsoletes 5988-2579EN January 17, 2002 5988-3996EN

HEDL-65xx, HEDM-65xx, HEDS-65xx Series

Large Diameter (56 mm), Housed Two and Three Channel Optical Encoders

Data Sheet

Description

The HEDS-65xx/HEDL-65xx are high performance two and three channel optical incremental encoders. These encoders emphasize high reliability, high resolution, and easy assembly. Each encoder contains a lensed LED source (emitter), an integrated circuit with detectors and output circuitry, and a codewheel which rotates between the emitter and detector integrated circuit. The outputs of the HEDS-6500 are two single ended square waves in quadrature. The HEDL-65xx outputs are differential.

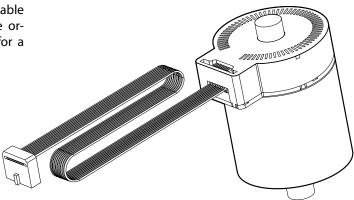
The HEDS-6540 / HEDL-6540 also have a third channel index output in addition to the two quadrature outputs. This index is an active high pulse that occurs once every full rotation of the codewheel. Resolutions up to 1024 Counts Per Revolution are available in the two and three channel versions.

The line driver option offers enhanced performance when the encoder is used in noisy environments, or when it is required to drive long distances.

The line driver option utilizes an industry standard line driver IC AM26C31Q which provides complementary outputs for each encoder channel. Thus the outputs of the line driver encoder are A and \overline{A} , B and \overline{B} , and I and \overline{I} for three channel versions. Suggested line receivers are 26C32 and 26C33.

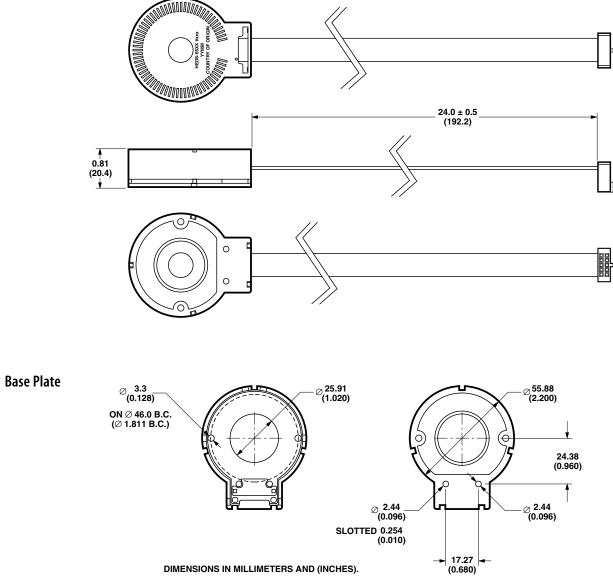
The quadrature signals are accessed through a cable and 10-pin female connector. Please refer to the ordering information at the end of this data sheet for a selection matrix.

Features

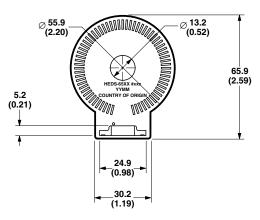

- Two channel quadrature output with optional index pulse
- TTL compatible single ended outputs on HEDS Series
- 100°C operating temperature for metal code wheel
- 70°C operating temperature for mylar code wheel
- Industry standard AM26C31Q CMOS line driver IC on HEDL Series
- Easy assembly, no signal adjustment necessary
- Resolutions up to 2048 counts per revolution

Applications

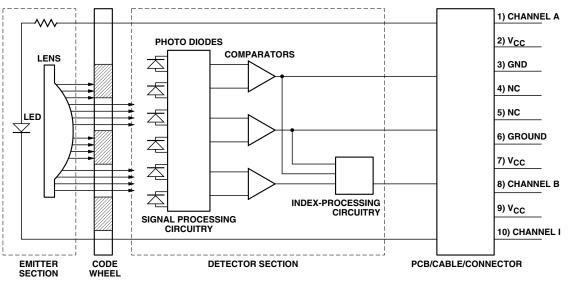
The HEDS-65xx / HEDL-65xx provide motion detection to a very high resolution and accept a variety of shaft sizes up to a maximum of 5/8 inches.


Typical applications include printers, plotters, tape drives, positioning tables, and automatic handlers.

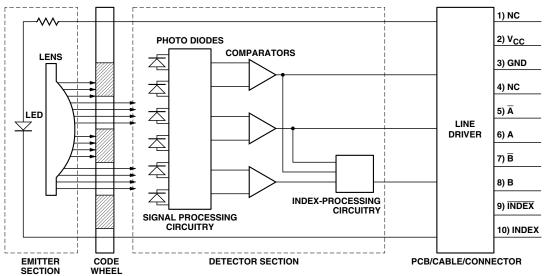
Note: Avago Technologies encoders are not recommended for use in safety critical applications. Eg. ABS braking systems, power steering, life support systems and critical care medical equipment. Please contact sales representative if more clarification is needed.



Assembled Unit

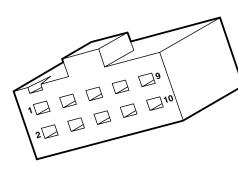


Top Cover (Housing)



DIMENSIONS IN MILLIMETERS AND (INCHES).

Pinout A



Pinout B

There are two different connector pin-out configurations used with the HEDS-65xx / HEDL-65xx series of encoders. The table below relates the part to its connector pin-out.

Pinou	Pinout A							
	DS-65xx CONNECTOR OUT							
1	Channel A							
2	V _{cc}							
3	GND							
4	NC							
5	NC							
6	GND							
7	V _{cc}							
	Channel B							
9	V _{cc}							
	Channel I							

Pinou	Pinout B						
	DL-65xx CONNECTOR OUT						
1	NC						
2	V _{cc}						
3							
4	NC						
5	Ā						
6	A						
7	B						
8	В						
9	I (INDEX)						
10	I (INDEX)						

Theory of Operation

The HEDS-65xx / HEDL-65xx translate the rotary motion of a shaft into either a two or three channel digital output.

The HEDS-65xx uses one of the standard HEDS-9000 or HEDS-9040 modules for encoding purposes. The HEDL-654x uses the standard HEDL-9040 for encoding purposes.

As seen in the block diagram, these modules contain a single Light Emitting Diode (LED) as their light source (emitter). The light is collimated into a single parallel beam by means of a plastic lens located directly over the LED. Opposite the emitter is the integrated detector circuit (detector). This circuit consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by a pattern of spaces and bars on the codewheel. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the codewheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed into the signal processing circuitry resulting in A, \overline{A} , B, and \overline{B} (I and \overline{I} also in the three channel encoders). Comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

In the HEDS-6540 / HEDL-6540 the output of the comparator for the index pulse is combined with that of the outputs of channel A and channel B to produce the final index pulse. The index pulse is generated once every rotation of the codewheel and is a one state width (nominally 90 electrical degrees), true high index pulse. It is coincident with the low states on channels A and B.

Definitions

Count (N): The number of bar and window pairs or counts per revolution (CPR) of the codewheel.

One Cycle (C): 360 electrical degrees (e), 1 bar and window pair.

One Shaft Rotation: 360 mechanical degrees, N cycles.

Position Error ($\Delta\Theta$): The normalized angular difference between the actual shaft position and the position indicated by the encoder cycle count.

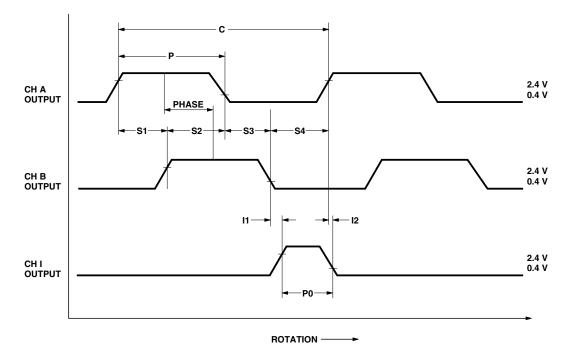
Cycle Error (Δ C): An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of 1/N of a revolution.

Pulse Width (P): The number of electrical degrees that an output is high during one cycle. This value is nominally 180 e or 1/2 cycle.

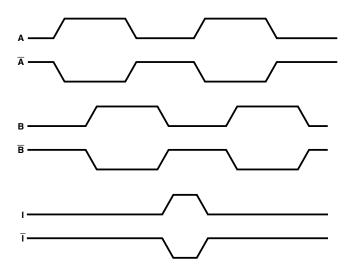
Pulse Width Error (ΔP): The deviation, in electrical degrees, of the pulse width from its ideal value of 180 e.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally 90 e.

State Width Error (Δ S): the deviation, in electrical degrees, of each state width from its ideal value of 90 e.


Phase (Φ) : the number of electrical degrees between the center of high state on channel A and the center of the high state on channel B. This value is nominally 90 e for quadrature output.

Phase Error ($\Delta \Phi$): The deviation of the phase from its ideal value of 90 e.


Direction of Rotation: When the codewheel rotates in a counterclockwise direction (when viewed from the encoder end of the motor) channel A will lead channel B. If the codewheel rotates in the clockwise direction channel B will lead channel A.

Index Pulse Width (P0): The number of electrical degrees that an index output is high during one full shaft rotation. This value is nominally 90 e or 1/4 cycle.

Output Waveforms

Waveforms for Encoders without Line Drivers.

Waveforms for Encoders with Line Drivers.

Absolute Maximum Ratings

Parameter	HEDS-6500	HEDS-6540	HEDL-6540	HEDL-6545	
Storage Temperature	-40 to +100	-40 to +100	-40 to +100	-40 to +100	Celsius
Operating Temperature	-40 to +100	-40 to +100	-40 to +100	-40 to +100	Celsius
Supply Voltage	5 to +7	5 to +7	5 to +7	5 to +7	Volts
Output Voltage	6 to Vcc	6 to Vcc	6 to Vcc	6 to Vcc	Volts
Output Current Per Channel	-1 to 5	-1 to 5			mA
Velocity	30,000	30,000	30,000	30,000	RPM
Vibration	20	20	20	20	Gs
Shaft Axial Play	5	5	5	5	Inch/1000
Radial Play & Eccentricity	2	2	2	2	Inch/1000

Recommended Operating Conditions

Parameter	HEDS-6500	HEDS-6540	HEDL-6540	HEDL-6545	
Temperature	-40 to +100	-40 to +100	-40 to +100	-40 to +100	Celsius
Supply Voltage	4.5 to 5.5	4.5 to 5.5	4.5 to 5.5	4.5 to 5.5	Volts
Load Capacitance	100	100	100	100	pF
Count Frequency	100	100	100	100	kHz
Shaft Eccentricity Plus Radial Play	±.05 (±.002)	±.05 (±.002)	±.05 (±.002)	±.05 (±.002)	mm (Inch/1000)

Note: The HEDS-65XX performance is guaranteed to 100 kHz but can operate at higher frequencies. For frequencies above 100 kHz it is recommended that the load capacitance not exceed 25 pF and pull up resistors of $3.3 \text{ k}\Omega$ between the output channels and Vcc are included.

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances unless otherwise specified. Values are for the worst error in the full rotation.

Part Number	Description	Symbol	Min.	Typ.*	Max.	Units
HEDS-6500***	Pulse Width Error	ΔΡ		5	35	°e
	Logic State Width Error	ΔS		5	35	°e
	Phase Error	$\Delta \Phi$		2	15	°e
	Position Error	$\Delta \Theta$		7	20	min. of arc
	Cycle Error	ΔC		5	5.5	°e
HEDS-6540**	Pulse Width Error	ΔΡ		5	35	°e
	Logic State Width Error	ΔS		5	35	°e
	Phase Error	$\Delta \Phi$		2	15	°e
	Position Error	$\Delta \Theta$		7	20	min. of arc
	Cycle Error	ΔC		5	5.5	°e
	Index Pulse Width	ΔΡ0	55	90	125	°e
	CH I fall after CH B or CH A fall					
	-25°C to +100°C	t1	10	100	250	ns
	-40°C to +100°C	t1	-300	100	250	ns
	CH I rise after CH B or CH A rise					
	-25°C to +100°C	t2	70	150	300	ns
	-40°C to +100°C	t2	70	150	1000	ns
HEDL-654x	Pulse Width Error	ΔP		5	35	°e
	Logic State Width Error	ΔS		5	35	°e
	Phase Error	$\Delta \Phi$		2	15	°e
	Position Error	$\Delta \Theta$		7	20	min. of arc
	Cycle Error	ΔC		5	5.5	°e
	Index Pulse Width	ΔΡ0		90		°e

*Typical values specified at Vcc = 5.0 V and 25° C.

HEDS-6540 – Active high Index part. Pull-up of 2.7 k Ω used on all outputs of modules that do not have a line driver. *HEDS-6500 – 3.3 k Ω pull-up resistors used on all encoder module outputs.

Electrical Characteristics

Part Number	Symbol*	Min.	Тур.	Max.	Units	Notes
HEDS-6500	lcc		17	40	mA	
	V _{OH}	2.4			V	I _{0H} = -40 μA max
	V _{oL}			0.4	V	$I_{01} = 3.2 \text{ mA}$
	tr		200		ns	$C_1 = 25 \text{ pF}, \text{RL} = 11 \text{ k}\Omega \text{ pull-up}.$
	tf		50		ns	
HEDS-6540	lcc	30	57	85	mA	
	V _{OH}	2.4			V	I _{0H} = -200 μA max
	V _{oL}			0.4	V	$I_{01} = 3.86 \text{ mA}$
	tr		180		ns	$C_{1} = 25 \text{ pF}, \text{RL} = 3.3 \text{ k}\Omega \text{ pull-up}.$
	tf		40		ns	-

Electrical Characteristics over Recommended Operating Range, typical at 25°C.

*Explanation for symbols.

Icc – Supply current, V_{OH} – High Level Output Voltage, V_{OL} – Low Level Output Voltage, tr – Rise Time, tf – Fall Time.

Electrical Interfaces

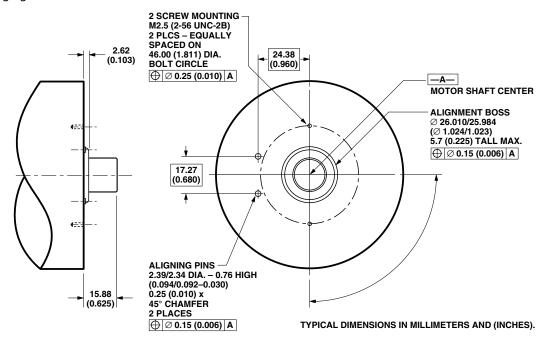
To insure reliable encoding performance, the HEDS-6540 three channel encoder requires 2.7 k Ω pull-up resistors to the supply voltage on each of the three output lines Ch. A, Ch. B, and Ch. I located as close as possible to the encoder

Mechanical Characteristics

Parameter	Symbol	Dimensions	Tolerances ^[1]	Units
Moment Of Inertia	J	7.7 (110 x 10⁻⁵)		gcm ² (oz-in-s ²)
Required Shaft Length [2]		15.9 (0.625)	±0.6 (.024)	mm (inches)
Bolt Circle ^[3]		46.0 (1.811)	±0.13 (.005)	mm (inches)
Mounting Screw Size [4]		2.5 x 0.45 x 5		mm
Pan Head Style		#2-56 x 3/16		Inches
Encoder Base Plate Thickness		3.04 (120)		mm (inches)
Mounting Screw Torque		1.0 (0.88)		Kg (in-lbs)
Hub Set Screw		UNC #2-56		Hex head set screw

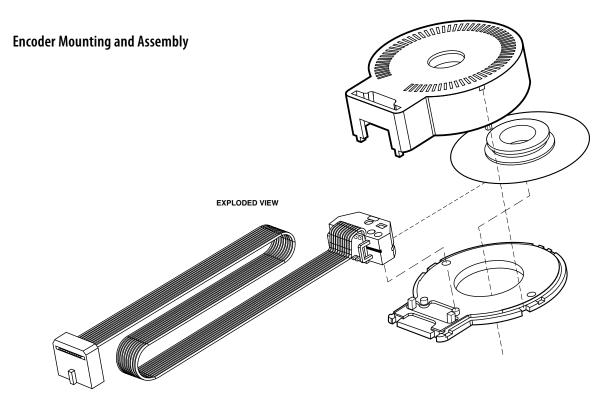
Notes:

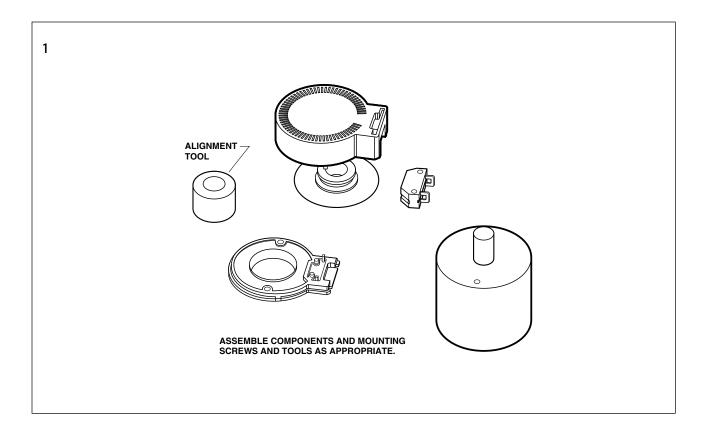
1. These are tolerances required of the user.

