General Description The MAX4249-MAX4257 low-noise, low-distortion operational amplifiers offer Rail-to-Rail® outputs and singlesupply operation down to 2.4V. They draw only 400µA of quiescent supply current per amplifier while featuring ultra-low distortion (0.0002% THD), as well as low input noise voltage density (7.9nV/\(\sqrt{Hz}\)) and low input-noisecurrent density (0.5fA/ $\sqrt{\text{Hz}}$). These features make the devices an ideal choice for portable/battery-powered applications that require low distortion and/or low noise. For additional power conservation, the MAX4249/ MAX4251/MAX4253/MAX4256 offer a low-power shutdown mode that reduces supply current to 0.5µA and puts the amplifiers' outputs into a high-impedance state. The MAX4249-MAX4257's outputs swing rail-to-rail and their input common-mode voltage range includes ground. The MAX4250-MAX4254 are unity-gain stable; the MAX4249/MAX4255/MAX4256/MAX4257 are internally compensated for gains of 10V/V or greater. The single MAX4250/MAX4255 are available in a space-saving, 5-pin SOT23-5 package. Applications Portable/Battery-Powered Equipment Medical Instrumentation **ADC Buffers** Digital Scales Strain Gauges Sensor Amplifiers Portable Communications Devices Pin Configurations and Typical Operating Circuit appear at end of data sheet. Features - **♦ Low Input Noise Voltage Density: 7.9nV/√Hz** Low Input Noise Current Density: 0.5fA/√Hz - ♦ Low Distortion: 0.0002% THD (1kΩ load) - ♦ 400µA Quiescent Supply Current per Amplifier - ♦ Single-Supply Operation from +2.4V to +5.5V - ♦ Input Common-Mode Voltage Range Includes - Outputs Swing within 8mV of Rails with a 10kΩ Load - 3MHz GBW Product, Unity-Gain Stable (MAX4250-MAX4254) 22MHz GBW Product, Stable with Ay ≥ 10V/V (MAX4249/MAX4255/MAX4256/MAX4257) - **♦ Excellent DC Characteristics:** $Vos = 70\mu V$ IBIAS = 1pA Large-Signal Voltage Gain = 116dB - **♦ Low-Power Shutdown Mode:** Reduces Supply Current to 0.5µA Places Outputs in a High-Impedance State - **♦ 400pF Capacitive-Load Handling Capability** - Available in Space-Saving SOT23 and µMAX **Packages** ### Ordering Information | PART | TEMP. RANGE | PIN-
PACKAGE | SOT
TOP MARK | | |---------------------|----------------|-----------------|-----------------|--| | MAX4249 ESD* | -40°C to +85°C | 14 SO | _ | | | MAX4249EUB* | -40°C to +85°C | 10 μMAX | _ | | Ordering Information continued at end of data sheet. Selector Guide | PART | GAIN
BANDWIDTH
(MHz) | MINIMUM
STABLE
GAIN (V/V) | NO. OF AMPLIFIERS
PER PACKAGE | SHUTDOWN
MODE | PACKAGES | |---------|----------------------------|---------------------------------|----------------------------------|------------------|------------------------| | MAX4249 | 22 | 10 | 2 | Yes | 10-pin μMAX, 14-pin SO | | MAX4250 | 3 | 1 | 1 | _ | 5-pin SOT23 | | MAX4251 | 3 | 1 | 1 | Yes | 8-pin μMAX/SO | | MAX4252 | 3 | 1 | 2 | _ | 8-pin μMAX/SO | | MAX4253 | 3 | 1 | 2 | Yes | 10-pin μMAX, 14-pin SO | | MAX4254 | 3 | 1 | 4 | _ | 14-pin SO | | MAX4255 | 22 | 10 | 1 | _ | 5-pin SOT23 | | MAX4256 | 22 | 10 | 1 | Yes | 8-pin μMAX/SO | | MAX4257 | 22 | 10 | 2 | _ | 8-pin μMAX/SO | Rail-to-Rail is a registered trademark of Nippon Motorola Ltd. NIXIN Maxim Integrated Products 1 ^{*}Future product—contact factory for availability. #### **ABSOLUTE MAXIMUM RATINGS** | F | Power-Supply Voltage (VDD to VSS)+6.0V to -0.3V | |---|---| | A | Analog Input Voltage (IN_+, IN)(VDD + 0.3V) to (Vss - 0.3V) | | 3 | SHDN Input Voltage+6.0V to (V _{SS} - 0.3V) | | (| Dutput Short-Circuit Duration to Either SupplyContinuous | | (| Continuous Power Dissipation (T _A = +70°C) | | | 5-Pin SOT23 (derate 7.1mW/°C above +70°C)571mW | | | 8-Pin µMAX (derate 4.10mW/°C above +70°C)330mW | | | | | 8-Pin SO (derate 5.88mW/°C above +70°C) | 471mW | |---|------------| | 10-Pin µMAX (derate 5.6mW/°C above +70°C) | 444mW | | 14-Pin SO (derate 8.33mW/°C above +70°C) | 667mW | | Operating Temperature Range40°C | C to +85°C | | Junction Temperature | +150°C | | Storage Temperature Range65°C | | | Lead Temperature (soldering, 10sec) | +300°C | Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. #### **ELECTRICAL CHARACTERISTICS** $(V_{DD}=+5V,\,V_{SS}=0V,\,V_{CM}=0V,\,V_{OUT}=V_{DD}/2,\,R_L$ tied to $V_{DD}/2,\,\overline{SHDN}=V_{DD}$ or open, $T_A=-40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.) (Notes 1, 2) | PARAMETER | SYMBOL | COND | DITIONS | MIN | TYP | MAX | UNITS | |--|----------|--|---|-----------------------|-------|--------------------------|-------| | Supply-Voltage Range | V_{DD} | (Note 3) | | 2.4 | | 5.5 | V | | | | Normal mode | $V_{DD} = 3V$ | | 400 | | | | Quiescent Supply Current per Amplifier | IQ | Normai mode | $V_{DD} = 5V$ | | 420 | 575 | μΑ | | per rumpimer | | Shutdown mode (SHDN | = V _{SS}) | | 0.5 | 1.5 | | | Input Offset Voltage | Vos | | | | ±0.07 | ±0.75 | mV | | Input Offset Voltage Tempco | | | | | 0.3 | | μV/°C | | Input Bias Current | ΙΒ | (Note 4) | | | ±1 | ±100 | рА | | Input Offset Current | los | (Note 4) | | | ±1 | ±100 | рА | | Differential Input Resistance | RIN | | | | 1000 | | GΩ | | Input Common-Mode Voltage
Range | VcM | Guaranteed by CMRR to | est | -0.2 | | V _{DD} -
1.1 | V | | Common-Mode Rejection
Ratio | CMRR | V _{SS} - 0.2V ≤ V _{CM} ≤ V _{DD} | - 1.1V | 70 | 115 | | dB | | Power-Supply Rejection Ratio | PSRR | $V_{DD} = 2.4V \text{ to } 5.5V$ | | 75 | 100 | | dB | | Lorgo Cianal Voltago Cain | Av | $R_L = 10k\Omega$ to $V_{DD}/2$, V_{C} | $R_L = 10k\Omega$ to $V_{DD}/2$, $V_{OUT} = 25mV$ to 4.97V | | 116 | | dB | | Large-Signal Voltage Gain | AV | $R_L = 1k\Omega$ to $V_{DD}/2$, V_{OL} | T = 150mV to 4.75V | 80 | 112 | | uБ | | | | $ V_{IN+} - V_{IN-} \ge 10 \text{mV},$ | V _{DD} - V _{OH} | | 8 | 25 | | | Output Voltage Swing | Vout | $R_L = 10k\Omega$ to $V_{DD}/2$ | V _{OL} - V _{SS} | | 7 | 20 | mV | | Output voltage Swing | VOU1 | $ V_{IN+} - V_{IN-} \ge 10 \text{mV}$ | V _{DD} - V _{OH} | | 77 | 200 | IIIV | | | | $R_L = 1k\Omega$ to $V_{DD}/2$ | V _{OL} - V _{SS} | | 47 | 100 | | | Output Short-Circuit Current | Isc | | • | | 68 | | mA | | Output Leakage Current | ILEAK | Shutdown mode (SHDN VOUT = VSS to VDD | Ī = VSS), | | 0.001 | 1.0 | μΑ | | SHDN Logic Low | VIL | | | | (| 0.2 x V _{DD} | V | | SHDN Logic High | VIH | | | 0.8 x V _{DI} |) | | V | | SHDN Input Current | IIL/IIH | $\overline{SHDN} = V_{SS}$ to V_{DD} | | | 0.5 | 1.5 | μΑ | | Input Capacitance | | | | | 11 | | pF | . ______ NIXI/N #### **ELECTRICAL CHARACTERISTICS (continued)** $(V_{DD}=+5V,\,V_{SS}=0V,\,V_{CM}=0V,\,V_{OUT}=V_{DD}/2,\,R_L$ tied to $V_{DD}/2,\,\overline{SHDN}=V_{DD}$ or open, $T_A=-40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.) (Notes 1, 2) | PARAMETER | SYMBOL | CONDITIONS | | MIN | TYP | MAX | UNITS | | | |--------------------------------------|--|--|--------------------------------|-----------|-----|--------|-------|--------------------|--| | Cain Dandwidth Draduat | Sain-Bandwidth Product GBW MAX4250–MAX4254 | | | | 3 | | MHz | | | | Gain-Bandwidin Product | GBW | MAX4249/MAX42 | 55/MAX4256/MAX | 4257 | | 22 | | IVII IZ | | | Slew Rate | SR | MAX4250-MAX42 | 254 | | | 0.3 | | Muc | | | Siew Rate |) SK | MAX4249/MAX42 | 55/MAX4256/MAX | 4257 | | 2.1 | | V/µs | | | Peak-to-Peak Input Noise
