

PRODUCT CATALOG

VIB-300E

SENSORS FOR ACCELERATION, SHOCK, VIBRATION, AND ACOUSTIC MEASUREMENTS

PCB Piezotronics, Inc. – Vibration Division

The Vibration Division of PCB Piezotronics, Inc. is pleased to provide this catalog as a selection guide of our broad spectrum of standard products. Within this publication are sensors, accessories, and signal conditioning equipment which have been specifically designed for the detection, measurement, and control of acceleration, motion, shock, and vibration. New to this catalog are Acoustic Products, comprised of microphones, preamplifiers, and power supplies for conducting precision sound measurements, and acoustic array measurements and mapping.

Piezoelectric and capacitive sensing technologies are the fundamental sensing principles for the precision measurement devices offered. The capabilities within these technologies permit a broad range of sensor designs, which support a variety of measurement tasks. Applications for these products span from monitoring the slightest seismic motions of the earth to capturing the shock acceleration of violent, explosive impacts.

PCB Piezotronics, Inc. has been a supplier of precision sensors for acceleration, pressure and force measurements since 1967. Unmatched customer service, state-of-the-art manufacturing capabilities, and worldwide distribution have contributed to our steady growth and success. Customers from industrial, governmental, educational, aero-space, automotive, medical, and R&D disciplines have relied on PCB to deliver products and solutions for many demanding requirements.

Lockheed Martin — utilizes a variety of accelerometers for flight and ground vibration testing
General Motors Proving Ground — uses accelerometers for modal and vehicular road-response vibration studies
Honda — uses accelerometers for engine NVH and modal studies
EADS/Airbus — uses PCB accelerometers for flight testing
Boeing — uses accelerometers for simulated pyroshock testing
Renault — uses accelerometers for engine and wheel dynamometer testing
DaimlerChrysler — tests vibration of engine compartment areas in luxury automobiles
Ford — uses TEDS based accelerometers and microphones for squeak and rattle testing

The Vibration Division of PCB Piezotronics, Inc. is an integrated team created to address the specific sensor needs of those involved with the measurement of acceleration, motion, shock, vibration, and acoustics. Together, the Design, Engineering, Sales, Customer Service and Marketing personnel within the Vibration Division team draw upon the vast manufacturing resources within PCB to continually provide new, more powerful sensing solutions. Please do not hesitate to call upon us to assist with your measurement requirements and provide our guarantee of **Total Customer Satisfaction**.

Accuracy of Information: PCB has made a reasonable effort to ensure that the specifications contained in this catalog were correct at the time of printing. In the interest of continuous product improvement, PCB reserves the right to change product specifications without notice at any time. Dimensions and specifications in this catalog may be approximate and for reference purposes only. Before installing sensors, machining any surfaces, or tapping any holes, visit our Web site at www.pcb.com, or contact a PCB application specialist to obtain a current installation drawing and the latest product specifications.

Total Customer Satisfaction Guaranteed

Registered trademarks of PCB Group, Inc. include: PCB, IMI with associated logo, ICP, and Modally Tuned.

All other trademarks are property of their respective owners.

Vibration Division Product Catalog VIB-300E-1104

> © 2004, PCB Group, Inc. Printed in USA

PCB Piezotronics, Inc. – Vibration Division Services and Qualifications

Total Customer Satisfaction

PCB[®] Piezotronics guarantees Total Customer Satisfaction. If, at any time, for any reason, you are not completely satisfied with any PCB product, PCB will repair, replace, or exchange it at no charge. You may also choose to have your purchase price refunded.

ත Toll-Free Customer Service ත 888-684-0013

The Vibration Division of PCB Piezotronics offers a direct, toll-free telephone number for customer use. Feel free to call to discuss application requirements, request product literature, request price quotations, place orders, inquire about order status, expedite orders, troubleshoot equipment, or arrange for returns. International customers are invited to call 716-684-0001. In addition, we can be reached by e-mail at vibration@pcb.com. Our fax number is; 716-685-3886. We look forward to hearing from you.

24-hour SensorLine[™]

PCB offers to all customers, at no charge, 24-hour emergency phone support. This service makes product or application support available to our customers, day or night, seven days per week. To reach a PCB SensorLineSM customer service representative, call 716-684-0001.

Web site - www.pcb.com

Detailed product information is featured on PCB's web site www.pcb.com. The web site also offers customers educational and technical information, as well as the latest product releases. Additionally, industrial sensors are featured with the ability to place an on-line order at www.imi-sensors.com. You may also wish to contact us via our general e-mail address at: info@pcb.com.

ISO 9001 Certification

PCB Piezotronics, Inc. is registered by Underwriters Laboratories, Inc. as an ISO 9001 facility and maintains a quality assurance system dedicated to resolving any concern to ensure Total Customer Satisfaction. PCB also conforms to the former MIL-STD-45662 and MIL-Q-9858.

ISO 9001 and ISO 10012-1 Compliant Calibration Facility

All Vibration Division accelerometers are calibrated with full traceability to NIST (National Institute of Standards & Technology) and PTB to ensure conformance to published specifications. Certificates of calibration are furnished that include actual measured data. Calibration systems utilized are kept in full compliance with ISO 9001 and ISO 10012-1 standards. Calibration methods are accredited by A2LA to ISO 17025 standards.

Delivery Policy

PCB is committed to making every effort possible to accommodate all delivery requests. Our extensive in-house production capabilities permit us to manufacture most products to order in a timely fashion. In the event that a specific model is unavailable in the time frame that you need, we can usually offer a comparable unit, for sale or loan, to satisfy your urgent requirements. Many products are available, from stock, for immediate shipment. Standard cable assemblies and accessory hardware items are always stocked for immediate shipment and PCB never requires a minimum order amount. If you have urgent requirements, call a factory representative and every effort will be made to fulfill your needs.

Custom Products

PCB prides itself on being able to respond to customers' needs. Heavy investment in machinery, capabilities, and personnel allow us to design, test, and manufacture products for specialized applications. Please contact a PCB customer service representative to discuss your special needs.

CE Marking CE

Many PCB Products are designed, tested, and qualified to bear CE marking in accordance with applicable European Union Directives. Products that conform to this qualification are so indicated by the \mathbf{CE} logo.

Warranty

Instrumentation provided by PCB is covered by a limited warranty against defective material and workmanship for a period of one year. Contact PCB for a complete statement of our warranty.

Popular Products

Products in this catalog that are identified by the popular product symbol (③) are the suggested choice when several products could fulfill the requirements of the application. If uncertainty arises with which product to select, pick one of the popular products. These products are typically either in stock, or in production, which ensures their availability in a timely manner. For critical needs, call to discuss your requirements with a customer service representative. Every effort will be made to accommodate rush or unique requirements.

Numerical Model Number Index

This index provides page references for accelerometers, microphones, signal conditioners, and test equipment. For cables, mounting hardware, and accessory items, please check the appropriate sections listed in the table of contents.

Model Number	Page	Model Number	Page	Model Number	Page	Model Number	Page
011A10	2.10	352A56	.20, 1.28	356A63	42, 1.49	394A11	1.127
070A70	3.9	352A60	.18, 1.28	356A66	42, 1.49	394A40	2.8
070A71	3.9	352B	.23, 1.32	356A70	40, 1.47	394C06	1.126
086C011.9	7, 1.100	352B01	.16, 1.26	356A71	40, 1.47	400A75	3.9
086C021.9	8, 1.100	352B10	.16, 1.26	356B10	36, 1.43	401A04	3.8
086C031.9	7. 1.100	352B30	.83. 1.87	356B11	36. 1.43	422E11	3.8
086C04	8. 1.101	352C031	.22, 1.32	356B181.	41, 1,48	422E12	3.8
086D05 1.9	8. 1.101	352C04 1	22, 1.32	356B20 1	37. 1.43	422F13	3.8
086D20 1.9	8. 1.101	352C15 1	17, 1.26	356B21 1	37. 1.44	422E35	3.8
086D50 1.9	9 1 101	352C16 1	17 1 26	356B40 1 11	9 1 122	422E36	3.8
086D80 1 9	7 1 102	352C17 1	18 1 27	357405 1	64 1 70	422M136	1 88
130D10	27 2 14	352C18 1	18 1 27	357406 1	63 1 68	426B02	29
130D20	26 2 14	352C22 1	14 1 24	357408 1	62 1 68	426B03	25 213
130D21	26 2 14	352022 1	14 1 24	357409 1	62 1 68	426430	25 213
130P10	2.0, 2.14	352020	22 1 33	357B03 1	64 1 70	426D01	25 213
130P11	27 2 14	352033	22, 1.33	357B04 1	64 1 70	420D01	2.3, 2.13
130P22	27 2 14	352004	10 1 27	357B11 1	63 1 60	442B02	3.5
190622	2.7, 2.14	3520411	10, 1.27	257P1/ 1	62 1 60	442000	
200A25	0 1 1 2 2	352042	10, 1.27	257P21 1	65 1 70	442004	
200001	0, 1.123	3520431	10 1 29	257B22 1	65 1 71	445B01	1 115
300A121.	00, 1.00	352044	10, 1.20	057D22	00, 1.71	440001	4 445
320003	00, 1.04	352005	17 1 20	057D04	00, 1.71	470AUI	4 445
320015	00, 1.04	352000	.17, 1.29	337D34	00, 1.71	478405	I.IID
320018	80, 1.84	352067	.17, 1.29	357B61	66, 1.72	4/8A16	1 1 1 5
320020	03, 1.07	352000	1410	337D71	66, 1.72	4/0A1/	
320033	81, 1.84	353801	.1.4, 1.9	35/B/2	66, 1.72	480B10	3.2
333B	90, 1.93	353802	.1.4, 1.9	35/B/3	67, 1.72	480821	3.2
333B30	90, 1.93	353B03	.1.4, 1.9	3570101.	62, 1.69	480002	
333B31	90, 1.93	353804	.1.4, 1.9	357M50	1.88	480E09	3.2
333B32	90, 1.93	353B11	.1.2, 1.7	3701 Series1.11	0, 1.112	481A	3.6
333B40	91, 1.94	353B12	.1.2, 1.7	3/03 Series1.11	0, 1.112	481A30	
333B42	91, 1.94	353813	.1.3, 1.7	3801 Series		482A16	
333B501.	91, 1.94	353B14	.1.3, 1.7	377A01	2.2, 2.11	482A20	
333B52	91, 1.94	353B15	.1.2, 1.8	377A02	2.2, 2.11	482A21	3.3
338B34 1.11	8, 1.121	353B16	.1.2, 1.8	3//A03	2.3, 2.11	482A22	3.3
338B35	8, 1.121	353B1/	.1.3, 1.8	3//A10	2.2, 2.11	482B06	3.3
338C041.	20, 1.30	353B18	.1.3, 1.8	3//A11	2.3, 2.11	482B11	3.3
340A15	4, 1.106	353B31	1.5, 1.10	3//A20	2.3, 2.11	484B06	3.3
340A16	4, 1.106	353B32	1.5, 1.10	3//A25	2.4, 2.12	484B11	
340A50	5, 1.108	353B33	1.5, 1.10	3//A26	2.4, 2.12	485B	
340A65	4, 1.106	353B34	1.5, 1.10	3//A40	2.3, 2.11	485B12	3.4
340A66	4, 1.106	354C021	.39, 1.46	377A41	2.4, 2.11	485B36	3.6
340A75	5, 1.107	354C031	.40, 1.46	377A42	2.4, 2.12	487B07	
340A/61.10	5, 1.107	354C101	.39, 1.46	377A50	2.2, 2.12	487008	
350A13	54, 1.58	355B02	.21, 1.31	3//A53	2.4, 2.12	492B	3.8
350A14	54, 1.58	355B03	.21, 1.31	3/8A01	2.13	492B03	3.8
350A96	55, 1.59	355B04	.21, 1.31	3/8A02	2.13	/40B02 1.11	8, 1.122
350B02	52, 1.56	355B12	.20, 1.31	3/8A03	2.13	925A01	1.129
350B03	53, 1.56	355B33	1.6, 1.11	378A10	2.13	9150C	1.128
350B04	53, 1.56	355B34	1.6, 1.11	378A11	2.13	9961C	1.126
350B21	52, 1.57	356A01	.36, 1.43	378A20	2.13	CAL200	2.8
350B23	52, 1.57	356A02	.38, 1.45	381A05	3.7	GK291D	1.96
351B03	82, 1.85	356A15	.39, 1.45	381A20	1.119	GK291D01	1.96
351B11	81, 1.85	356A16	.41, 1.48	393A03	74, 1.76	GK291D02	1.96
351B14	81, 1.85	356A171	.41, 1.48	393B04	/4, 1.76	GK291D04	1.96
351B31	82, 1.86	356A24	.37, 1.44	393B05	74, 1.77	GK291D05	1.96
351B41	82, 1.86	356A25	.38, 1.45	393B12	75, 1.77	GK291D20	1.96
352A21	14, 1.24	356A32	.37, 1.44	393B31	75, 1.77	GK291D50	1.96
352A24	15, 1.25	356A33	.38, 1.44	393C1.	75, 1.76	GK291D80	1.96
352A25 1	15.1.25	356A61 1	42 1 49	394A10	1.127		

Table of Contents

TYPICAL VIBRATION AND ACOUSTIC MEASUREMENT APPLICATIONS

Acoustic Holography

- Acoustic Mode Analysis
- Aerospace
- · Animal Studies
- Automotive
- Balancing
- Bearing Analysis
- Biomechanics
- · Bridges and Civil Structures
- Calibration
- Crash Testing
- Cryogenic Pumps
- Drop Testing
- Educational
- Engine Monitoring
- · Environmental Testing
- Flight Testing
- Gearbox Monitoring
- Hull Vibration Monitoring
- Impact Measurements
- Impulse Response
- MeasurementsMachinery Vibration Monitoring
- Modal Analysis
- Motors
- Noise Testing / Monitoring
- NVH Studies
- · Package Testing
- Precision Acoustic Measurements
- Product Testing
- Quality Control
- Ride Quality Assessment
- Ride Simulators
- Road Response
- Seismic Monitoring
- · Shipboard Machinery
- Shock
- · Sound Pressure Mapping
- Squeak and Rattle Detection
- Sports Equipment
- Structure-Borne Noise
- Structural Testing
- Transportation
- Underwater Pumps
- Vibration Control
- Vibration Isolation
- Vibration Stress Screening
- Weapons Development

Vibration Division Catalog Contents

Services and Qualifications
Numerical Model Number Indexii
Typical Vibration and Acoustic Measurement Applicationsiii
Model Number Informationiv
Typical Acceleration Measurement Systemsv-vi
Typical Acoustic Measurement Systemsvii-viii
Accelerometer Selection Guideix-xvi
Standard Options for Accelerometers
PRODUCTS
Precision Quartz Shear ICP® Accelerometers
Ceramic Shear ICP [®] Accelerometers
Triaxial ICP [®] and Charge Output Accelerometers
Shock Accelerometers
Charge Output Accelerometers
Seismic ICP® Accelerometers
Extreme Environment Quartz Shear ICP® Accelerometers
Structural Test / Array Accelerometers
Modally Tuned ICP [®] Impact Hammers and Hammer Kits
Metric ICP® and Charge Mode Accelerometers
Capacitive Accelerometers
Special Purpose Sensors
Calibration Equipment and Services
Acoustic Products
Signal Conditioners
Cable Assemblies and Connector Adaptors
Mounting Accessories
APPENDIX
Technical Information
Introduction to Accelerometers
Typical Applications, Accelerometer Types, Acceleration Measurement Systems, Mounting
Considerations 512-514
Introduction to Microphones 5 15-5 18
Typical Applications, Microphone Types, Acoustic Measurement Systems
TEDS - Transducer Electronic Data Sheet
Conversions and Useful Formulas
Article Reprints
Glossary of Terms
Vibration Application Inquiry Form
Other PCB Group Products and Services

iii

Model Number Definitions — Model number designations for PCB accelerometers and microphones have been developed in such a way as to group sensors with like characteristics into a common "Series". Although there has never been any rigid definition for all portions or components of the model numbers, the series designation has become a common, frequently used reference. The following definitions may help you to categorize accelerometers or assist with locating information about specific models of interest.

Series 130	—	Array microphone, low cost	Series 338	—	OEM, low profile and low cost
Series 300	—	This is a system designator that typically	Series 339*	_	ICP® quartz shear, triaxial
		identifies a complete set of equipment	Series 340	_	Metric design
		signal conditioner.	Series 342*	—	ICP® quartz compression Isolator® mode
Series 301	_	Calibration reference standard accelerometer	Series 346*	_	$ICP^{\texttt{0}}$ quartz compression triaxial $Isolator^{\texttt{0}}$ mode
Series 302*	_	ICP® quartz compression, inverted	Series 348*	—	High sensitivity Isolator® quartz com-
Series 303*	_	ICP [®] quartz compression, miniature			pression mode
Series 305*	_	ICP [®] quartz compression shock	Series 350	—	Shock accelerometers
Series 306*	_	ICP [®] quartz compression triaxial	Series 351	_	$ICP^{\scriptscriptstyle \circledcirc}$ quartz shear, cryogenic temperature
Series 307*	_	ICP [®] quartz compression, high	Series 352	—	ICP® ceramic shear
		performance	Series 353	_	ICP® quartz shear
Series 308*	—	ICP® quartz compression, general pur-	Series 354	—	ICP® triaxial ring
		pose	Series 355	_	ICP [®] ceramic shear ring
Series 309*	—	ICP [®] quartz compression, high frequency	Series 356	_	ICP® ceramic shear triaxial
Series 312*	—	Charge output quartz compression	Series 357	_	Charge output ceramic shear
Series 320	—	ICP® quartz shear, high temperature or	Series 359*	_	ICP [®] quartz shear, high temperature
		"HALI, HASS, ESS"	Series 3701	_	Capacitive, DC response
Series 321*	—	OEM, low cost	Series 3703	_	Capacitive DC response triaxial
Series 328*	—	ICP® quartz compression, industrial	Series 277		Dregicion migraphone
Series 333	—	Structural test / array accelerometers		_	
Series 336*	_	Flexural mode	Series 3801	_	Capacitive, DC response, low-cost
Series 337*	_	Shear mode, industrial	Series 393	—	ICP [®] seismic
			Series 394	—	Calibration reference standard system

* Designates that model series is obsolete or no longer promoted. Contact a factory representative for a suitable alternate unit.

About Excluded Models — This Vibration Division catalog reflects the most current technology and most frequently requested products. Many specialty options and custom products are not included in this publication.

For example, PCB manufactures Flight-Tested accelerometers that have passed various flight qualification tests by one or more commercial and/or government aerospace companies. They are, therefore, recommended for a variety of airborne applications. Also absent from this catalog are compression mode accelerometers. Many customers still request these units and are invited to continue to do so; however, for the purposes of this catalog, PCB is restricting the catalog scope to those products that offer the most current technology, best performance, a broad representation of popular features, and excellent value.

Customers are encouraged to make known their special requests, particularly for products that have served faithfully in the past. Consult a Vibration Division factory application engineer for assistance in handling specialty or custom applications.

Typical Acceleration Measurement Systems

Accelerometers in this catalog fall within three distinct functional categories: ICP[®], Charge, and Capacitive. Each type possesses certain features and benefits that make it better suited for specific applications. A typical measurement system consists of an accelerometer, a signal conditioner, a readout or recording device, and signal cables to facilitate interconnection. Make certain that all components of the measurement system are taken into consideration to enable proper and successful implementation. Once an accelerometer is selected, consult the following typical system configurations to ensure that necessary ancillary equipment is not overlooked.

ICP® Accelerometers — These piezoelectric sensors contain built-in signal conditioning electronics and require proper excitation power to operate, typically a 2 to 20 mA constantcurrent-regulated DC voltage of 18 to 30 VDC. PCB's signal conditioners for ICP $^{\circ}$ sensors include fault LEDs or a bias monitoring meter to aid in sensor troubleshooting.

Capacitive Accelerometers — These sensors contain builtin signal conditioning electronics and require proper excitation power to operate. The typical 16 to 28 VDC is provided by a separate signal conditioning power supply. An added feature of PCB's capacitive sensor signal conditioners is their offset adjustment, which serves to null any DC voltage offset inherent to the sensor.

Typical Acceleration Measurement Systems

Charge Output Accelerometers — These piezoelectric sensors do not contain built-in electronics and require conditioning of the high-impedance charge signal by conversion to a low-impedance voltage signal for input to a readout device. Conversion is typically accomplished with a laboratory-style

charge amplifier. Additional charge amplifier features include sensitivity normalization, filtering, and gain. Note that the use of special low-noise cable is required for the high-impedance portion of the signal path.

Spare Cables - Sensor cables are vulnerable to failure due to their persistent exposure to the shock and vibration being measured. Care should be taken to properly secure the cable

and strain-relive the connections to extend cable life. It is always good practice to order spare cables, to avoid test interruption, in the event of a cable failure.

Typical Acoustic Measurement Systems

Microphones in this catalog fall within three distinct functional categories: Prepolarized, Externally Polarized, and Array. Each type possesses certain features and benefits that make it better suited for specific applications. A typical measurement system consists of a microphone cartridge, a preamplifier, a signal conditioner, a readout or recording device, and signal cables to facilitate interconnection. Make certain that all components of the measurement system are taken into consideration to enable proper and successful implementation. Once a microphone cartridge is selected, consult the following typical system configurations to ensure that necessary ancillary equipment is not overlooked.

Prepolarized Microphones — These precision condenser microphones operate with ICP[®] microphone preamplifiers for reduced system cost. Constant-current ICP[®] sensor signal conditioners provide the necessary excitation power. Signal conditioners with a the ability to deliver 4 mA excitation are recommended if an in-line filter is added to the measurement chain. Prepolarized microphones may also be connected to conventional microphone preamplifiers and power supplies when additional dynamic range is desired.

Some readout devices provide ICP[®] sensor excitation which, if properly utilized, permits direct connection to ICP[®] microphone preamplifiers.