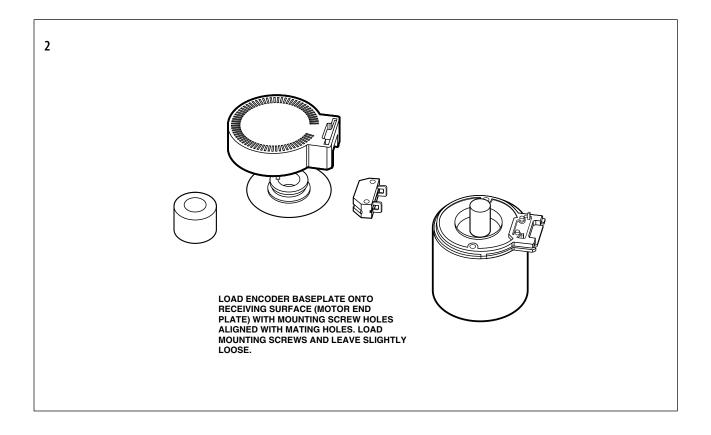

2. Through hole in the encoder housing are also available, for longer shafts.

3. The HEDL-65X0 must be aligned using the aligning pins as specified in the section on "MOUNTING CONSIDERATIONS."

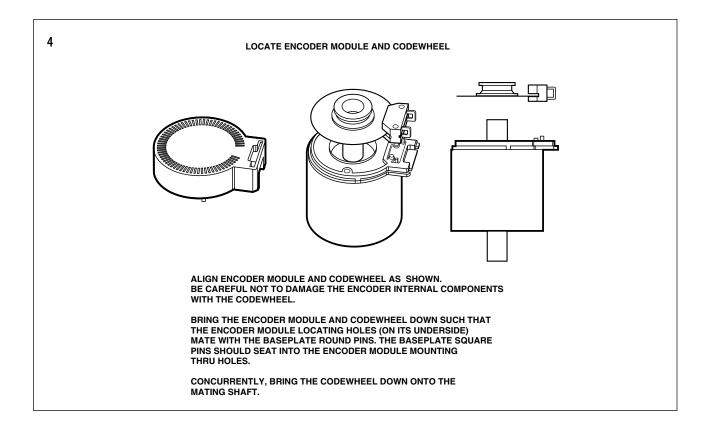
4. The recommended mounting screw torque for 2 screws is 1.0 Kg (0.88 in-lbs).

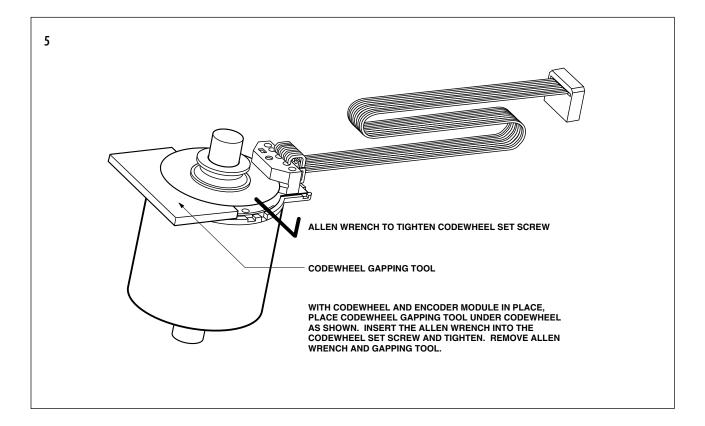

Mounting Considerations

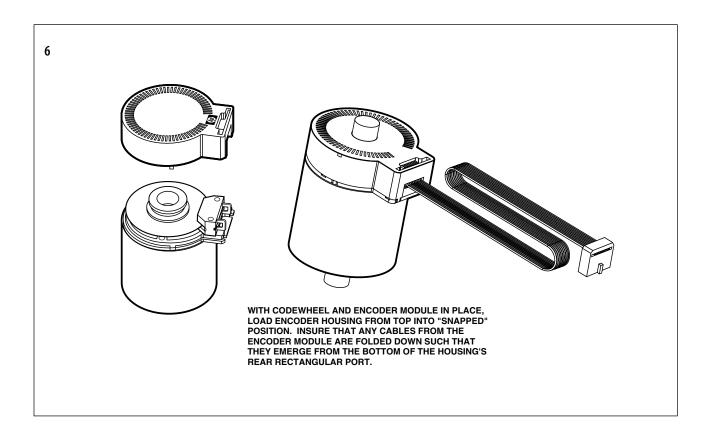

The HEDS-654x/HEDL-654x must be aligned with respect to the optical center (codewheel shaft) as indicated in the following figure.

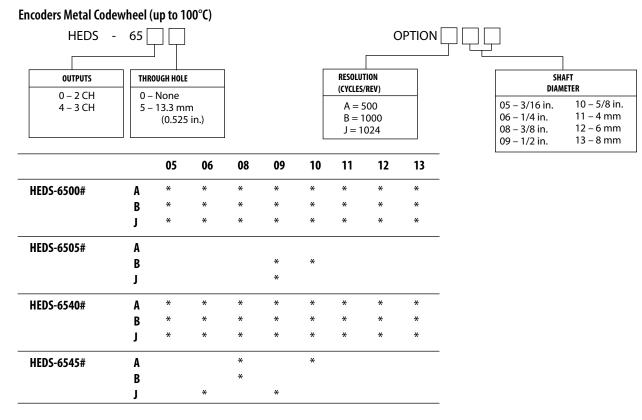


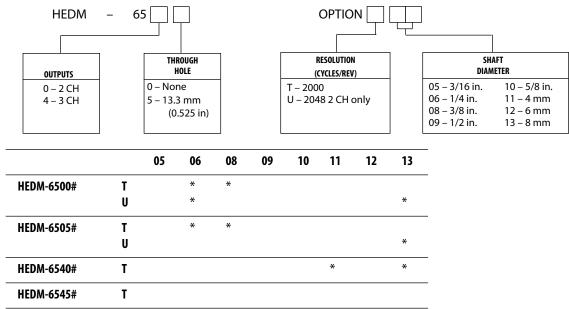

If neither locating pins nor locating boss are available, then a centering tool supplied by Avago can be used (HEDS-6510).

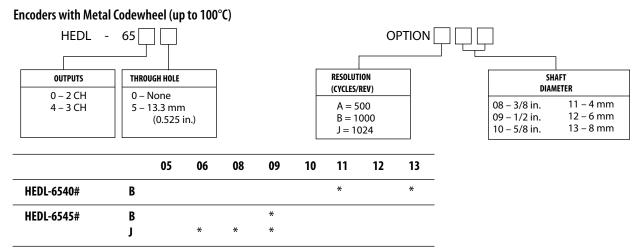

The following figure shows how the main encoder components are organized.










Ordering Information for 2CH and 3CH Encoder Modules

Encoders Film Codewheel (up to 70°C)

Ordering Information for 2CH and 3CH Encoder Modules with Line Driver

Ordering Information for HEDS=76XX Centering Tools

HEDS-6510	Opt	ion (]					
			SHAF1 DIAMET						
		05 – 3/16 in. 10 – 5/8 in. 06 – 1/4 in. 11 – 4 mm 08 – 3/8 in. 12 – 6 mm 09 – 1/2 in. 13 – 8 mm							
		05	06	08	09	10	11	12	13
HEDS-6510	0	*	*	*	*	*	*	*	*

Ordering Information for HEDS-65XX Codewheel

Gapping Tool

HEDS-6511

For product information and a complete list of distributors, please go to our website: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2008 Avago Technologies Limited. All rights reserved. Obsoletes 5988-9398EN AV02-0991EN January 30, 2008

Two Channel High Resolution Optical Incremental Encoder Modules

Technical Data

HEDS-9000/9100/9200 Extended Resolution Series

Features

- High Resolution: Up to 2048 Cycles per Revolution
- Up to 8192 Counts per Revolution with 4X Decoding
- Two Channel Quadrature Output
- Low Cost
- Easy to Mount
- No Signal Adjustment Required
- Small Size
- -40°C to 100°C Operating Temperature
- TTL Compatible
- Single 5 V Supply

Description

The HEDS-9000 Options T and U and the HEDS-9100 Options B and J are high resolution two channel rotary incremental encoder modules. These options are an extension of our popular HEDS-9000 and HEDS-9100 series. When used with a codewheel, these modules detect relative rotary position. The HEDS-9200 Option 300 and 360 are high resolution linear encoder modules. When used with a codestrip, these modules detect relative linear position.

These modules consist of a lensed Light Emitting Diode (LED) source and detector IC enclosed in a small C shaped plastic package. Due to a highly collimated light source and unique photodetector array, these modules provide a highly reliable quadrature output.

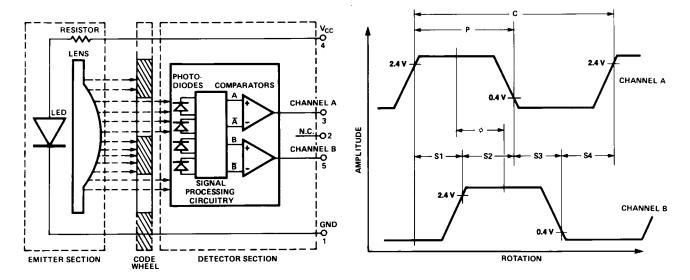
The HEDS-9000 and HEDS-9100 are designed for use with codewheels which have an optical radius of 23.36 mm and 11 mm respectively. The HEDS-9200 is designed for use with a linear codestrip.

These components produce a two channel quadrature output which can be accessed through five 0.025 inch square pins located on 0.1 inch centers.

The resolution of the HEDS-9000 Options T and U are 2000 and 2048 counts per revolution respectively. The HEDS-9100 Options B and J are 1000 and 1024 counts per revolution

respectively. The HEDS-9200 Option 300 and 360 linear encoder modules have resolutions of 300 and 360 lines per inch.

Consult local Agilent sales representatives for other resolutions.


Theory of Operation

The diagram shown on the following page is a block diagram of the encoder module. As seen in this block diagram, the module contains a single LED as its light source. The light is collimated into a parallel beam by means of a single polycarbonate lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists

ESD WARNING: NORMAL HANDLING PRECAUTIONS SHOULD BE TAKEN TO AVOID STATIC DISCHARGE.

 $\mathbf{2}$

Block Diagram

of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codewheel/codestrip passes between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the codewheel/ codestrip. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in A, \overline{A} , B, and $\overline{\mathbf{B}}$. Comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with

that of channel B (90 degrees out of phase).

Definitions

Count (N): The number of bar and window pairs or counts per revolution (CPR) of the codewheel.

1 cycle (C): 360 electrical degrees (°e), 1 bar and window pair.

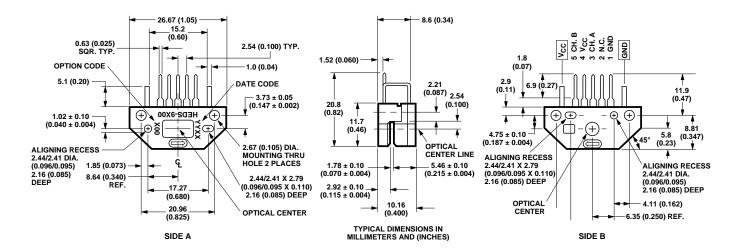
1 Shaft Rotation: 360 mechanical degrees, N cycles.

Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally 180°e or 1/2 cycle.

Pulse Width Error (ΔP): The deviation, in electrical degrees of the pulse width from its ideal value of 180°e.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally 90°e. State Width Error (ΔS): The deviation, in electrical degrees, of each state width from its ideal value of 90°e.

Phase (\phi): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally 90°e for quadrature output.


Phase Error $(\Delta \phi)$: The deviation of the phase from its ideal value of 90°e.

Direction of Rotation: When the codewheel rotates in the direction of the arrow on top of the module, channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.

Optical Radius (R_{op}) : The distance from the codewheel's center of rotation to the optical center (O.C.) of the encoder module.

Output Waveforms

Package Dimensions

Absolute Maximum Ratings

Storage Temperature, T _S	-40°C to 100°C
Operating Temperature, T _A	
Supply Voltage, V _{CC}	-0.5 V to 7 V
Output Voltage, Volta	0.5 V to V_{CC}
Output Current per Channel, I _{out}	1.0 mA to 5 mÅ

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Temperature	T _A	-40		100	°C	
Supply Voltage	V _{CC}	4.5	5.0	5.5	Volts	Ripple < 100 mV _{p-p}
Load Capacitance	C_L			100	pF	$3.3 \text{ k}\Omega$ pull-up resistor
Count Frequency	f			100	kHz	Velocity (rpm) x N/60
Shaft Axial Play				± 0.125	mm	
				± 0.005	in.	

Note: The module performance is guaranteed to 100 kHz but can operate at higher frequencies. For frequencies above 100 kHz it is recommended that the load capacitance not exceed 25 pF and the pull up resistance not exceed 3.3 k Ω . For typical module performance above 100 kHz please see derating curves.

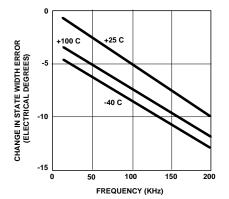
3

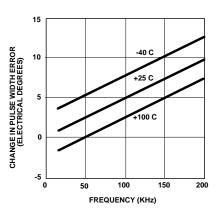
Electrical Characteristics

Electrical Characteristics over Recommended Operating Range, typical at 25°C.

Parameter	Symbol	Min.	Typical	Max.	Units	Notes
Supply Current	I _{CC}	30	57	85	mA	
High Level Output Voltage	V _{OH}	2.4			Volts	$I_{OH} = -200 \ \mu A \ max.$
Low Level Output Voltage	V _{OL}			0.4	Volts	$I_{OL} = 3.86 \text{ mA}$
Rise Time	t _r		180		ns	$C_L = 25 \text{ pF}$
Fall Time	t _f		40		ns	$R_{\rm L} = 3.3 \text{ k}\Omega \text{ pull-up}$

Encoding Characteristics


Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances. These Characteristics do not include codewheel/codestrip contribution. The Typical Values are averages over the full rotation of the codewheel. For operation above 100 kHz, see frequency derating curves.


Description	Symbol	Typical	Maximum	Units
Pulse Width Error	ΔP	5	45	°e
Logic State Width Error	ΔS	3	45	°e
Phase Error	$\Delta \phi$	2	15	°e

Note: Module mounted on tolerance circle of \pm 0.13 mm (\pm 0.005 in.) radius referenced from module Side A aligning recess centers. 3.3 k Ω pull-up resistors used on all encoder module outputs.

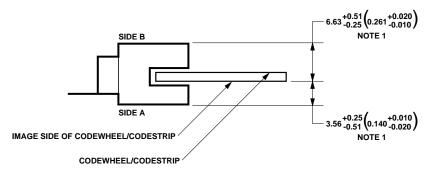
Frequency Derating Curves

Typical performance over extended operating range. These curves were derived using a 25 pF load with a 3.3 k pull-up resistor. Greater load capacitances will cause more error than shown in these graphs.

4

Gap is the distance between the image side of the codewheel and the detector surface of the module. This gap dimension must always be met and codewheel warp and shaft end play must stay within this range. This dimension is shown in Figure 1.

Mounting Considerations for Rotary Modules


Figure 2 shows a mounting tolerance <u>requirement</u> for proper operation of the high resolution rotary encoder modules. The Aligning Recess Centers must be located within a tolerance circle of 0.13 mm (0.005 in.) radius from the nominal locations. This tolerance must be maintained whether the module is mounted with side A as the mounting plane using aligning pins (see Figure 3), or mounted with Side B as the mounting plane using an alignment tool.

Mounting with Aligning Pins

The high resolution rotary encoder modules can be mounted using aligning pins on the motor base. (Agilent does not provide aligning pins.) For this configuration, Side A *must* be used as the mounting plane. The Aligning Recess Centers must be located within the 0.13 mm (0.005 in.) R Tolerance Circle as explained above. Figure 3 shows the necessary dimensions.

Mounting with Alignment Tools

Agilent offers alignment tools for mounting Agilent encoder modules in conjunction with Agilent codewheels, using side B as the mounting plane. Please refer to the Agilent codewheel data sheet for more information.

NOTES: 1. THESE DIMENSIONS INCLUDE CODEWHEEL/CODESTRIP WARP AND SHAFT END PLAY. 2. DIMENSIONS IN MILLIMETERS AND (INCHES).

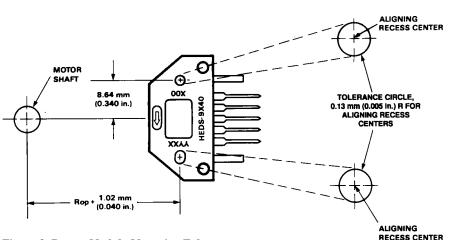
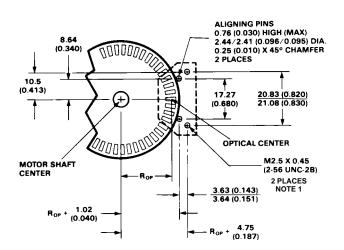
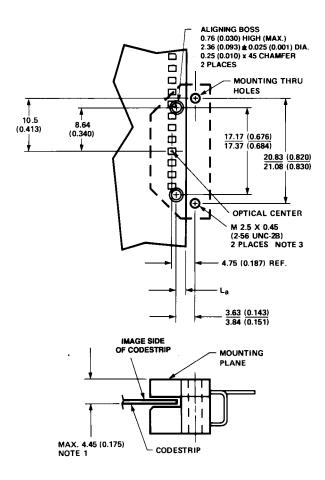
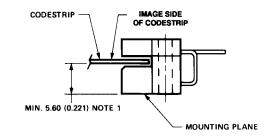
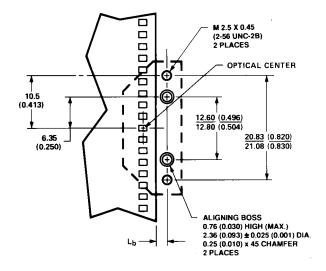




Figure 2. Rotary Module Mounting Tolerance.

NOTE 1: RECOMMENDED MOUNTING SCREW TORQUE IS 4 KG-CM (3.5 IN-LBS).

Figure 3. Mounting Plane Side A.

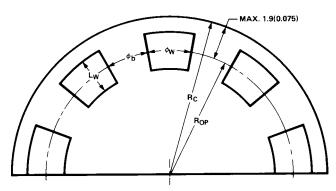



Mounting Considerations for Linear Modules

Mounting Plane Side A

NOTES:

1. THESE DIMENSIONS INCLUDE CODESTRIP WARP. 2. REFERENCE DEFINITIONS OF L₂ AND L₅ ON THE FOLLOWING PAGE. 3. MAXIMUM RECOMMENDED MOUNTING SCREW TORQUE IS 4 kg-cm (3.5 in-lbs).



6

.

Recommended Codewheel Characteristics

Parameter	Symbol	Minimum	Maximum	Units	Notes
Window/Bar Ratio	ϕ_w/ϕ_b	0.7	1.4		
Window Length	L_w	1.8 (0.07)		mm (inch)	
Absolute Maximum Codewheel Radius	R _c		$\begin{array}{cc} R_{\rm op} & 1.9 \\ + & (0.075) \end{array}$	mm (inch)	Includes eccentricity errors

Recommended Codestrip Characteristics and Alignment

Codestrip design must take into consideration mounting as referenced to either side A or side B (see Figure 4).