Voltage | e _n (p-p) | f = 0.1Hz to 10Hz | f = 0.1Hz to 10Hz | | | 760 | | nVp-p | | | f = 10Hz | | | 27 | | | | | | | | Input Noise Voltage Density | en | f = 1kHz | | | | 8.9 | | nV/√ Hz | | | | | f = 30kHz | | | | 7.9 | | | | | Input Noise Current Density | in | f = 1kHz | | | | 0.5 | | fA/√Hz | | | | | MAX4250-MAX42
V _{OUT} = 2Vp-p, R _L | | f = 1kHz | | 0.0004 | | | | | | | (Note 5) | _ = TK22 (O GND | f = 20kHz | | 0.006 | | | | | Total Harmonic Distortion plus Noise | THD+N | MAX4249/MAX4255/MAX4256/
MAX4257, A _V = +10V/V,
R _F = 100kΩ, R _G = 11kΩ, | | f = 1kHz | | 0.0012 | | % | | | | | $V_{OUT} = 4V_{P}$ -p, $R_{L} = 10k\Omega$ to GND $f = 20kHz$ | | | | 0.007 | | | | | Capacitive-Load Stability | | No sustained osci | llations | | | 400 | | pF | | | | | MAX4250-MAX4254, $AV = +1V/V$ | | | | 10 | | | | | Gain Margin | GM | MAX4249/MAX429 $AV = +10V/V$ | 55/MAX4256/MAX4 | 1257, | | 12.5 | | dB | | | | | MAX4250-MAX42 | $154, A_V = +1V/V$ | | | 74 | | | | | Phase Margin | Φ_{M} | MAX4249/MAX44249/MAX44249/MAX44249/MAX4449/MAX4449/MAX4449/MAX4449/MAX4449/MAX4449/MAX449/MAX4449/MAX4449/MAX4449/MAX4449/MAX4449/MAX4449/MAX4449/MAX4449/MAX4449/MAX4449/MAX44449/MAX44449/MAX4449/MAX4449/MAX4449/MAX4449/MAX4449/MAX4444/MAX4444/MAX4444/MAX4444/MAX4444/ | 55/MAX4256/MAX4 | 1257, | | 68 | | degrees | | | | | To 0.01%, | MAX4250-MAX4254 | | 6.7 | | | | | | Settling Time | | V _{OUT} = 2V step MAX4249/MAX4255/MAX4256/
MAX4257 | | | 1.6 | | μs | | | | Chattles a Deleas Tires | | I _{VDD} = 5% of MAX4251/MAX4253 | | | | 0.8 | | 1 | | | Shutdown Delay Time | tsh | normal operation | MAX4249/MAX4256 | | | 1.2 | | – µs | | | Enable Delay Time | 4 | V _{OUT} = 2.5V,
V _{OUT} settles to
0.1% MAX4251/MAX4253
MAX4249/MAX4256 | | 53 | | 8 | | LIC. | | | Litable Delay Time | t _{EN} | | | 56 | | 3.5 | | - μs | | | Power-Up Delay Time | tpu | $V_{DD} = 0V \text{ to } 5V \text{ st}$ | ep, V _{OUT} stable to | 0.1% | | 6 | | μs | | Note 1: SHDN is available on the MAX4249/MAX4251/MAX4253/MAX4256 only. Note 2: The MAX425_EUK specifications are 100% tested at T_A = +25°C. Limits over the extended temperature range are guaranteed by design, not production tested. Note 3: Guaranteed by the Power-Supply Rejection Ratio (PSRR) test. Note 4: Guaranteed by design. **Note 5:** Lowpass filter bandwidth is 22kHz for f = 1kHz, and 80kHz for f = 20kHz. Noise floor of test equipment = $10nV/\sqrt{Hz}$. Typical Operating Characteristics $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = V_{OUT} = V_{DD}/2, T_A = +25$ °C, unless otherwise noted.) Typical Operating Characteristics (continued) (VDD = +5V, VSS = 0V, VCM = VOUT = VDD/2, TA = +25°C, unless otherwise noted.) _Typical Operating Characteristics (continued) $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = V_{OUT} = V_{DD}/2$, input noise floor of test equipment = $10nV/\sqrt{Hz}$ for all distortion measurements, $T_A = +25$ °C, unless otherwise noted.) ### Typical Operating