Externally Polarized Microphones — These precision condenser microphones operate with conventional microphone preamplifiers and power supplies, which provide the necessary polarization voltage and bias level for proper operation. This approach yields the widest dynamic range and best overall performance for precision acoustic measurements, however, at a system cost that is considerably higher than that for prepolarized microphones.

vii

Typical Acoustic Measurement Systems

Array Microphones — These low cost microphones utilize built-in preamplifiers, which operate from constant-current ICP[®] sensor signal conditioners. The low cost microphone element and reduced signal conditioning requirements, which also keeps costs to a minimum, makes these micro-

phones an affordable choice for multi-channel acoustic measurements. Note that array microphone cartridges are available separately for use with an attachable array microphone preamplifier. This approach may be desirable when there is a risk of cartridge damage.

			Quartz Sh	near ICP®	Accelerom	neters			
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE Range	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	PAGE
	353B11	5 mV/g	0.7 to 18k Hz	± 1000 g pk	0.01 g rms	-65 to +250 °F	side 5-44	2 gm	1.2, 1.7
	353B12	5 mV/g	0.7 to 20k Hz	± 1000 g pk	0.01 g rms	-65 to +250 °F	top 5-44	1.5 gm	1.2, 1.7
	353B13	5 mV/g	0.7 to 20k Hz	± 1000 g pk	0.01 g rms	-65 to +250 °F	top cable	1.7 gm	1.3, 1.7
	353B14	5 mV/g	0.7 to 18k Hz	± 1000 g pk	0.01 g rms	-65 to +250 °F	top 10-32	1.8 gm	1.3, 1.7
•	353B15	10 mV/g	0.7 to 18k Hz	± 500 g pk	0.005 g rms	-65 to +250 °F	side 5-44	2 gm	1.2, 1.8
•	353B16	10 mV/g	0.7 to 20k Hz	± 500 g pk	0.005 g rms	-65 to +250 °F	top 5-44	1.5 gm	1.2, 1.8
•	353B17	10 mV/g	0.7 to 20k Hz	± 500 g pk	0.005 g rms	-65 to +250 °F	top cable	1.7 gm	1.3, 1.8
•	353B18	10 mV/g	0.7 to 18k Hz	± 500 g pk	0.005 g rms	-65 to +250 °F	top 10-32	1.8 gm	1.3, 1.8
•	353B03	10 mV/g	0.7 to 11k Hz	± 500 g pk	0.003 g rms	-65 to +250 °F	side 10-32	10.5 gm	1.4, 1.9
•	353B04	10 mV/g	0.7 to 11k Hz	± 500 g pk	0.003 g rms	-65 to +250 °F	top 10-32	10.5 gm	1.4, 1.9
	355B34	10 mV/g	2 to 5000 Hz ^[1]	± 500 g pk	0.001 g rms	-65 to +250 °F	side 10-32	11 gm	1.6, 1.11
	353B01	20 mV/g	0.7 to 10k Hz	± 250 g pk	0.005 g rms	-65 to +250 °F	side 10-32	10 gm	1.4, 1.9
	353B02	20 mV/g	0.7 to 10 k Hz	± 250 g pk	0.005 g rms	-65 to +250 °F	top 10-32	10 gm	1.4, 1.9
	353B31	50 mV/g	0.7 to 8000 Hz	± 100 g pk	0.001 g rms	-65 to +250 °F	side 10-32	20 gm	1.5, 1.10
	353B32	50 mV/g	0.7 to 8000 Hz	± 100 g pk	0.001 g rms	-65 to +250 °F	top 10-32	20 gm	1.5, 1.10
•	353B33	100 mV/g	0.7 to 6500 Hz	± 50 g pk	0.0005 g rms	-65 to +250 °F	side 10-32	27 gm	1.5, 1.10
	353B34	100 mV/g	0.7 to 7000 Hz	± 50 g pk	0.0005 g rms	-65 to +250 °F	top 10-32	27 gm	1.5, 1.10
	355B33	100 mV/g	2 to 5000 Hz ^[1]	± 50 g pk	0.0005 g rms	-65 to +250 °F	side 10-32	11 gm	1.6, 1.11

	High Resolution Ceramic Shear ICP [®] Accelerometers									
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE Range	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	COMMENT	PAGE
	352B01	1 mV/g	1 to 20k Hz	± 5000 g pk	0.02 g rms	-65 to +250 °F	top 10-32	0.7 gm		1.16, 1.26
	352A25	2.5 mV/g	0.7 to 13k Hz	± 2000 g pk	0.01 g rms	-65 to +250 °F	side 3-56	0.6 gm	ti. teardrop	1.15, 1.25
•	352C23	5 mV/g	1.5 to 15k Hz	± 1000 g pk	0.003 g rms	-65 to +250 °F	side 3-56	0.2 gm	al. teardrop	1.14, 1.24
•	352C22	10 mV/g	0.7 to 13k Hz	± 500 g pk	0.002 g rms	-65 to +250 °F	side 3-56	0.5 gm	al. teardrop	1.14, 1.24
•	352A21	10 mV/g	0.7 to 13k Hz	± 500 g pk	0.002 g rms	-65 to +250 °F	side 3-56	0.6 gm	ti. teardrop	1.14, 1.24
•	352B10	10 mV/g	1 to 17k Hz	± 500 g pk	0.003 g rms	-65 to +250 °F	top cable	0.7 gm		1.16, 1.26
	352C15	10 mV/g	0.7 to 18k Hz	± 500 g pk	0.0005 g rms	-65 to +250 °F	side 5-44	2 gm		1.17, 1.26
	352C16	10 mV/g	0.7 to 16k Hz	± 500 g pk	0.0005 g rms	-65 to +250 °F	top 5-44	2 gm		1.17, 1.26
	352C17	10 mV/g	0.7 to 18k Hz	± 500 g pk	0.0005 g rms	-65 to +250 °F	top cable	2 gm		1.18, 1.27
	352C18	10 mV/g	0.7 to 18k Hz	± 500 g pk	0.0005 g rms	-65 to +250 °F	top 10-32	2 gm		1.18, 1.27
	355B12	10 mV/g	0.6 to 15k Hz	± 500 g pk	0.0005 g rms	-65 to +250 °F	side 5-44	2.3 gm	through-hole	1.20, 1.31
	352C41	10 mV/g	0.3 to 15k Hz	± 500 g pk	0.0008 g rms	-65 to +250 °F	top 10-32	2.8 gm		1.19, 1.27
•	352C43	10 mV/g	0.5 to 10k Hz	± 500 g pk	0.0008 g rms	-65 to +250 °F	top 10-32	3 gm		1.19, 1.28
۲	352C03	10 mV/g	0.3 to 15k Hz	± 500 g pk	0.0005 g rms	-65 to +250 °F	side 10-32	5.8 gm		1.22, 1.32
	352C04	10 mV/g	0.3 to 15k Hz	± 500 g pk	0.0005 g rms	-65 to +250 °F	top 10-32	5.8 gm		1.22, 1.32
	352A60	10 mV/g	5 to 60k Hz ^[1]	± 50 g pk	0.002 g rms	-65 to +250 °F	top 5-44	6 gm	highest frequency	1.18, 1.28
	355B02	10 mV/g	0.6 to 12k Hz	± 500 g pk	0.0005 g rms	-65 to +250 °F	side 10-32	10 gm	through-hole	1.21, 1.31
۲	352A24	100 mV/g	0.8 to 10k Hz	± 50 g pk	0.0002 g rms	-65 to +250 °F	side 3-56	0.8 gm	al. teardrop	1.15, 1.25
	338C04	100 mV/g	0.35 to 10k Hz	± 50 g pk	0.00018 g rms	-65 to +200 °F	side 10-32	4 gm	low profile	1.20, 1.30
۲	352C33	100 mV/g	0.3 to 15k Hz	± 50 g pk	0.00015 g rms	-65 to +200 °F	side 10-32	5.8 gm	general purpose	1.22, 1.33
۲	352C34	100 mV/g	0.3 to 15k Hz	± 50 g pk	0.00015 g rms	-65 to +200 °F	top 10-32	6.6 gm	general purpose	1.22, 1.33
	352C42	100 mV/g	0.3 to 15k Hz	± 50 g pk	0.0005 g rms	-65 to +250 °F	top 10-32	2.8 gm		1.19, 1.27
	352C44	100 mV/g	0.5 to 10k Hz	± 50 g pk	0.0005 g rms	-65 to +250 °F	top 10-32	3 gm		1.19, 1.28
•	352C65	100 mV/g	0.3 to 12k Hz	± 50 g pk	0.00016 g rms	-65 to +200 °F	side 5-44	2 gm		1.16, 1.29
۲	352C66	100 mV/g	0.3 to 12k Hz	± 50 g pk	0.00016 g rms	-65 to +200 °F	top 5-44	2 gm		1.17, 1.29
۲	352C67	100 mV/g	0.3 to 12k Hz	± 50 g pk	0.00016 g rms	-65 to +200 °F	top cable	2 gm		1.17, 1.29
•	352C68	100 mV/g	0.3 to 12k Hz	± 50 g pk	0.00016 g rms	-65 to +200 °F	top 10-32	2 gm		1.18, 1.29
	355B03	100 mV/g	0.6 to 12k Hz	± 50 g pk	0.0001 g rms	-65 to +250 °F	side 10-32	10 gm	through-hole	1.21, 1.31
	355B04	1000 mV/g	0.6 to 12k Hz	± 5 g pk	0.0001 g rms	-65 to +200 °F	side 10-32	11.2 gm	through-hole	1.21, 1.31
	352B	1000 mV/g	3 to 10k Hz	±5gpk	0.00004 g rms	-65 to +200 °F	top 10-32	35 gm	high resolution	1.23, 1.32

NOTE: [1] Frequency range specified is $\pm 3 \text{ dB}$

	Low Amplitude Seismic ICP® Accelerometers										
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	COMMENT	PAGE	
۲	393B05	10 V/g	0.5 to 750 Hz	± 0.5 g pk	0.000004 g rms	0 to +176 °F	top 10-32	50 gm		1.74, 1.77	
	393B04	1000 mV/g	0.25 to 750 Hz	± 5 g pk	0.000003 g rms	0 to +176 °F	top 10-21	50 gm		1.74, 1.76	
۲	393A03	1000 mV/g	0.3 to 4000 Hz	± 5 g pk	0.00001 g rms	-65 to +250 °F	MIL-C-5015	210 gm		1.74, 1.76	
	393C	1000 mV/g	0.01 to 1200 Hz	± 2.5 g pk	0.0001 g rms	-65 to +200 °F	side 10-32	1000 gm	quartz	1.75, 1.76	
	393B12	10 V/g	0.1 to 2000 Hz	± 0.5 g pk	0.000008 g rms	-50 to +180 °F	MIL-C-5015	210 gm		1.75, 1.77	
	393B31	10 V/g	0.07 to 300 Hz	± 0.5 g pk	0.000001 g rms	0 to +150 °F	MIL-C-5015	635 gm		1.75, 1.77	

			Triaxial IC	P [®] and Cl	narge Outp	out Accelere	ometers			
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	COMMENT	PAGE
	356A70	2.7 pC/g	to 7000 Hz	± 500 g pk	N/A	-95 to +490 °F	side 5-44	7.9 gm	charge mode	1.40, 1.47
	356A71	10 pC/g	to 7000 Hz	± 500 g pk	N/A	-95 to +490 °F	side 10-32	22.7 gm	charge mode	1.40, 1.47
	356B10	1.0 mV/g	2 to 10k Hz ^[1]	± 5000 g pk	0.03 g rms	-65 to +250 °F	side cable	4 gm		1.36, 1.43
	356B20	1.0 mV/g	2 to 10k Hz ^[1]	± 5000 g pk	0.03 g rms	-65 to +250 °F	4-pin	4 gm		1.37, 1.43
	356A01	5 mV/g	2 to 8000 Hz ^[1]	± 1000 g pk	0.003 g rms	-65 to +250 °F	side cable	1 gm	0.25 in cube	1.36, 1.43
	356A24	10 mV/g	0.5 to 12k Hz	± 500 g pk	0.002 g rms	-65 to +250 °F	4-pin	3.1 gm	low profile	1.37, 1.44
•	356A61	10 mV/g	2 to 5000 Hz ^[1]	± 500 g pk	0.008 g rms	-65 to +250 °F	side cable	4 gm	filtered	1.42, 1.49
	356B11	10 mV/g	2 to 10k Hz ^[1]	± 500 g pk	0.002 g rms	-65 to +250 °F	side cable	4 gm	0.4 in cube	1.36, 1.43
•	356B21	10 mV/g	2 to 10k Hz ^[1]	± 500 g pk	0.002 g rms	-65 to +250 °F	4-pin	4 gm	0.4 in cube	1.37, 1.44
	354C10	10 mV/g	2 to 8000 Hz ^[1]	± 500 g pk	0.003 g rms	-65 to +250 °F	side cable	5 gm	through-hole	1.39, 1.46
•	356A33	10 mV/g	2 to 10k Hz ^[1]	± 500 g pk	0.003 g rms	-65 to +250 °F	4-pin	5.3 gm		1.38, 1.44
•	356A63	10 mV/g	2 to 5000 Hz ^[1]	± 500 g pk	0.008 g rms	-65 to +250 °F	4-pin	5.3 gm	filtered	1.42, 1.49
	356A66	10 mV/g	2 to 4000 Hz ^[1]	± 500 g pk	0.002 g rms	-65 to +325 °F	4-pin	9 gm	filtered	1.42, 1.49
•	356A02	10 mV/g	0.5 to 6000 Hz	± 500 g pk	0.0005 g rms	-65 to +250 °F	4-pin	10.5 gm	0.55 in cube	1.38, 1.45
	354C02	10 mV/g	0.3 to 4000 Hz	± 500 g pk	0.0005 g rms	-65 to +250 °F	4-pin	15.5 gm	13/16 through-hole	1.39, 1.46
	356A25	25 mV/g	0.5 to 6500 Hz	± 200 g pk	0.0002 g rms	-65 to +250 °F	4-pin	10.5 gm	0.55 in cube	1.38, 1.45
•	356A32	100 mV/g	0.7 to 5000 Hz	± 50 g pk	0.0003 g rms	-65 to +250 °F	4-pin	5.4 gm		1.37, 1.44
	356A16	100 mV/g	0.3 to 6000 Hz	± 50 g pk	0.0001 g rms	-65 to +176 °F	4-pin	7.4 gm	0.55 in aluminum	1.41, 1.48
	354C03	100 mV/g	0.3 to 4000 Hz	± 50 g pk	0.0002 g rms	-65 to +200 °F	4-pin	15.5 gm	13/16 through-hole	1.40, 1.46
•	356A15	100 mV/g	1 to 6500 Hz	± 50 g pk	0.0002 g rms	-65 to +250 °F	4-pin	10.5 gm	0.55 in cube	1.39, 1.45
	356A17	500 mV/g	0.3 to 4000 Hz	± 10 g pk	0.00006 g rms	-65 to +176 °F	4-pin	9.3 gm	0.55 in aluminum	1.41, 1.48
۲	356B18	1000 mV/g	0.3 to 5000 Hz	± 5 g pk	0.00006 g rms	-20 to +170 °F	4-pin	25 gm	0.8 in aluminum	1.41, 1.48

High Amplitude ICP [®] and Charge Output Shock Accelerometers											
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	COMMENT	PAGE	
	350A96	0.065 pC/g	15k Hz	± 100k g pk	N/A	0 to +150 °F	top 10-32	13 gm	charge mode	1.55, 1.59	
	350B21	0.05 mV/g	1 to 10k Hz	± 100k g pk	0.3 g rms	-65 to +200 °F	side cable	4.4 gm	ceramic	1.52, 1.57	
۲	350B02	0.1 mV/g	4 to 10k Hz	± 50k g pk	0.5 g rms	0 to +150 °F	top cable	4.25 gm	ceramic	1.52, 1.56	
	350B03	0.5 mV/g	0.4 to 10k Hz	± 10k g pk	0.04 g rms	0 to +150 °F	top 10-32	4.5 gm	ceramic	1.53, 1.56	
	350B23	0.5 mV/g	0.4 to 10k Hz	± 10k g pk	0.04 g rms	0 to +150 °F	top cable	4.5 gm	ceramic	1.52, 1.57	
	350A13	0.5 mV/g	0.4 to 7500 Hz ^[2]	± 10k g pk	0.06 g rms	-65 to +250 °F	top 10-32	17.9 gm	quartz	1.54, 1.58	
	350B04	1 mV/g	0.4 to 10k Hz	± 5000 g pk	0.02 g rms	0 to +150 °F	top 10-32	4.5 gm	ceramic	1.53, 1.56	
	350A14	1 mV/g	0.4 to 7500 Hz ^[2]	± 5000 g pk	0.02 g rms	-65 to +250 °F	top 10-32	17.9 gm	quartz	1.54, 1.58	

NOTE: [2] Frequency range specified is ± 10%

	Extended Temperature / ESS ICP [®] Accelerometers										
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	PAGE		
	320C18	10 mV/g	1.5 to 18k Hz	± 500 g pk	0.01 g rms	-100 to +325 °F	top 10-32	1.7 gm	1.80, 1.84		
	320C15	10 mV/g	1.5 to 18k Hz	± 500 g pk	0.005 g rms	-100 to +325 °F	side 5-44	2 gm	1.80, 1.84		
	300A12	10 mV/g	10 to 10k Hz ^[1]	± 250 g pk	0.002 g rms	-100 to +500 °F	top 10-32	5.4 gm	1.83, 1.88		
	320C20	10 mV/g	1.5 to 10k Hz	± 500 g pk	0.006 g rms	-100 to +325 °F	top 10-32	6.5 gm	1.83, 1.87		
	352B30	10 mV/g	10 to 6000 Hz	± 500 g pk	0.004 g rms	-65 to +250 °F	top 10-32	7 gm	1.83, 1.87		
	320C03	10 mV/g	0.7 to 9000 Hz	± 500 g pk	0.005 g rms	-100 to +325 °F	side 10-32	10.5 gm	1.80, 1.84		
	320C33	100 mV/g	0.7 to 6000 Hz	± 50 g pk	0.0003 g rms	-100 to +325 °F	side 10-32	20 gm	1.81, 1.84		

	Low Temperature / Cryogenic ICP® Accelerometers										
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	PAGE		
	351B11	5 mV/g	0.7 to 15k Hz	± 300 g pk	0.001 g rms	-320 to +250 °F	side 5-44	2 gm	1.81, 1.85		
	351B14	5 mV/g	0.7 to 10k Hz	± 300 g pk	0.001 g rms	-320 to +250 °F	top 10-32	1.8 gm	1.81, 1.85		
	351B03	10 mV/g	0.7 to 9000 Hz	± 150 g pk	0.003 g rms	-320 to +250 °F	side 10-32	10.5 gm	1.82, 1.85		
	351B31	50 mV/g	0.7 to 7000 Hz	± 30 g pk	0.001 g rms	-320 to +250 °F	side 10-32	20 gm	1.82, 1.86		
	351B41	100 mV/g	0.7 to 3500 Hz	± 15 g pk	0.0002 g rms	-320 to +250 °F	side 10-32	40 gm	1.82, 1.86		

	Charge Output Accelerometers										
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	COMMENT	PAGE	
	357A08	0.3 pC/g	20k Hz	± 1000 g pk		-100 to +350 °F	side 3-56	0.16 gm	al. teardrop	1.62, 1.68	
	357A09	1.5 pC/g	13k Hz	± 500 g pk		-100 to +350 °F	side 3-56	0.6 gm	ti. teardrop	1.62, 1.68	
	357C10	1.7 pC/g	13k Hz	± 500 g pk		-100 to +350 °F	side 3-56	0.45 gm	al. teardrop	1.62, 1.69	
•	357B11	3 pC/g	16k Hz	± 2300 g pk		-95 to +490 °F	side 5-44	2 gm		1.63, 1.69	
	357B14	3 pC/g	16k Hz	± 2300 g pk		-95 to +500 °F	top 10-32	2 gm		1.63, 1.69	
	357A06	5 pC/g	15k Hz	± 500 g pk		-65 to +350 °F	side 5-44	2.3 gm	through-hole	1.63, 1.68	
	357B03	10 pC/g	12k Hz	± 2000 g pk		-95 to +490 °F	side 10-32	10.9 gm		1.64, 1.70	
	357B04	10 pC/g	12k Hz	± 2000 g pk	dependent	-95 to +490 °F	top 10-32	10.9 gm		1.64, 1.70	
۲	357B61	10 pC/g	5000 Hz ^[1]	± 3000 g pk	upon signal	-65 to +900 °F	side 10-32	30 gm		1.66, 1.72	
	357B71	10 pC/g	2000 Hz ^[1]	± 500 g pk	conditioner used	-65 to +900 °F	2 pin	100 gm	differential	1.66, 1.72	
	357A05	17 pC/g	12k Hz	± 500 g pk		-65 to +350 °F	side 10-32	12 gm	through-hole	1.64, 1.70	
	357B21	30 pC/g	7500 Hz	± 1500 g pk		-95 to +490 °F	side 10-32	20.7 gm		1.65, 1.70	
	357B22	30 pC/g	7500 Hz	± 1500 g pk		-95 to +490 °F	top 10-32	20.7 gm		1.65, 1.71	
	357B72	50 pC/g	2000 Hz ^[1]	± 500 g pk		-65 to +900 °F	2 pin	120 gm	differential	1.66, 1.72	
	357B33	100 pC/g	3500 Hz	± 150 g pk		-95 to +490 °F	side 10-32	45.4 gm		1.65, 1.71	
	357B34	100 pC/g	3500 Hz	± 150 g pk		-95 to +490 °F	top 10-32	45.4 gm		1.65, 1.71	
	357B73	100 pC/g	2000 Hz ^[1]	± 500 g pk		-65 to +900 °F	2 pin	130 gm	differential	1.67, 1.72	