Mounting as Referenced to Side A

Mounting as Referenced to Side B

7

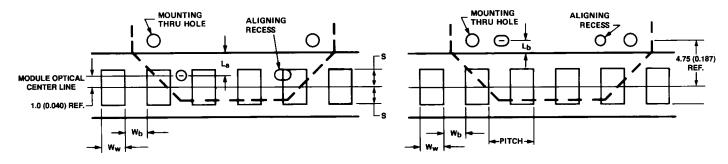


Figure 4. Codestrip Design

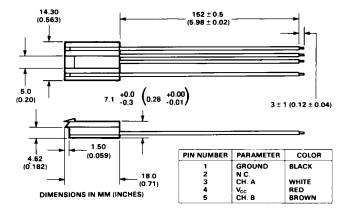
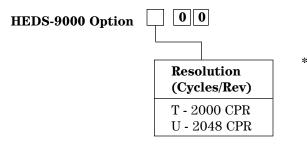
STATIC CHARGE WARNING: LARGE STATIC CHARGE ON CODESTRIP MAY HARM MODULE. PREVENT ACCUMULATION OF CHARGE.

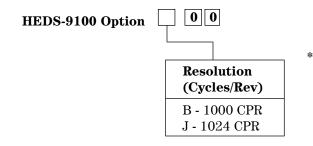
Parameter	Symbol	Mounting Ref. Side A	Mounting Ref. Side B	Units
Window/Bar Ratio	W _w /W _b	0.7 min., 1.4 max.	0.7 min., 1.4 max.	
Window Distance	L	$L_a \le 0.51 \ (0.020)$	$L_b \ge 3.23 (0.127)$	mm (inch)
Window Edge to Module Opt Center Line	S	0.90 (0.035) min.	0.90 (0.035) min.	mm (inch)
Parallelism Module to Codestrip	α	1.3 max.	1.3 max.	deg.

Note: All parameters and equations must be satisfied over the full length of codestrip travel including maximum codestrip runout.

Connectors

Manufacturer	Part Number	Mounting Surface
AMP	103686-4 640442-5	Both Side B
DuPont	65039-032 with 4825X-000 term.	Both
Agilent	HEDS-8902 with 4-wire leads	Side B (see Fig. 7)
Molex	2695 series with 2759 series term.	Side B


Figure 7. HEDS-8902 Connector.

Ordering Information

Two Channel Encoder Modules with a 23.36 mm Optical Radius

Two Channel Encoder Modules with an 11.00 mm Optical Radius

Two Channel Linear Encoder Module

HEDS-9200 Option Resolution (Cycles/Rev) 300 - 300 LPI 360 - 360 LPI

Note: For lower resolutions, please refer to HEDS-9000/9100 and HEDS-9200 data sheets for detailed information.

*Codewheel Information

For information on matching codewheels and accessories for use with Agilent rotary encoder modules, please refer to the Agilent Codewheel Data sheet HEDS-5120/6100, HEDG-5120/6120, HEDM-5120/6120

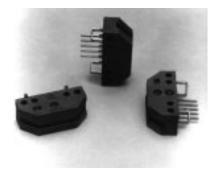
Agilent Technologies

www.semiconductor.agilent.com Data subject to change. Copyright © 1999 Agilent Technologies, Inc. Obsoletes 5091-7275E (7/93) 5965-5889E (11/99)

Two Channel Optical Incremental Encoder Modules

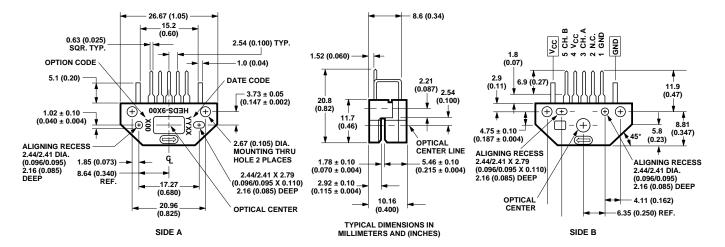
Technical Data

HEDS-9000 HEDS-9100


Features

- High Performance
- High Resolution
- Low Cost
- Easy to Mount
- No Signal Adjustment Required
- Small Size
- -40°C to 100 °C Operating Temperature
- Two Channel Quadrature Output
- TTL Compatible
- Single 5 V Supply

Description


The HEDS-9000 and the HEDS-9100 series are high performance, low cost, optical incremental encoder modules. When used with a codewheel, these modules detect rotary position. The modules consist of a lensed (LED) source and a detector IC enclosed in a small C-shaped plastic package. Due to a highly collimated light source and unique photodetector array, these modules are extremely tolerant to mounting misalignment.

The two channel digital outputs and the single 5 V supply input are accessed through five 0.025

inch square pins located on 0.1 inch centers.

Standard resolutions for the HEDS-9000 are 500 CPR and 1000 CPR for use with a HEDS-6100 codewheel or equivalent.

Package Dimensions

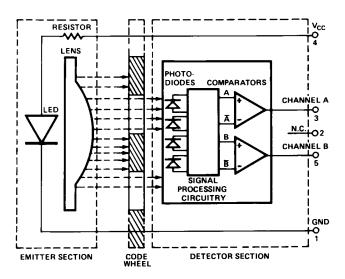
ESD WARNING: NORMAL HANDLING PRECAUTIONS SHOULD BE TAKEN TO AVOID STATIC DISCHARGE.

For the HEDS-9100, standard resolutions between 96 CPR and 512 CPR are available for use with a HEDS-5120 codewheel or equivalent.

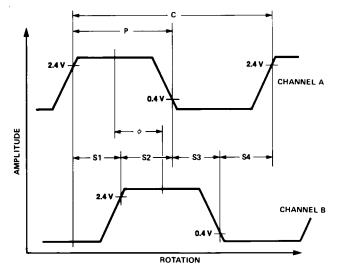
Applications

The HEDS-9000 and 9100 provide sophisticated motion detection at a low cost, making them ideal for high volume applications. Typical applications include printers, plotters, tape drives, and factory automation equipment.

Note: Agilent Technologies encoders are not recommended for use in safety critical applications. Eg. ABS braking systems, power steering, life support systems and critical care medical equipment. Please contact sales representative if more clarification is needed.


Theory of Operation

The HEDS-9000 and 9100 are Cshaped emitter/detector modules. Coupled with a codewheel, they translate the rotary motion of a shaft into a two-channel digital output.


As seen in the block diagram, each module contains a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single polycarbonate lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to product the digital waveforms.

The codewheel rotates between the emitter and detector, causing the light beam to be interrupted

Block Diagram

by the pattern of spaces and bars on the codewheel. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the odewheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in A, \overline{A} , B, and \overline{B} . Two comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

Definitions

Count (N): The number of bar and window pairs or counts per revolution (CPR) of the codewheel.

1 Shaft Rotation $= 360$
mechanical
degrees,
= N cycles.
1 cycle (C) = 360
electrical
degrees (°e),
= 1 bar and
window pair.
Pulse Width (P): The number of
electrical degrees that an output
is high during 1 cycle. This value
is nominally 180°e or 1/2 cycle.

Pulse Width Error (ΔP): The deviation, in electrical degrees of the pulse width from its ideal value of 180°e.

State Width (S): The number of electrical degrees between a

Absolute Maximum Ratings

Storage Temperature, T _S	-40°C to 100°C
Operating Temperature, T _A	-40°C to 100°C
Supply Voltage, V _{CC}	
Output Voltage, Vo	-0.5 V to V _{CC}
Output Current per Channel, I _{out}	1.0 mA to 5 mÅ

transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally 90°e.

State Width Error (ΔS): The deviation, in electrical degrees, of each state width from its ideal value of 90°e.

Phase (\phi): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally 90°e for quadrature output.

Phase Error $(\Delta \phi)$: The deviation of the phase from its ideal value of 90°e.

Direction of Rotation: When the codewheel rotates in the direction of the arrow on top of the module, channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.

Optical Radius (R_{op}) : The distance from the codewheel's center of rotation to the optical center (O.C.) of the encoder module.

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Temperature	Т	-40		100	°C	
Supply Voltage	V _{CC}	4.5		5.5	Volts	Ripple < 100 mV_{p-p}
Load Capacitance	C_{L}			100	pF	$3.3 \text{ k}\Omega$ pull-up resistor
Count Frequency	f			100	kHz	<u>Velocity (rpm) x N</u> 60

Recommended Operating Conditions

Note: The module performance is guaranteed to 100 kHz but can operate at higher frequencies.

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances. These Characteristics do not include codewheel/codestrip contribution.

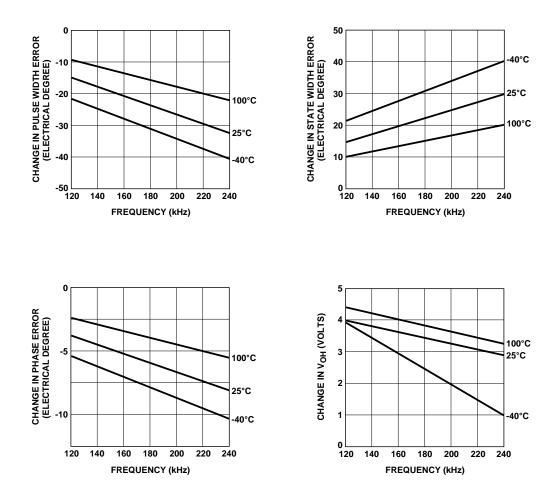
Description	Sym.	Тур.	Case 1 Max.	Case 2 Max.	Units	Notes
Pulse Width Error	ΔP	30	40		°e	
Logic State Width Error	ΔS	30	40		°e	
Phase Error	$\Delta \phi$	2	10	105	°e	

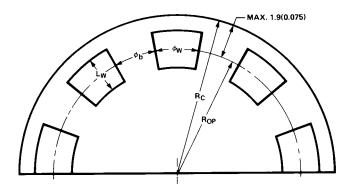
Case 1: Module mounted on tolerance circle of \pm 0.13 mm (\pm 0.005 in.).

Case 2: HEDS-9000 mounted on tolerances of ± 0.50 mm (0.020").

HEDS-9100 mounted ontolerances of ± 0.38 mm (0.015").

Electrical Characteristics


Parameter	Symbol	Min.	Typical	Max.	Units	Notes
Supply Current	I _{CC}		17	40	mA	
High Level Output Voltage	V _{OH}	2.4			Volts	$I_{OH} = -40 \ \mu A \ max.$
Low Level Output Voltage	V _{OL}			0.4	Volts	$I_{OL} = 3.2 \text{ mA}$
Rise Time	t _r		200		ns	$C_L = 25 \text{ pF}$
Fall Time	t _f		50		ns	$R_{\rm L}^2 = 11 \ {\rm k}\Omega \ {\rm pull-up}$


4

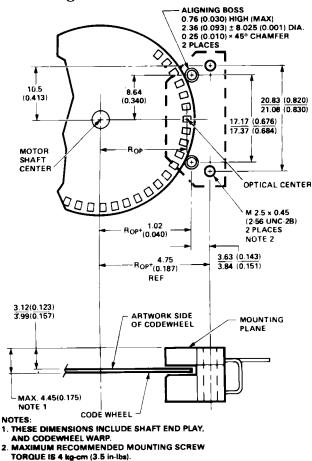
Electrical Characteristics over Recommended Operating Range, typical at 25°C.

Derating Curves over Extended Operating Frequencies (HEDS-9000/9100)

Below are the derating curves for state, duty, phase and V_{OH} over extended operating frequencies of up to 240 kHz (recommended maximum frequency is 100 kHz). The curves were derived using standard TTL load. –40°C operation is not feasible above 160 kHz because V_{OH} will drop below 2.4 V (the minmum TTL for logic state high) beyond that frequency.

Recommended Codewheel Characteristics

Figure 1. Codestrip Design


Optical HEDS Radius CPR mm (in.) Series Option **(N)** 5120 96 Κ 11.00 (0.433) 5120100 \mathbf{C} 11.00 (0.433) D 11.00 (0.433) 5120 1925120200Е 11.00 (0.433) F 11.00 (0.433) 5120 25611.00 (0.433) 5120 360G 5120 400 Η 11.00 (0.433) 5120 50011.00 (0.433) А 11.00 (0.433) 5120512Ι 23.36 (0.920) 6100500А 6100 1000 23.36 (0.920) В

Codewheel Options

Parameter	Symbol	Minimum	Maximum	Units	Notes
Window/Bar Ratio	ϕ_w / ϕ_b	0.7	1.4		
Window Length	L _W	1.8 (0.071)	2.3 (0.09)	mm (inch)	
Absolute Maximum Codewheel Radius	R _C		$R_{OP} + 1.9 \ (0.0075)$	mm (inch)	Includes eccentricity errors

6

Mounting Considerations

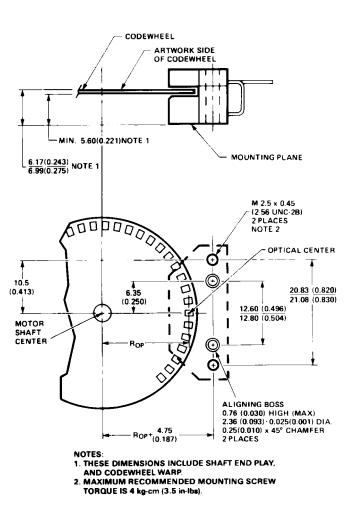


Figure 3. Mounting Plane Side B.

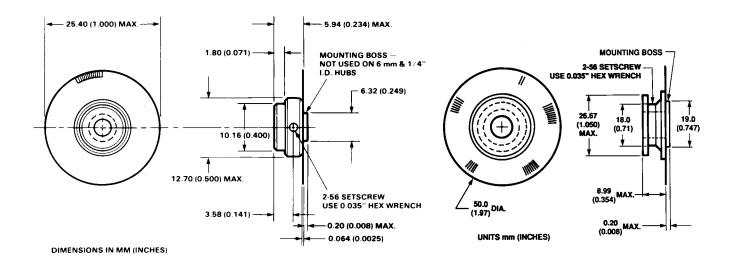


Figure 4. Mounting as Referenced to Side A.

Figure 2. Mounting Plane Side A.

Connectors

Manufacturer	Part Number	Mounting Surface
AMP	1203686-4 640442-5	Both Side B
DuPont	65039-032 with 4825X-000 term.	Both
HP	HEDS-8902 with 4-wire leads	Side B (see Fig. 6)
Molex	2695 series with 2759 series term.	Side B

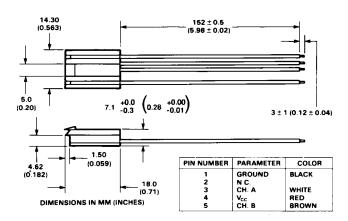
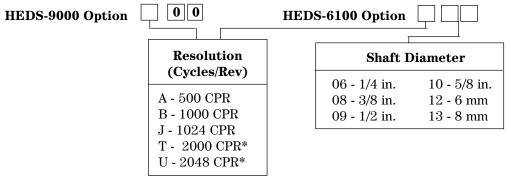



Figure 6. HEDS-8902 Connector.

Ordering Information

	Α	В	С	D	Е	F	G	H	Ι	J	K	\mathbf{L}	\mathbf{S}	Т	U
HEDS-9000	*	*								*				*	*

		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDS-6100	Α								*			*	*	
	В						*	*	*	*				

4 mm

 $5 \mathrm{mm}$

6 mm

8 mm

HEDS-910 0 Option

Lead

- 0 Straight Leads
- 1 Bent Leads

0	0

HEDS-5120 Option

	Α	В	С	D	Е	F	G	H	Ι	J	K	\mathbf{S}	Т	U
HEDS-9100	*	*	*		*	*	*	*	*	*	*	*		
HEDS-9101	*		*		*		*							

		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDS-5120	Α	*	*	*	*	*	*				*	*		*
	С		*				*				*	*	*	*
	D					*								
	Е						*					*		
	F					*								
	G		*	*		*	*				*			*
	Η		*				*				*	*		*
	Ι		*		*		*				*	*	*	
	K		*										*	

www.agilent.com/semiconductors

For product information and a complete list of distributors, please go to our web site.

For technical assistance call:

Americas/Canada: +1 (800) 235-0312 or (408) 654-8675

Europe: +49 (0) 6441 92460

China: 10800 650 0017

Hong Kong: (+65) 6271 2451 India, Australia, New Zealand: (+65) 6271 2394

Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)

Korea: (+65) 6271 2194

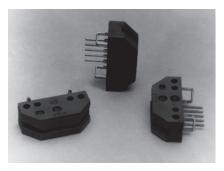
Malaysia, Singapore: (+65) 6271 2054 Taiwan: (+65) 6271 2654

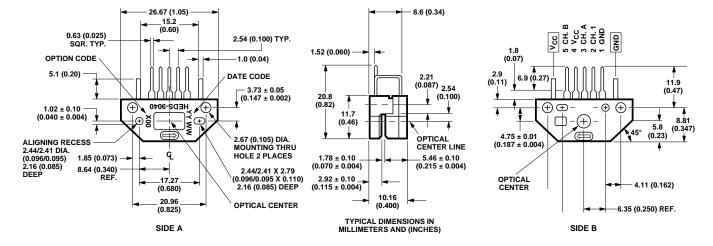
Data subject to change.

Copyright © 2002 Agilent Technologies, Inc. Obsoletes 5988-5857EN May 8, 2002 5988-6712EN

Three Channel Optical Incremental Encoder Modules

Technical Data


HEDS-9040 HEDS-9140


Features

- Two Channel Quadrature Output with Index Pulse
- Resolution Up to 2000 CPR Counts Per Revolution
- Low Cost
- Easy to Mount
- No Signal Adjustment Required
- Small Size
- -40°C to 100°C Operating Temperature
- TTL Compatible
- Single 5 V Supply

Description

The HEDS-9040 and HEDS-9140 series are three channel optical incremental encoder modules. When used with a codewheel, these low cost modules detect rotary position. Each module consists of a lensed LED source and a detector IC enclosed in a small plastic package. Due to a highly collimated light source and a unique photodetector array, these modules provide the same high performance found in the HEDS-9000/9100 two channel encoder family.

ESD WARNING: NORMAL HANDLING PRECAUTIONS SHOULD BE TAKEN TO AVOID STATIC DISCHARGE.