Characteristics (continued) $(V_{DD} = +5V, V_{SS} = 0V, V_{CM} = V_{OUT} = V_{DD}/2$, input noise floor of test equipment = $10nV/\sqrt{Hz}$ for all distortion measurements, $T_A = +25$ °C, unless otherwise noted.) $V_{DD} = 3V$ $R_L = 10k\Omega$ $C_L = 100pF$ 2µs/div MAX4250-MAX4254 #### MAX4249/MAX4255/MAX4256/MAX4257 **SMALL-SIGNAL PULSE RESPONSE** 0.5V Pin Description | | | Р | IN | | | | | |--------------------|--------------------|-------|---------|-----------------|--------------|-----------------------------------|--| | MAX4250
MAX4255 | MAX4251
MAX4256 | | | MAX4249/MAX4253 | | NAME | FUNCTION | | 5 SOT23 | 8 µM <i>A</i> | XX/SO | 10 μMAX | 14 SO | 14 SO | | | | 1 | 6 | 1, 7 | 1, 9 | 1, 13 | 1, 7, 8, 14 | OUT, OUTA,
OUTB, OUTC,
OUTD | Amplifier Output | | 2 | 4 | 4 | 4 | 4 | 11 | VEE | Negative Supply. Connect to ground for single-supply operation. | | 3 | 3 | 3, 5 | 3, 7 | 3, 11 | 3, 5, 10, 12 | IN-, INA-, INB-,
INC-, IND- | Noninverting Amplifier Input | | 4 | 2 | 2, 6 | 2, 8 | 2, 12 | 2, 6, 9, 13 | IN+, INA+, INB+,
INC+, IND+ | Inverting Amplifier Input | | 5 | 7 | 8 | 10 | 14 | 4 | V _{DD} | Positive Supply | | _ | 8 | _ | 5, 6 | 6, 9 | _ | SHDNA,
SHDNB | Shutdown Input. Connect to V _{DD} or leave unconnected for normal operation (amplifier(s) enabled). | | _ | 1, 5 | _ | _ | 5, 7, 8, 10 | _ | N.C. | No Connection. Not internally connected. | #### Detailed Description The MAX4249–MAX4257 single-supply operational amplifiers feature ultra-low noise and distortion while consuming very little power. Their low distortion and low noise make them ideal for use as preamplifiers in wide dynamic-range applications, such as 16-bit analog-to-digital converters (see *Typical Operating Circuit*). Their high input impedance and low noise are also useful for signal conditioning of high-impedance sources, such as piezolectric transducers. These devices have true rail-to-rail output operation, drive loads as low as $1k\Omega$ while maintaining DC accuracy, and can drive capacitive loads up to 400pF without oscillation. The input common-mode voltage range extends from Vpd - 1.1V to 200mV beyond the negative rail. The push/pull output stage maintains excellent DC characteristics, while delivering up to ± 5 mA of current. The MAX4250–MAX4254 are unity-gain stable, whereas the MAX4249/MAX4255/MAX4256/MAX4257 have a higher slew rate and are stable for gains ≥10V/V. The MAX4249/ MAX4251/MAX4253/MAX4256 feature a low-power shutdown mode, which reduces the supply current to 0.5µA and disables the outputs. #### Low Distortion Many factors can affect the noise and distortion that the device contributes to the input signal. The following guidelines offer valuable information on the impact of design choices on Total Harmonic Distortion (THD). Choosing proper feedback and gain resistor values for a particular application can be a very important factor in reducing THD. In general, the smaller the closed-loop gain, the smaller the THD generated, especially when driving heavy resistive loads. Large-value feedback resistors can significantly improve distortion. The THD of the part normally increases at approximately 20dB per decade, as a function of frequency. Operating the device near or above the full-power bandwidth significantly degrades distortion. Referencing the load to either supply also improves the part's distortion performance, because only one