NOTE: [1] Frequency range specified is $\pm 5\%$

	ICP [®] Structural Test / Array Accelerometers										
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE Range	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	COMMENT	PAGE	
۲	333B	100 mV/g	2 to 1000 Hz	± 50 g pk	0.00007 g rms	0 to +150 °F	base 3-pin	5.6 gm	economy/array	1.90, 1.93	
	333B30	100 mV/g	0.5 to 3000 Hz	± 50 g pk	0.00015 g rms	0 to +150 °F	side 10-32	4 gm		1.90, 1.93	
	333B31	100 mV/g	0.5 to 3000 Hz	± 50 g pk	0.00015 g rms	0 to +150 °F	top 10-32	4 gm	general/array	1.90, 1.93	
۲	333B32	100 mV/g	0.5 to 3000 Hz	± 50 g pk	0.00015 g rms	0 to +150 °F	side 10-32	4 gm	cubic	1.90, 1.93	
	333B40	500 mV/g	0.5 to 3000 Hz	± 10 g pk	0.00005 g rms	0 to +150 °F	side 10-32	7.5 gm		1.91, 1.94	
	333B42	500 mV/g	0.5 to 3000 Hz	± 10 g pk	0.00005 g rms	0 to +150 °F	side 10-32	7.5 gm	cubic	1.91, 1.94	
	333B50	1000 mV/g	0.5 to 3000 Hz	± 5 g pk	0.00005 g rms	0 to +150 °F	side 10-32	7.5 gm		1.91, 1.94	
	333B52	1000 mV/g	0.5 to 3000 Hz	±5gpk	0.00005 g rms	0 to +150 °F	side 10-32	6.8 gm	cubic	1.91, 1.94	

Metric ICP [®] and Charge Output Accelerometers											
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE Range	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	PAGE		
	340A75	3 pC/g	16k Hz	± 22.5 m/s² pk	N/A	-70 to +260° C	side M3	2 gm	1.105, 1.107		
	340A76	3 pC/g	16k Hz	± 22.5 m/s² pk	N/A	-70 to +260° C	top M3	2 gm	1.105, 1.107		
	340A50	2.7 pC/g	10k Hz	± 1000 g pk	N/A	-94 to +500 °F	side M3	11 gm	1.105, 1.108		
	340A15	9.8 mV/g	0.7 to 18k Hz	± 500 g pk	0.0006 g rms	-67 to +257 °F	side M3	2 gm	1.104, 1.106		
	340A16	9.8 mV/g	0.7 to 18k Hz	± 500 g pk	0.0006 g rms	-67 to +257 °F	top M3	2 gm	1.104, 1.106		
	340A65	98.1 mV/g	0.3 to 12k Hz	± 50 g pk	0.00016 g rms	-67 to +203 °F	side M3	2 gm	1.104, 1.106		
	340A66	98.1 mV/g	0.3 to 12k Hz	± 50 g pk	0.00016 g rms	-67 to +203 °F	top M3	2 gm	1.104, 1.106		

			Quartz S	hear ICP®	Accelerom	neters			
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	PAGE
	353B11	0.51 mV/(m/s ²)	0.7 to 18k Hz	± 9800 m/s² pk	0.1 m/s ² rms	-54 to +121 °C	side 5-44	2 gm	1.2, 1.7
	353B12	0.51 mV/(m/s ²)	0.7 to 20k Hz	± 9800 m/s² pk	0.1 m/s ² rms	-54 to +121 °C	top 5-44	1.5 gm	1.2, 1.7
	353B13	0.51 mV/(m/s ²)	0.7 to 20k Hz	± 9800 m/s² pk	0.1 m/s ² rms	-54 to +121 °C	top cable	1.7 gm	1.3, 1.7
	353B14	0.51 mV/(m/s ²)	0.7 to 18k Hz	± 9800 m/s² pk	0.1 m/s ² rms	-54 to +121 °C	top 10-32	1.8 gm	1.3, 1.7
•	353B15	1.02 mV/(m/s ²)	0.7 to 18k Hz	± 4900 m/s² pk	0.05 m/s ² rms	-54 to +121 °C	side 5-44	2 gm	1.2, 1.8
•	353B16	1.02 mV/(m/s ²)	0.7 to 20k Hz	± 4900 m/s² pk	0.05 m/s ² rms	-54 to +121 °C	top 5-44	1.5 gm	1.2, 1.8
•	353B17	1.02 mV/(m/s ²)	0.7 to 20k Hz	± 4900 m/s² pk	0.05 m/s ² rms	-54 to +121 °C	top cable	1.7 gm	1.3, 1.8
•	353B18	1.02 mV/(m/s ²)	0.7 to 18k Hz	± 4900 m/s² pk	0.05 m/s ² rms	-54 to +121 °C	top 10-32	1.8 gm	1.3, 1.8
•	353B03	1.02 mV/(m/s ²)	0.7 to 11k Hz	± 4900 m/s² pk	0.03 m/s ² rms	-54 to +121 °C	side 10-32	10.5 gm	1.4, 1.9
•	353B04	1.02 mV/(m/s ²)	0.7 to 11k Hz	± 4900 m/s² pk	0.03 m/s ² rms	-54 to +121 °C	top 10-32	10.5 gm	1.4, 1.9
	355B34	1.02 mV/(m/s ²)	2 to 5000 Hz ^[1]	± 4900 m/s² pk	0.01 m/s ² rms	-54 to +121 °C	side 10-32	11 gm	1.6, 1.11
	353B01	2.04 mV/(m/s ²)	0.7 to 10k Hz	± 2450 m/s² pk	0.05 m/s ² rms	-54 to +121 °C	side 10-32	10 gm	1.4, 1.9
	353B02	2.04 mV/(m/s ²)	0.7 to 10 k Hz	± 2450 m/s² pk	0.05 m/s ² rms	-54 to +121 °C	top 10-32	10 gm	1.4, 1.9
	353B31	5.10 mV/(m/s ²)	0.7 to 8000 Hz	± 980 m/s² pk	0.01 m/s ² rms	-54 to +121 °C	side 10-32	20 gm	1.5, 1.10
	353B32	5.10 mV/(m/s ²)	0.7 to 8000 Hz	± 980 m/s² pk	0.01 m/s ² rms	-54 to +121 °C	top 10-32	20 gm	1.5, 1.10
•	353B33	10.19 mV/(m/s ²)	0.7 to 6500 Hz	± 490 m/s² pk	0.005 m/s ² rms	-54 to +121 °C	side 10-32	27 gm	1.5, 1.10
	353B34	10.19 mV/(m/s ²)	0.7 to 7000 Hz	± 490 m/s² pk	0.005 m/s ² rms	-54 to +121 °C	top 10-32	27 gm	1.5, 1.10
	355B33	10.19 mV/(m/s ²)	2 to 5000 Hz ^[1]	± 490 m/s² pk	0.005 m/s ² rms	-54 to +121 °C	side 10-32	11 gm	1.6, 1.11

	High Resolution Ceramic Shear ICP [®] Accelerometers												
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	COMMENT	PAGE			
	352B01	0.1 mV/(m/s ²)	1 to 20k Hz	± 49k m/s² pk	0.2 m/s ² rms	-53 to +121 °C	top 10-32	0.7 gm		1.16, 1.26			
	352A25	0.25 mV/(m/s ²)	0.7 to 13k Hz	± 19.6k m/s² pk	0.1 m/s ² rms	-53 to +121 °C	side 3-56	0.6 gm	ti. teardrop	1.15, 1.25			
•	352C23	0.5 mV/(m/s ²)	1.5 to 15k Hz	± 9800 m/s² pk	0.03 m/s ² rms	-53 to +121 °C	side 3-56	0.2 gm	al. teardrop	1.14, 1.24			
•	352C22	1.02 mV/(m/s ²)	0.7 to 13k Hz	± 4900 m/s² pk	0.02 m/s ² rms	-53 to +121 °C	side 3-56	0.5 gm	al. teardrop	1.14, 1.24			
•	352A21	1.02 mV/(m/s ²)	0.7 to 13k Hz	± 4900 m/s² pk	0.02 m/s ² rms	-53 to +121 °C	side 3-56	0.6 gm	ti. teardrop	1.14, 1.24			
•	352B10	1.02 mV/(m/s ²)	1 to 17k Hz	± 4900 m/s² pk	0.03 m/s ² rms	-53 to +121 °C	top cable	0.7 gm		1.16, 1.26			
	352C15	1.02 mV/(m/s ²)	0.7 to 18k Hz	± 4900 m/s² pk	0.005 m/s ² rms	-53 to +121 °C	side 5-44	2 gm		1.17, 1.26			
	352C16	1.02 mV/(m/s ²)	0.7 to 16k Hz	± 4900 m/s² pk	0.005 m/s ² rms	-53 to +121 °C	top 5-44	2 gm		1.17, 1.26			
	352C17	1.02 mV/(m/s ²)	0.7 to 18k Hz	± 4900 m/s² pk	0.005 m/s ² rms	-53 to +121 °C	top cable	2 gm		1.18, 1.27			
	352C18	1.02 mV/(m/s ²)	0.7 to 18k Hz	± 4900 m/s² pk	0.005 m/s ² rms	-53 to +121 °C	top 10-32	2 gm		1.18, 1.27			
	355B12	1.02 mV/(m/s ²)	0.6 to 15k Hz	± 4900 m/s² pk	0.005 m/s ² rms	-53 to +121 °C	side 5-44	2.3 gm	through-hole	1.20, 1.31			
	352C41	1.02 mV/(m/s ²)	0.3 to 15k Hz	± 4900 m/s² pk	0.008 m/s ² rms	-53 to +121 °C	top 10-32	2.8 gm		1.19, 1.27			
۲	352C43	1.02 mV/(m/s ²)	0.5 to 10k Hz	± 4900 m/s² pk	0.008 m/s ² rms	-53 to +121 °C	top 10-32	3 gm		1.19, 1.28			
۲	352C03	1.02 mV/(m/s ²)	0.3 to 15k Hz	± 4900 m/s ² pk	0.005 m/s ² rms	-53 to +121 °C	side 10-32	5.8 gm		1.22, 1.32			
	352C04	1.02 mV/(m/s ²)	0.3 to 15k Hz	± 4900 m/s² pk	0.005 m/s ² rms	-53 to +121 °C	top 10-32	5.8 gm		1.22, 1.32			
	352A60	1.02 mV/(m/s ²)	5 to 60k Hz ^[1]	± 490 m/s ² pk	0.02 m/s ² rms	-53 to +121 °C	top 5-44	6 gm	highest frequency	1.18, 1.28			
	355B02	1.02 mV/(m/s ²)	0.6 to 12k Hz	± 4900 m/s ² pk	0.005 m/s ² rms	-53 to +121 °C	side 10-32	10 gm	through-hole	1.21, 1.31			
•	352A24	10.19 mV/(m/s ²)	0.8 to 10k Hz	± 490 m/s ² pk	0.002 m/s ² rms	-53 to +121 °C	side 3-56	0.8 gm	al. teardrop	1.15, 1.25			
	338C04	10.19 mV/(m/s ²)	0.35 to 10k Hz	± 490 m/s ² pk	0.0018 m/s ² rms	-53 to +93 °C	side 10-32	4 gm	low profile	1.20, 1.30			
۲	352C33	10.19 mV/(m/s ²)	0.3 to 15k Hz	± 490 m/s ² pk	0.0015 m/s ² rms	-53 to +93 °C	side 10-32	5.8 gm	general purpose	1.22, 1.33			
•	352C34	10.19 mV/(m/s ²)	0.3 to 15k Hz	± 490 m/s ² pk	0.0015 m/s ² rms	-53 to +93 °C	top 10-32	6.6 gm	general purpose	1.22, 1.33			
	352C42	10.19 mV/(m/s ²)	0.3 to 15k Hz	± 490 m/s ² pk	0.005 m/s ² rms	-53 to +121 °C	top 10-32	2.8 gm		1.19, 1.27			
	352C44	10.19 mV/(m/s ²)	0.5 to 10k Hz	± 490 m/s² pk	0.005 m/s ² rms	-53 to +121 °C	top 10-32	3 gm		1.19, 1.28			
•	352C65	10.19 mV/(m/s ²)	0.3 to 12k Hz	± 490 m/s ² pk	0.0015 m/s ² rms	-53 to +93 °C	side 5-44	2 gm		1.16, 1.29			
•	352C66	10.19 mV/(m/s ²)	0.3 to 12k Hz	± 490 m/s ² pk	0.0015 m/s ² rms	-53 to +93 °C	top 5-44	2 gm		1.17, 1.29			
•	352C67	10.19 mV/(m/s ²)	0.3 to 12k Hz	± 490 m/s ² pk	0.0015 m/s ² rms	-53 to +93 °C	top cable	2 gm		1.17, 1.29			
۲	352C68	10.19 mV/(m/s ²)	0.3 to 12k Hz	± 490 m/s² pk	0.0015 m/s ² rms	-53 to +93 °C	top 10-32	2 gm		1.18, 1.29			
	355B03	10.19 mV/(m/s ²)	0.6 to 12k Hz	± 490 m/s² pk	0.0009 m/s ² rms	-53 to +121 °C	side 10-32	10 gm	through-hole	1.21, 1.31			
	355B04	101.9 mV/(m/s ²)	0.6 to 12k Hz	± 49 m/s² pk	0.001 m/s ² rms	-53 to +93 °C	side 10-32	11.2 gm	through-hole	1.21, 1.31			
	352B	101.9 mV/(m/s ²)	3 to 10k Hz	± 49 m/s² pk	0.0008 m/s ² rms	-53 to +93 °C	top 10-32	35 gm	high resolution	1.23, 1.32			

NOTE: [1] Frequency range specified is ± 3 dB

	Low Amplitude Seismic ICP [®] Accelerometers											
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	COMMENT	PAGE		
۲	393B05	1.02 V/(m/s ²)	0.5 to 750 Hz	± 4.9 m/s ² pk	0.00004 m/s ² rms	-18 to +80 °C	top 10-32	50 gm		1.74, 1.77		
	393B04	102 mV/(m/s ²)	0.25 to 750 Hz	± 49 m/s ² pk	0.00003 m/s ² rms	-18 to +80 °C	top 10-21	50 gm		1.74, 1.76		
۲	393A03	102 mV/(m/s ²)	0.3 to 4000 Hz	± 49 m/s² pk	0.0001 m/s ² rms	-53 to +121 °C	MIL-C-5015	210 gm		1.74, 1.76		
	393C	102 mV/(m/s ²)	0.01 to 1200 Hz	± 24.5 m/s ² pk	0.001 m/s ² rms	-53 to +93 °C	side 10-32	1000 gm	quartz	1.75, 1.76		
	393B12	1.02 V/(m/s ²)	0.1 to 2000 Hz	± 4.9 m/s ² pk	0.00008 m/s ² rms	-45 to +82 °C	MIL-C-5015	210 gm		1.75, 1.77		
	393B31	1.02 V/(m/s ²)	0.07 to 300 Hz	± 4.9 m/s² pk	0.000009 m/s ² rms	-18 to +65 °C	MIL-C-5015	635 gm		1.75, 1.77		

	Triaxial ICP [®] and Charge Output Accelerometers											
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE Range	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	COMMENT	PAGE		
	356A70	0.28 pC/(m/s ²)	to 7000 Hz	± 4900 m/s² pk	N/A	-70 to +254 °C	side 5-44	7.9 gm	charge mode	1.40, 1.47		
	356A71	1.02 pC/(m/s ²)	to 7000 Hz	± 4900 m/s² pk	N/A	-70 to +254 °C	side 10-32	22.7 gm	charge mode	1.40, 1.47		
	356B10	0.1 mV/(m/s ²)	2 to 10k Hz ^[1]	± 49k m/s² pk	0.29 m/s² rms	-53 to +121 °C	side cable	4 gm		1.36, 1.43		
	356B20	0.1 mV/(m/s ²)	2 to 10k Hz ^[1]	± 49k m/s² pk	0.29 m/s² rms	-53 to +121 °C	4-pin	4 gm		1.37, 1.43		
	356A01	0.5 mV/(m/s ²)	2 to 8000 Hz ^[1]	± 9800 m/s² pk	0.03 m/s ² rms	-53 to +121 °C	side cable	1 gm	6.35 mm cube	1.36, 1.43		
	356A24	1.02 mV/(m/s ²)	0.5 to 12k Hz	± 4900 m/s² pk	0.02 m/s ² rms	-53 to +121 °C	4-pin	3.1 gm	low profile	1.37, 1.44		
۲	356A61	1.02 mV/(m/s ²)	2 to 5000 Hz ^[1]	± 4900 m/s² pk	0.08 m/s² rms	-53 to +121 °C	side cable	4 gm	filtered	1.42, 1.49		
	356B11	1.02 mV/(m/s ²)	2 to 10k Hz ^[1]	± 4900 m/s² pk	0.03 m/s ² rms	-53 to +121 °C	side cable	4 gm	10.2 mm cube	1.36, 1.43		
۲	356B21	1.02 mV/(m/s ²)	2 to 10k Hz ^[1]	± 4900 m/s² pk	0.03 m/s² rms	-53 to +121 °C	4-pin	4 gm	10.2 mm cube	1.37, 1.44		
	354C10	1.02 mV/(m/s ²)	2 to 8000 Hz ^[1]	± 4900 m/s² pk	0.03 m/s ² rms	-53 to +121 °C	side cable	5 gm	through-hole	1.39, 1.46		
•	356A33	1.02 mV/(m/s ²)	2 to 10k Hz ^[1]	± 4900 m/s² pk	0.03 m/s² rms	-53 to +121 °C	4-pin	5.3 gm		1.38, 1.44		
۲	356A63	1.02 mV/(m/s ²)	2 to 5000 Hz ^[1]	± 4900 m/s² pk	0.08 m/s² rms	-53 to +121 °C	4-pin	5.3 gm	filtered	1.42, 1.49		
	356A66	1.02 mV/(m/s ²)	2 to 4000 Hz ^[1]	± 4900 m/s² pk	0.02 m/s ² rms	-53 to +163 °C	4-pin	9 gm	filtered	1.42, 1.49		
Ø	356A02	1.02 mV/(m/s ²)	0.5 to 6000 Hz	± 4900 m/s² pk	0.005 m/s ² rms	-53 to +121 °C	4-pin	10.5 gm	14 mm cube	1.38, 1.45		
	354C02	1.02 mV/(m/s ²)	0.3 to 4000 Hz	± 4900 m/s² pk	0.005 m/s² rms	-53 to +121 °C	4-pin	15.5 gm	13/16 through-hole	1.39, 1.46		
	356A25	2.6 mV/(m/s ²)	0.5 to 6500 Hz	± 1960 m/s² pk	0.002 m/s ² rms	-53 to +121 °C	4-pin	10.5 gm	14 mm cube	1.38, 1.45		
۲	356A32	10.19 mV/(m/s ²)	0.7 to 5000 Hz	± 490 m/s² pk	0.003 m/s ² rms	-53 to +121 °C	4-pin	5.4 gm		1.37, 1.44		
	356A16	10.19 mV/(m/s ²)	0.3 to 6000 Hz	± 490 m/s² pk	0.001 m/s² rms	-53 to +80 °C	4-pin	7.4 gm	14 mm aluminum	1.41, 1.48		
	354C03	10.19 mV/(m/s ²)	0.3 to 4000 Hz	± 490 m/s² pk	0.002 m/s ² rms	-53 to +93 °C	4-pin	15.5 gm	13/16 through-hole	1.40, 1.46		
۲	356A15	10.19 mV/(m/s ²)	1 to 6500 Hz	± 490 m/s² pk	0.002 m/s ² rms	-53 to +121 °C	4-pin	10.5 gm	14 mm cube	1.39, 1.45		
	356A17	51 mV/(m/s²)	0.3 to 4000 Hz	± 98 m/s² pk	0.0006 m/s ² rms	-53 to +80 °C	4-pin	9.3 gm	14 mm aluminum	1.41, 1.48		
۲	356B18	102 mV/(m/s ²)	0.3 to 5000 Hz	± 49 m/s² pk	0.0005 m/s ² rms	-29 to +77 °C	4-pin	25 gm	20.3 mm aluminum	1.41, 1.48		

High Amplitude ICP [®] and Charge Output Shock Accelerometers											
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	COMMENT	PAGE	
	350A96	0.007 pC/(m/s ²)	15k Hz	± 980k m/s² pk	N/A	-18 to +66 °C	top 10-32	13 gm	charge mode	1.55, 1.59	
	350B21	0.005 mV/(m/s ²)	1 to 10k Hz	± 980k m/s² pk	2.9 m/s ² rms	-53 to +93 °C	side cable	4.4 gm	ceramic	1.52, 1.57	
۲	350B02	0.01 mV/(m/s ²)	4 to 10k Hz	\pm 490k m/s ² pk	4.9 m/s ² rms	-18 to +66 °C	top cable	4.25 gm	ceramic	1.52, 1.56	
	350B03	0.05 mV/(m/s ²)	0.4 to 10k Hz	± 98k m/s² pk	0.39 m/s ² rms	-18 to +66 °C	top 10-32	4.5 gm	ceramic	1.53, 1.56	
	350B23	0.05 mV/(m/s ²)	0.4 to 10k Hz	± 98k m/s² pk	0.39 m/s ² rms	-18 to +66 °C	top cable	4.5 gm	ceramic	1.52, 1.57	
	350A13	0.05 mV/(m/s ²)	0.4 to 7500 Hz ^[2]	± 98k m/s² pk	0.59 m/s ² rms	-53 to +121 °C	top 10-32	17.9 gm	quartz	1.54, 1.58	
	350B04	0.10 mV/(m/s ²)	0.4 to 10k Hz	± 49k m/s² pk	0.20 m/s ² rms	-18 to +66 °C	top 10-32	4.5 gm	ceramic	1.53, 1.56	
	350A14	0.10 mV/(m/s ²)	0.4 to 7500 Hz ^[2]	± 49k m/s² pk	0.20 m/s ² rms	-53 to +121 °C	top 10-32	17.9 gm	quartz	1.54, 1.58	