Package Dimensions

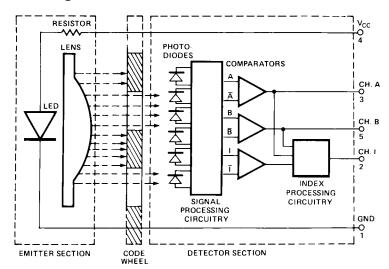
The HEDS-9040 and 9140 have two channel quadrature outputs plus a third channel index output. This index output is a 90 electrical degree high true index pulse which is generated once for each full rotation of the codewheel.

The HEDS-9040 is designed for use with a HEDX-614X codewheel which has an optical radius of 23.36 mm (0.920 inch). The HEDS-9140 is designed for use with a HEDS-5140 codewheel which has an optical radius of 11.00 mm (0.433 inch).

The quadrature signals and the index pulse are accessed through five 0.025 inch square pins located on 0.1 inch centers.

Standard resolutions between 256 and 2000 counts per revolution are available. Consult local Agilent sales representatives for other resolutions.

Applications

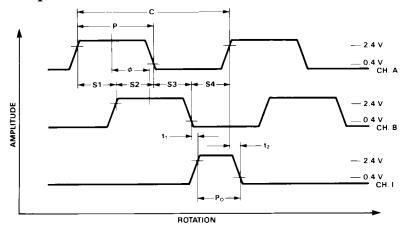

The HEDS-9040 and 9140 provide sophisticated motion control detection at a low cost, making them ideal for high volume applications. Typical applications include printers, plotters, tape drives, and industrial and factory automation equipment.

Theory of Operation

The HEDS-9040 and 9140 are emitter/detector modules. Coupled with a codewheel, these modules translate the rotary motion of a shaft into a threechannel digital output.

As seen in the block diagram, the modules contain a single Light

Block Diagram



Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single polycarbonate lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the codewheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed through the signal processing circuitry resulting in A, \overline{A} , B, \overline{B} , I and \overline{I} . Comparators receive these signals and produce the final outputs for

channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

The output of the comparator for I and \overline{I} is sent to the index processing circuitry along with the outputs of channels A and B. The final output of channel I is an index pulse P_0 which is generated once for each full rotation of the codewheel. This output P_0 is a one state width (nominally 90 electrical degrees), high true index pulse which is coincident with the low states of channels A and B.

Definitions

Count (N): The number of bar and window pairs or counts per revolution (CPR) of the codewheel.

One Cycle (C): 360 electrical degrees (°e), 1 bar and window pair.

One Shaft Rotation: 360 mechanical degrees, N cycles.

Position Error $(\Delta \Theta)$: The normalized angular difference between the actual shaft position and the position indicated by the encoder cycle count.

Cycle Error (ΔC): An indication of cycle uniformity. The difference between an observed shaft

angle which gives rise to one electrical cycle, and the nominal angular increment of 1/N of a revolution.

Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally 180°e or 1/2 cycle.

Pulse Width Error (ΔP): The deviation, in electrical degrees, of the pulse width from its ideal value of 180°e.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally 90°e. State Width Error (ΔS): The deviation, in electrical degrees, of each state width from its ideal value of 90°e.

Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally 90°e for quadrature output.

Phase Error $(\Delta \phi)$: The deviation of the phase from its ideal value of 90°e.

Direction of Rotation: When the codewheel rotates in the direction of the arrow on top of the module, channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.

Optical Radius (R_{OP}): The distance from the codewheel's center of rotation to the optical center (O.C.) of the encoder module.

Index Pulse Width (P_O): The number of electrical degrees that an index is high during one full shaft rotation. This value is nominally 90°e or 1/4 cycle.

Absolute Maximum Ratings

Storage Temperature, T _S	40°C to +100°C
Operating Temperature, T _A	-40° C to $+100^{\circ}$ C
Supply Voltage, V _{CC}	
Output Voltage, V ₀	
Output Current per Channel, I _{OUT}	
Shaft Axial Play	$\dots \pm 0.25 \text{ mm} (\pm 0.010 \text{ in.})$
Shaft Eccentricity Plus Radial Play	0.1 mm (0.004 in.) TIR
Velocity	
Acceleration	

Note:

1. Absolute maximums for HEDS-5140/6140 codewheels only.

Parameter	Symbol	Min.	Тур.	Max.	Units	Notes
Temperature	T _A	-40		100	°C	
Supply Voltage	V _{CC}	4.5	5.0	5.5	Volts	Ripple < 100 mV _{p-p}
Load Capacitance	CL			100	pF	$2.7 \text{ k}\Omega$ pull-up
Count Frequency	f			100	kHz	Velocity (rpm) x N/60
Shaft Perpendicularity Plus Axial Play				± 0.25 (± 0.010)	mm (in.)	6.9 mm (0.27 in.) from mounting surface
Shaft Eccentricity Plus Radial Play				0.04 (0.0015)	mm (in.) TIR	6.9 mm (0.27 in.) from mounting surface

Recommended Operating Conditions

Note: The module performance is guaranteed to 100 kHz but can operate at higher frequencies. For the HEDS-9040 #T00 for operation below 0° C and greater than 50 kHz the maximum Pulse Width and Logic State Width errors are 60° e.

Encoding Characteristics HEDS-9040 (except #T00), HEDS-9140

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances unless otherwise specified. Values are for the worst error over the full rotation of HEDS-5140 and HEDS-6140 codewheels.

Param	eter	Symbol	Min.	Typ. ^[1]	Max.	Units
Cycle Error		ΔC		3	5.5	°e
Pulse Width Error		ΔΡ		7	30	°e
Logic State Width Erro	Logic State Width Error			5	30	°e
Phase Error	Phase Error			2	15	°e
Position Error	Position Error			10	40	min. of arc
Index Pulse Width		Po	60	90	120	°e
CH. I rise after	-25°C to +100°C	t_1	10	100	250	ns
CH. B or CH. A fall	-40°C to +100°C	t_1	-300	100	250	ns
CH. I fall after	-25°C to +100°C	t_2	70	150	300	ns
CH. A or CH. B rise	-40°C to +100°C	t_2	70	150	1000	ns

Note:

1. Module mounted on tolerance circle of \pm 0.13 mm (\pm 0.005 in.) radius referenced from module Side A aligning recess centers. 2.7 k Ω pull-up resistors used on all encoder module outputs.

Encoding Characteristics HEDS-9040 #T00

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances unless otherwise specified. Values are for the worst error over the full rotation of HEDM-614X Option TXX codewheel.

Parame	ter	Symbol	Min.	Typ. ^[1]	Max.	Units
Cycle Error		ΔC		3	7.5	°e
Pulse Width Error		ΔΡ		7	50	°e
Logic State Width Erro	or	ΔS		5	50	°e
Phase Error		Δφ		2	15	°e
Position Error		$\Delta \Theta$		2	20	min. of arc
Index Pulse Width		P ₀	40	90	140	°e
CH. I rise after CH. B or CH. A fall	-40°C to +100°C	t_1	10	450	1500	ns
CH. I fall after CH. A or CH. B rise	-40℃ to +100℃	t_2	10	250	1500	ns

Note:

1. Module mounted on tolerance circle of \pm 0.13 mm (\pm 0.005 in.) radius referenced from module Side A aligning recess centers. 2.7 k Ω pull-up resistors used on all encoder module outputs.

Electrical Characteristics

Electrical Characteristics over Recommended Operating Range.

Parameter	Symbol	Min.	Typ. ^[1]	Max.	Units	Notes
Supply Current	I _{CC}	30	57	85	mA	
High Level Output Voltage	V _{OH}	2.4			V	$I_{OH} = -200 \ \mu A \ max.$
Low Level Output Voltage	V _{OL}			0.4	V	$I_{OL} = 3.86 \text{ mA}$
Rise Time	t _r		180 ^[2]		ns	$C_L = 25 \text{ pF}$ $R_L = 2.7 \text{ k}\Omega \text{ pull-up}$
Fall Time	t _f		49[2]		ns	$n_{\rm L} = 2.7 \text{ ksz} \text{ pun-up}$

Notes:

1. Typical values specified at $V_{\rm cc}$ = 5.0 V and 25°C.

2. t_r and t_f 80 nsec for HEDS-9040 #T00.

Electrical Interface

To insure reliable encoding performance, the HEDS-9040 and 9140 three channel encoder modules require 2.7 k Ω (± 10%) pull-up resistors on output pins 2, 3, and 5 (Channels I, A and B) as shown in Figure 1. These pull-up resistors should be located as close to the encoder module as possible (within 4 feet). Each of the three encoder module outputs can drive a single TTL load in this configuration.

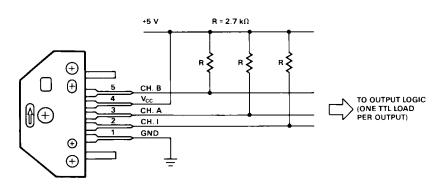


Figure 1. Pull-up Resistors on HEDS-9X40 Encoder Module Outputs.

Mounting Considerations

Figure 2 shows a mounting tolerance *requirement* for proper operation of the HEDS-9040 and HEDS-9140. The Aligning Recess Centers must be located within a tolerance circle of 0.005 in. radius from the nominal locations. This tolerance must be maintained whether the module is mounted with side A as the mounting plane using aligning pins (see Figure 5), or mounted with Side B as the mounting plane using an alignment tool (see Figures 3 and 4).

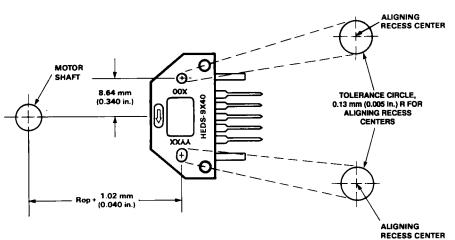


Figure 2. HEDS-9X40 Mounting Tolerance.

Mounting with an Alignment Tool

The HEDS-8905 and HEDS-8906 alignment tools are recommended for mounting the modules with Side B as the mounting plane. The HEDS-8905 is used to mount the HEDS-9140, and the HEDS-8906 is used to mount the HEDS-9040. These tools fix the module position using the codewheel hub as a reference. They will not work if Side A is used as the mounting plane.

The following assembly procedure uses the HEDS-8905/8906 alignment tool to mount a HEDS-9140/9040 module and a HEDS-5140/6140 codewheel:

Instructions:

1. Place codewheel on shaft.

2. Set codewheel height by placing alignment tool on motor base (pins facing up) flush up against the codewheel as shown in Figure 3. Tighten codewheel setscrew and remove alignment tool.

3. Insert mounting screws through module and thread into the motor base. Do not tighten screws.

4. Slide alignment tool over codewheel hub and onto module as shown in Figure 4. The pins of the alignment tool should fit snugly inside the alignment recesses of the module. 5. While holding alignment tool in place, tighten screws down to secure module.

6. Remove alignment tool.

Mounting with Aligning Pins

The HEDS-9040 and HEDS-9140 can also be mounted using aligning pins on the motor base. (Hewlett-Packard does not provide aligning pins.) For this configuration, Side A must be used as the mounting plane. The aligning recess centers must be located within the 0.005 in. R Tolerance Circle as explained above. Figure 5 shows the necessary dimensions.

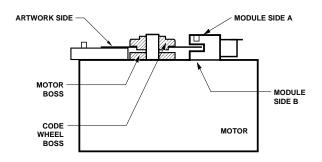
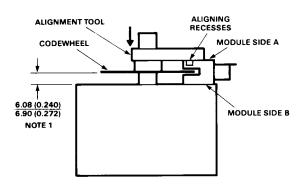



Figure 3. Alignment Tool is Used to Set Height of Codewheel.

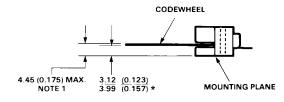
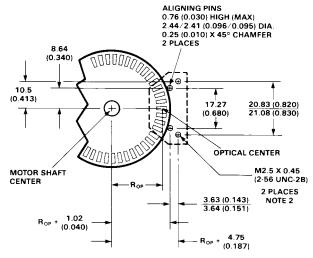
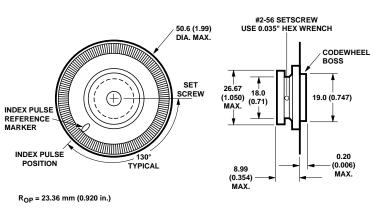

NOTE 1: THIS DIMENSION IS FROM THE MOUNTING PLANE TO THE NON-HUB SIDE OF THE CODEWHEEL.

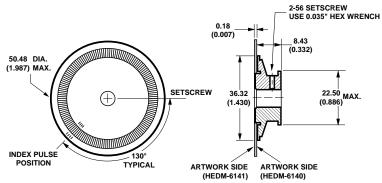
Figure 4. Alignment Tool is Placed over Shaft and onto Codewheel Hub. Alignment Tool Pins Mate with Aligning Recesses on Module.


The HEDS-9040 and HEDS-9140 can also be mounted using aligning pins on the motor base.

(Agilent does not provide aligning pins.) For this configuration, Side A *must* be used as the mounting plane. The aligning recess centers must be located within the 0.005


in. Radius Tolerance Circle as explained in "Mounting Considerations." Figure 5 shows the necessary dimensions.

NOTE 1: THESE DIMENSIONS INCLUDE SHAFT END PLAY AND CODEWHEEL WARP. NOTE 2: RECOMMENDED MOUNTING SCREW TORQUE IS 4 KG-CM [3.5 IN-LBS). *FOR HEDS-9040 OPTION T: 3.99 (0.150).



DIMENSIONS IN MM (INCHES)

Figure 6a. HEDS-6140 Codewheel Used with HEDS-9040.

DIMENSIONS IN mm (INCHES)

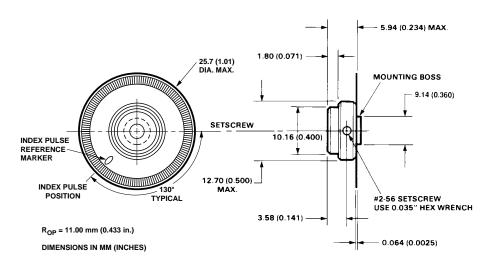


Figure 7. HEDS-5140 Codewheel Used with HEDS-9140.

Orientation of Artwork for HEDS-9040 Option T00 (2000 CPR, 23.36 mm Rop)

The Index area on the HEDS-9040 Option T00, 2000 CPR Encoder Module has a nonsymmetrical pattern as does the mating Codewheel. In order for the Index to operate, the "Rightreading" side of the Codewheel disk (the "Artwork Side") must point toward "Side A" of the Module (the side with the connecting pins). Because the Encoder Module may be used with either "Side A" or with "Side B" toward the Mounting Surface, Agilent supplies two versions of Film Codewheels for use with the Option T00 3-channel Module: Codewheel HEDM-6140 Option TXX has the Artwork Side on the "Hub Side" of the Codewheel/hub assembly and works with "Side B" of the Module on the user's mounting surface. Codewheel HEDM-6141 Option TXX has the Artwork Side opposite the "Hub Side" and works with "Side A" of the Module on the mounting surface. For the Index to operate, these parts must be oriented as shown in Figure 7a and 7b.

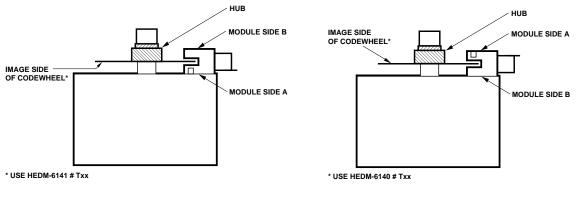


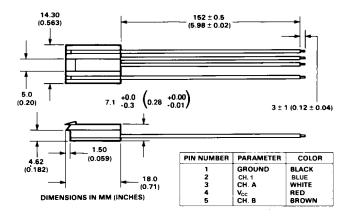
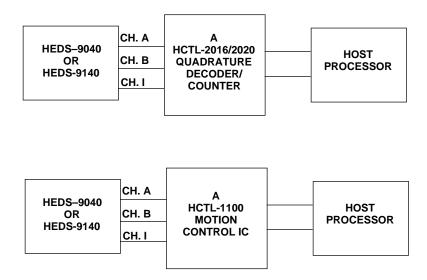
Figure 7a.

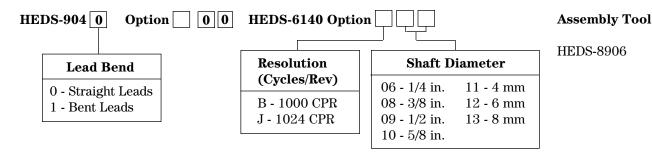
Figure 7b.

*Please note that the image side of the codewheel must always be facing the module Side A.

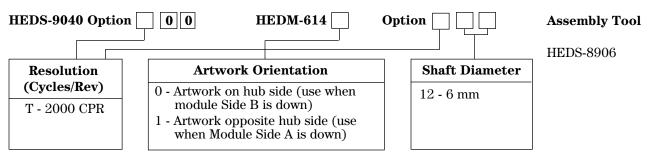
Connectors

Manufacturer	Part Number	Mounting Surface
AMP	103686-4	Both
Aivii	640442-5	Side B
DuPont	65039-032 with 4825X-000 term	Both
HP	HEDS-8903 with 5-wire leads	Side B (see Figure 8)
Molex	2695 series with 2759 series term	Side B


Figure 8. HEDS-8903 Connector.

Typical Interfaces



Ordering Information

Three Channel Encoder Modules and Codewheels, 23.36 mm Optical Radius.

