TGS 822 - for the detection of Organic Solvent Vapors

Features:

- * High sensitivity to organic solvent vapors such as ethanol
- * High stability and reliability over a long period
- * Long life and low cost
- * Uses simple electrical circuit

Applications:

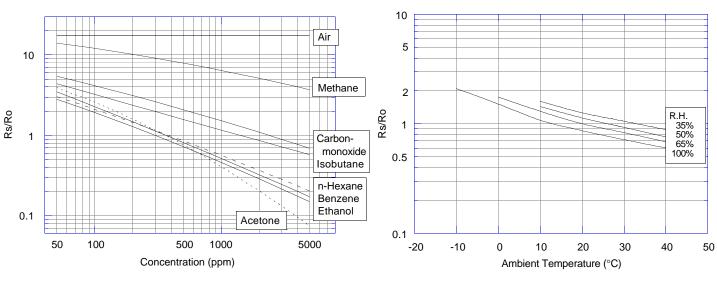
- * Breath alcohol detectors
- * Gas leak detectors/alarms
- * Solvent detectors for factories, dry cleaners, and semiconductor industries

The sensing element of Figaro gas sensors is a tin dioxide (SnO₂) semiconductor which has low conductivity in clean air. In the presence of a detectable gas, the sensor's conductivity increases depending on the gas concentration in the air. A simple electrical circuit can convert the change in conductivity to an output signal which corresponds to the gas concentration.

The **TGS 822** has high sensitivity to the vapors of organic solvents as well as other volatile vapors. It also has sensitivity to a variety of combustible gases such as carbon monoxide, making it a good general purpose sensor. Also available with a ceramic base which is highly resistant to severe environments as high as 200°C (model# TGS 823).

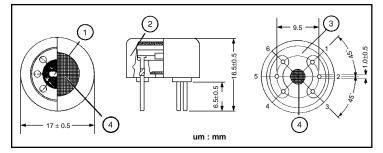
The figure below represents typical sensitivity char-acteristics, all data having been gathered at standard test conditions (see reverse side of this sheet). The Y-axis is indicated as *sensor resistance ratio* (Rs/Ro) which is defined as follows:

Rs = Sensor resistance of displayed gases at various concentrations


Ro = Sensor resistance in 300ppm ethanol

The figure below represents typical temperature and humidity dependency characteristics. Again, the Y-axis is indicated as *sensor resistance ratio* (Rs/Ro), defined as follows:

Rs = Sensor resistance at 300ppm of ethanol at various temperatures/humidities Ro = Sensor resistance at 300ppm of ethanol at 20°C and 65% R.H.

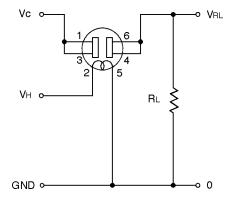

Temperature/Humidity Dependency:

IMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER'S SPECIFIC APPLICATIONS. FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER'S TARGET GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.

Sensitivity Characteristics:

Structure and Dimensions:

Pin Connection and Basic Measuring Circuit:


The numbers shown around the sensor symbol in the circuit diagram at the right correspond with the pin numbers shown in the sensor's structure drawing (*above*). When the sensor is connected as shown in the basic circuit, output across the Load Resistor (V_{RL}) increases as the sensor's resistance (Rs) decreases, depending on gas concentration.

(1) Sensing Element:

- SnO₂ is sintered to form a thick film on the surface of an alumina ceramic tube which contains an internal heater.
- (2) Cap: Nylon 66
- (3) Sensor Base:
 - Nylon 66
- (4) Flame Arrestor:

100 mesh SUS 316 double gauze

Basic Measuring Circuit:

Standard Circuit Conditions:

ltem	Symbol	Rated Values	Remarks
Heater Voltage	Vн	5.0±0.2V	AC or DC
Circuit Voltage	Vc	Max. 24V	AC or DC *PS≤15mW
Load Resistance	R∟	Variable	*PS≤15mW

Electrical Characteristics:

ltem	Symbol	Condition	Specification
Sensor Resistance	Rs	Ethanol at 300ppm/Air	1kΩ ~ 10kΩ
Change Ratio of Sensor Resistance	Rs/Ro	Rs (Ethanol at 300ppm/Air) Rs (Ethanol at 50ppm/Air)	0.40 ± 0.1
Heater Resistance	Rн	Room temperature	$38.0~\pm~3.0\Omega$
Heater Power Consumption	Рн	VH=5.0V	660mW ± 55mW

Standard Test Conditions:

TGS 822 complies with the above electrical characteristics when the sensor is tested in standard conditions as specified below:

Test Gas Conditions:	20°±2°C, 65±5%R.H.
Circuit Conditions:	Vc = 10.0±0.1V (AC or DC),
	VH = 5.0±0.05V (AC or DC),
	R∟ = 10.0kΩ±1%

Preheating period before testing: More than 7 days

Sensor Resistance (Rs) is calculated by the following formula:

$$Rs = \left(\frac{V_{C}}{V_{RL}} - 1\right) \times R_{I}$$

Power dissipation across sensor electrodes (Ps) is calculated by the following formula:

$$Ps = \frac{Vc^2 \times Rs}{(Rs + RL)}^2$$