NOTE: [2] Frequency range specified is ± 10%

	Extended Temperature / ESS ICP® Accelerometers													
POPULAR PRODUCT	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	PAGE					
	320C18	1.02 mV/(m/s ²)	1.5 to 18k Hz	± 4900 m/s² pk	0.05 m/s ² rms	-73 to +163 °C	top 10-32	1.7 gm	1.80, 1.84					
	320C15	1.02 mV/(m/s ²)	1.5 to 18k Hz	± 4900 m/s² pk	0.05 m/s ² rms	-73 to +163 °C	side 5-44	2 gm	1.80, 1.84					
	300A12	1.02 mV/(m/s ²)	10 to 10k Hz ^[1]	± 2450 m/s² pk	0.02 m/s ² rms	-73 to +260 °C	top 10-32	5.4 gm	1.83, 1.88					
	320C20	1.02 mV/(m/s ²)	1.5 to 10k Hz	± 4900 m/s² pk	0.06 m/s² rms	-73 to +163 °C	top 10-32	6.5 gm	1.83, 1.87					
	352B30	1.02 mV/(m/s2)	10 to 6000 Hz	± 4900 m/s² pk	0.04 m/s ² rms	-53 to +121 °C	top 10-32	7 gm	1.83, 1.87					
	320C03	1.02 mV/(m/s ²)	0.7 to 9000 Hz	± 4900 m/s² pk	0.05 m/s² rms	-73 to +163 °C	side 10-32	10.5 gm	1.80, 1.84					
	320C33	10.2 mV/(m/s ²)	0.7 to 6000 Hz	\pm 490 m/s ² pk	0.003 m/s ² rms	-73 to +163 °C	side 10-32	20 gm	1.81, 1.84					

Low Temperature / Cryogenic ICP® Accelerometers												
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	PAGE			
	351B11	0.51 mV/(m/s ²)	0.7 to 15k Hz	± 2942 m/s² pk	0.1 m/s ² rms	-196 to +121 °C	side 5-44	2 gm	1.81, 1.85			
	351B14	0.51 mV/(m/s ²)	0.7 to 10k Hz	± 2942 m/s² pk	0.1 m/s ² rms	-196 to +121 °C	top 10-32	1.8 gm	1.81, 1.85			
	351B03	1.02 mV/(m/s ²)	0.7 to 9000 Hz	± 1472 m/s² pk	0.1 m/s ² rms	-196 to +121 °C	side 10-32	10.5 gm	1.82, 1.85			
	351B31	5.10 mV/(m/s ²)	0.7 to 7000 Hz	± 294 m/s² pk	0.02 m/s ² rms	-196 to +121 °C	side 10-32	20 gm	1.82, 1.86			
	351B41	10.2 mV/(m/s ²)	0.7 to 3500 Hz	± 147 m/s² pk	$0.005 \text{ m/s}^2 \text{ rms}$	-196 to +121 °C	side 10-32	40 gm	1.82, 1.86			

			CI	narge Outp	out Accele	rometers				
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE Range	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	COMMENT	PAGE
	357A08	0.03 pC/(m/s²)	20k Hz	± 9800 m/s² pk		-73 to +177 °C	side 3-56	0.16 gm	al. teardrop	1.62, 1.68
	357A09	0.17 pC/(m/s ²)	13k Hz	± 4900 m/s² pk		-73 to +177 °C	side 3-56	0.6 gm	ti. teardrop	1.62, 1.68
	357C10	0.17 pC/(m/s ²)	13k Hz	± 4900 m/s² pk		-73 to +177 °C	side 3-56	0.45 gm	al. teardrop	1.62, 1.69
۲	357B11	0.31 pC/(m/s ²)	16k Hz	± 22.5k m/s² pk		-71 to +260 °C	side 5-44	2 gm		1.63, 1.69
	357B14	0.31 pC/(m/s ²)	16k Hz	± 22.5k m/s² pk		-71 to +260 °C	top 10-32	2 gm		1.63, 1.69
	357A06	0.51 pC/(m/s ²)	15k Hz	± 4900 m/s² pk		-53 to +177 °C	side 5-44	2.3 gm	through-hole	1.63, 1.68
	357B03	1.02 pC/(m/s ²)	12k Hz	± 19k m/s² pk		-71 to +260 °C	side 10-32	10.9 gm		1.64, 1.70
	357B04	1.02 pC/(m/s ²)	12k Hz	± 19k m/s² pk	dependent	-71 to +260 °C	top 10-32	10.9 gm		1.64, 1.70
۲	357B61	1.02 pC/(m/s ²)	5000 Hz ^[1]	± 29k m/s² pk	upon signal	-54 to +482 °C	side 10-32	30 gm		1.66, 1.72
	357B71	1.02 pC/(m/s ²)	2000 Hz ^[1]	± 4900 m/s² pk	conditioner used	-54 to +482 °C	2 pin	100 gm	differential	1.66, 1.72
	357A05	1.7 pC/(m/s ²)	12k Hz	± 4900 m/s² pk		-53 to +177 °C	side 10-32	12 gm	through-hole	1.64, 1.70
	357B21	3.1 pC/(m/s ²)	7500 Hz	± 14.7k m/s² pk		-71 to +260 °C	side 10-32	20.7 gm		1.65, 1.70
	357B22	3.1 pC/(m/s ²)	7500 Hz	± 14.7k m/s² pk		-71 to +260 °C	top 10-32	20.7 gm		1.65, 1.71
	357B72	5.1 pC/(m/s ²)	2000 Hz ^[1]	± 4900 m/s² pk		-54 to +482 °C	2 pin	120 gm	differential	1.66, 1.72
	357B33	10.2 pC/(m/s ²)	3500 Hz	± 1470 m/s² pk		-71 to +260 °C	side 10-32	45.4 gm		1.65, 1.71
	357B34	10.2 pC/(m/s ²)	3500 Hz	± 1470 m/s ² pk]	-71 to +260 °C	top 10-32	45.4 gm		1.65, 1.71
	357B73	10.2 pC/(m/s ²)	2000 Hz ^[1]	± 4900 m/s² pk		-54 to +482 °C	2 pin	130 gm	differential	1.67, 1.72

NOTE: [1] Frequency range specified is ± 5%

	ICP [®] Structural Test / Array Accelerometers											
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	COMMENT	PAGE		
۲	333B	10.19 mV/(m/s ²)	2 to 1000 Hz	± 490 m/s² pk	0.0007 m/s ² rms	-18 to +66 °C	base 3-pin	5.6 gm	economy/array	1.90, 1.93		
	333B30	10.19 mV/(m/s2)	0.5 to 3000 Hz	± 490 m/s² pk	0.0015 m/s ² rms	-18 to +66 °C	side 10-32	4 gm		1.90, 1.93		
	333B31	10.19 mV/(m/s2)	0.5 to 3000 Hz	± 490 m/s² pk	0.0015 m/s ² rms	-18 to +66 °C	top 10-32	4 gm	general/array	1.90, 1.93		
۲	333B32	10.19 mV/(m/s2)	0.5 to 3000 Hz	± 490 m/s² pk	0.0015 m/s ² rms	-18 to +66 °C	side 10-32	4 gm	cubic	1.90, 1.93		
	333B40	51 mV/(m/s²)	0.5 to 3000 Hz	± 98 m/s² pk	0.0005 m/s ² rms	-18 to +66 °C	side 10-32	7.5 gm		1.91, 1.94		
	333B42	51 mV/(m/s²)	0.5 to 3000 Hz	\pm 98 m/s ² pk	0.0005 m/s ² rms	-18 to +66 °C	side 10-32	7.5 gm	cubic	1.91, 1.94		
	333B50	102 mV/(m/s ²)	0.5 to 3000 Hz	± 49 m/s² pk	0.0005 m/s² rms	-18 to +66 °C	side 10-32	7.5 gm		1.91, 1.94		
	333B52	102 mV/(m/s ²)	0.5 to 3000 Hz	\pm 49 m/s ² pk	0.0005 m/s² rms	-18 to +66 °C	side 10-32	6.8 gm	cubic	1.91, 1.94		

Metric ICP [®] and Charge Output Accelerometers													
POPULAR Product	MODEL	SENSITIVITY	FREQUENCY RANGE (± 10%)	AMPLITUDE RANGE	RESOLUTION	TEMPERATURE RANGE	CONNECTOR	WEIGHT	PAGE				
	340A75	0.3 pC/m/s ²	16k Hz	± 22.5 m/s² pk	N/A	-70 to +260° C	side M3	2 gm	1.105, 1.107				
	340A76	0.3 pC/m/s ²	16k Hz	± 22.5 m/s² pk	N/A	-70 to +260° C	top M3	2 gm	1.105, 1.107				
	340A50	0.28 pC/(m/s ²)	10k Hz	\pm 9,800 m/s ² pk	N/A	-70 to +260° C	side M3	11 gm	1.105, 1.108				
	340A15	1.0 mV/(m/s ²)	0.7 to 18k Hz	± 4,900 m/s² pk	0.006 m/s ² rms	-55 to +125° C	side M3	2 gm	1.104, 1.106				
	340A16	1.0 mV/(m/s ²)	0.7 to 18k Hz	\pm 4,900 m/s ² pk	0.006 m/s ² rms	-55 to +125° C	top M3	2 gm	1.104, 1.106				
	340A65	10.0 mV/(m/s2)	0.3 to 12k Hz	± 490 m/s² pk	0.0016 m/s ² rms	-55 to +95° C	side M3	2 gm	1.104, 1.106				
	340A66	10.0 mV/(m/s²)	0.3 to 12k Hz	\pm 490 m/s ² pk	$0.0016 \text{ m/s}^2 \text{ rms}$	-55 to +95° C	top M3	2 gm	1.104, 1.106				

How to Specify an Option

It is often desirable to incorporate various options in an accelerometer to enhance or improve its performance for a given application. To designate an option for a specific model, first check to insure that it is available by finding the option prefix letter in the model's specification chart. The prefix letter is then inserted in front of the model number to designate the option, e.g., J353B16. More

than one option may be designated, e.g., JM353B16. The following descriptions address the impact any option may have on specifications and performance. If in doubt about the compatibility of any option for the accelerometer model of interest, or the effects any option may introduce for your application, call a factory application engineer for assistance.

Option "A" — Adhesive Mount (e.g., A353B18)

Many applications require the sensor to be attached without modification of the test specimen by drilling and tapping a mounting hole. This is best accomplished by adhesive mounting with Petro Wax, hot glue, or other adhesive. Most units are supplied with an adhesive mounting pad to facilitate this approach, however, for miniature sensors, with integral mounting studs, the use

This option designates the removal of the integral stud so that the sensor has a smooth and flat bottom for direct adhesive mounting. Note that the frequency response will not be as high as with stud mounting and that higher frequency response will be achieved with stiffer adhesives.

Direct Adhesive Mounting (stud removed)

Option "B" — Low Output Bias Voltage (e.g., B353B01)

A factory adjustment to the built-in microelectronic circuitry reduces the output bias voltage to approximately 4.5 to 6.5 VDC. This permits the accelerometer to operate from a reduced, minimum excitation voltage of 9 VDC. This may be desirable when incorporating an accelerometer into an OEM system and the voltage available for excitation is limited. Also, some

data collectors or readout devices that incorporate excitation power may provide only a lower voltage than is normally recommended. The low bias option limits the amplitude range of the accelerometer to \pm 3 volts output. For example, a 100 mV/g accelerometer is therefore limited to a \pm 30 g amplitude range.

Standard Options for Accelerometers

Option "EX" — Intrinsically Safe (e.g., EX337F04)

Certain industrial style accelerometers are available with Cenelec approval for use in hazardous, explosive environments. This option provides the Cenelec approval for such use and stipulates that appropriate signal conditioning, including an intrinsic safety barrier, is utilized with the sensor.

Option "HT" — High Temperature Operation (e.g., HT356A02)

An adjustment to the built-in microelectronic circuitry permits sensor operation to temperatures that exceed the standard specified temperature range. Typically, the low frequency range will be somewhat compromised. Check with the factory to determine the allowable high temperature capability for a specific model and the impact this option will have on low frequency range.

Option "J" — Ground Isolation (e.g., J353B01)

The ground isolation option provides an electrical isolation of $> 10^8$ ohms between the accelerometer and the test structure. This electrical isolation is achieved by manufacturing the accelerometer with a custom isolation base integral with the bottom of the sensor. Typically, ground isolation is used when testing electric motors or other objects that produce large amounts of electrical noise. Isolating the sensor from the test object also reduces noise induced by electrical ground loops. Attaching the ground isolation base to the accelerometer reduces the upper frequency range slightly.

Option "M" — Metric Mounting Thread (e.g., M353B15)

This option is used for applications requiring a metric thread for installation. On models for which a separate mounting stud is provided, this option supplies an adapter stud (typically, 10-32 to M6) with a metric installation thread. For models that incorporate an integral mounting stud, the optional unit includes an integral metric threaded stud. Models that have through-hole mounting are furnished with appropriately sized, metric-threaded cap screws. There are no compromises to any specification when installing with a metric thread. Note: many models are supplied with both English and Metric mounting hardware as standard.

Option "N" — Negative Polarity Element (e.g., N333B31)

For phase matching during multi-channel, modal analysis applications, it may be necessary to reverse the polarity of the output signal, to correspond to the sensor's mounting orientation. Certain array type accelerometers may be mounted by screwing their electrical connector onto a designated receptacle mounting base or directly to the structure by inverting the sensor and adhesively mounting it. When inverted and mounted directly, the negative output polarity is recommended. This option provides a negative polarity ICP[®] sensor without compromise to any other specification.

Option "P" — Positive Polarity Element (e.g., P357B03)

When the phase of the output signal is important, especially for timing and multi-channel applications, it may be necessary to reverse the polarity of the output signal to correspond to the inverting characteristics of the signal conditioner being used. Most charge amplifiers invert the measurement signal and would typically be used with charge mode accelerometers having a negative signal polarity. In cases where the signal conditioner is a non-inverting device, it may be desirable to use a positive polarity sensor. This option provides a positive polarity charge mode sensor without compromise to any other specification.

Option "Q" — Extended Low Frequency (e.g., Q353B01)

Accurate measurements below 1 Hz can often be achieved by factory modification of the internal microelectronics of the sensor. By increasing the value of the electronics' discharge time constant (see glossary for definition), it is possible to obtain an extended low-end frequency response. For most sensors the DTC is extended to 10 seconds, which provides -5% @ 0.05 Hz. For some smaller sensors the DTC is extended to 5 seconds, which provides -5% @ 0.1 Hz.

For accurate low-frequency measurements, be certain the signal conditioner is DC coupled. For practical reasons, lower sensitivity sensors (\leq 50 mV/g) with extended low frequency are recommended only for longduration shock pulse measurements associated with package or drop testing.

Option "T" — Transducer Electronic Data Sheet (TEDS) (e.g., T333B32)

The "TEDS" option provides an accelerometer with an on-board digital memory. This memory stores valuable information such as sensor model number, serial number, sensitivity value, last calibration date, etc. Via command from an appropriately outfitted signal conditioner, the sensor is digitally addressed and the information in the memory is downloaded. The information is then utilized by the data acquisition system to aid in automating such tasks as coordinate mapping and data bookkeeping. This plug-and-play capability is in accordance with the international standard defined by IEEE P1451.4 This technique saves time and reduces error caused by human interface leading to improved test efficiency and

accuracy. Applications such as multichannel modal analysis and route data collection are a natural fit for this technology. Look for the TEDS graphic

which identifies sensors in this catalog that are capable of this feature.

For some sensors, the tapped mounting hole may be sacrificed to accommodate the additional circuitry, making these adhesive mounted only.

Standard Options for Accelerometers

Option "TLA" — TEDS with LMS Free Format (e.g., TLA333B32)

This "TEDS" option variation provides an information template, within the accelerometer's on-board memory, that conforms to the "Free" format that is supported by LMS data acquisition equipment. This option is otherwise identical to Option "T" described on the previous page.

Option "TLB" — TEDS with LMS Automotive Format (e.g., TLB333B32)

This "TEDS" option variation provides an information template, within the accelerometer's on-board memory, that conforms to the "Automotive" format that is supported by LMS data acquisition equipment. This option is otherwise identical to Option "T" described on the previous page.

Option "TLC" — TEDS with LMS Aeronautical Format (e.g., TLC333B32)

This "TEDS" option variation provides an information template, within the accelerometer's on-board memory, that conforms to the "Aeronautical" format that is supported by LMS data acquisition equipment. This option is otherwise identical to Option "T" described on the previous page.

Option "W" — Water Resistant Connection (e.g., W353B01/002C10)

The water resistant option provides a cable directly attached and sealed to the sensor's electrical connector with O-rings and heat-shrink tubing. This helps secure and seal the cable to the sensor, provides strain relief, and protects the integrity of the connection. This sealing guards against contamination from dirt and fluids and permits short-term underwater use. Use the option letter "W" as a prefix to the model number. Then add a slash (/) after the model number, followed by the type of cable, length, and appropriate connectors. (See cables/accessories section for a description of cables and connectors). Example above is a Model 353B01 connected to a 10 ft Model 002C10 cable via a standard 10-32 coaxial plug. The cable itself terminates in a BNC plug. Designate a metric length

by adding an "M" in front of the cable type, e.g., W353B01/M002C03 designates a 3-meter cable length.

- Routine vibration measurements
- Product testing
- Structural testing
- Testing in adverse environments
- Impulse response measurements
- Vibration control

The Quartz Shear ICP[®] Accelerometer was developed by PCB in 1987. This effort was in response to demand for a small, lightweight, high-precision vibration sensor capable of stable operation in thermally active, harsh environments. The design capitalizes on the unique capabilities of quartz, built-in microelectronic signal conditioning circuitry, shear mode sensing geometry, lightweight titanium, and laser-welded construction. Now, a full range of quartz shear ICP[®] accelerometers are available to accomplish a wide variety of measurement tasks. Each model exhibits an impressive resume' of features and benefits, including the following:

Quartz sensing crystals offer the most stable operation over time with virtually no shift in sensitivity, no output due to temperature change, and no change in performance even after overloads. Measurement accuracy is improved while eliminating the need for frequent recalibration.

A shear-structured sensing element isolates the sensing crystals from strain effects caused by base bending, thermal transient compression, and expansion forces.

Built-in signal conditioning circuitry converts the electrostatic charge signal from the quartz sensing element to a directly useable, low-impedance, voltage output signal proportional to input acceleration.

> Titanium housings provide lightweight construction for maximum frequency range and to minimize mass loading of the test specimen. Titanium also provides excellent protection against many corrosives.

Hermetically sealed, laser-welded construction and glass-fused electrical connectors safeguard against the influx of moisture, oils, or other potential contaminants.

PCB 716-684-0001 Vibration Division toll-free 888-684-0013 Fax 716-685-3886 E-mail vibration@pcb.com Web site www.pcb.com

Precision Quartz Shear ICP® Accelerometers

MINIATURE

(complete specifications are featured on pages 1.7 to 1.8)

Miniature quartz ICP® accelerometers are especially well suited for applications demanding high frequency range, small size, and light weight.

- printed circuit boards
- card cages and chassis
- package and drop testing
- brackets
- thin panels
- cams

Model 353B15 — Side connector provides low profile, simplifies cable routing and strain relief.

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 18 kHz frequency range
- 2 gram (0.07 oz) weight
- 500 g (4900 m/s²) range

Recommended cables and accessories **10** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, B, J, M, Q, W — see pages xvii to xx for option information

Actual Size

CE

Model 353B11 — Side connector provides low profile, simplifies cable routing and strain relief

- 5 mV/g [0.51 mV/(m/s²)] sensitivity
- 0.7 Hz to 18 kHz frequency range
- 2 gram (0.07 oz) weight
- 1000 g (9800 m/s²) range

Recommended cables and accessories **(1)** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, B, J, M, Q, W — see pages xvii to xx for option information

Actual Size

Model 353B16 — Lighter weight, higher frequency range, installs with small footprint

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 20 kHz frequency range
- 1.5 gram (0.05 oz) weight
- 500 g (4900 m/s²) range

Recommended cables and accessories **10** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, B, J, M, Q, W — see pages xvii to xx for option information

Actual Size

Model 353B12 — Lighter weight, higher frequency range, installs with small footprint

- 5 mV/g [0.51mV/(m/s²)] sensitivity
- 0.7 Hz to 20 kHz frequency range
- 1.5 gram (0.05 oz) weight
- 1000 g (9800 m/s²) range

Recommended cables and accessories **(10)** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, B, J, M, Q, W — see pages xvii to xx for option information

Actual Size

MINIATURE Precision Quartz Shear ICP® Accelerometers (continued)

Model 353B17 — Installs with small footprint, low in profile

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 20 kHz frequency range
- 1.7 gram (0.06 oz) weight
- 500 g (4900 m/s²) range
- Field repairable, integral cable

Recommended cables and accessories O — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, B, J, M, Q, W — see pages xvii to xx for option information

Actual Size

Model 353B13 — Installs with small footprint, low in profile

- 5 mV/g [0.51 mV/(m/s²)] sensitivity
- 0.7 Hz to 20 kHz frequency range
- 1.7 gram (0.06 oz) weight
- 1000 g (9800 m/s²) range
- Field repairable, integral cable

Recommended cables and accessories 0 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, B, J, M, Q, W — see pages xvii to xx for option information

Actual Size

Model 353B18 — 10-32 connector joins to cables common to most accelerometers

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 18 kHz frequency range
- 1.8 gram (0.06 oz) weight
- 500 g (4900 m/s²) range

Recommended cables and accessories **@@** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, B, J, M, Q, W — see pages xvii to xx for option information

Actual Size

Model 353B14 — 10-32 connector joins to cables common to most accelerometers

- 5 mV/g [0.51 mV/(m/s²)] sensitivity
- 0.7 Hz to 18 kHz frequency range
- 1.8 gram (0.06 oz) weight
- 1000 g (9800 m/s²) range

Recommended cables and accessories **@@** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, B, J, M, Q, W — see pages xvii to xx for option information

Actual Size

/s²) range , integral cable

GENERAL PURPOSE

(complete specifications are featured on pages 1.9 to 1.10) For routine vibration and low-amplitude shock applications.