Three Channel Encoder Modules and Codewheels, 23.36 mm Optical Radius

	Α	В	С	D	Е	F	G	H	Ι	J	K	\mathbf{S}	Т	U
HEDS-9040	*									*			*	
HEDS-9041	*													

		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDS-6140	В						*	*	*	*	*	*	*	
	J						*		*			*	*	
HEDM-6140	Т											*		

Three Channel Encoder Modules and Codewheels, 11.00 mm Optical Radius

HEDS-914 0 Option	HEDS-5140	Option	Assembly Tool HEDS-8905
Lead Bend	Resolution (Cycles/Rev)	Shaft Diameter	
0 - Straight Leads 1 - Bent Leads	S - 50 CPR G - 360 CPR C - 100 CPR H - 4000 CPR E - 200 CPR A - 5000 CPR F - 256 CPR I - 512 CPR	02 - 3 mm 11 - 4 mm 04 - 5/32 in. 14 - 5 mm 05 - 3/16 in. 12 - 6 mm 06 - 1/4 in. 13 - 8 mm	

	Α	В	С	D	Е	F	G	н	Ι	J	K	\mathbf{S}	Т	U
HEDS-9140	*		*		*	*	*	*	*		*			
HEDS-9141	*				*	*	*							

		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDS-5140	A		*		*	*	*				*	*	*	*
	C				*		*					*	*	
	Е						*				*	*		*
	F				*							*		*
	G						*					*		*
	Ι		*		*		*				*	*	*	*

www.semiconductor.agilent.com

Data subject to change. Copyright © 2001 Agilent Technologies, Inc. May 8, 2001 Obsoletes 5965-5870E (11/99) 5988-2558EN

HEDS-51X0/61X0 Series, HEDG-512X/612X Series HEDM-512X/61XX Series

Two and Three Channel Codewheels for Use with Avago Technologies Optical Encoder Modules

Technical Data

Description

Avago Technologies offers a wide variety of codewheels for use with Avago Technologies' HEDS-9000, HEDS-9100, HEDS-9040, and HEDS-9140 series Encoder Modules. Designed for many environments, applications, and budgets, Avago Technologies' codewheels are available in Glass, Film, and Metal. These codewheels are available in resolutions from 96 Counts Per Revolution (CPR) to 1024 CPR on an 11 mm optical radius and 500 to 2048 CPR on a 23.36 mm optical radius.

Each of the three codewheel materials offers a certain advantage. Metal codewheels are the most versatile, with a temperature rating up to 100°C, resolution to 512 CPR (28 mm diameter), as well as 2 and 3 channel outputs. Film codewheels offer higher resolution (up to 1024 CPR on a 28 mm diameter) with an operating temperature of 70°C. Glass codewheels combine the best of film and metal, offering a temperature rating of 100°C and resolutions to 1024 CPR on a 28 mm diameter.

In addition, each material offers a specific reliability rating. It is important to consider the specific application operating environment, long term operating conditions, and temperature ranges when choosing a codewheel material.

Also See:

- HEDS-9000/HEDS-9100 Encoder Module Data Sheet
- HEDS-9000/9100/9200 Extended Resolution Encoder Module Data Sheet
- HEDS-9040/9140 Three Channel Encoder Module Data Sheet
- HEDS-9700 Small Encoder Module Data Sheet

Features:

- Codewheels Available in Glass, Film, and Metal
- Available in Two Standard Diameters
- Cost Effective
- Resolutions from 96 CPR to 2048 CPR
- For Use with HEDS-90XX/91XX Series Two and Three Channel Encoders
- Lead Free

Absolute Maximum Ratings

It is important to consider the environment in which the codewheels will be used when selecting a codewheel material. In brief, metal codewheels are rugged, but do not offer higher resolution capabilities. Film codewheels allow higher resolution, but cannot endure the same temperatures and high humidity as metal. Glass codewheels offer both high temperature and higher resolution, but are also more expensive. Consider the following rating table when choosing a codewheel material.

Symbol	HEDS-XXXX Metal Codewheels	HEDM-XXXX Film Codewheels	HEDG-XXXX Glass Codewheels
Τ _s	-40°C to +100°C	-40°C to +70°C	-40°C to +100°C
T _A	-40°C to +100°C	-40°C to +70°C	-40°C to +100°C
		non condensing	
	30,000 RPM	30,000 RPM	12,000 RPM
	±0.25 mm (±0.010 in)	±0.175 mm (±0.007 in)	±0.175 mm (±0.007 in)
	±0.1 mm (±0.004 in) TIR	±0.04 mm (±0.0015 in) TIR	±0.04 mm (±0.0015 in) TIR
	250,000 Rad/Sec ²	250,000 Rad/Sec ²	100,000 Rad/Sec ²
	T _s	Symbol Metal Codewheels T_s -40°C to +100°C T_A -40°C to +100°C 30,000 RPM ±0.25 mm (±0.010 in) ±0.1 mm (±0.004 in) TIR	Symbol Metal Codewheels Film Codewheels T_s -40°C to +100°C -40°C to +70°C T_A -40°C to +100°C -40°C to +70°C T_A -40°C to +100°C -40°C to +70°C T_A -40°C to +100°C -40°C to +70°C $1000000000000000000000000000000000000$

Recommended Operating Conditions

	HEDS-XXXX	HEDM-XXXX	HEDG-XXXX
Parameter	Metal Codewheels	Film Codewheels	Glass Codewheels
Maximum Count Frequency	100 kHz	200 kHz*	200 kHz
Shaft Perpendicularity	±0.25 mm	±0.175 mm	±0.175 mm
Plus Axial Play	(±0.010 in)	(±0.007 in)	(±0.007 in)
Shaft Eccentricity Plus	±0.1 mm	±0.04 mm	±0.04 mm
Radial Play	(±0.004 in) TIR	(±0.0015 in) TIR	(±0.0015 in) TIR

Note: Avago Technologies Encoder Modules are guaranteed to 100 kHz, but can operate at higher frequencies. See Encoder Module Data Sheet for specifications and output load recommendations.

*HEDM-6140 is guaranteed to 100 kHz with the HEDS-9040 #T00 module.

Encoding Characteristics

Encoding characteristics over recommended operating range and recommended mounting tolerances unless otherwise specified. Values are for worst error over a full rotation. Please refer to Encoder Module Data Sheet for definitions of Encoding characteristics.

Reliability

In addition to the absolute maximum specifications of codewheels, the environment characteristics of the application are also important. For example, consistent, large temperature swings over the life of the product will affect the codewheel performance characteristics depending on the material. The following reliability table shows results of lifetests under varying conditions of temperature and humidity.

Part Number	Description	Symbol	Min.	Тур.	Max.	Units
HEDS-51XX	Cycle Error	ΔC		3	5.5	°e
	Position Error	Δθ		10	40	min. of arc
HEDS-61XX	Cycle Error	ΔC		3	5.5	°e
	Position Error	Δθ		7	20	min. of arc
HEDM-512X	Cycle Error	ΔC		3	7.5	°e
	Position Error	Δθ		4	40	min. of arc
HEDM-61XX	Cycle Error	ΔC		3	7.5	°e
	Position Error	Δθ		2	20	min. of arc
HEDG-512X	Cycle Error	ΔC		3	7.5	°e
	Position Error	Δθ		4	30	min. of arc
HEDG-612X	Cycle Error	ΔC		3	7.5	°e
	Position Error	Δθ		2	15	min. of arc

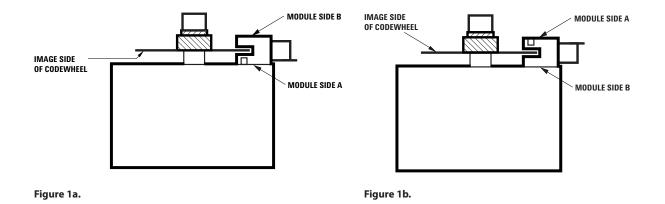
Glass Codewheel Tests

Test	Duration	Number of Parts	Number of Failures
Storage at 100°C	1000 hours	44	0
Rotating at 100°C	500 hours	10	0
Temperature Cycle: -40°C to +100°C	500 cycles	98	0
Temperature/Humidity: 85°C/85% R.H.	500 hours	43	0

Film Codewheel Tests

Test	Duration	Number of Parts	Number of Failures
Storage at 70°C	1000 hours	118	0
Rotating at 70°C	500 hours	10	0
Temperature Cycle: -40°C to +70°C	500 cycles	66	0
Temperature Cycle: +20°C to +40°C	1000 cycles	64	0
Temperature Cycle: +20°C to +55°C	1000 cycles	46	0
Temperature Cycle: +20°C to +70°C	500 cycles	50	0

Mounting Rotary Encoders with Codewheels


There are two orientations for mounting the Avago Technologies encoder module and Avago Technologies codewheel. Figure 1a shows mounting the module with side A as the mounting plane. Figure 1b shows mounting the module with side B as the mounting plane. When assembling the encoder and codewheel, it is important to maintain the tolerances of Side A of the module, and the image side of the codewheel. See module Data Sheets for these tolerances.

Mounting with Module Side A as the Mounting Plane

Mounting a high resolution or three channel encoder with Module Side A as the mounting plane requires alignment pins in the motor base. These alignment pins provide the necessary centering of the module with respect to the center of the motor shaft. In addition to centering, the codewheel gap is also important. Please refer to the respective encoder data sheet for necessary mounting information.

Mounting with Module Side B as the Mounting Plane, using Avago Technologies Assembly Tools

Avago Technologies offers centering tools and gap setting tools only for the case when the module is mounted with Side B down. Please refer to the Ordering Information Table to choose the correct assembly tools.

*Please note that the image side of the codewheel must always be facing the module Side A.

Assembly Instructions Using Avago Technologies Assembly Tools

Instructions

- 1. Place codewheel on shaft.
- 2. Set codewheel height:
- (a) Place the correct gap setting tool (per Ordering Information Table) on motor base, flush up against the motor shaft as shown in Figure 2. The shim has two different size steps. Choose the one that most closely matches the width of the codewheel boss. The shim should not contact the codewheel boss.
- (b) Push codewheel down against gap setting shim. The codewheel is now at the proper height.
- (c) Tighten codewheel setscrew.

- 3. Insert mounting screws through module and thread into the motor base. Do not tighten screws.
- 4. Slide the HEDS-8905 or HEDS-8906 centering tool over codewheel hub and onto module as shown in Figure 3. The pins of the alignment tool should fit snugly inside the alignment recesses of the module.
- 5. While holding alignment tool in place, tighten screws down to secure module.
- 6. Remove alignment tools.

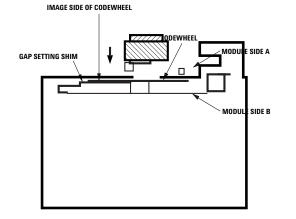


Figure 2. Alignment Tool is Used to Set Height of Codewheel.

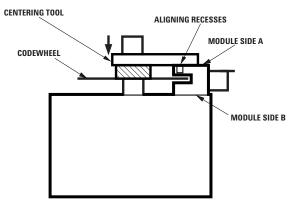


Figure 3. Alignment Tool is Placed over Shaft and onto Codewheel Hub. Alignment Tool Pins Mate with Aligning Recesses on Module.

Mechanical Drawings

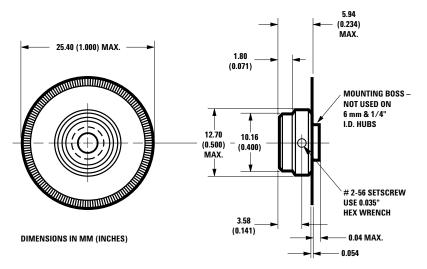


Figure 4. HEDS-5120 Codewheel.

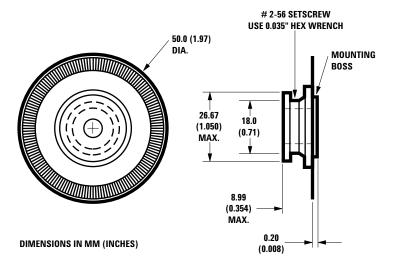


Figure 5. HEDS-6100 Codewheel.

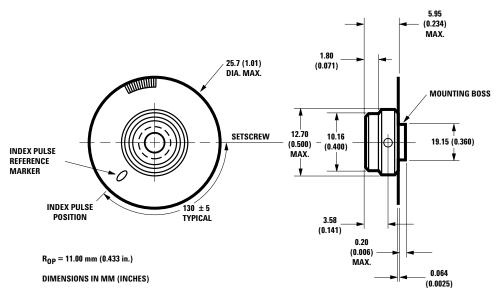
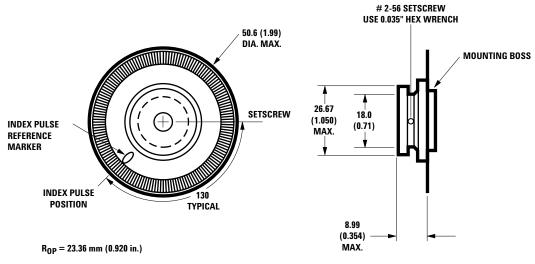
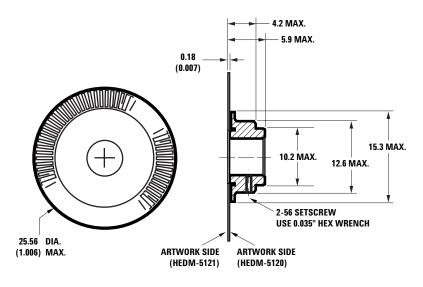




Figure 6. HEDS-5140 Codewheel Used with HEDS-9140.

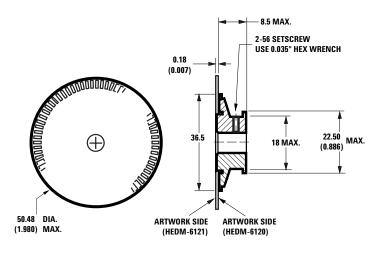

DIMENSIONS IN MM (INCHES)

Figure 7. HEDS-6140 Codewheel Used with HEDS-9040.

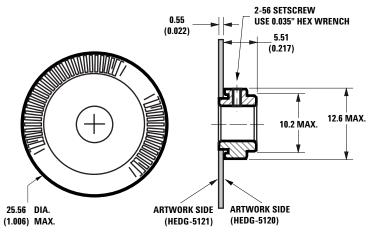

DIMENSIONS IN mm (INCHES)

Figure 8. HEDM-5120 Codewheel/HEDM-5121 Codewheel.


DIMENSIONS IN mm (INCHES)

Figure 9. HEDM-6120 Codewheel/HEDM-6121 Codewheel.

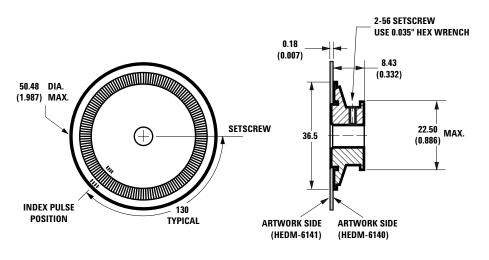

DIMENSIONS IN mm (INCHES)

Figure 10. HEDG-5120 Codewheel/HEDG-5121 Codewheel.

DIMENSIONS IN mm (INCHES)

Figure 11. HEDG-6120 Codewheel/HEDG-6121 Codewheel.

DIMENSIONS IN mm (INCHES)

Figure 12. HEDM-6140 Codewheel/HEDM-6141 Codewheel.

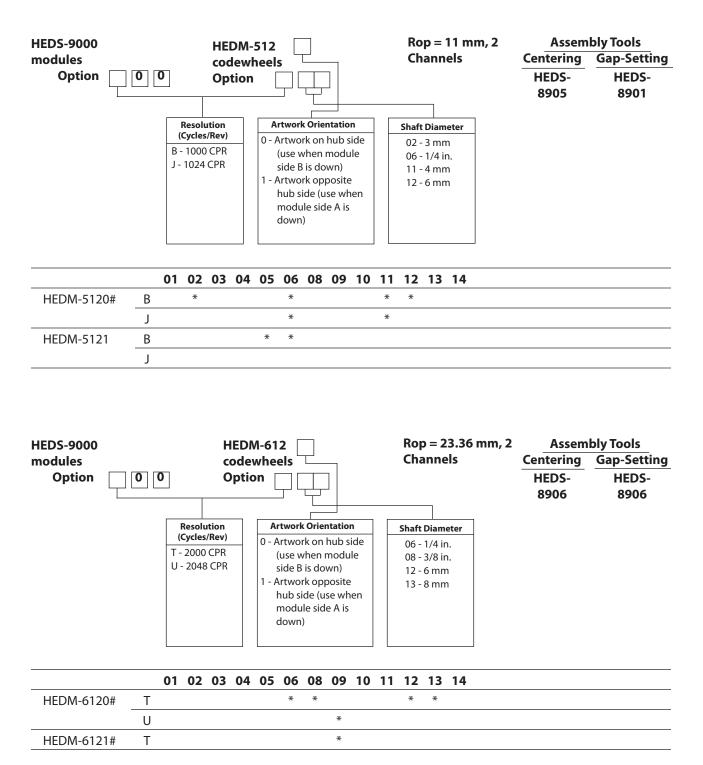
Ordering Information Encoder Modules, Codewheel and Assembly Tools

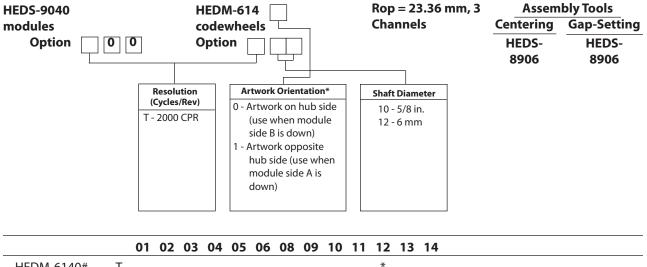
Metal Codewheels

HEDS-9100 Option	0 0 HEDS-5120	Option	Rop = 11 mm,	Assem	bly Tools
HEDS-9100 Option modules	00HEDS-5120 codewheels	Option Resolution (Cycles/Rev) K - 96 CPR C - 100 CPR D - 192 CPR E - 200 CPR F - 256 CPR G - 360 CPR H - 400 CPR A - 500 CPR I - 512 CPR	2 Channels Shaft Diameter 01 - 2 mm 02 - 3 mm 03 - 1/8 in. 04 - 5/32 in. 05 - 3/16 in. 06 - 1/4 in. 11 - 4 mm 14 - 5 mm 12 - 6 mm	Assem Centering HEDS- 8905	bly Tools Gap-Setting HEDS- 8901
		I-SIZ CPK	13 - 8 mm		

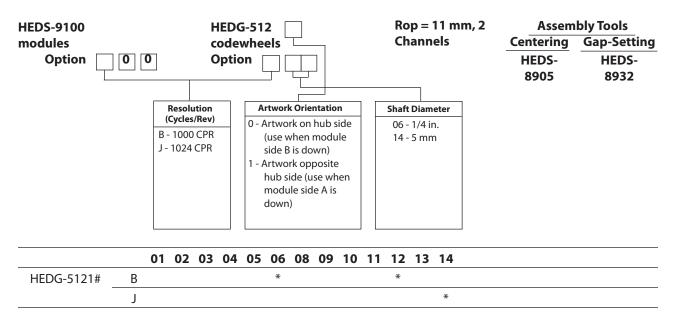
		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDS-5120#	А	*	*	*	*	*	*				*	*		×
	С		*				*				*	*	*	×
	D					*								
	Е						*					*		
	F					*								
	G		*	*		*	*				*			×
	Н		*				*				*	*		×
	Ι		*		*		*				*	*	*	
	K		*										*	

HEDS-9140 Option	0 0 HEDS-5	5140 Option		Rop = 11 mm,	Assem	bly Tools
modules	codewl	neels		3 Channels	Centering	Gap-Setting
		Resolution	Shaft Di	ameter	HEDS- 8905	HEDS- 8905
		(Cycles/Rev) C - 100 CPR E - 200 CPR F - 256 CPR G - 360 CPR A - 500 CPR I - 512 CPR	02 - 3 mm 03 - 1/8 in. 04 - 5/32 in. 05 - 3/16 in. 06 - 1/4 in.			