of the MOSFETs of the push/pull output stage drives the output. Referencing the load to mid-supply increases the part's distortion for a given load and feedback setting. (See the Total Harmonic Distortion vs. Frequency graph in the *Typical Operating Characteristics*.) For gains ≥10V/V, the decompensated devices (MAX4249/MAX4255/MAX4256/MAX4257) deliver the best distortion performance, since they have a higher slew rate and provide a higher amount of loop gain for a given closed-loop gain setting. Capacitive loads below 400pF do not significantly affect distortion results. Distortion performance remains relatively constant over supply voltages. #### Low Noise The amplifier's input-referred noise voltage density is dominated by flicker noise at lower frequencies, and by thermal noise at higher frequencies. Because the thermal noise contribution is affected by the parallel combination of the feedback resistive network ($R_F \parallel R_G$, Figure 1), these resistors should be reduced in cases where the system bandwidth is large and thermal noise is dominant. This noise-contribution factor decreases, however, with increasing gain settings. For example, the input noise voltage density of the circuit with RF = $100k\Omega$, RG = $11k\Omega$ (AV = 10V/V) is $e_{1} = 15 nV/VHz$. e_{1} can be reduced to 9 nV/VHz by choosing RF = $10k\Omega$, RG = $1.1k\Omega$ (AV = 10V/V), at the expense of greater current consumption and potentially higher distortion. For a gain of 100V/V with RF = $100k\Omega$, RG = $1.1k\Omega$, the e_{1} is low (9 nV/VHz). #### Using a Feed-Forward Compensation Capacitor, Cz The amplifier's input capacitance is 11pF. If the resistance seen by the inverting input is large (feedback network), this can introduce a pole within the amplifier's bandwidth, resulting in reduced phase margin. Compensate the reduced phase margin by introducing a feed-forward capacitor (C_Z) between the inverting input and the output (Figure 1). This effectively cancels the pole from the inverting input of the amplifier. Choose the value of C_Z as follows: Figure 1. Adding Feed-Forward Compensation Figure 2a. Pulse Response with No Feed-Forward Compensation Figure 2b. Pulse Response with 10pF Feed-Forward Compensation $$C_Z \approx 11 \text{ x } (R_F / R_G) [pF]$$ In the unity-gain-stable MAX4250–MAX4254, the use of a proper Cz is most important for Av = +2V/V, and Av = -1V/V. In the decompensated MAX4249/MAX4255/MAX4256/MAX4257, Cz is most important for Av = ± 10 V/V. Figures 2a and 2b show transient response both with and without Cz. Using a slightly smaller Cz than suggested by the formula above achieves a higher bandwidth at the expense of reduced phase and gain margin. As a general guideline, consider using Cz for cases where RG | RF is greater than $20k\Omega$ (MAX4250–MAX4254) or greater than $5k\Omega$ (MAX4249/MAX4255/MAX4256/MAX4257). #### _Applications Information The MAX4249–MAX4257 combine good driving capability with ground-sensing input and rail-to-rail output operation. With their low distortion, low noise and low power consumption, they are ideal for use in portable instrumentation systems and other low-power, noise-sensitive applications. Figure 3. Overdriven Input Showing No Phase Reversal Figure 4. Rail-to-Rail Output Operation Figure 5. Capacitive-Load Driving Circuit ## Ground-Sensing and Rail-to-Rail Outputs The common-mode input