- product qualifications studies
- structural response tests
- vehicle studies
- vibration control

Model 353B03 — Side connector simplifies cable routing and strain relief

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 11 kHz frequency range
- 10.5 gram (0.38 oz) weight
- ± 500 g (4900 m/s²) amplitude range

Recommended cables and accessories $@ \Theta -$ see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: B, J, Q, W - see pages xvii to xx for option information

Model 353B04 — Top connector installs with small footprint

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 11 kHz frequency range
- 10.5 gram (0.38 oz) weight
- \pm 500 g (4900 m/s²) amplitude range

Recommended cables and accessories $@ \Theta -$ see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: B, J, Q, W - see pages xvii to xx for option information

Model 353B01 — Side connector simplifies cable routing and strain relief

- 20 mV/g [2.04 mV/(m/s²)] sensitivity
- 0.7 Hz to 10 kHz frequency range
- 10 gram (0.35 oz) weight
- \pm 250 g (2450 m/s²) amplitude range

Recommended cables and accessories @@ — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: B, J, Q, W — see pages xvii to xx for option information

Actual Size

Model 353B02 — Top connector installs with small footprint

- 20 mV/g [2.04 mV/(m/s²)] sensitivity
- 0.7 Hz to 10 kHz frequency range
- 10 gram (0.35 oz) weight
- \pm 250 g (2450 m/s²) amplitude range

Recommended cables and accessories $@ \Theta -$ see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: B, J, Q, W - see pages xvii to xx for option information

Precision Quartz Shear ICP® Accelerometers

GENERAL PURPOSE Precision Quartz Shear ICP® Accelerometers (continued)

Model 353B31 — Side connector simplifies cable routing and strain relief

- 50 mV/g [5.1 mV/(m/s²)] sensitivity
- 0.7 Hz to 8000 Hz frequency range
- 20 gram (0.7 oz) weight
- ± 100 g (980 m/s²) amplitude range

Recommended cables and accessories 29 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: B, J, Q, W — see pages xvii to xx for option information

Actual Size

Model 353B32 — Top connector installs with small footprint

- 50 mV/g [5.1 mV/(m/s²)] sensitivity
- 0.7 Hz to 8000 Hz frequency range
- 20 gram (0.7 oz) weight
- ± 100 g (980 m/s²) amplitude range

Recommended cables and accessories 20 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: B, J, Q, W — see pages xvii to xx for option information

Model 353B33 — Side connector simplifies cable routing and strain relief

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.7 Hz to 6500 Hz frequency range
- 27 gram (0.95 oz) weight
- ± 50 g (490 m/s²) amplitude range

Recommended cables and accessories 29 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: B, J, Q, W — see pages xvii to xx for option information

Actual Size

Model 353B34 — Top connector installs with small footprint

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.7 Hz to 7000 Hz frequency range
- 27 gram (0.95 oz) weight
- ± 50 g (490 m/s²) amplitude range

Recommended cables and accessories 29 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: B, J, Q, W — see pages xvii to xx for option information

THROUGH HOLE

(complete specifications are featured on page 1.11)

Through hole mounting configurations install conveniently, with a through bolt, may be rotated to achieve desired orientation of their electrical connection, and are low in profile, which permits use in tight installations.

TEDS

COMPATIBLE

Model 355B33 — High sensitivity, thermally stable

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 1 Hz to 10 kHz frequency range
- 11 gram (0.39 oz) weight
- 50 g (490 m/s²) amplitude range

Recommended cables and accessories **@@** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: T — see pages xvii to xx for option information

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 1 Hz to 7000 Hz frequency range
- 11 gram (0.39 oz) weight
- 500 g (4900 m/s²) amplitude range

Recommended cables and accessories @@ — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: T — see pages xvii to xx for option information

Actual Size

Actual Size

CE

0.63

0.14 (3.6) Dia

Thru Hole

	ters	-						
Model Number ^[1]	353	B11	353	B12	353	B13	353	B14
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	5 mV/g	0.51 mV/(m/s ²)	5 mV/g	0.51 mV/(m/s ²)	5 mV/g	0.51 mV/(m/s ²)	5 mV/g	0.51 mV/(m/s ²)
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%
Measurement Range	± 1000 g pk	± 9800 m/s² pk	± 1000 g pk	± 9800 m/s² pk	± 1000 g pk	± 9800 m/s² pk	± 1000 g pk	± 9800 m/s² pk
Frequency Range (± 5%)	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz
Frequency Range (± 10%)	0.7 to 18k Hz	0.7 to 18k Hz	0.7 to 20k Hz	0.7 to 20k Hz	0.7 to 20k Hz	0.7 to 20k Hz	0.7 to 18k Hz	0.7 to 18k Hz
Resonant Frequency	≥ 70 kHz	≥ 70 kHz	≥ 70 kHz	≥ 70 kHz	≥ 70 kHz	≥ 70 kHz	≥ 70 kHz	≥ 70 kHz
Broadband Resolution (1 to 10k Hz)	0.01 g rms	0.1 m/s ² rms	0.01 g rms	0.1 m/s ² rms	0.01 g rms	0.1 m/s ² rms	0.01 g rms	0.1 m/s ² rms
Non-Linearity ^[2]	≤ 1%	≤1%	≤ 1%	≤1%	≤ 1%	≤1%	≤1%	≤1%
Transverse Sensitivity	≤ 5%	≤5%	≤ 5%	≤5%	≤ 5%	≤ 5%	≤5%	≤5%
Environmental								
Overload Limit (Shock)	±10k gpk	± 98k m/s² pk	±10k gpk	± 98k m/s² pk	±10k gpk	± 98k m/s² pk	± 10k g pk	± 98k m/s² pk
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	\leq 100 ohms	≤ 100 ohms
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC
Discharge Time Constant	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec
Physical								
Sensing Element	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Weight	0.07 oz	2.0 gm	0.05 oz	1.5 gm	0.06 oz	1.7 gm	0.06 oz	1.8 gm
Size (Hex × Height)	5/16 in × 0.43 in	5/16 in × 10.9 mm	9/32 in $\times \ 0.58$ in	9/32 in × 14.7 mm	9/32 in × 0.49 in	9/32 in × 12.4 mm	9/32 in $\times \ 0.74$ in	9/32 × 18.8 mm
Electrical Connection	5-44 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack	Integral Cable	Integral Cable	10-32 Coaxial Jack	10-32 Coaxial Jack
Electrical Connection Position	Side	Side	Тор	Тор	Side	Side	Тор	Тор
Cable Termination	N/A	N/A	N/A	N/A	10-32 Coaxial Plug	10-32 Coaxial Plug	N/A	N/A
Cable Length	N/A	N/A	N/A	N/A	10 ft	3.0 m	N/A	N/A
Cable Type ^[3]	N/A	N/A	N/A	N/A	031AD010EB	031AD010EB	N/A	N/A
Mounting Thread	5-40 Male	5-40 Male	5-40 Male	5-40 Male	5-40 Male	5-40 Male	5-40 Male	5-40 Male
Supplied Accessories ^[3]								
Petro Wax	080	A109	080	A109	080	JA109	080A	109
Adhesive Mounting Base	080	JA15	080	A15	08	UA15	080	15
NIST Calibration [4]	AL	;8-1	AC	5-1	A	CS-1	ACS	-1
Additional Accessories ^[3]	000	100	000	400	00	0.4.00	000	
Magnetic Mounting Base	080	JAJU	080	A30	80	0A3U	4080	130
Irlaxial Wounting Adaptor				IB 10	08			
Iviating Lable Connectors	AF	, AG	AF,	AG		AL	EB, AH, A	ΑΚ, ΑVV
Connector Adaptor	N 000	010	IN	/A	U/		N/	4
Recommended Stock Lables	003	, U18	003	, U18	ľ	V/A	002,	002
Uptions ⁽⁵⁾								
Available Uptions	A, B, J,	M, U, W	A, B, J,	M, U, W	A, B, J,	м, U, W	A, B, J, N	/I, U, W
NOTES: [1] See note regard [3] See section 4 of this catalog	ding accuracy of i for cable and acc	nformation on insid cessory information	e front cover. [2] [4] See page 1.1	Zero-based, least-so 30 for calibration in	quares, straight line formation. [5] See	method. pages xvii to xx for	option informatior	

	Miniature Precision Quartz Shear ICP® Accelerometer Specifications							
Model Number ^[1]	353B15 🕸 353B16 🕪 353B17 🕻		17 👁	353E	318 🜑			
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%
Measurement Range	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk
Frequency Range (± 5%)	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz
Frequency Range (± 10%)	0.7 to 18k Hz	0.7 to 18k Hz	0.7 to 20k Hz	0.7 to 20k Hz	0.7 to 20k Hz	0.7 to 20k Hz	0.7 to 18k Hz	0.7 to 18k Hz
Resonant Frequency	≥ 70 kHz	≥ 70 kHz	≥ 70 kHz	≥70 kHz	$\geq 70 \text{ kHz}$	≥70 kHz	\geq 70 kHz	≥ 70 kHz
Broadband Resolution (1 to 10k Hz)	0.005 g rms	0.05 m/s ² rms	0.005 g rms	0.05 m/s ² rms	0.005 g rms	0.05 m/s² rms	0.005 g rms	0.05 m/s² rms
Non-Linearity ^[2]	≤ 1%	≤ 1%	≤ 1%	≤ 1%	≤ 1%	≤ 1%	≤ 1%	≤ 1%
Transverse Sensitivity	≤ 5%	≤ 5%	≤ 5%	≤ 5%	≤ 5%	≤5%	≤ 5%	≤ 5%
Environmental								
Overload Limit (Shock)	±10k gpk	± 98k m/s² pk	±10k g pk	± 98k m/s² pk	± 10k g pk	± 98k m/s² pk	± 10k g pk	± 98k m/s² pk
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC
Discharge Time Constant	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec
Physical								
Sensing Element	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Weight	0.07 oz	2.0 gm	0.05 oz	1.5 gm	0.06 oz	1.7 gm	0.06 oz	1.8 gm
Size (Hex × Height)	5/16 in × 0.43 in	5/16 in × 10.9 mm	9/32 in × 0.67 in	9/32 in × 17.0 mm	9/32 in × 0.49 in	9/32 in × 12.4 mm	9/32 in × 0.74 in	9/32 in × 18.8 mm
Electrical Connection	5-44 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack	Integral Cable	Integral Cable	10-32 Coaxial Jack	10-32 Coaxial Jack
Electrical Connection Position	Side	Side	Тор	Тор	Тор	Тор	Тор	Тор
Cable Termination	N/A	N/A	N/A	N/A	10-32 Coaxial Plug	10-32 Coaxial Plug	N/A	N/A
Cable Length	N/A	N/A	N/A	N/A	10 ft	3 m	N/A	N/A
Cable Type ^[3]	N/A	N/A	N/A	N/A	031AD010EB	031AD010EB	N/A	N/A
Mounting Thread	5-40 Male	5-40 Male	5-40 Male	5-40 Male	5-40 Male	5-40 Male	5-40 Male	5-40 Male
Supplied Accessories [3]								
Petro Wax	0804	109	080A109		080A109		080A109	
Adhesive Mounting Base	080	A15	080	A15	80	0A15	080/	A15
NIST Calibration [4]	AC	S-1	AC	S-1	А	CS-1	ACS	5-1
Additional Accessories ^[3]								
Magnetic Mounting Base	080	A30	080	A30	30	0A30	080	430
Triaxial Mounting Adaptor	080	B16	080	IB16	08	0B16	080	316
Mating Cable Connectors	ΔF	AG	ΔF	AG		AI	FR AH	AK AW
Connector Adaptor	, u,	/Δ	, u,	/Δ	07	ΠΔΠ2	EB, / (1),	Δ
Becommended Stock Cables	UU3	018	UU3	018	07	N/A	ΠΝ/ ΠΠ2	002
Antions [5]	003,	010	003,	010		*// `	002,	002
						M 0 W		4.0.14
	A, B, J, I	VI, U, VV	A, B, J,	IVI, U, W	A, B, J	, IVI, U, VV	A, B, J, I	vi, U, VV
NUIES: [1] See note regar	aing accuracy of i	ntormation on insid	e front cover. [2] A	∠ero-based, least-s	quares, straight line	method.		

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

Precision Quartz Shear ICP® Accelerometers

General Purpose Precision Quartz Shear ICP® Accelerometer Specifications								
Model Number ^[1]	353B01		353B02		353B03 🚸		353B04 🚸	
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	20 mV/g	2.04 mV/(m/s ²)	20 mV/g	2.04 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s2)	10 mV/g	1.02 mV/(m/s ²)
Sensitivity Tolerance	± 5%	± 5%	± 5%	± 5%	± 5%	± 5%	± 5%	± 5%
Measurement Range	± 250 g pk	± 2450 m/s² pk	± 250 g pk	± 2450 m/s² pk	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk
Frequency Range (± 5%)	1 to 7000 Hz	1 to 7000 Hz	1 to 7000 Hz	1 to 7000 Hz	1 to 7000 Hz	1 to 7000 Hz	1 to 7000 Hz	1 to 7000 Hz
Frequency Range (± 10%)	0.7 to 10k Hz	0.7 to 10k Hz	0.7 to 10k Hz	0.7 to 10k Hz	0.7 to 11k Hz	0.7 to 11k Hz	0.7 to 11k Hz	0.7 to 11k Hz
Resonant Frequency	≥38 kHz	≥ 38 kHz	≥ 38 kHz	≥ 38 kHz	≥ 38 kHz	≥38 kHz	≥ 38 kHz	≥ 38 kHz
Broadband Resolution (1 to 10k Hz)	0.005 g rms	0.05 m/s² rms	0.005 g rms	0.05 m/s ² rms	0.003 g rms	0.03 m/s ² rms	0.003 g rms	0.03 m/s ² rms
Non-Linearity ^[2]	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤ 1 %	≤1 %
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %
Environmental			_				_	
Overload Limit (Shock)	±10k gpk	± 98k m/s² pk	±10k gpk	± 98k m/s² pk	±10k gpk	± 98k m/s² pk	± 10k g pk	± 98k m/s² pk
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC
Discharge Time Constant	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec
Physical								
Sensing Element	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Size (Hex × Height)	1/2 in × 0.81 in	1/2 in × 20.6 mm	1/2 in × 1.19 in	1/2 in × 30.2 mm	$1/2\ \text{in} \times 0.81\ \text{in}$	1/2 in × 20.6 mm	1/2 in × 1.14 in	1/2 in × 29.0 mm
Weight	0.35 oz	10 gm	0.35 oz	10 gm	0.38 oz	10.5 gm	0.38 oz	10.5 gm
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack
Electrical Connection Position	Side	Side	Тор	Тор	Side	Side	Тор	Тор
Mounting Thread	10-32 Female	10-32 Female	10-32 Female	10-32 Female	10-32 Female	10-32 Female	10-32 Female	10-32 Female
Supplied Accessories ^[3]								
Petro Wax	0804	A109	080/	A109	080	DA109	080A	109
Adhesive Mounting Base	08	0A	08	0A	080A		080A	
Mounting Stud	081	B05	081	B05	081B05		081B05	
Metric Mounting Stud	M08	1B05	M08	1B05	M081B05		M081B05	
NIST Calibration [4]	AC	S-1	AC	S-1	A	CS-1	ACS	S-1
Additional Accessories [3]								
Magnetic Mounting Base	080	A27	080	A27	08	0A27	0804	427
Triaxial Mounting Adaptor	080B10		080B10		080B10		080B10	
Mating Cable Connectors	EB, AH, AK, AW		EB, AH, AK, AW		EB, AH, AK, AW		EB, AH, AK, AW	
Recommended Stock Cables	002, 003		002, 003		002, 003		002, 003	
Options ^[5]								
Available Options	B, J,	0, W	B, J,	Q, W	B, J, Q, W B, J, Q, W			2, W
NOTES: [1] See note regard	ding accuracy of i	information on insid	e front cover. [2]	Zero-based, least-so	quares, straight line	method.		
[3] See section 4 of this catalog	for cable and acc	cessory information	. [4] See page 1.1	30 for calibration in	formation. [5] See	page xvii to xx for o	ption information.	

Precision Quartz Shear ICP® Accelerometers

General Purpose Precision Quartz Shear ICP® Accelerometer Specifications								
Model Number ^[1]	353	B31	353B32		353B33 🚸		353B34	
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	50 mV/g	5.10 mV/(m/s ²)	50 mV/g	5.10 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)
Sensitivity Tolerance	± 5%	± 5%	± 5%	± 5%	± 5%	± 5%	± 5%	± 5%
Measurement Range	± 100 g pk	± 980 m/s² pk	± 100 g pk	± 980 m/s² pk	± 50 g pk	± 490 m/s² pk	± 50 g pk	± 490 m/s² pk
Frequency Range (± 5%)	1 to 5000 Hz	1 to 5000 Hz	1 to 5000 Hz	1 to 5000 Hz	1 to 4000 Hz	1 to 4000 Hz	1 to 4000 Hz	1 to 4000 Hz
Frequency Range (± 10%)	0.7 to 8000 Hz	0.7 to 8000 Hz	0.7 to 8000 Hz	0.7 to 8000 Hz	0.7 to 6500 Hz	0.7 to 6500 Hz	0.7 to 7000 Hz	0.7 to 7000 Hz
Resonant Frequency	\geq 30 kHz	≥ 30 kHz	≥ 28 kHz	≥ 28 kHz	≥ 22 kHz	≥ 22 kHz	≥ 22 kHz	≥ 22 kHz
Broadband Resolution (1 to 10k Hz)	0.001 g rms	0.01 m/s ² rms	0.001 g rms	0.01 m/s ² rms	0.0005 g rms	0.005 m/s ² rms	0.0005 g rms	0.005 m/s ² rms
Non-Linearity [2]	≤ 1 %	≤ 1 %	≤ 1 %	≤1 %	≤ 1 %	≤1 %	≤ 1 %	≤ 1 %
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %
Environmental								
Overload Limit (Shock)	±10k gpk	± 98000 m/s² pk	±10k g pk	± 98k m/s² pk	±10k gpk	± 98k m/s² pk	±10k g pk	± 98k m/s² pk
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	20 to 30 VDC	20 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	≤ 100 ohms	≤ 100 ohms						
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	7.5 to 11.5 VDC	7.5 to 11.5 VDC	7.5 to 11.5 VDC	7.5 to 11.5 VDC
Discharge Time Constant	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec
Physical								
Sensing Element	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Size (Hex × Height)	3/4 in × 0.85 in	3/4 in × 21.6 mm	3/4 in × 1.18 in	3/4 in × 29.9 mm	3/4 in × 0.93 in	3/4 in × 23.6 mm	3/4 in × 1.26 in	3/4 in × 32.0 mm
Weight	0.7 oz	20 gm	0.7 oz	20 gm	0.95 oz	27 gm	0.95 oz	27 gm
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack						
Electrical Connection Position	Side	Side	Тор	Тор	Side	Side	Тор	Тор
Mounting Thread	10-32 Female	10-32 Female						
Supplied Accessories ^[3]								
Petro Wax	080A	109	0804	A109	080	DA109	080A	109
Adhesive Mounting Base	080A	A12	080	A12	08	0A12	0804	A12
Mounting Stud	081E	305	081	B05	08	1B05	081E	305
Metric Mounting Stud	M081	B05	M08	1B05	MO	81B05	M081	B05
NIST Calibration [4]	AC	S-1	AC	S-1	A	CS-1	ACS	5-1
Additional Accessories ^[3]								
Magnetic Mounting Base	080A	\27	080	A27	08	0A27	0804	427
Triaxial Mounting Adaptor	080E	311	080	B11	08	0B11	080	311
Mating Cable Connectors	EB, AH, A	AK, AW	EB, AH,	AK, AW	EB, AH	, AK, AW	EB, AH, A	AK, AW
Recommended Stock Cables	002,	003	002,	003	002	2, 003	002,	003
Options ^[5]	-		-					
Available Options	B, J, (1, W	B, J,	0, W	B, J	, Q, W	B, J, (D, W
NOTES: [1] See note regarding accuracy of information on inside front cover. [2] Zero-based, least-squares, straight line method.								

Model Number ^[1]	355	B33	355B34				
Performance	English	SI	English	SI			
Sensitivity	100 mV/g	10.2 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)			
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%			
Measurement Range	± 50 g pk	± 490 m/s² pk	± 500 g pk	± 4900 m/s² pk			
Frequency Range (± 5%)	2 to 5000 Hz	2 to 5000 Hz	2 to 5000 Hz	2 to 5000 Hz			
Frequency Range (± 10%)	1 to 10k Hz	1 to 10k Hz	1 to 7000 Hz	1 to 7000 Hz			
Resonant Frequency	$\geq 25 \text{ kHz}$	≥ 25 kHz	≥ 25 kHz	≥ 25 kHz			
Broadband Resolution (1 to 10k Hz)	0.0005 g rms	0.005 m/s² rms	0.001 g rms	0.01 m/s ² rms			
Non-Linearity ^[2]	≤ 1%	≤1%	≤1%	≤1%			
Transverse Sensitivity	≤ 5%	≤ 5%	≤ 5%	≤ 5%			
Environmental							
Overload Limit (Shock)	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk			
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C			
Electrical							
Excitation Voltage	22 to 30 VDC	22 to 30 VDC	19 to 30 VDC	19 to 30 VDC			
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA			
Output Impedance	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms			
Output Bias Voltage	11 to 14 VDC	11 to 14 VDC	8 to 12 VDC	8 to 12 VDC			
Discharge Time Constant	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec			
Electrical Isolation (Base)	$> 10^8$ ohms	$> 10^8$ ohms	$> 10^8$ ohms	$> 10^8$ ohms			
Physical							
Sensing Element	Quartz	Quartz	Quartz	Quartz			
Sensing Geometry	Shear	Shear	Shear	Shear			
Housing Material	Titanium	Titanium	Titanium	Titanium			
Sealing	Hermetic	Hermetic	Hermetic	Hermetic			
Size (Height × Length × Width)	0.40 i 10.2 mm ×	n × 0.70 in × 0.63 in 17.8 mm × 15.9 mm	0.40 in × 0.70 in × 0.63 in 10.2 mm × 17.8 mm × 15.9 mm				
Weight	0.39 oz	11 gm	0.39 oz	11 gm			
Electrical Connector	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack			
Electrical Connection Position	Side	Side	Side	Side			
Mounting	Through Hole	Through Hole	Through Hole	Through Hole			
Supplied Accessories ^[3]							
Petro Wax	080/	A109	080/	A109			
Cap Screw	081	A45	081A45				
Allen wrench	039A22		039A22				
NIST Calibration [4]	AC	S-1	ACS-1				
Additional Accessories ^[3]							
Mating Cable Connectors	EB, EJ, Ał	H, AK, AW	EB, EJ, AH, AK, AW				
Recommended Stock Cables	002,	003	002, 003				
Mounting Adaptor	ng Adaptor 080M260 080M260						
Options ^[5]							
Available Options T T							
NOTES: [1] See note regard [2] Zero-based, least-squares, str [3] See section 4 of this catalog [4] See page 1.130 for calibration [5] See page xvii to xx for option	ing accuracy of infor aight line method. for cable and access n information. information	rmation on inside fro	ont cover.				