		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDS-5140	А		*		*	*	*				*	*	*	*
	С				*		*					*	*	
	Е						*				*	*		*
	F				*							*		*
	G						*					*		*
	I		*		*		*				*	*	*	*


HEDS-9000 Optio modules	on			9S-6100 ewheels	5 ((Resolution Cycles/Rev) - 500 CPR - 1000 CPR		Sh 0 0 0 1 1 1	Rop = 2 2 Channer aft Diameter 6 - 1/4 in. 8 - 3/8 in. 9 - 1/2 in. 0 - 5/8 in. 1 - 4 mm 2 - 6 mm 3 - 8 mm	els	Assem Centering HEDS- 8906	bly Tools Gap-Setting HEDS- 8901
		01 02	03 04	05 06	5 0 8	09 10	11	12	13 14			
HEDS-6100#	А					*		*	*			
	В			*	*	* *						
HEDS-9040 Optio modules	on	o [S-6140 ewheels	Opt	ion			op = 23 Channe		Centering	bly Tools Gap-Setting
-	on				- Re (C) B - 1	cion esolution ycles/Rev) 1000 CPR 024 CPR		Shaf 06 08 09 10 11 12				
-	on			ewheels		esolution (cles/Rev) 1000 CPR 024 CPR		Shaf 06 08 09 10 11 12 13	Channe t Diameter - 1/4 in. - 3/8 in. - 1/2 in. - 5/8 in. - 4 mm - 6 mm		Centering HEDS-	Gap-Setting HEDS-
-	on B		code	ewheels		esolution (cles/Rev) 1000 CPR 024 CPR		Shaf 06 08 09 10 11 12 13	Channe t Diameter - 1/4 in. - 3/8 in. - 1/2 in. - 5/8 in. - 4 mm - 6 mm - 8 mm		Centering HEDS-	Gap-Setting HEDS-

Note:


For the lower resolution, two channel encoders, (11 mm ≤ <u>512</u> CPR; 23.36 mm ≤ <u>1024</u> CPR) the centering tool and gap-setting shim are not necessary, but sometimes helpful in an assembly process.

Film Codewheels

		01	02 (J-T	05	00	00	02	10	 12	15	17
HEDM-6140#	Т									*		
HEDM-6141#	Т								*			

Glass Codewheels

HEDS-9000 modules	HEDG-612 codewheels		Rop = 23.36 mm, 2 Channels	Assembly Tools Centering Gap-Setting	
Option 0	Resolution (Cycles/Rev) T - 2000 CPR U - 2048 CPR	Shaft Diameter 12 - 6 mm		HEDS- 8906	HEDS- 8932
	01 02 03 04 05	06 08 09 10 11	12 13 14 *		
HEDG-6120# U			*		

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Pte. in the United States and other countries. Data subject to change. Copyright © 2006 Avago Technologies Pte. All rights reserved. 5989-0866EN - May 25, 2006

Two and Three Channel Codewheels for Use with Agilent Optical Encoder Modules

Technical Data

HEDS-51X0/61X0 Series HEDG-512X/612X Series HEDM-512X/61XX Series

Features:

- Codewheels Available in Glass, Film, and Metal
- Available in Two Standard Diameters
- Cost Effective
- Resolutions from 96 CPR to 2048 CPR
- For Use with HEDS-90XX/ 91XX Series Two and Three Channel Encoders

Description

Agilent Technologies offers a wide variety of codewheels for use with Agilent's HEDS-9000, HEDS-9100, HEDS-9040, and HEDS-9140 series Encoder Modules. Designed for many environments, applications, and budgets, Agilent codewheels are available in Glass, Film, and Metal. These codewheels are available in resolutions from 96 Counts Per Revolution (CPR) to 1024 CPR on an 11 mm optical radius and 500 to 2048 CPR on a 23.36 mm optical radius.

Each of the three codewheel materials offers a certain advantage. Metal codewheels are the most versatile, with a temperature rating up to 100°C, resolution to 512 CPR (28 mm diameter), as well as 2 and 3channel outputs. Film codewheels offer higher resolution (up to 1024 CPR on a 28 mm diameter) with an operating temperature of 70°C. Glass codewheels combine the best of film and metal, offering a temperature rating of 100°C and resolutions to 1024 CPR on a 28 mm diameter.

In addition, each material offers a specific reliability rating. It is important to consider the specific application operating environment, long term operating conditions, and temperature ranges when choosing a codewheel material.

Also See:

- HEDS-9000/HEDS-9100 Encoder Module Data Sheet
- HEDS-9000/9100/9200 Extended Resolution Encoder Module Data Sheet
- HEDS-9040/9140 Three Channel Encoder Module Data Sheet
- HEDS-9700 Small Encoder Module Data Sheet

Absolute Maximum Ratings

It is important to consider the environment in which the codewheels will be used when selecting a codewheel material. In brief, metal codewheels are rugged, but do not offer higher resolution capabilities. Film codewheels allow higher resolution, but cannot endure the same temperatures and high humidity as metal. Glass codewheels offer both high temperature and higher resolution, but are also more expensive. Consider the following rating table when choosing a codewheel material.

Parameter	Symbol	HEDS-XXXX Metal Codewheels	HEDM-XXXX Film Codewheels	HEDG-XXXX Glass Codewheels
Storage Temperature	T _S	-40°C to +100°C	-40°C to +70°C	-40℃ to +100℃
Operating Temperature	T _A	-40℃ to +100℃	-40°C to +70°C	-40℃ to +100℃
Humidity			non condensing	
Velocity		30,000 RPM	30,000 RPM	12,000 RPM
Shaft Axial Play		± 0.25 mm (± 0.010 in)	± 0.175 mm (± 0.007 in)	± 0.175 mm (± 0.007 in)
Shaft Eccentricity Plus Radial Play		± 0.1 mm (± 0.004 in) TIR	± 0.04 mm (± 0.0015 in) TIR	± 0.04 mm (± 0.0015 in) TIR
Acceleration		$250,000 \text{ Rad/Sec}^2$	$250,000 \text{ Rad/Sec}^2$	100,000 Rad/Sec 2

Recommended Operating Conditions

Parameter	HEDS-XXXX	HEDM-XXXX	HEDG-XXXX
	Metal Codewheels	Film Codewheels	Glass Codewheels
Maximum Count Frequency	100 kHz	200 kHz*	200 kHz
Shaft Perpendicularity	± 0.25 mm	± 0.175 mm	± 0.175 mm
Plus Axial Play	(± 0.010 in)	(± 0.007 in)	(± 0.007 in)
Shaft Eccentricity Plus	± 0.1 mm	± 0.04 mm	± 0.04 mm
Radial Play	(± 0.004 in) TIR	(± 0.0015 in) TIR	(± 0.0015 in) TIR

Note: Agilent Encoder Modules are guaranteed to 100 kHz, but can operate at higher frequencies. See Encoder Module Data Sheet for specifications and output load recommendations.

*HEDM-6140 is guaranteed to 100 kHz with the HEDS-9040 #T00 module.

Encoding Characteristics

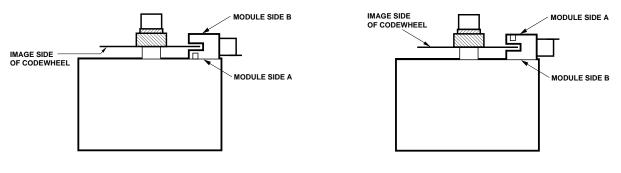
Encoding characteristics over recommended operating range and recommended mounting tolerances unless otherwise specified. Values are for worst error over a full rotation. Please refer to Encoder Module Data Sheet for definitions of Encoding characteristics.

Part Number	Description	Symbol	Min.	Тур.	Max.	Units
HEDS-51XX	Cycle Error	ΔC		3	5.5	°e
	Position Error	Δθ		10	40	min. of arc
HEDS-61XX	Cycle Error	ΔC		3	5.5	°e
	Position Error	Δθ		7	20	min. of arc
HEDM-512X	Cycle Error	ΔC		3	7.5	°e
	Position Error	Δθ		4	40	min. of arc
HEDM-61XX	Cycle Error	ΔC		3	7.5	°e
	Position Error	Δθ		2	20	min. of arc
HEDG-512X	Cycle Error	ΔC		3	7.5	°e
	Position Error	Δθ		4	30	min. of arc
HEDG-612X	Cycle Error	ΔC		3	7.5	°e
	Position Error	Δθ		2	15	min. of arc

Reliability

In addition to the absolute maximum specifications of codewheels, the environment characteristics of the application are also important. For example, consistent, large temperature swings over the life of the product will affect the codewheel performance characteristics depending on the material. The following reliability table shows results of lifetests under varying conditions of temperature and humidity.

Glass Codewheel Tests


Test	Duration	Number of Parts	Number of Failures
Storage at 100°C	1000 hours	44	0
Rotating at 100°C	500 hours	10	0
Temperature Cycle: -40°C to +100°C	500 cycles	98	0
Temperature/Humidity: 85°C/85% R.H.	500 hours	43	0

Film Codewheel Tests

Test	Duration	Number of Parts	Number of Failures
Storage at 70°C	1000 hours	118	0
Rotating at 70°C	500 hours	10	0
Temperature Cycle: -40° C to $+70^{\circ}$ C	500 cycles	66	0
Temperature Cycle: +20°C to +40°C	1000 cycles	64	0
Temperature Cycle: +20°C to +55°C	1000 cycles	46	0
Temperature Cycle: +20°C to +70°C	500 cycles	50	0

Mounting Rotary Encoders with Codewheels

There are two orientations for mounting the Agilent encoder module and Agilent codewheel. Figure 1a shows mounting the module with side A as the mounting plane. Figure 1b shows mounting the module with side B as the mounting plane. When assembling the encoder and codewheel, it is important to maintain the tolerances of Side A of the module, and the image side of the codewheel. See module Data Sheets for these tolerances.

Figure 1a.

Figure 1b.

*Please note that the image side of the codewheel must always be facing the module Side A.

Mounting with Module Side A as the Mounting Plane

Mounting a high resolution or three channel encoder with Module Side A as the mounting plane requires alignment pins in the motor base. These alignment pins provide the necessary centering of the module with respect to the center of the motor shaft. In addition to centering, the codewheel gap is also important. Please refer to the respective encoder data sheet for necessary mounting information.

Mounting with Module Side B as the Mounting Plane, using Agilent Assembly Tools

Agilent offers centering tools and gap setting tools only for the case when the module is mounted with Side B down. Please refer to the Ordering Information Table to choose the correct assembly tools.

Assembly Instructions Using Agilent Assembly Tools Instructions

- 1. Place codewheel on shaft.
- Set codewheel height:

 (a) Place the correct gap setting tool (per Ordering Information Table) on motor base, flush up against the motor shaft as shown in Figure 2. The shim has two different size steps. Choose the one that most closely matches the width of the codewheel boss. The

shim should not contact the codewheel boss.(b) Push codewheel down against gap setting shim. The codewheel is now at the proper height.(c) Tighten codewheel setscrew.

- 3. Insert mounting screws through module and thread into the motor base. Do not tighten screws.
- 4. Slide the HEDS-8905 or HEDS-8906 centering tool over codewheel hub and onto module as shown in Figure 3. The pins of the alignment tool should fit snugly inside the alignment recesses of the module.
- 5. While holding alignment tool in place, tighten screws down to secure module.
- 6. Remove alignment tools.

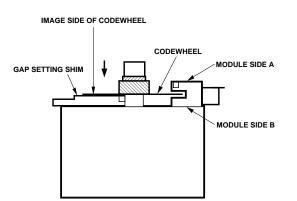


Figure 2. Alignment Tool is Used to Set Height of Codewheel.

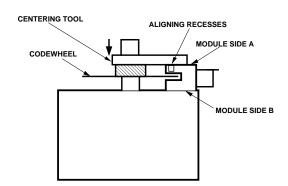


Figure 3. Alignment Tool is Placed over Shaft and onto Codewheel Hub. Alignment Tool Pins Mate with Aligning Recesses on Module.

Mechanical Drawings

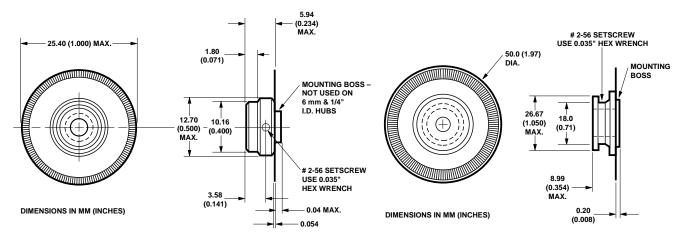


Figure 4. HEDS-5120 Codewheel.

Figure 5. HEDS-6100 Codewheel.

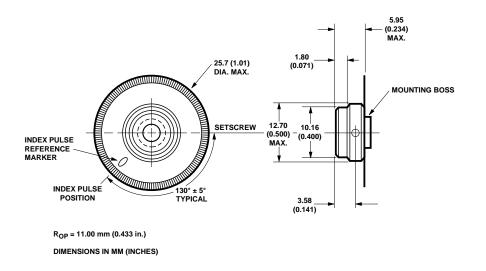


Figure 6. HEDS-5140 Codewheel Used with HEDS-9140.

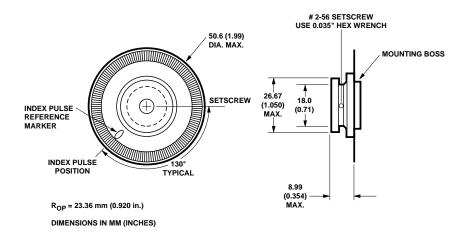


Figure 7. HEDS-6140 Codewheel Used with HEDS-9040.

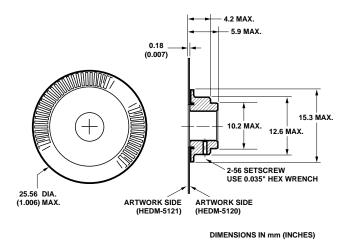


Figure 8. HEDM-5120 Codewheel/HEDM-5121 Codewheel.

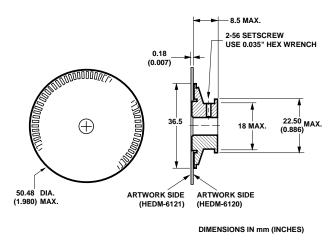
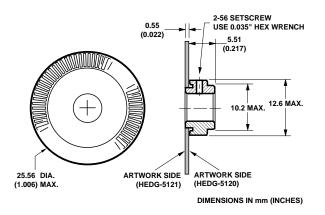



Figure 9. HEDM-6120 Codewheel/HEDM-6121 Codewheel.

8

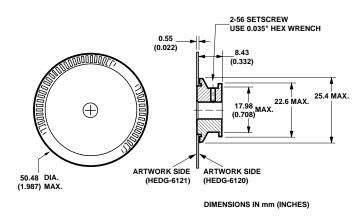
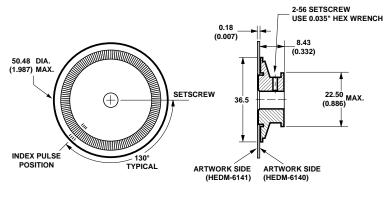



Figure 10. HEDG-5120 Codewheel/HEDG-5121 Codewheel.

Figure 11. HEDG-6120 Codewheel/HEDG-6121 Codewheel.

DIMENSIONS IN mm (INCHES)

Figure 12. HEDM-6140 Codewheel/HEDM-6141 Codewheel.