range of the MAX4249–MAX4257 extends down to ground, and offers excellent common-mode rejection. These devices are guaranteed not to undergo phase reversal when the input is overdriven (Figure 3). Figure 4 showcases the true rail-to-rail output operation of the amplifier, configured with Ay = 10V/V. The output swings to within 8mV of the supplies with a $10k\Omega$ load, making the devices ideal in low-supply-voltage applications. #### Output Loading and Stability Even with their low quiescent current of 400 μ A, these amplifiers can drive 1k Ω loads while maintaining excellent DC accuracy. Stability while driving heavy capacitive loads is another key feature. These devices maintain stability while driving loads up to 400pF. To drive higher capacitive loads, place a small isolation resistor in series between the output of the amplifier and the capacitive load (Figure 5). This resistor improves the amplifier's phase margin by isolating the capacitor from the op amp's output. Reference Figure 6 to select a resistance value that will ensure a load capacitance that limits peaking to <2dB (25%). For example, if the capacitive load is 1000pF, the corresponding isolation resistor is 150 Ω . Figure 7 shows that peaking occurs without the isolation resistor. Figure 8 shows the unity-gain bandwidth vs. capacitive load for the MAX4250–MAX4254. #### Power Supplies and Layout The MAX4249–MAX4257 operate from a single $\pm 2.4V$ to $\pm 5.5V$ power supply or from dual supplies of $\pm 1.20V$ to $\pm 2.75V$. For single-supply operation, bypass the Figure 6. Isolation Resistance vs. Capacitive Loading to Minimize Peaking (<2dB) Figure 7. Peaking vs. Capacitive Load power supply with a $0.1\mu F$ ceramic capacitor placed close to the V_{DD} pin. If operating from dual supplies, bypass each supply to ground. Good layout improves performance by decreasing the amount of stray capacitance and noise at the op amp's inputs and output. To decrease stray capacitance, minimize PC board trace lengths and resistor leads, and place external components close to the op amp's pins. Figure 8. MAX4250–MAX4254 Unity-Gain Bandwidth vs. Capacitive Load #### _Chip Information #### TRANSISTOR COUNTS: MAX4250/MAX4251/MAX4255/MAX4256: 170 MAX4249/MAX4252/MAX4253/MAX4257: 340 MAX4254: 680 ### _Ordering Information (continued) | PART | TEMP. RANGE | PIN-
PACKAGE | SOT
TOP MARK | |---------------------|----------------|-----------------|-----------------| | MAX4250EUK-T | -40°C to +85°C | 5 SOT23-5 | ACCI | | MAX4251ESA | -40°C to +85°C | 8 SO | _ | | MAX4251EUA | -40°C to +85°C | 8 µMAX | _ | | MAX4252 ESA* | -40°C to +85°C | 8 SO | _ | | MAX4252EUA* | -40°C to +85°C | 8 µMAX | _ | | MAX4253 EUB* | -40°C to +85°C | 10 μMAX | _ | | MAX4253ESD* | -40°C to +85°C | 14 SO | _ | | MAX4254ESD* | -40°C to +85°C | 14 SO | _ | | MAX4255EUK-T | -40°C to +85°C | 5 SOT23-5 | ACCJ | | MAX4256ESA | -40°C to +85°C | 8 SO | _ | | MAX4256EUA | -40°C to +85°C | 8 µMAX | _ | | MAX4257 ESA* | -40°C to +85°C | 8 SO | _ | | MAX4257EUA* | -40°C to +85°C | 8 µMAX | <u> </u> | ^{*}Future product—contact factory for availability. _____Pin Configurations Typical Operating Circuit #### Package Information Package Information (continued) Package Information (continued) Package Information (continued) Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 16 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600