PCB accelerometers are meticulously assembled by skilled technicians.

PCB accelerometers are used for modal studies of airframes as well as ground vibration testing and flight testing.

Ceramic Shear ICP[®] Accelerometers

- Low amplitude vibration measurements
- High frequency vibrations
- Minimized mass loading effects
- Space restricted installations
- Low profile accelerometers
- Ring shaped accelerometers

Structured with highly sensitive piezoceramic sensing elements, Ceramic Shear ICP® Accelerometers have an excellent signal-to-noise ratio, high measurement resolution, and are ideal for conducting low-level vibration measurements. Due to their inherent higher sensitivity, a ceramic ICP® accelerometer can be assembled with a smaller mass than comparable quartz units, resulting in a sensor with lighter weight, higher frequency response, and lower noise.

To further reduce the mass of the sensors, all ceramic shear accelerometers are housed in either tough, lightweight, laser-welded, hermetically sealed, titanium or aluminum housings. By minimizing the mass of the sensor, mass loading effects are reduced, which maximizes the accuracy of the data obtained.

These sensors use shear-mode designs that minimize extraneous signals caused by base bending and other strain effects, such as thermal transient compression, and expansion forces.

Through the use of built-in electronics, these ICP[®] accelerometers are powered by low-cost, constant-current, signal conditioners. Sensor power and signal output are simultaneously carried on a two-wire pair. The low-impedance voltage output signal results in reduced electrical noise while long cable runs are permitted when necessary.

A wide assortment of ceramic shear ICP[®] accelerometers are offered to meet a variety of measurement requirements.

Ceramic Shear ICP[®] Accelerometers

TEARDROP

(complete specifications are featured on pages 1.24 to 1.25)

■ circuit boards

€

2× Actual Size

■ components

0.156 (3.96)

small assemblies

ATTACHED MODEL 030A10 COAXIAL CABLE, 10 FT. (3 m)

3-56 PLUG TO 10-32 PLUG

Teardrop style accelerometers are very small and lightweight, exhibit minimum mass loading effects and install adhesively into tight locations.

brackets

Model 352C23 — PCB's smallest ICP[®] accelerometer with coaxial connector

- 5 mV/g [0.51 mV/(m/s²)] sensitivity
- 1.5 Hz to 15 kHz frequency range
- 0.2 gram (0.007 oz) weight
- 1000 g (9800 m/s2) amplitude range
- Adhesive mount
- Electrically ground isolated
- Mating cable provided

Recommended cables and accessories $\ (3) \ \Theta \ -$ see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

Model 352A21 — Robust titanium construction

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 13 kHz frequency range
- 0.6 gram (0.02 oz) weight
- 500 g (4900 m/s² amplitude range
- Adhesive mount
- Mating cable provided

2× Actual Size

Recommended cables and accessories **30** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: none

Model 352C22 — Lightweight, anodized, aluminum construction

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 13 kHz frequency range
- 0.5 gram (0.17 oz) weight
- 500 g (4900 m/s²) amplitude range
- Adhesive mount
- Electrically ground isolated
- Mating cable provided

Recommended cables and accessories B -see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

1.14 PCB PIEZOTRONICS, INC. 🅿 716-684-0001
TEARDROP Ceramic Shear ICP® Accelerometers (continued)

Model 352A24 — Lightweight, high-sensitivity, anodized, aluminum construction

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.8 Hz to 10 kHz frequency range
- 0.8 gram (0.03 oz) weight
- 50 g (490 m/s²) amplitude range
- Adhesive mount
- Electrically ground isolated
- Mating cable provided

Recommended cables and accessories $\ (3) \ (6)$ — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

Model 352A25 — Robust titanium construction, higher measurement range

- 2.5 mV/g [0.25 mV/(m/s²)] sensitivity
- 0.7 Hz to 13 kHz frequency range
- 0.6 gram (0.02 oz) weight
- 2000 g (19.6k m/s²) amplitude range
- Adhesive mount
- Mating cable provided

Recommended cables and accessories $\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{G}}\ensuremath{\mathfrak{G}\ensuremath{\mathfrak{$

2× Actual Size

MINIATURE

(complete specifications are featured on pages 1.26 to 1.29))

Miniature accelerometers are especially well suited for applications demanding high frequency range, small size, and light weight.

- NVH studies
- printed circuit boards
- card cages and chassis
- brackets

- thin panels
- shrouds
- conduits
- bearings

Model 352B10 — Lightweight, hermetically-sealed, titanium construction, adhesively installs with small footprint and achieves very high frequency range

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 1 Hz to 17 kHz frequency range
- 0.7 gram (0.03 oz) weight
- 500 g (4900 m/s²) amplitude range
- Adhesive mount

Recommended cables and accessories $\, {\ensuremath{\mathfrak{G}}} \,$ — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: W — see pages xvii to xx for option information

Model 352B01 — Lightweight, hermetically-sealed, titanium construction, adhesively installs with small footprint and achieves very high frequency range

- 1 mV/g [0.1 mV/(m/s²)] sensitivity
- 1 Hz to 20 kHz frequency range
- 0.7 gram (0.03 oz) weight
- 5000 g (49k m/s²) amplitude range
- Adhesive mount

Recommended cables and accessories $\, {\ensuremath{\mathfrak{S}}} \,$ — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

Actual Size

Model 352C65 — Side connector provides low profile, simplifies cable routing and strain relief

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.3 Hz to 12 kHz frequency range
- 2 gram (0.07 oz) weight
- 50 g (490 m/s²) amplitude range

Recommended cables and accessories **①●** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, HT, J, M, W — see pages xvii to xx for option information

MINIATURE Ceramic Shear ICP® Accelerometers (continued)

Model 352C15 — Side connector provides low profile, simplifies cable routing and strain relief

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 18 kHz frequency range
- 2 gram (0.07 oz) weight
- 500 g (4900 m/s²) amplitude range

Recommended cables and accessories **①●** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, J, M, W — see pages xvii to xx for option information CE

Actual Size

CE

Model 352C66 — Installs with small footprint

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.3 Hz to 12 kHz frequency range
- 2 gram (0.07 oz) weight
- 50 g (490 m/s²) amplitude range

Recommended cables and accessories ${}^{\textcircled{OO}}$ — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, HT, J, M, W — see pages xvii to xx for option information

Model 352C16 — Installs with small footprint

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 16 kHz frequency range
- 2 gram (0.07 oz) weight
- 500 g (4900 m/s²) amplitude range

Recommended cables and accessories OO — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, J, M, W — see pages xvii to xx for option information

ptions: A, J, M, W — see pages xvii to xx for option information

Model 352C67 — Installs with small footprint, low profile

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.3 Hz to 12 kHz frequency range
- 2 gram (0.07 oz) weight

Dimensions shown are in inches (millimeters).

- 50 g (490 m/s²) amplitude range
- Field repairable, integral cable

Recommended cables and accessories $\ensuremath{\mathfrak{G}}$ — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, HT, J, M, W — see pages xvii to xx for option information

5–44 Connector

9/32 Hex

5-40 Thd

Actual Size

CE

Actual Size

0.10 (2.5

Actual Size

1.17

MINIATURE Ceramic Shear ICP® Accelerometers (continued)

Model 352C17 — Installs with small footprint, low profile

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 16 kHz frequency range
- 2 gram (0.07 oz) weight
- 500 g (4900 m/s²) amplitude range
- Field repairable, integral cable

Recommended cables and accessories (3) — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, J, M, W — see pages xvii to xx for option information

Actual Size

Model 352C68 — 10-32 connector joins to cables common to most accelerometers

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.3 Hz to 12 kHz frequency range
- 2 gram (0.07 oz) weight
- 50 g (490 m/s²) amplitude range

Recommended cables and accessories 20 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, HT, J, M, W — see pages xvii to xx for option information

Actual Size

CE

Model 352C18 — 10-32 connector joins to cables common to most accelerometers

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.07 Hz to 18 kHz frequency range
- 2 gram (0.07 oz) weight
- 500 g (4900 m/s²) amplitude range

```
Recommended cables and accessories 20 — see page 4.2
Select an ICP® sensor signal conditioner from those featured in section 3
Options: A, J, M, W — see pages xvii to xx for option information
```


Actual Size

CE

Model 352A60 — Achieves extremely high frequencies

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 5 Hz to 60 kHz frequency range (± 3 dB)
- 6 gram (0.21 oz) weight
- 500 g (4900 m/s²) amplitude range

Recommended cables and accessories **10** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

MINIATURE Ceramic Shear ICP® Accelerometers (continued)

Model 352C41 — Lightweight, adhesive mount, ideal for structural testing

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.3 Hz to 15 kHz frequency range
- 2.8 gram (0.10 oz) weight
- 500 g (4900 m/s²) amplitude range
- Adhesive mount

Recommended cables and accessories 20 — see page 4.2

CE

Actual Size

Actual Size

10-32 Connector

3/8 Hex

Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

Model 352C42 — Lightweight, adhesive mount, ideal for structural testing

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.3 Hz to 15 kHz frequency range
- 2.8 gram (0.10 oz) weight
- 50 g (490 m/s²) amplitude range
- Adhesive mount

Recommended cables and accessories 29 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

Model 352C43 — Lightweight, adhesive mount, ideal for structural testing

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.5 Hz to 10 kHz frequency range
- 3 gram (0.10 oz) weight
- 500 g (4900 m/s²) amplitude range
- Adhesive mount
- · Electrically ground isolated

0.38 (9.7)

0.24 1(6.1)

Recommended cables and accessories 29 — see page 4.2 Select an $\mathsf{ICP}^{\scriptscriptstyle \otimes}$ sensor signal conditioner from those featured in section 3 Options: none

Model 352C44 — Lightweight, adhesive mount, ideal for structural testing

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.5 Hz to 10 kHz frequency range
- 3 gram (0.1 oz) weight
- 50 g (490 m/s²) amplitude range
- Adhesive mount
- · Electrically ground isolated

Recommended cables and accessories 20 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: HT — see pages xvii to xx for option information

Actual Size

Actual Size

1.19

MINIATURE Ceramic Shear ICP® Accelerometers (continued)

THROUGH HOLE (complete specifications are featured on page 1.31)

Through hole mounting configurations install conveniently, with a through bolt, may be rotated to achieve desired orientation of their electrical connection, and are low in profile, which permits use in tight installations.

Model 355B12 — PCB's smallest through hole mount accelerometer

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.6 Hz to 15 kHz frequency range
- 2.3 gram (0.08 oz) weight
- 500 g (4900 m/s²) amplitude range
- Electrically ground isolated

Recommended cables and accessories OO — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information PCB

Actual Size

CE

THROUGH HOLE Ceramic Shear ICP® Accelerometers (continued)

Model 355B02 — High range

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.6 Hz to 12 kHz frequency range
- 10 gram (0.35 oz) weight
- 500 g (4900 m/s²) amplitude range
- · Electrically ground isolated

Recommended cables and accessories 20 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, M, W — see pages xvii to xx for option information

Œ

Actual Size

Model 355B03 — General purpose

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.6 Hz to 12 kHz frequency range
- 10 gram (0.35 oz) weight
- 50 g (490 m/s²) amplitude range
- Electrically ground isolated

Recommended cables and accessories 20 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3

Actual Size

Model 355B04 — High sensitivity

1000 mV/g [102 mV/(m/s²)] sensitivity

Options: A, M, W — see pages xvii to xx for option information

- 0.6 Hz to 12 kHz frequency range
- 11.2 gram (0.4 oz) weight
- 5 g (49 m/s²) amplitude range
- · Electrically ground isolated

Recommended cables and accessories 29 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: M, W — see pages xvii to xx for option information

CE

HIGH RESOLUTION

(complete specifications are featured on pages 1.32 to 1.33)

High resolution accelerometers possess excellent signalto-noise ratios for conducting very low amplitude vibration and motion measurements.

• Model 352C33 — Good choice for general purpose vibration and low amplitude shock measurements

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.3 Hz to 15 kHz frequency range
- 5.8 gram (0.20 oz) weight
- 50 g (490 m/s²) amplitude range

Recommended cables and accessories $@ \Theta -$ see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: J, T, W - see pages xvii to xx for option information

Model 352C03 — Good choice for high amplitude vibration and medium amplitude shock measurements

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.3 Hz to 15 kHz frequency range
- 5.8 gram (0.20 oz) weight
- 500 g (4900 m/s²) amplitude range

Recommended cables and accessories @@ — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: J, T, W — see pages xvii to xx for option information

Actual Size

TEDS

Model 352C34 — Good choice for general purpose vibration and low amplitude shock measurements

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.3 Hz to 15 kHz frequency range
- 5.8 gram (0.20oz) weight
- 50 g (490 m/s²) amplitude range

Recommended cables and accessories @@ — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: J, T, W — see pages xvii to xx for option information

Model 352C04 — Good choice for high amplitude vibration and medium amplitude shock measurements

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.3 Hz to 15 kHz frequency range
- 5.8 gram (0.20 oz) weight
- 500 g (4900 m/s²) amplitude range

Recommended cables and accessories **@@** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: J, T, W — see pages xvii to xx for option information

HIGH RESOLUTION Ceramic Shear ICP® Accelerometers (continued)

Model 352B — Provides high sensitivity, good resolution, and high frequency in a small size

- 1000 mV/g [102 mV/(m/s²)] sensitivity
- 1 Hz to 15 kHz frequency range
- 25 gram (0.9 oz) weight
- 5 g (49 m/s²) amplitude range

Recommended cables and accessories $@ \Theta -$ see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: J, W - see pages xvii to xx for option information

Teardrop Ceramic Shear ICP [®] Accelerometer Specifications								
Model Number ^[1]	352A2	21 🚱	3520	22 🚯	352C23 🐠			
Performance	English	SI	English	SI	English	SI		
Sensitivity	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	5 mV/g	0.51 mV/(m/s ²)		
Sensitivity Tolerance	± 15%	± 15%	± 15%	± 15%	± 15%	± 15%		
Measurement Range	± 500 g pk	\pm 4900 m/s ² pk	± 500 g pk	\pm 4900 m/s ² pk	± 1000 g pk	± 9800 m/s² pk		
Frequency Range (± 5%)	1.0 to 10k Hz	1.0 to 10k Hz	1.0 to 10k Hz	1.0 to 10k Hz	2.0 to 10k Hz	2.0 to 10k Hz		
Frequency Range (± 10%)	0.7 to 13k Hz	0.7 to 13k Hz	0.7 to 13k Hz	0.7 to 13k Hz	1.5 to 15k Hz	1.5 to 15k Hz		
Resonant Frequency	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz	≥ 70 kHz	≥ 70 kHz		
Broadband Resolution (1 to 10k Hz)	0.002 g rms	0.02 m/s ² rms	0.002 g rms	0.02 m/s ² rms	0.003 g rms	0.03 m/s² rms		
Non-Linearity ^[2]	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %		
Transverse Sensitivity	≤ 5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %		
Environmental								
Overload Limit (Shock)	±10k g pk	± 98k m/s² pk	± 10k g pk	± 98k m/s² pk	±10k gpk	± 98k m/s² pk		
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C		
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC		
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA		
Output Impedance	≤ 300 ohms	≤ 300 ohms	≤ 300 ohms	≤ 300 ohms	≤ 200 ohms	≤ 200 ohms		
Output Bias Voltage	7 to 11 VDC	7 to 11 VDC	7 to 11 VDC	7 to 11 VDC	7 to 11 VDC	7 to 11 VDC		
Discharge Time Constant	1.0 to 3.5 sec	1.0 to 3.5 sec	1.0 to 3.5 sec	1.0 to 3.5 sec	0.1 to 1.0 sec	0.1 to 1.0 sec		
Electrical Isolation (Base)	N/A	N/A	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms		
Physical								
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic		
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear		
Housing Material	Titanium	Titanium	Anodized Aluminum	Anodized Aluminum	Anodized Aluminum	Anodized Aluminum		
Sealing	Ероху	Ероху	Ероху	Ероху	Ероху	Ероху		
Size (Height × Length × Width)	0.1	4 in × 0.45 in × 0.25 in	0.1	4 in × 0.45 in × 0.25 in	0.11 in × 0.34 in × 0.16 in			
Weight	(3.6 m) 0.02 oz	m × 11.4 mm × 6.4 mm) Ω 6 am	(3.6 mr 0.017.oz	n × 11.4 mm × 6.4 mm) 0.5 am	(2.8 i 0.007 oz	mm × 8.6 mm × 4.1 mm) Ω 2 am		
Electrical Connection	3-56 Coaxial Jack	3-56 Coaxial Jack	3-56 Coaxial Jack	3-56 Coaxial Jack	3-56 Coaxial Jack	3-56 Coaxial Jack		
Electrical Connection Position	Side	Side	Side	Side	Side	Side		
Mounting	Adhesive	Adhesive	Adhesive	Adhesive	Adhesive	Adhesive		
Supplied Accessories ^[3]	Autorivo	Autosive	Autosivo	Autonivo	Autorivo	Autorive		
Petro Wax	080A	109	0804	109	080A	109		
Quick Bonding Gel		-		_		-		
Removal Tool	039A	27	039	A27	039/	A26		
Cable	030A	10	030	A10	030/	A10		
NIST Calibration [4]	ACS	-1	AC	S-1	ACS	S-1		
Additional Accessories ^[3]								
Mating Cable Connectors	EK	(E	К	E	ĸ		
Recommended Stock Cables	030	D	03	30	03	80		
Options ^[5]								
Available Options	NA	A	N	A	N	A		
NOTES: [1] See note regard	ling accuracy of informati	ion on inside front cover.	[2] Zero-based, least-squ	uares, straight line metho	od.			

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

Teardrop Ceramic Shear ICP® Accelerometer Specifications							
Model Number [1]	352A2	24 👁	352	A25			
Performance	English	SI	English	SI			
Sensitivity	100 mV/g	10.2 mV/(m/s ²)	2.5 mV/g	0.25 mV/(m/s ²)			
Sensitivity Tolerance	± 10%	± 10%	± 15%	± 15%			
Measurement Range	± 50 g pk	\pm 490 m/s ² pk	± 2000 g pk	± 19.6k m/s² pk			
Frequency Range (± 5%)	1.0 to 8000 Hz	1.0 to 8000 Hz	1.0 to 10k Hz	1.0 to 10k Hz			
Frequency Range (± 10%)	0.8 to 10k Hz	0.8 to 10k Hz	0.7 to 13k Hz	0.7 to 13k Hz			
Resonant Frequency	≥ 30 kHz	\geq 30 kHz	≥ 80 kHz	≥ 80 kHz			
Broadband Resolution (1 to 10k Hz)	0.0002 g rms	0.002 m/s ² rms	0.01 g rms	0.1 m/s ² rms			
Non-Linearity ^[2]	≤1 %	≤ 1 %	≤1 %	≤1 %			
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %			
Environmental							
Overload Limit (Shock)	± 5000 g pk	\pm 49k m/s ² pk	± 10k g pk	± 98k m/s² pk			
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C			
Electrical							
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC			
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA			
Output Impedance	≤ 300 ohms	\leq 300 ohms	\leq 300 ohms	\leq 300 ohms			
Output Bias Voltage	8 to 12 VDC 8 to 12 VDC		7 to 11 VDC	7 to 11 VDC			
Discharge Time Constant	0.4 to 1.5 sec	0.4 to 1.5 sec	1.0 to 3.5 sec	1.0 to 3.5 sec			
Electrical Isolation (Base)	> 10 ⁸ ohms	$> 10^8$ ohms	N/A	N/A			
Physical							
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic			
Sensing Geometry	Shear	Shear	Shear	Shear			
Housing Material	Anodized Aluminum	Anodized Aluminum	Titanium	Titanium			
Sealing	Ероху	Epoxy	Ероху	Ероху			
Size (Height × Length × Width)	0	.19 in × 0.48 in × 0.28 in	0.14 in × 0.45 in × 0.25 in				
Weight	0.03 oz	0.8 am	0.02 oz	0.6 am			
Electrical Connection	3-56 Coaxial Jack	3-56 Coaxial Jack	3-56 Coaxial Jack	3-56 Coaxial Jack			
Electrical Connection Position	Side	Side	Side	Side			
Mounting	Adhesive	Adhesive	Adhesive	Adhesive			
Supplied Accessories ^[3]							
Petro Wax	0804	109	080	A109			
Quick Bonding Gel		_	080	A90			
Removal Tool	039/	A28	039	A27			
Cable	030/	A10	030	A10			
NIST Calibration ^[4]	L AC:	S-1	AC	S-1			
Additional Accessories ^[3]							
Mating Cable Connectors	E	K	E	K			
Recommended Stock Cables	03	30	0	30			
Uptions 10							
Available Options	N	A	Ν	IA			
NUTES: [1] See note regard [2] Zero-based, least-squares, st [4] Commun. 1.100 (commun.)	ling accuracy of information are information [3] Straight line method. [3] Straight formation [5] 2	tion on inside front cover See section 4 of this cata	log for cable and accesso	ry information.			