Ordering Information Encoder Modules, Codewheel and Assembly Tools

Metal Codewheels

Ι

K

*

*

*

*

HEDS-9100 Opt modules	ion		0			9S-5 ewho			Resolution (Cycles/Rev) K - 96 CPR C - 100 CPR D - 192 CPR E - 200 CPR F - 256 CPR G - 360 CPR H - 400 CPR A - 500 CPR I - 512 CPR				-	chan iamet mm mm /8 in /32 in /16 in /16 in /4 in mm mm	n. n.	Cent HE	bly Tools Gap-Setting HEDS- 8901	-
		01	02	03	04	05	06	08	09	10	11	12	13	14				
HEDS-5120#	Α	*	*	*	*	*	*				*	*		*				
	С		*				*				*	*	*	*				
	D					*												
	Е						*					*						
	F					*												
	G		*	*		*	*				*			*				
	Η		*				*				*	*		*				

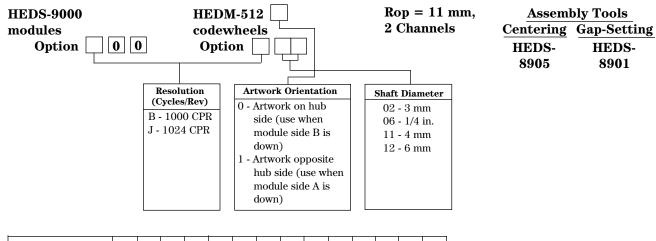
HEDS-9140 Option	00 HEDS-	5140 Optio	n 🔲 🛄	Rop = 11 mm,	Asseml	bly Tools
modules	codew	heels		3 Channels	Centering	Gap-Setting
		Resolution (Cycles/Rev) C - 100 CPR E - 200 CPR F - 256 CPR G - 360 CPR A - 500 CPR	Shaft Di 02 - 3 mm 03 - 1/8 in. 04 - 5/32 in. 05 - 3/16 in. 06 - 1/4 in.	11 - 4 mm 14 - 5 mm 12 - 6 mm	HEDS- 8905	HEDS- 8905
		I - 512 CPR				

* * *

*

		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDS-5140	Α		*		*	*	*				*	*	*	*
	С				*		*					*	*	
	Е						*				*	*		*
	F				*							*		*
	G						*					*		*
	Ι		*		*		*				*	*	*	*

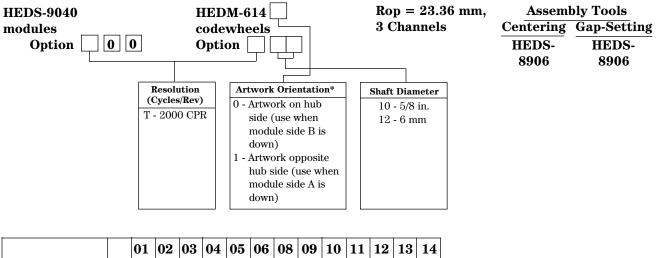
HEDS-9000 Option	00 HEDS-6100	Option	$\square Rop = 23 mm,$	Assem	bly Tools
modules	codewheels	Resolution (Cycles/Rev) A - 500 CPR B - 1000 CPR	2 Channels Shaft Diameter 06 - 1/4 in. 08 - 3/8 in. 09 - 1/2 in.		Gap-Setting HEDS- 8901
			10 - 5/8 in. 11 - 4 mm 12 - 6 mm 13 - 8 mm		


		01	02	03	04	05	06	08	09	10	11	12	13	14	
HEDS-6100#	Α								*			*	*		
	В						*	*	*	*					

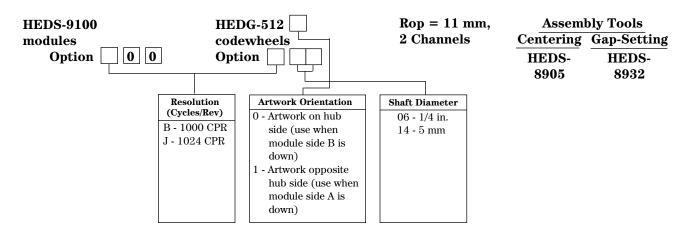
HEDS-9040 Option								tion				Rop	= 2	3.36 mm,						
modules				code	wh	eels	Ro (C) B -	esolut ycles/1 1000 1024	Rev) CPR		Sha 00 03 09 10 11		8 in. 2 in. 8 in. mm mm	_	Centering HEDS- 8906	Gap-Setting HEDS- 8906				
	01	02	03	04	05	06	08	09	10	11	12	13	14							

		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDS-6140#	В						*	*	*	*	*	*	*	
	J						*		*			*	*	

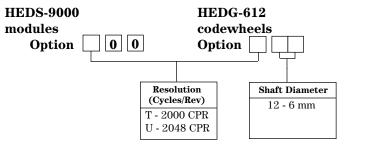
Note: 1. For the lower resolution, two channel encoders, $(11 \text{ mm} \le 512 \text{ CPR}; 23.36 \text{ mm} \le 1024 \text{ CPR})$ the centering tool and gap-setting shim are not necessary, but sometimes helpful in an assembly process.


Film Codewheels

		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDM-5120#	В		*				*				*	*		
	J						*				*			
HEDM-5121	В					*	*							
	J													


HEDS-9000 modules Option 00	code	DM-612	Rop = 23.36 m 2 Channels	n, <u>Assembly Tools</u> <u>Centering</u> <u>Gap-Setting</u> <u>HEDS-</u> <u>HEDS-</u> 8906 8906
	Resolution (Cycles/Rev) T - 2000 CPR U - 2048 CPR	Artwork Orientation0 - Artwork on hubside (use whenmodule side B isdown)1 - Artwork oppositehub side (use whenmodule side A isdown)	Shaft Diameter 06 - 1/4 in. 08 - 3/8 in. 12 - 6 mm 13 - 8 mm	

		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDM-6120#	Т						*	*				*	*	
	U								*					
HEDM-6121#	Т								*					



		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDM-6140#	Т											*		
HEDM-6141#	Т									*				

Glass Codewheels

		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDG-5121#	В						*					*		
	J													*

Rop = 23.36 mm,	Assem	bly Tools
2 Channels	Centering	Gap-Setting
	HEDS-	HEDS-
	8906	8932

		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDG-6120#	U											*		

www.semiconductor.agilent.com

Data subject to change. Copyright © 2001 Agilent Technologies, Inc. April 26, 2001 Obsoletes 5965-5891E (11/99) 5988-2630EN

HEDL-65xx, HEDM-65xx, HEDS-65xx Series

Large Diameter (56 mm), Housed Two and Three Channel Optical Encoders

Data Sheet

Description

The HEDS-65xx/HEDL-65xx are high performance two and three channel optical incremental encoders. These encoders emphasize high reliability, high resolution, and easy assembly. Each encoder contains a lensed LED source (emitter), an integrated circuit with detectors and output circuitry, and a codewheel which rotates between the emitter and detector integrated circuit. The outputs of the HEDS-6500 are two single ended square waves in quadrature. The HEDL-65xx outputs are differential.

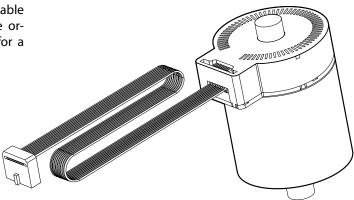
The HEDS-6540 / HEDL-6540 also have a third channel index output in addition to the two quadrature outputs. This index is an active high pulse that occurs once every full rotation of the codewheel. Resolutions up to 1024 Counts Per Revolution are available in the two and three channel versions.

The line driver option offers enhanced performance when the encoder is used in noisy environments, or when it is required to drive long distances.

The line driver option utilizes an industry standard line driver IC AM26C31Q which provides complementary outputs for each encoder channel. Thus the outputs of the line driver encoder are A and \overline{A} , B and \overline{B} , and I and \overline{I} for three channel versions. Suggested line receivers are 26C32 and 26C33.

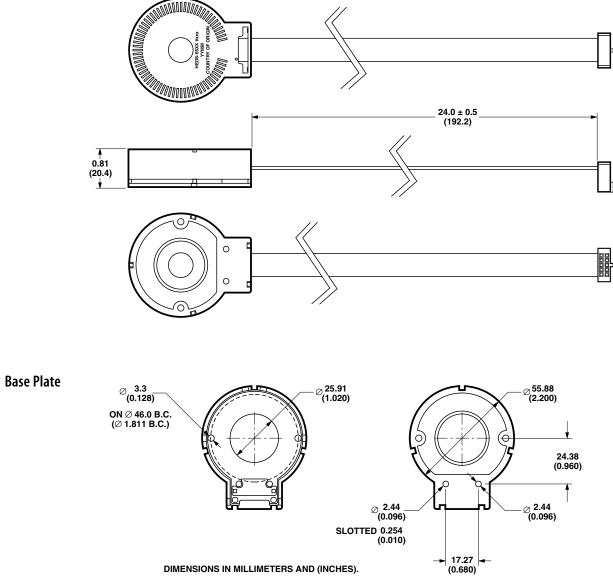
The quadrature signals are accessed through a cable and 10-pin female connector. Please refer to the ordering information at the end of this data sheet for a selection matrix.

Features

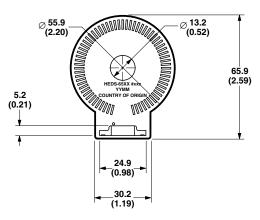

- Two channel quadrature output with optional index pulse
- TTL compatible single ended outputs on HEDS Series
- 100°C operating temperature for metal code wheel
- 70°C operating temperature for mylar code wheel
- Industry standard AM26C31Q CMOS line driver IC on HEDL Series
- Easy assembly, no signal adjustment necessary
- Resolutions up to 2048 counts per revolution

Applications

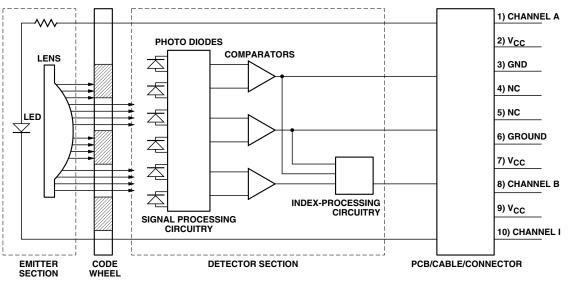
The HEDS-65xx / HEDL-65xx provide motion detection to a very high resolution and accept a variety of shaft sizes up to a maximum of 5/8 inches.


Typical applications include printers, plotters, tape drives, positioning tables, and automatic handlers.

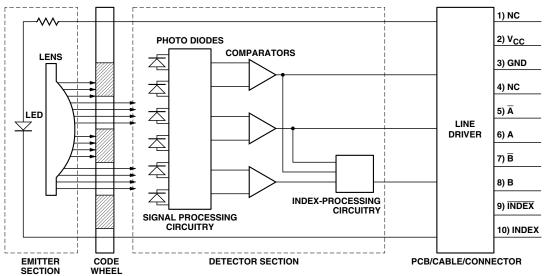
Note: Avago Technologies encoders are not recommended for use in safety critical applications. Eg. ABS braking systems, power steering, life support systems and critical care medical equipment. Please contact sales representative if more clarification is needed.



Assembled Unit

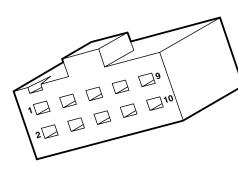


Top Cover (Housing)



DIMENSIONS IN MILLIMETERS AND (INCHES).

Pinout A



Pinout B

There are two different connector pin-out configurations used with the HEDS-65xx / HEDL-65xx series of encoders. The table below relates the part to its connector pin-out.

Pinou	it A
	DS-65xx CONNECTOR OUT
1	Channel A
2	V _{cc}
3	GND
4	NC
5	NC
6	GND
7	V _{cc}
	Channel B
9	V _{cc}
	Channel I

Pinou	it B
	DL-65xx CONNECTOR OUT
1	NC
2	V _{cc}
3	
4	NC
5	Ā
6	A
7	B
8	В
9	I (INDEX)
10	I (INDEX)

Theory of Operation

The HEDS-65xx / HEDL-65xx translate the rotary motion of a shaft into either a two or three channel digital output.

The HEDS-65xx uses one of the standard HEDS-9000 or HEDS-9040 modules for encoding purposes. The HEDL-654x uses the standard HEDL-9040 for encoding purposes.

As seen in the block diagram, these modules contain a single Light Emitting Diode (LED) as their light source (emitter). The light is collimated into a single parallel beam by means of a plastic lens located directly over the LED. Opposite the emitter is the integrated detector circuit (detector). This circuit consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by a pattern of spaces and bars on the codewheel. The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the codewheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors. The photodiode outputs are then fed into the signal processing circuitry resulting in A, \overline{A} , B, and \overline{B} (I and \overline{I} also in the three channel encoders). Comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

In the HEDS-6540 / HEDL-6540 the output of the comparator for the index pulse is combined with that of the outputs of channel A and channel B to produce the final index pulse. The index pulse is generated once every rotation of the codewheel and is a one state width (nominally 90 electrical degrees), true high index pulse. It is coincident with the low states on channels A and B.

Definitions

Count (N): The number of bar and window pairs or counts per revolution (CPR) of the codewheel.

One Cycle (C): 360 electrical degrees (e), 1 bar and window pair.

One Shaft Rotation: 360 mechanical degrees, N cycles.

Position Error ($\Delta\Theta$): The normalized angular difference between the actual shaft position and the position indicated by the encoder cycle count.

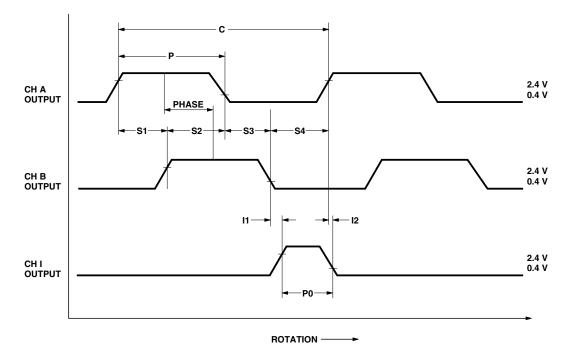
Cycle Error (Δ C): An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of 1/N of a revolution.

Pulse Width (P): The number of electrical degrees that an output is high during one cycle. This value is nominally 180 e or 1/2 cycle.

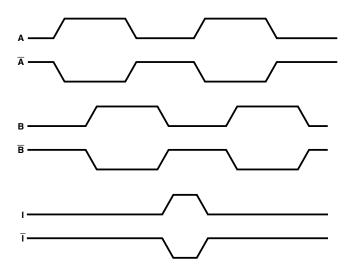
Pulse Width Error (ΔP): The deviation, in electrical degrees, of the pulse width from its ideal value of 180 e.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally 90 e.

State Width Error (Δ S): the deviation, in electrical degrees, of each state width from its ideal value of 90 e.


Phase (Φ) : the number of electrical degrees between the center of high state on channel A and the center of the high state on channel B. This value is nominally 90 e for quadrature output.

Phase Error ($\Delta \Phi$): The deviation of the phase from its ideal value of 90 e.


Direction of Rotation: When the codewheel rotates in a counterclockwise direction (when viewed from the encoder end of the motor) channel A will lead channel B. If the codewheel rotates in the clockwise direction channel B will lead channel A.

Index Pulse Width (P0): The number of electrical degrees that an index output is high during one full shaft rotation. This value is nominally 90 e or 1/4 cycle.

Output Waveforms

Waveforms for Encoders without Line Drivers.

Waveforms for Encoders with Line Drivers.

Absolute Maximum Ratings

Parameter	HEDS-6500	HEDS-6540	HEDL-6540	HEDL-6545	
Storage Temperature	-40 to +100	-40 to +100	-40 to +100	-40 to +100	Celsius
Operating Temperature	-40 to +100	-40 to +100	-40 to +100	-40 to +100	Celsius
Supply Voltage	5 to +7	5 to +7	5 to +7	5 to +7	Volts
Output Voltage	6 to Vcc	6 to Vcc	6 to Vcc	6 to Vcc	Volts
Output Current Per Channel	-1 to 5	-1 to 5			mA
Velocity	30,000	30,000	30,000	30,000	RPM
Vibration	20	20	20	20	Gs
Shaft Axial Play	5	5	5	5	Inch/1000
Radial Play & Eccentricity	2	2	2	2	Inch/1000

Recommended Operating Conditions

Parameter	HEDS-6500	HEDS-6540	HEDL-6540	HEDL-6545	
Temperature	-40 to +100	-40 to +100	-40 to +100	-40 to +100	Celsius
Supply Voltage	4.5 to 5.5	4.5 to 5.5	4.5 to 5.5	4.5 to 5.5	Volts
Load Capacitance	100	100	100	100	pF
Count Frequency	100	100	100	100	kHz
Shaft Eccentricity Plus Radial Play	±.05 (±.002)	±.05 (±.002)	±.05 (±.002)	±.05 (±.002)	mm (Inch/1000)

Note: The HEDS-65XX performance is guaranteed to 100 kHz but can operate at higher frequencies. For frequencies above 100 kHz it is recommended that the load capacitance not exceed 25 pF and pull up resistors of $3.3 \text{ k}\Omega$ between the output channels and Vcc are included.

Encoding Characteristics

Encoding Characteristics over Recommended Operating Range and Recommended Mounting Tolerances unless otherwise specified. Values are for the worst error in the full rotation.

Part Number	Description	Symbol	Min.	Typ.*	Max.	Units
HEDS-6500***	Pulse Width Error	ΔΡ		5	35	°e
	Logic State Width Error	ΔS		5	35	°e
	Phase Error	$\Delta \Phi$		2	15	°e
	Position Error	$\Delta \Theta$		7	20	min. of arc
	Cycle Error	ΔC		5	5.5	°e
HEDS-6540**	Pulse Width Error	ΔΡ		5	35	°e
	Logic State Width Error	ΔS		5	35	°e
	Phase Error	$\Delta \Phi$		2	15	°e
	Position Error	$\Delta \Theta$		7	20	min. of arc
	Cycle Error	ΔC		5	5.5	°e
	Index Pulse Width	ΔΡ0	55	90	125	°e
	CH I fall after CH B or CH A fall					
	-25°C to +100°C	t1	10	100	250	ns
	-40°C to +100°C	t1	-300	100	250	ns
	CH I rise after CH B or CH A rise					
	-25°C to +100°C	t2	70	150	300	ns
	-40°C to +100°C	t2	70	150	1000	ns
HEDL-654x	Pulse Width Error	ΔP		5	35	°e
	Logic State Width Error	ΔS		5	35	°e
	Phase Error	$\Delta \Phi$		2	15	°e
	Position Error	$\Delta \Theta$		7	20	min. of arc
	Cycle Error	ΔC		5	5.5	°e
	Index Pulse Width	ΔΡ0		90		°e

*Typical values specified at Vcc = 5.0 V and 25° C.

HEDS-6540 – Active high Index part. Pull-up of 2.7 k Ω used on all outputs of modules that do not have a line driver. *HEDS-6500 – 3.3 k Ω pull-up resistors used on all encoder module outputs.

Electrical Characteristics

Part Number	Symbol*	Min.	Тур.	Max.	Units	Notes
HEDS-6500	lcc		17	40	mA	
	V _{OH}	2.4			V	I _{οн} = -40 μA max
	V _{oL}			0.4	V	$I_{01} = 3.2 \text{ mA}$
	tr		200		ns	$C_1 = 25 \text{ pF}, \text{RL} = 11 \text{ k}\Omega \text{ pull-up}.$
	tf		50		ns	
HEDS-6540	lcc	30	57	85	mA	
	V _{OH}	2.4			V	I _{οн} = -200 μA max
	V _{OL}			0.4	V	$I_{01} = 3.86 \text{ mA}$
	tr		180		ns	$C_{1} = 25 \text{ pF}, \text{RL} = 3.3 \text{ k}\Omega \text{ pull-up}.$
	tf		40		ns	-

Electrical Characteristics over Recommended Operating Range, typical at 25°C.

*Explanation for symbols.

Icc – Supply current, V_{OH} – High Level Output Voltage, V_{OL} – Low Level Output Voltage, tr – Rise Time, tf – Fall Time.