[4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

Miniature Ceramic Shear ICP® Accelerometer Specifications								
Model Number ^[1]	352	B01	352B10 🚸		352C15		352C16	
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	1 mV/g	0.1 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)
Sensitivity Tolerance	± 15%	± 15%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%
Measurement Range	± 5000 g pk	± 49k m/s² pk	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk
Frequency Range (± 5%)	2 to 10k Hz	2 to 10k Hz	2 to 10k Hz	2 to 10k Hz	1 to 12k Hz	1 to 12k Hz	1 to 12k Hz	1 to 12k Hz
Frequency Range (± 10%)	1 to 20k Hz	1 to 20k Hz	1 to 17k Hz	1 to 17k Hz	0.7 to 18k Hz	0.7 to 18k Hz	0.7 to 16k Hz	0.7 to 16k Hz
Resonant Frequency	≥ 65 kHz	≥65 kHz	≥65 kHz	≥65 kHz	$\geq 50 \text{ kHz}$	≥50 kHz	$\geq 50 \text{ kHz}$	≥ 50 kHz
Broadband Resolution (1 to 10k Hz)	0.02 g rms	0.2 m/s ² rms	0.003 g rms	0.03 m/s ² rms	0.0005 g rms	0.005 m/s² rms	0.0005 g rms	0.005 m/s² rms
Non-Linearity ^[2]	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤ 5 %	≤5 %
Environmental								
Overload Limit (Shock)	±10k gpk	± 98k m/s² pk	±10k g.pk	± 98k m/s² pk	±10k gpk	± 98k m/s² pk	± 10k g pk	± 98k m/s² pk
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C
Electrical								
Excitation Voltage	18 to 30_VDC	18 to 30 VDC	18 to 30_VDC	18 to 30_VDC	18 to 30_VDC	18 to 30 VDC	18 to 30_VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	< 200_ohms	< 200 ohms	< 200_06 hms	< 200 ohms	< 100 ohms	< 100 ohms	< 100 ohms	< 100 ohms
Output Bias Voltage	7 to 11 VDC	7 to 11 VDC	7 to 11 VDC	7 to 11 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC
Discharge Time Constant	0.3 to 1.0 sec	0.3 to 1.0 sec	0.3 to 1.0 sec	0.3 to 1.0 sec	0.4 to 1.2 sec	0.4 to 1.2 sec	0.4 to 1.2 sec	0.4 to 1.2 sec
Electrical Isolation	N/A	N/A	N/A	N/A	Optional	Optional	Optional	Optional
Physical								
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Size (Hex × Height)		0.32 in \times 0.24 in $^{[8]}$).32 in × 0.24 in ^[8]		5/16 in × 0.43 in		9/32 in × 0.67 in
	8)	l.1 mm × 6.1 mm) ^[8]	(8.	1 mm × 6.1 mm) ^[8]	(5/16 in × 10.9 mm)		(9/32 in × 17.0 mm)	
Weight	0.03 oz	0.7 gm	0.03 oz	0.7 gm	0.07 oz	2.0 gm	0.07 oz	2.0 gm
Electrical Connection	Integral Cable ^[7]	Integral Cable ^[7]	Integral Cable ^[7]	Integral Cable ^[7]	5-44 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack
Electrical Connection Position	Тор	Тор	Тор	Тор	Side	Side	Тор	Тор
Cable Termination	10-32 Coaxial Plug	10-32 Coaxial Plug	10-32 Coaxial Plug	10-32 Coaxial Plug	N/A	N/A	N/A	N/A
Cable Length	10 ft	3 m	10 ft	3 m	N/A	N/A	N/A	N/A
Cable Type ^[3]	030AD010EB	030AD010EB	030AD010EB	030AD010EB	N/A	N/A	N/A	N/A
Mounting Thread	Adhesive	Adhesive	Adhesive	Adhesive	5-40 Male	5-40 Male	5-40 Male	5-40 Male
Supplied Accessories ^[3]								
Petro Wax	080A	109	080/	A109	08	DA109	080A	109
Quick Bonding Gel	0804	\90	080	A90				-
Adhesive Mounting Base		-	-	_	30	0A15	0804	\15
NIST Calibration [4]	ACS	5-1	AC	S-1	А	CS-1	ACS	5-1
Additional Accessories ^[3]								
Magnetic Mounting Base	N/.	A	N	/Α	30	0A30	0804	\30
Triaxial Mounting Adaptor	N/.	A	N	/Α	30	0B16	080E	316
Mating Cable Connectors	Al	-	A	L	A	F, AG	AF, J	AG
Connector Adaptor	0704	402	070	A02		N/A	N/	A
Recommended Stock Cables	N/	A	N	/A	00	3, 018	003,	018
Options ^[5]								
Available Options	N/	A	V	V	А, Ј	, M, W	A, J, N	л, W
NOTES: [1] See note rega	rding accuracy of i	nformation on insid	e front cover. [2]	Zero-based, least-so	quares, straight line	method.	-	

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

[7] Supplied with cable attached to solder pins on sensor. [8] Height \times Diameter.

Miniature Ceramic Shear ICP® Accelerometer Specifications									
Model Number ^[1]	352	C17	352	C18	352	352C41		352C42	
Performance	English	SI	English	SI	English	SI	English	SI	
Sensitivity	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)	
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	
Measurement Range	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk	± 50 g pk	± 490 m/s² pk	
Frequency Range (± 5%)	1 to 12k Hz	1 to 12k Hz	1 to 12k Hz	1 to 12k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	
Frequency Range (± 10%)	0.7 to 16k Hz	0.7 to 16k Hz	0.7 to 18k Hz	0.7 to 18k Hz	0.3 to 15k Hz	0.3 to 15k Hz	0.3 to 15k Hz	0.3 to 15k Hz	
Resonant Frequency	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz	≥ 30 kHz	≥30 kHz	≥ 30 kHz	≥ 30 kHz	
Broadband Resolution (1 to 10k Hz)	0.0005 g rms	0.005 m/s ² rms	0.0005 g rms	0.005 m/s ² rms	0.0008 g rms	0.008 m/s ² rms	0.0005 g rms	0.005 m/s ² rms	
Non-Linearity ^[2]	≤1 %	≤ 1 %	≤1 %	≤1 %	≤ 1 %	≤1 %	≤1 %	≤1 %	
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	
Environmental									
Overload Limit (Shock)	±10k gpk	± 98k m/s² pk	±10k gpk	± 98k m/s² pk	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk	
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	
Electrical									
Excitation Voltage	18 to 30_VDC	18 to 30 VDC	18 to 30_VDC	18 to 30 VDC	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	
Output Impedance	< 100 ohms	< 100 ohms	< 100 ohms	< 100 ohms	< 200_comms	< 200_00 mms	< 200 ohms	< 200_ohms	
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 14 VDC	8 to 14 VDC	8 to 14 VDC	8 to 14 VDC	
Discharge Time Constant	0.4 to 1.2 sec	0.4 to 1.2 sec	0.4 to 1.2 sec	0.4 to 1.2 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	
Electrical Isolation	Optional	Optional	Optional	Optional	N/A	N/A	N/A	N/A	
Physical									
Sensing Element	Ceramic	Ceramic	Coramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	
Sensing Geometry	Shear	Shoar	Shear	Shear	Shear	Shear	Shear	Shear	
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	
Size (Hex × Height)	9/32 in × 0.67 in	9/32 in × 17.0 mm	9/32 in × 0.74 in	9/32 in × 18.8 mm	3/8 in × 0.38 in	3/8 in × 9.7 mm	3/8 in × 0.38 in	3/8 in × 9.7 mm	
Weight	0.07 07	2.0 am	0.07 oz	2.0 gm	0.10 07	2.8 am	0.10 07	2.8 am	
Electrical Connection	Integral Cable [7]	Integral Cable ^[7]	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	
Electrical Connection Position	Тор	Тор	Тор	Тор	Тор	Тор	Тор	Тор	
Cable Termination	10-32 Coaxial Plug	10-32 Coaxial Plug	N/A	N/A	N/A	N/A	N/A	N/A	
Cable Length	10 ft	3 m	N/A	N/A	N/A	N/A	N/A	N/A	
Cable Type ^[3]	031AD010EB	031AD010EB	N/A	N/A	N/A	N/A	N/A	N/A	
Mounting Thread	5-40 Male	5-40 Male	5-40 Male	5-40 Male	Adhesive	Adhesive	Adhesive	Adhesive	
Supplied Accessories ^[3]									
Petro Wax	080A	109	080	4109	080	DA109	080A	109	
Quick Bonding Gel		-	-	_	08	0A90	0804	\90	
Adhesive Mounting Base	0804	415	080	A15		—	-	-	
NIST Calibration [4]	ACS	S-1	AC	S-1	A	CS-1	ACS	-1	
Additional Accessories ^[3]			_						
Magnetic Mounting Base	0804	430	080	A30	1	N/A	N/	A	
Triaxial Mounting Adaptor	080E	316	080	IB16	1	N/A	N/.	Α	
Mating Cable Connectors	Al	L	EB, AH,	AK, AW	EB, AH	I, AK, AW	EB, AH, /	AK, AW	
Connector Adaptor	0704	402	N	/A	1	N/A	N/	Α	
Recommended Stock Cables	N/	A	002	, 003	002	2, 003	002,	003	
Options ^[5]									
Available Options	A, J, N	Л, W	A, J,	M, W	1	N/A	N/	Α	
NOTES: [1] See note regar	ding accuracy of i	information on insid	e front cover. [2]	Zero-based, least-so	quares, straight line	method.			

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information. [7] Supplied with cable attached to solder pins on sensor.

Miniature Ceramic Shear ICP® Accelerometer Specifications								
Model Number [1]	352C4	43 🐠	352	C44	352A56		352A60	
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	10 mV/g	1.02 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 15%	± 15%
Measurement Range	± 500 g pk	± 4900 m/s² pk	± 50 g pk	± 490 m/s² pk	± 50 g pk	± 490 m/s² pk	± 500 g pk	± 4900 m/s² pk
Frequency Range (± 5%)	1 to 8000 Hz	1 to 8000 Hz	1 to 8000 Hz	1 to 8000 Hz	0.5 to 10k Hz	0.5 to 10k Hz	N/A	N/A
Frequency Range (± 10%)	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	N/A	N/A	5 to 60k Hz [6]	5 to 60k Hz ^[6]
Resonant Frequency	≥ 30 kHz	≥ 30 kHz	$\geq 30 \text{ kHz}$	≥ 30 kHz	$\ge 45 \text{ kHz}$	$\ge 45 \text{ kHz}$	≥ 95 kHz	≥ 95 kHz
Broadband Resolution (1 to 10k Hz)	0.0008 g rms	0.008 m/s ² rms	0.0005 g rms	0.0005 g rms	0.0006 g rms	0.006 m/s ² rms	0.002 g rms	0.02 m/s ² rms
Non-Linearity [2]	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %
Transverse Sensitivity	≤5 %	≤ 5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %
TEDS Compliant	N/A	N/A	N/A	N/A	Yes	Yes	N/A	N/A
Environmental								
Overload Limit (Shock)	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to 250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	20 to 30 VDC	20 to 30 VDC	22 to 30 VDC	22 to 30 VDC	18 to 30 VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 30 VDC	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	< 200 ohms	< 200_ohms	< 600_0hms	< 600 ohms	< 200 ohms	< 200_0hms	< 100 ohms	< 100 ohms
Output Bias Voltage	8 to 14 VDC	8 to 14 VDC	8 to 14 VDC	8 to 14 VDC	8.5 to 14.5 VDC	8.5 to 14.5 VDC	8 to 12 VDC	8 to 12 VDC
Discharge Time Constant	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 1.5 sec	0.5 to 1.5 sec	0.02 to 0.06 sec	0.02 to 0.06 sec
Electrical Isolation	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	N/A	N/A	N/A	N/A
Physical								
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Stainless Steel	Stainless Steel
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Size (Hex × Height)	7/16 in × 0.42 in	7/16 in × 10.7 mm	7/16 in × 0.42 in	7/16 in × 10.7 mm	$0.26 \times 0.57 \times 0.30$ in $^{[7]}$	6.6 × 14.5 × 7.6 mm ^[7]	3/8 in × 0.81 in	3/8 in × 20.6 mm
Weight	0.10 oz	3.0 gm	0.10 oz	3.0 gm	0.06 oz	1.8 gm	0.21 oz	6 gm
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack
Electrical Connection Position	Тор	Тор	Тор	Тор	Side	Side	Тор	Тор
Cable Termination	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cable Length	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cable Type ^[3]	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Mounting Thread	Adhesive	Adhesive	Adhesive	Adhesive	Adhesive	Adhesive	10-32 Male	10-32 Male
Supplied Accessories ^[3]								
Petro Wax	080A	109	080/	A109	08	DA109		-
Quick Bonding Gel	0804	490	080	A90		—		-
Removal Tool		-	_	_	03	9A31		-
NIST Calibration [4]	ACS	S-1	AC	S-1	A	CS-1	ACS	S-1
Additional Accessories [3]								
Magnetic Mounting Base	N/	A	N	/A		N/A	N/	A
Triaxial Mounting Adaptor	N/	A	N	/A		N/A	N/	A
Mating Cable Connectors	EB, AH, A	AK, AW	EB, AH,	AK, AW	A	F, AG	AF, A	AG
Connector Adaptor	N/	A	N	/A		N/A	N/	A
Recommended Stock Cables	002,	003	002	, 003	00	3, 018	003,	018
Options ^[5]								
Available Options	N/	A	ŀ	IT	TLA,	TLB, TLC	N/	A
NOTES: [1] See note rega	rding accuracy of i	nformation on insid	e front cover. [2]	Zero-based, least-s	- quares, straight line	method.		

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

[6] Frequency Range ± 3 dB. [7] Height × Length × Width.

Miniature Ceramic Shear ICP® Accelerometer Specifications								
Model Number [1]	35200	65 🐠	352C	66 🐠	3520	67 👁	352C68 🚸	
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	100 mV/g	10.2 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%
Measurement Range	± 50 g pk	± 490 m/s² pk	± 50 g pk	± 490 m/s² pk	± 50 g pk	± 490 m/s² pk	± 50 g pk	± 490 m/s² pk
Frequency Range (± 5%)	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz
Frequency Range (± 10%)	0.3 to 12k Hz	0.3 to 12k Hz	0.3 to 12k Hz	0.3 to 12k Hz	0.3 to 12k Hz	0.3 to 12k Hz	0.3 to 12k Hz	0.3 to 12k Hz
Resonant Frequency	≥ 35 kHz	≥35 kHz	≥ 35 kHz	≥ 35 kHz	≥ 35 kHz	≥ 35 kHz	≥ 35 kHz	≥ 35 kHz
Broadband Resolution (1 to 10k Hz)	0.00016 g rms	0.0015 m/s ² rms	0.00016 g rms	0.0015 m/s ² rms	0.00016 g rms	0.0015 m/s ² rms	0.00016 g rms	0.0015 m/s ² rms
Non-Linearity ^[2]	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤ 1 %	≤1 %
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %
Environmental								
Overload Limit (Shock)	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk
Temperature Range (Operating)	-65 to +200 °F	-54 to +93 °C	-65 to +200 °F	-54 to +93 °C	-65 to +200 °F	-54 to +93 °C	-65 to +200 °F	-53 to +93 °C
Electrical								
Excitation Voltage	18 to 30_VDC	18 to 30 VDC	18 to 30_VDC	18 to 30 VDC	18 to 30_VDC	18 to 30 VDC	18 to 30_VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	< 300 ohms	< 300 ohms	< 300 ohms	< 300 ohms	< 300 ohms	< 300 ohms	< 300 ohms	< 300 ohms
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC
Discharge Time Constant	0.8 to 2.4 sec	0.8 to 2.4 sec	0.8 to 2.4 sec	0.8 to 2.4 sec	0.8 to 2.4 sec	0.8 to 2.4 sec	0.8 to 2.4 sec	0.8 to 2.4 sec
Electrical Isolation	Optional	Optional	Optional	Optional	Optional	Optional	Optional	Optional
Physical								
Sensing Element	Ceramic	Coramic	Ceramic	Ceramic	Coramic	Ceramic	Ceramic	Ceramic
Sonsing Coomote	Shoar	Shoar	Shoar	Shoar	Shoar	Shoar	Cerdinic	Shoar
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Size (Hex × Height)	5/16 in × 0.42 in	5/16 in × 10.7 mm	9/32 in × 0.66 in	9/32 in × 16.8 mm	9/32 in × 0.54 in	9/32 in × 13.7 mm	9/32 in × 0.73 in	9/32 in × 18.5 mm
Weight	0.07 oz	2.0 gm	0.07 oz	2.0 gm	0.07 oz	2.0 gm	0.07 oz	2.0 gm
Electrical Connection	5-44 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack	Integral Cable [7]	Integral Cable [7]	10-32 Coaxial Jack	10-32 Coaxial Jack
Electrical Connection Position	Side	Side	Тор	Тор	Тор	Тор	Тор	Тор
Cable Termination	N/A	N/A	N/A	N/A	10-32 Coaxial Plug	10-32 Coaxial Plug	N/A	N/A
Cable Length	N/A	N/A	N/A	N/A	10 ft	3 m	N/A	N/A
Cable Type ^[3]	N/A	N/A	N/A	N/A	031AD010EB	031AD010EB	N/A	N/A
Mounting Thread	5-40 Male	5-40 Male	5-40 Male	5-40 Male	5-40 Male	5-40 Male	5-40 Male	5-40 Male
Supplied Accessories ^[3]								
Petro Wax	080A	109	080	A109	080	DA109	080A	109
Quick Bonding Gel	_	-	-	_		_	_	-
Adhesive Mounting Base	0804	A15	080	A15	80	0A15	0804	16
NIST Calibration [4]	ACS	S-1	AC	S-1	A	CS-1	ACS	-1
Additional Accessories ^[3]								
Magnetic Mounting Base	0804	\30	080	A30	80	0A30	080	\30
Triaxial Mounting Adaptor	080E	316	080	IB16	80	0B16	080	316
Mating Cable Connectors	AF, J	AG	AF,	AG		AL	EB, AH, J	AK, AW
Connector Adaptor	N/	A	N	/Α	07	0A02	N/	A
Recommended Stock Cables	003,	018	003	, 018		N/A	002,	003
Options ^[5]								
Available Options	A, HT, J	, M, W	A, HT, .	J, M, W	A, HT,	J, M, W	A, HT, J	M, W
NOTES: [1] See note regar	rding accuracy of i	nformation on insid	e front cover. [2]	Zero-based, least-so	quares, straight line	method.		

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information. [6] Frequency Range ± 3 dB.

Low Profile Ceramic Shear ICP $^{\circ}$							
Accelerom	eter Specificatio	ons					
Model Number [1]	338(C04					
Performance	English	SI					
Sensitivity	100 mV/g	10.2 mV/(m/s ²)					
Sensitivity Tolerance	± 10%	± 10%					
Measurement Range	± 50 g pk	± 490 m/s² pk					
Frequency Range (± 5%)	0.5 to 10k Hz	0.5 to 10k Hz					
Frequency Range (± 10%)	0.3 to 12k Hz	0.3 to 12k Hz					
Resonant Frequency	≥ 35 kHz	≥ 35 kHz					
Broadband Resolution (1 to 10k Hz)	0.00018 g rms	0.0018 m/s ² rms					
Non-Linearity ^[2]	≤1%	≤1%					
Transverse Sensitivity	≤ 5%	≤ 5%					
Environmental							
Overload Limit (Shock)	± 5000 g pk	± 49k m/s² pk					
Temperature Range (Operating)	-65 to +200 °F	-53 to +93 °C					
Electrical							
Excitation Voltage	18 to 30 VDC	18 to 30 VDC					
Constant Current Excitation	2 to 20 mA	2 to 20 mA					
Output Impedance	≤ 300 ohms	≤ 300 ohms					
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC					
Discharge Time Constant	0.8 to 2.4 sec	0.8 to 2.4 sec					
Physical							
Sensing Element	Ceramic	Ceramic					
Sensing Geometry	Shear	Shear					
Housing Material	Titanium	Titanium					
Sealing	Hermetic	Hermetic					
Size (Hex × Height)	9/16 in × 0.30 in	9/16 × 7.6 mm					
Weight	0.16 oz	4.6 gm					
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack					
Electrical Connection Position	Side	Side					
Mounting Thread	10-32 Male	10-32 Male					
Supplied Accessories ^[3]	000410	0					
Petro Wax	U8UA IL)9 2					
Adnesive Mounting Base	080A1	2					
Additional Accessories ^[3]	700 1						
Magnetic Mounting Base	N/A						
Triaxial Mounting Adaptor	080B1	0					
Mating Cable Connectors	EB, AH, AK	, AW					
Recommended Stock Cables	018, 002,	003					
Options ^[5]							
Available Options	A, M,	W					
NOTES:							
[1] See note regarding accuracy o	f information on inside f	front cover.					
[2] Zero-based, least-squares, stra	ight line method.						
[3] See section 4 of this catalog for	or cable and accessory i	nformation.					
[3] See section 4 of this catalog for cable and accessory information.[4] See page 1.130 for calibration information.							

[5] See page xvii to xx for option information.