Electrical Interfaces

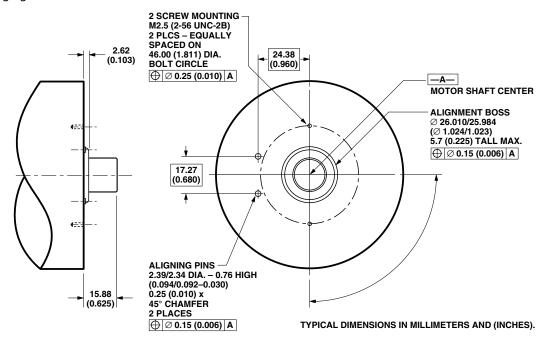
To insure reliable encoding performance, the HEDS-6540 three channel encoder requires 2.7 k Ω pull-up resistors to the supply voltage on each of the three output lines Ch. A, Ch. B, and Ch. I located as close as possible to the encoder

Mechanical Characteristics

Parameter	Symbol	Dimensions	Tolerances ^[1]	Units
Moment Of Inertia	J	7.7 (110 x 10⁻⁵)		gcm² (oz-in-s²)
Required Shaft Length [2]		15.9 (0.625)	±0.6 (.024)	mm (inches)
Bolt Circle ^[3]		46.0 (1.811)	±0.13 (.005)	mm (inches)
Mounting Screw Size [4]		2.5 x 0.45 x 5		mm
Pan Head Style		#2-56 x 3/16		Inches
Encoder Base Plate Thickness		3.04 (120)		mm (inches)
Mounting Screw Torque		1.0 (0.88)		Kg (in-lbs)
Hub Set Screw	UNC #2-56		Hex head set screw	

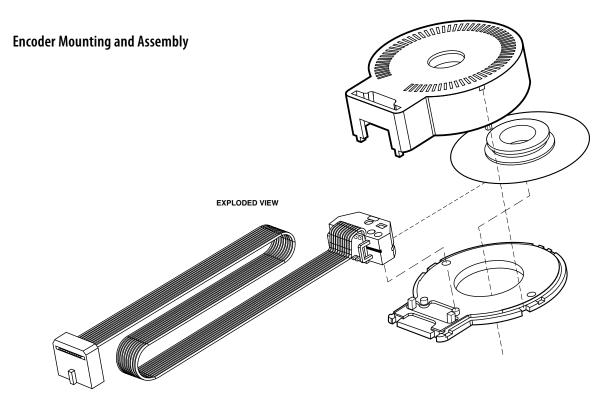
Notes:

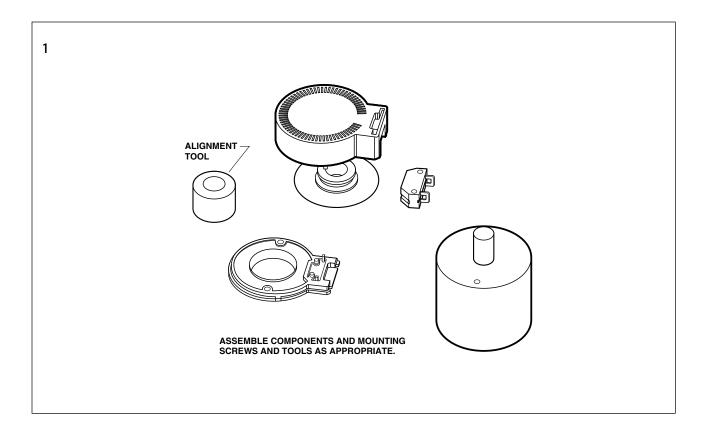
1. These are tolerances required of the user.

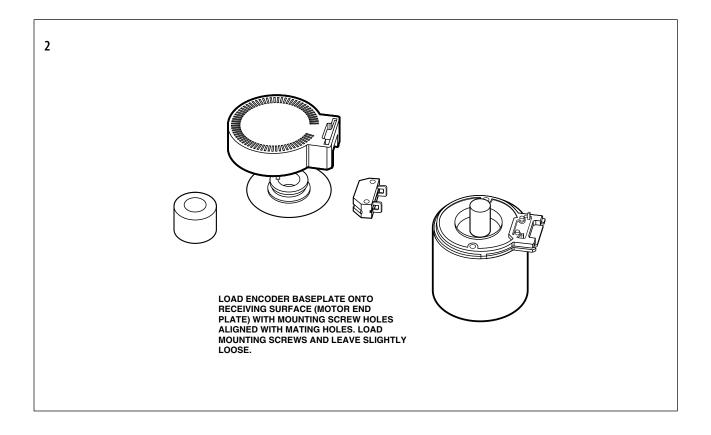

2. Through hole in the encoder housing are also available, for longer shafts.

3. The HEDL-65X0 must be aligned using the aligning pins as specified in the section on "MOUNTING CONSIDERATIONS."

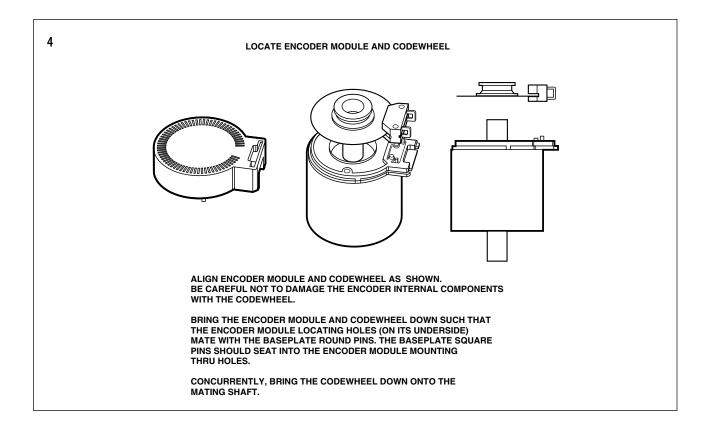
4. The recommended mounting screw torque for 2 screws is 1.0 Kg (0.88 in-lbs).

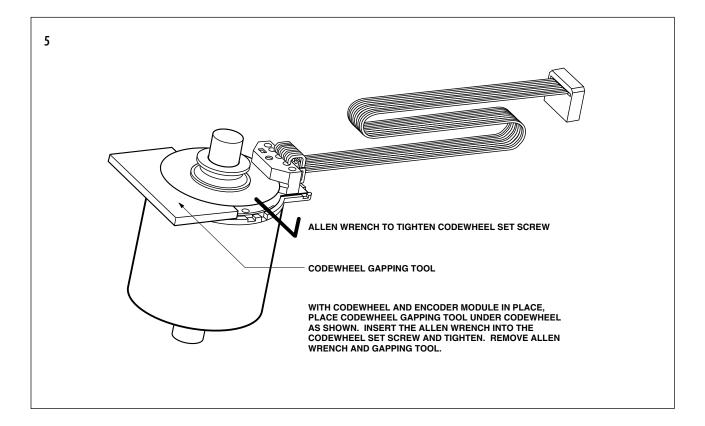

Mounting Considerations

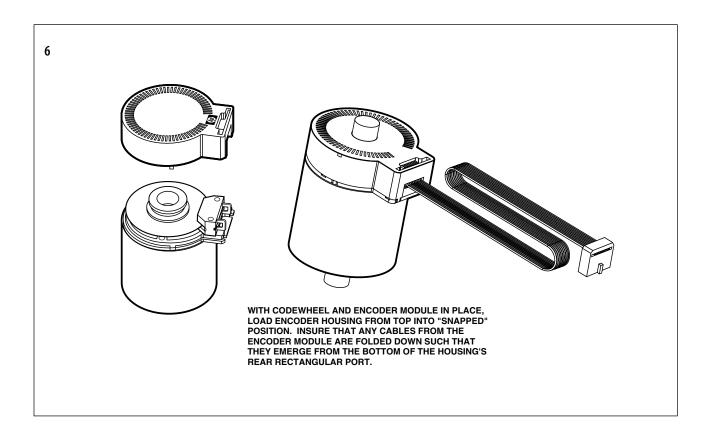

The HEDS-654x/HEDL-654x must be aligned with respect to the optical center (codewheel shaft) as indicated in the following figure.

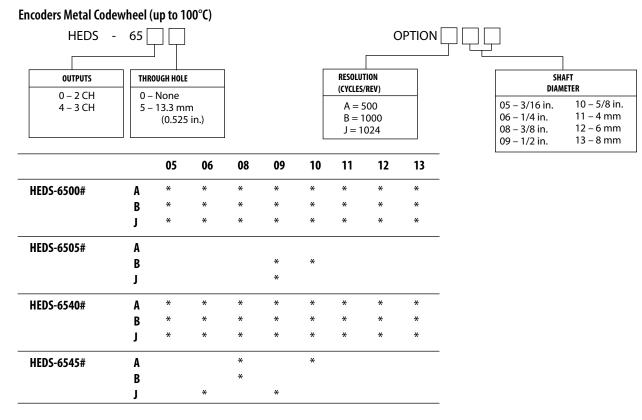


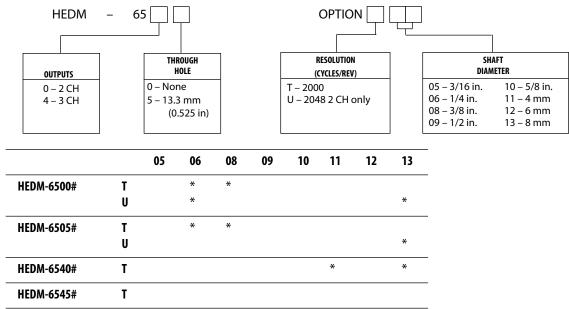

If neither locating pins nor locating boss are available, then a centering tool supplied by Avago can be used (HEDS-6510).

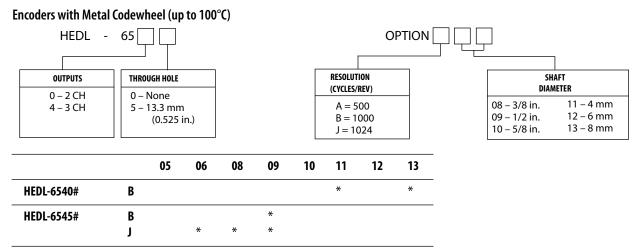

The following figure shows how the main encoder components are organized.










Ordering Information for 2CH and 3CH Encoder Modules

Encoders Film Codewheel (up to 70°C)

Ordering Information for 2CH and 3CH Encoder Modules with Line Driver

Ordering Information for HEDS=76XX Centering Tools

HEDS-6510	Opt	ion (]					
			SHAF1 DIAMET						
		05 - 3/16 in. 10 - 5/8 in. 06 - 1/4 in. 11 - 4 mm 08 - 3/8 in. 12 - 6 mm 09 - 1/2 in. 13 - 8 mm							
		05	06	08	09	10	11	12	13
HEDS-6510	0	*	*	*	*	*	*	*	*

Ordering Information for HEDS-65XX Codewheel

Gapping Tool

HEDS-6511

For product information and a complete list of distributors, please go to our website: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries. Data subject to change. Copyright © 2008 Avago Technologies Limited. All rights reserved. Obsoletes 5988-9398EN AV02-0991EN January 30, 2008

HEDB-9100 and HEDB-9000

Two Channel Optical Incremental Encoder Modules Bundle With Codewheel

Data Sheet

Description

The HEDB-9100 and HEDB-9000 series are two channel optical incremental encoder modules offered with a codewheel. When used with a codewheel, these low cost modules detect rotary position. Each module consists of a lensed LED source and a detector IC enclosed in a small C-shaped plastic package. Due to a highly collimated light source and a unique photodetector array, these modules are extremely tolerant to mounting misalignment.

The HEDB-9100 and 9000 has two channel quadrature outputs.

The HEDB-9100 is designed for use with a HEDS-5120 codewheel which has an optical radius of 11.00 mm (0.433 inch). The HEDB-9000 is designed for use with a HEDS-6100 codewheel which has an optical radius of 23.36 mm (0.920 inch).

The quadrature signals and the single 5V supply input are accessed through five 0.025 inch square pins located on 0.1 inch (pitch) centers.

Features

- High Performance
- Resolution from 96 CPR Up To 1000 CPR (Counts Per Revolution)
- Low Cost
- Easy to Mount
- No Signal Adjustment required
- Small Size
- Operating Temperature: -40°C to 100°C
- TTL Compatible
- Two Channel Quadrature Output
- Single 5V Supply

Applications

The HEDB-9100 and 9000 provide sophisticated motion control detection at a low cost, making them ideal for high volume applications. Typical applications include printers, plotters, tape drives, and industrial and factory automation equipment.

Note:

Avago Technologies encoders are not recommended for use in safety critical applications. Eg. ABS braking systems, power steering, life support systems and critical care medical equipment. Please contact sales representative if more clarification is needed.

Theory of Operation

The HEDB-9100 and 9000 is emitter/detector modules. Coupled with a codewheel, these modules translate the rotary motion of a shaft into a two-channel digital output.

As seen in Figure 1, the modules contain a single Light Emitting Diode (LED) as its light source. The light is collimated into a parallel beam by means of a single polycarbonate lens located directly over the LED. Opposite the emitter is the integrated detector circuit. This IC consists of multiple sets of photodetectors and the signal processing circuitry necessary to produce the digital waveforms.

The codewheel rotates between the emitter and detector, causing the light beam to be interrupted by the pattern of spaces and bars on the codewheel.

The photodiodes which detect these interruptions are arranged in a pattern that corresponds to the radius and design of the code-wheel. These detectors are also spaced such that a light period on one pair of detectors corresponds to a dark period on the adjacent pair of detectors.

The photodiode outputs are then fed through the signal processing circuitry resulting in A, Abar, B, Bbar. Two comparators receive these signals and produce the final outputs for channels A and B. Due to this integrated phasing technique, the digital output of channel A is in quadrature with that of channel B (90 degrees out of phase).

Definitions

Note: Refer to Figure 2

Count (N): The number of bar and window pairs or counts per revolution (CPR) of the codewheel.

One Cycle (C): 360 electrical degrees (°e), 1 bar and window pair.

One Shaft Rotation: 360 mechanical degrees, N cycles.

Position Error ($\Delta \Theta$): The normalized angular difference between the actual shaft position and the position indicated by the encoder cycle count.

Cycle Error (Δ **C**): An indication of cycle uniformity. The difference between an observed shaft angle which gives rise to one electrical cycle, and the nominal angular increment of 1/N of a revolution.

Pulse Width (P): The number of electrical degrees that an output is high during 1 cycle. This value is nominally 180°e or 1/2 cycle.

Pulse Width Error (ΔP): The deviation, in electrical degrees, of the pulse width from its ideal value of 180°e.

State Width (S): The number of electrical degrees between a transition in the output of channel A and the neighboring transition in the output of channel B. There are 4 states per cycle, each nominally 90°e.

Phase (ϕ): The number of electrical degrees between the center of the high state of channel A and the center of the high state of channel B. This value is nominally 90°e for quadrature output.

Phase Error (ϕ): The deviation of the phase from its ideal value of 90°e.

Direction of Rotation: When the codewheel rotates in the clockwise direction viewing from top of the module (direction from V to G), channel A will lead channel B. If the codewheel rotates in the opposite direction, channel B will lead channel A.

Optical Radius (Rop): The distance from the codewheel's center of rotation to the optical center (O.C) of the encoder module.

Specification

For encoder electrical, mechanical specifications, codewheel technical specifications and additional informations pls refer to :

- HEDS-9000 /9100 Datasheet.
- HEDS/HEDG/HEDM 51xx /61xx Codewheel Datasheet

Block Diagram

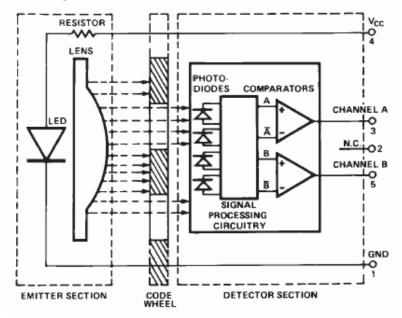


Figure 1. Block Diagram

Output Waveforms

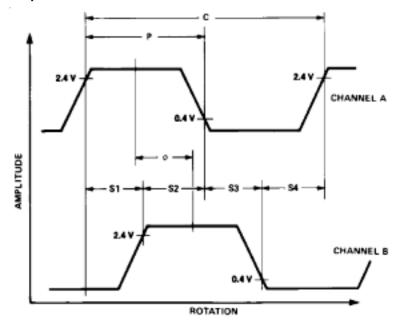


Figure 2. Output waveforms

Ordering Information

HEDB - 9	00 -	
Codewheel Rop	Resolutions (Cycle/Rev)	Shaft Diameter
0 - 23.36 mm 1 - 11.00 mm	K - 96 CPR C - 100 CPR E - 200 CPR F - 256 CPR G - 360 CPR H - 400 CPR A - 500 CPR I - 512 CPR B - 1000 CPR J - 1024 CPR	01 - 2mm 02 - 3mm 03 - 1/8 in 04 - 5/32 in 05 - 3/16 in 06 - 1/4 in 08 - 3/8 in 09 - 1/2 in 10 - 5/8 in 11 - 4mm 12 - 6mm 13 - 8mm 14 - 5mm

Three Channel Encoder Modules with Codewheel, 11 mm and 23.36 Optical Radius

Available Options

Part Number	CPR	Shaft Diameter Options												
		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDB-9100	K		٠										•	
	C		٠				٠				٠	•	٠	٠
	E						٠					•		
	G		٠	•		•	٠				٠			٠
	Н		٠			•	٠				٠	•	•	•
	А	•	٠	•	•	•	•				•	•		•
	Ι		•		•		•				٠	•	•	
Part Number	CPR	Shaf	t Diam	eter Op	tions									
		01	02	03	04	05	06	08	09	10	11	12	13	14
HEDB-9000	А								•			•	•	
	В						•	•	•	•				

Bundle Part Number Breakdown List

Note :

The bundle part HEDB-9100/9000 consists of HEDS-9100/9000 and HEDS-5120/6100. The diagram below provides the breakdown list.

HEDB - 9100 - CPR	Shaft Diameter	
──► Encoder Mod	ule : HEDS-9100 - C	PR 00
Codewheel :	HEDS - 5120 - CPR	Shaft Diameter
HEDB - 9000 - CPR	Shaft Diameter	
Encoder Mod	ule : HEDS-9000 - C	PR 00
Codewheel : I	HEDS - 6100 - CPR	Shaft Diameter

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2006 Avago Technologies Pte. All rights reserved. 5989-4045EN - May 29, 2006