Through Hole Ceramic Shear ICP $^{\circ}$ Accelerometer Specifications								
Model Number ^[1]	355	B02	355	B03	355	iB04	355	iB12
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	10 mV/g	1.02 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)	1000 mV/g	102 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s2)
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%
Measurement Range	± 500 g pk	± 4900 m/s² pk	± 50 g pk	± 490 m/s² pk	±5 g pk	± 49 m/s² pk	± 500 g pk	± 4900 m/s² pk
Frequency Range (± 5%)	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz	1 to 10k Hz	1 to 8000 Hz	1 to 8000 Hz	1 to 10k Hz	1 to 10k Hz
Frequency Range (± 10%)	0.6 to 12k Hz	0.6 to 12k Hz	0.6 to 12k Hz	0.6 to 12k Hz	0.6 to 12k Hz	0.6 to 12k Hz	0.6 to 15k Hz ^[6]	0.6 to 15k Hz ^[6]
Resonant Frequency	$\geq 35 \text{ kHz}$	≥35 kHz	≥ 35 kHz	≥ 35 kHz	$\ge 30 \text{ kHz}$	≥30 kHz	≥ 50 kHz	≥ 50 kHz
Broadband Resolution (1 to 10k Hz)	0.0005 g rms	0.005 m/s ² rms	0.0001 g rms	0.0009 m/s ² rms	0.0001 g rms	0.001 m/s ² rms	0.0005 g rms	0.005 m/s² rms
Non-Linearity ^[2]	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %
Environmental								
Overload Limit	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk	±10k g pk	± 98k m/s² pk
Temperature Range	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +200 °F	-54 to +93 °C	-65 to +250 °F	-54 to +121 °C
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 4 mA	2 to 4 mA	2 to 20 mA	2 to 20 mA
Output Impedance	≤ 100 ohms	≤ 100 ohms	≤ 200 ohms	≤ 200 ohms	≤ 1000 ohms	≤ 1000 ohms	≤ 100 ohms	≤ 100 ohms
Output Bias Voltage	7 to 13 VDC	7 to 13 VDC	7 to 13 VDC	7 to 13 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC
Discharge Time Constant	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec
Electrical Isolation (Base)	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms ^[7]	>10 ⁸ ohms ^[7]
Physical								
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Size (Height \times Length \times Width)	0.40 ir	$n\times0.95$ in $\times0.63$ in	0.40 in	× 0.95 in × 0.63 in	0.40 ir	1×0.95 in $\times 0.63$ in	0.23 in	\times 0.65 in \times 0.38 in
	(10.2 mm × 2	24.1 mm × 16.0 mm)	(10.2 mm × 24	l.1 mm × 16.0 mm)	(10.2 mm × 2	4.1 mm × 16.0 mm)	(5.84 mm × 1	6.4 mm × 9.6 mm)
Weight	0.35 oz	10 gm	0.35 oz	10 gm	0.4 oz	11.2 gm	0.08 oz	2.3 gm
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack
Electrical Connection Position	Side	Side	Side	Side	Side	Side	Side	Side
Nounting	Inrough Hole	Inrough Hole	I hrough Hole	I hrough Hole	Inrough Hole	Inrough Hole	I hrough Hole	I hrough Hole
Supplied Accessories ^{13]}	0004	010	000	1010	00	1010		
	080A		080/	4019	080	1445	0014	- [8]
Lap Screw	180	145	180	A45	80	1A45	0204	
Allen Wrench	0394	AZZ	039	AZZ	03	9AZZ	0394	1
NIST Calibration (*)	ALS)-	AL	2-1	А	68-1	AUS)-
Additional Accessories ^[3]								
Magnetic Mounting Base	N/	A	N	/A		N/A	N/.	A
Triaxial Mounting Adaptor	N/	A	N	/A	1	N/A	N/.	A
Mating Cable Connectors	EB, AH, A	AK, AW	EB, AH,	AK, AW	EB, AH	I, AK, AW	AF, A	AG
Recommended Stock Cables	002,	003	002	003	00	2, 003	018, 00	2, 003
Options ^[5]								
Available Options	A, M	, W	A, N	1, W	N	1, W	N	1
NOTES: [1] See note regar	ding accuracy of i	information on insid	e front cover. [2]	Zero-based, least-so	quares, straight line	method.		

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

[6] Approximately 13 kHz with off ground washer. [7] Only when using off ground washer. [8] Includes off ground washer.

High Resolution Ceramic Shear ICP $^{\circ}$ Accelerometer Specifications							
Model Number [1]	352	В	352C(3 🐠	352C04		
Performance	English	SI	English	SI	English	SI	
Sensitivity	1000 mV/g	102 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	
Sensitivity Tolerance	± 5%	± 5%	± 10%	± 10%	± 10%	± 10%	
Measurement Range	±5 g pk	\pm 49 m/s ² pk	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk	
Frequency Range (± 5%)	2 to 10k Hz	2 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	
Frequency Range (± 10%)	1 to 15k Hz	1 to 15k Hz	0.3 to 15k Hz	0.3 to 15k Hz	0.3 to 15k Hz	0.3 to 15k Hz	
Resonant Frequency	≥ 25 kHz	$\geq~25~kHz$	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz	$\ge 50 \text{ kHz}$	
Broadband Resolution (1 to 10k Hz)	0.00008 g rms	0.0008 m/s ² rms	0.0005 g rms	0.005 m/s ² rms	0.0005 g rms	0.005 m/s² rms	
Non-Linearity ^[2]	≤1%	≤1%	≤ 1%	≤ 1%	≤1%	≤1%	
Transverse Sensitivity	≤ 5 %	≤5 %	≤ 5 %	≤5 %	≤5 %	≤ 5 %	
Environmental							
Overload Limit	± 1000 g pk	± 9800 m/s² pk	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk	
Temperature Range	-65 to +200 °F	-54 to +93 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	
Electrical							
Excitation Voltage	20 to 30 VDC	20 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	
Output Impedance	≤ 500 ohms	≤ 500 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	
Output Bias Voltage	8 to 14 VDC	8 to 14 VDC	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC	
Discharge Time Constant	0.1 to 0.6 sec	0.1 to 0.6 sec	1.0 to 2.5 sec	1.0 to 2.5 sec	1.0 to 2.5 sec	1.0 to 2.5 sec	
Physical							
Sensina Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	
Size (Hex × Height)	3/4 in×1.10 in	3/4 × 27.9 mm	7/16 in × 0.62 in	7/16 in × 15.7 mm	7/16 in × 0.88 in	7/16 in × 22.4 mm	
Weight	0.9 oz	25 gm	0.20 oz	5.8 gm	0.20 oz	5.8 gm	
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	
Electrical Connection Position	Тор	Тор	Side	Side	Тор	Тор	
Mounting	10-32 Female	10-32 Female	10-32 Female	10-32 Female	10-32 Female	10-32 Female	
Supplied Accessories ^[3]							
Petro Wax	080A1	09	0804	A109	080/	109	
Adhesive Mounting Base	A080	12	08	0A	08	DA	
Mounting Stud	081B0	05	081	B05	081	B05	
Metric Mounting Stud	M081E	305	M08	1805	M08	1805	
NIST Calibration [4]	ACS-	-1	AC	S-1	AC	S-1	
Additional Accessories [3]							
Magnetic Mounting Base	080A2	27	080	A27	080.	A27	
Triaxial Mounting Adaptor	080B	11	080	B10	080	B10	
Mating Cable Connectors	EB, AH, A	K, AW	EB, AH,	AK, AW	EB, AH,	AK, AW	
Recommended Stock Cables	002, 0	03	002,	003	002,	003	
Options ^[5]							
Available Options	J, W	V	J, T	, W	J, T	, W	
NOTES: [1] See note regard	ling accuracy of information	on on inside front cover.	[2] Zero-based, least-squ	uares, straight line metho	od.		

High Resolution Ceramic Shear ICP $^{\circ}$ Accelerometer Specifications								
Model Number ^[1]	352C3	3 🐠	352C3	84 👁				
Performance	English	SI	English	SI				
Sensitivity	100 mV/g	10.2 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)				
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%				
Measurement Range	± 50 g pk	± 490 m/s² pk	± 50 g pk	± 490 m/s² pk				
Frequency Range (± 5%)	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz				
Frequency Range (± 10%)	0.3 to 15k Hz	0.3 to 15k Hz	0.3 to 15k Hz	0.3 to 15k Hz				
Resonant Frequency	≥50 kHz	$\ge 50 \text{ kHz}$	$\geq 50 \text{ kHz}$	≥ 50 kHz				
Broadband Resolution (1 to 10k Hz)	0.00015 g rms	0.0015 m/s ² rms	0.00015 g rms	0.0015 m/s ² rms				
Non-Linearity ^[2]	≤1%	≤ 1%	≤ 1%	≤ 1%				
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %				
Environmental								
Overload Limit	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk				
Temperature Range	-65 to +200 °F	-54 to +93 °C	-65 to +200 °F -54 to +93 °C					
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC				
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA				
Output Impedance	< 200 ohms	< 200 ohms	< 200 ohms	< 200 ohms				
Output Bias Voltage	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC				
Discharge Time Constant	1.0 to 2.5 sec	1.0 to 2.5 sec	1.0 to 2.5 sec	1.0 to 2.5 sec				
Physical								
Sonoing Element	Coromio	Coromio	Coromio	Coromio				
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic				
Sensing decinetry	Titonium	Titonium	Titonium	Titonium				
Sooling	Hormotic	Hormotic	Hormotic	Hormotic				
Size (Hex × Height)	7/16 in x 0.62 in	7/16 in × 15.7 mm	7/16 in × 0.88 in	7/16 in × 22.4 mm				
Weight	0.20 07	5.8 gm	0.20 07	58 am				
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack				
Electrical Connection Position	Side	Side	Ton	Ton				
Mounting	10-32 Female	10-32 Female	10-32 Female	10-32 Female				
Supplied Accessories ^[3]								
Petro Wax	080A	109	0804	109				
Adhesive Mounting Base	080	A	08	0A				
Mounting Stud	081E	805	081	B05				
Metric Mounting Stud	M081	B05	M08	1B05				
NIST Calibration [4]	ACS	-1	AC	S-1				
Additional Accessories ^[3]								
Magnetic Mounting Base	080A	27	080	A27				
Triaxial Mounting Adaptor	080E	310	080	B10				
Mating Cable Connectors	EB, AH, A	AK, AW	EB, AH,	AK, AW				
Recommended Stock Cables	002,	003	002,	003				
Options ^[5]								
Available Options	J, T,	W	J, T	, W				
NOTES: [1] See note regard	ing accuracy of informat	ion on inside front cover.						
[2] Zero-based, least-squares, str	raight line method. [3] S	ee section 4 of this catal	og tor cable and accessor	y information.				
[4] See page 1.130 for calibration	n information. [5] See pa	age xvii to xx for option ir	nformation.					

PCB accelerometers are used extensively throughout the automotive and aerospace industries to qualify designs, improve performance, and test structural integrity.

ICP[®] and Charge Output Triaxial Accelerometers

- Simultaneous x, y, and z axis measurements
- Engine vibration and NVH studies
- Modal analysis
- Road response tests
- Vehicle testing
- Flight testing
- Package testing
- Squeak and rattle

PCB's triaxial accelerometers simultaneously measure vibration or shock in three orthogonal directions. They are structured with three independent sensing elements oriented for response to motion along the x, y, and z axes. The elements are protected inside a precision-machined, laser-welded metallic housing.

Triaxial ICP® accelerometers feature built-in microelectronic signal conditioning circuitry which provides clean, lowimpedance voltage output signals capable of being transmitted over long cable lengths. Multi-conductor cable assemblies offer simple, single-point hook-up to the triaxial accelerometer and ease cable routing on and around the test specimen. Multi-channel signal conditioners are available for powering triaxial ICP® accelerometers and interfacing their measurement signals to readout, recording, and analysis instrumentation.

Charge output triaxial accelerometers are capable of operation to 490 °F (254 °C), permitting measurements in extreme environments and with existing charge amplified systems.

Triaxial accelerometers are available in a variety of sizes and sensitivities to suit specific application requirements. Choose miniature, lightweight units for high-frequency response, minimized mass loading, and installation in space restricted locations. Low profile designs are ideal for on-road or wind tunnel testing of exterior body panels. Through-hole mount units simplify axis and electrical connector orientation while controlling cable routing along the test specimen. Structural analysis units exhibit excellent phase response characteristics and are constructed of aluminum to yield the lowest mass for minimized mass loading effects. Filtered output units avoid high frequency overload as may be encountered with engine NVH and drive train measurements.

MINIATURE Triaxial ICP® Accelerometers

(complete specifications are featured on pages 1.43 to 1.44)

Miniature triaxial accelerometers are especially well suited

for applications demanding high frequency range, small

printed circuit boards

- thin panels
- structural testing
- modal analysis

CE

- brackets
- moving vehicles
- NVH
- wind tunnel testing

5 Ft Cable

0.36 (9.1)

vith 4-Pin

Model 356A01 — Smallest, cube shaped, triaxial accelerometer with integral cable

- 5 mV/g [0.5 mV/(m/s²)] sensitivity
- 2 Hz to 8000 Hz frequency range (± 5%)
- 1 gram (0.04 oz) weight
- ± 1000 g (9810 m/s²) amplitude range
- Adhesive mount

size, and light weight.

Recommended cables and accessories $\textcircled{O} \ -$ see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: HT — see pages xvii to xx for option information

Actual Size

Model 356B10 — High-range, cube shaped, triaxial accelerometer with integral cable

- 1.0 mV/g [0.1 mV/(m/s²)] sensitivity
- 2 Hz to 10 kHz frequency range (± 5%)
- 4 gram (0.14 oz) weight
- ± 5000 g (49k m/s²) amplitude range

Recommended cables and accessories **@ —** see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

Model 356B11 — General purpose, cube shaped, triaxial accelerometer with integral cable

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 2 Hz to 10 kHz frequency range (± 5%)
- 4 gram (0.14 oz) weight
- ± 500 g (4900 m/s²) amplitude range

Recommended cables and accessories **•••** — see page 4.2 Select an ICP^{••} sensor signal conditioner from those featured in section 3 Options: A, HT, J, W — see pages xvii to xx for option information

MINIATURE Triaxial ICP® Accelerometers (continued)

Model 356B20 — High-range, cube shaped, triaxial accelerometer with 4-pin connector

- 1 mV/g [0.1 mV/(m/s²)] sensitivity
- 2 Hz to 10 kHz frequency range (± 5%)
- 4 gram (0.14 oz) weight
- ± 5000 g (49k m/s²) amplitude range
- · Mating cable assembly provided

Recommended cables and accessories (5) — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: HT — see pages xvii to xx for option information CE O.40 (10.2) Cube 0.40 (10.2) Cube 5-40 Mtg Hole 2 Places

Mini 4-Pin

Connecto

Mini 4-Pin

5-40 Mtg Hole

2 Places

Model 356B21 — General purpose, cube-shaped, triaxial accelerometer with 4-pin connector

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 2 Hz to 10 kHz frequency range (± 5%)
- 4 gram (0.14 oz) weight
- ± 500 g (4900 m/s²) amplitude range
- · Mating cable assembly provided

Recommended cables and accessories (5) — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, HT, J — see pages xvii to xx for option information

Model 356A32 — Smallest, 100 mV/g triaxial accelerometer with 4-pin connector

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.7 Hz to 5000 Hz frequency range
- 5.4 gram (0.19 oz) weight
- \pm 50 g (491 m/s²) amplitude range
- Mating cable assembly provided

Recommended cables and accessories — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: T, TLA, TLB, TLC — see pages xvii to xx for option information CE 0.45 (11.4) 0

€

Actual Size

0.40 (10.2)

Model 356A24 — Lowest profile, lightweight, triaxial accelerometer with 4-pin connector

red s

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.5 Hz to 12 kHz frequency range
- 3.1 gram (0.11 oz) weight
- ± 500 g (4900 m/s²) amplitude range
- Adhesive mount
- · Mating cable assembly provided

Recommended cables and accessories (5) — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: HT, J — see pages xvii to xx for option information

MINIATURE Triaxial ICP® Accelerometers (continued)

Model 356A33 — General-purpose, cube-shaped, triaxial accelerometer with rugged 4-pin connector • 10 mV/g [1.02 mV/(m/s²)] sensitivity CE • 2 Hz to 10 kHz frequency range (± 5%) 0.77 (19.6) • 5.3 gram (0.19 oz) weight 0.40(10.2) • ± 500 g (4900 m/s²) amplitude range Cube 1/4-28 4-Pin Connector Recommended cables and accessories ④ — see page 4.2 5-40 Mtg Hole (2 Places) Select an ICP® sensor signal conditioner from those featured in section 3 Actual Size Options: HT — see pages xvii to xx for option information **GENERAL PURPOSE Triaxial ICP® Accelerometers** package drop testing motors and pumps (complete specifications are featured on page 1.45) automotive studies household appliances For routine, triaxial shock and vibration measurements. Model 356A02 — High range CE 10 mV/g [1.02 mV/(m/s²)] sensitivity 4-Pin Connector • 0.5 Hz to 6000 Hz frequency range TEDS 0.55 (14.0) Cube • 10.5 gram (0.37 oz) weight • ± 500 g (4900 m/s²) amplitude range 10-32 Mtg Hole Recommended cables and accessories **40** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Actual Size Options: HT, T, TLA, TLB, TLC — see pages xvii to xx for option information Model 356A25 — Mid range Œ • 25 mV/g [2.6 mV/(m/s²)] sensitivity 4-Pin Connector • 0.5 Hz to 6500 Hz frequency range

- 10.5 gram (0.37 oz) weight
- ± 200 g (1960 m/s²) amplitude range

Recommended cables and accessories **40** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

0.55 (14.0) 10–32 Mta Hole

GENERAL PURPOSE Triaxial ICP® Accelerometers (continued)

Model 356A15 — Low noise

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 1.4 Hz to 6500 Hz frequency range
- 10.5 gram (0.37 oz) weight
- ± 50 g range (490 m/s²) amplitude range

CE

Recommended cables and accessories **•••** — see page 4.2 Select an ICP^{••} sensor signal conditioner from those featured in section 3 Options: A, HT, J, T, TLA, TLB, TLC — see pages xvii to xx for option information

THROUGH HOLE Triaxial ICP® Accelerometers

(complete specifications are featured on page 1.46)

For general purpose or industrial use. Through hole mounting simplifies axis and connector orientation.

■ package drop testing

Actual Size

- motors and pumps
- automotive studies
- household appliances

Model 354C10 — Low profile

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 2 Hz to 8000 Hz frequency range (± 5%)
- 5 gram (0.18 oz) weight
- ± 500 g range (4900 m/s²) amplitude range
- Ground isolated

Recommended cables and accessories O — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

CE

Model 354C02 — General purpose

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.3 Hz to 4000 Hz frequency range
- 15.5 gram (0.55 oz) weight
- ± 500 g range (4900 m/s²) amplitude range
- Ground isolated

Recommended cables and accessories O — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, HT, M, T, W — see pages xvii to xx for option information

THROUGH HOLE Triaxial ICP® Accelerometers (continued)

Model 354C03 — Low noise

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.3 Hz to 4000 Hz frequency range
- 15.5 gram (0.55 oz) weight
- ± 50 g (490 m/s²) amplitude range
- Ground isolated

Recommended cables and accessories $\textcircled{O} \ = \$ see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, M, T, W — see pages xvii to xx for option information

HIGH TEMPERATURE Triaxial Charge-Output Piezoelectric Accelerometers

(complete specifications are featured on page 1.47)

High temperature, charge-output, triaxial accelerometers deliver high-impedance measurement signals directly from

Model 356A70 — Miniature, through-hole mount

- 2.7 pC/g [0.28 pC/(m/s²)] sensitivity
- 7000 Hz frequency range
- 7.9 gram (0.28 oz) weight
- \pm 500 g (4900 m/s²) amplitude range
- -94 to +490 $^{\circ}\text{F}$ (-70 to +254 $^{\circ}\text{C}) temperature range$

Recommended cables and accessories ① — see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP® sensor signal conditioner from those featured in section 3 Options: M, P — see pages xvii to xx for option information

Model 356A71 — High sensitivity

- 10 pC/g [1.02 pC/(m/s²)] sensitivity
- 7000 Hz frequency range
- 22.7 gram (0.8 oz) weight
- \pm 500 g (4900 m/s²) amplitude range
- -94 to +490 °F (-70 to +254 °C) temperature range

Recommended cables and accessories O — see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP® sensor signal conditioner from those featured in section 3

Options: M, P — see pages xvii to xx for option information

Actual Size

4 Pin Hermetic

1/4-28 UNF-2A Thread Connector

turbines

.

■ exhaust systems

their piezoelectric sensing elements. No internal circuitry

is used, which permits operation to extreme temperatures.

engines

sensitivity cy range t e range ries @ — see page 4.2 tioner from those featured in section 3 tioner for those featured in section 3 tioner from those featured in section 3

motors

steam pipes

1.40 PCB PIEZOTRONICS, INC. 🅿 716-684-0001

STRUCTURAL ANALYSIS ICP® ACCELEROMETERS

(complete specifications are featured on page 1.48)

Triaxial accelerometers for structural analysis are constructed of aluminum for lowest mass and exhibit excellent phase response and measurement resolution.

Model 356A16 — General purpose

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.3 Hz to 6000 Hz frequency range
- 7.4 gram (0.26 oz) weight
- ± 50 g (490 m/s²) amplitude range

Recommended cables and accessories **40** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, T — see pages xvii to xx for option information

Model 356A17 — Mid range

- 500 mV/g [51 mV/(m/s²)] sensitivity
- 0.3 Hz to 4000 Hz frequency range
- 9.3 gram (0.33 oz) weight
- ± 10 g range (98 m/s²) amplitude range

Recommended cables and accessories **40** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, J — see pages xvii to xx for option information

Model 356B18 — High sensitivity

- 1000 mV/g [102 mV/(m/s²)] sensitivity
- 0.3 Hz to 5000 Hz frequency range
- 25 gram (0.88 oz) lightweight aluminum housing
- ± 5 g range (49 m/s²) amplitude range
- 50 μg (0.5μm/s²) resolution

Recommended cables and accessories **40** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, J, M, T — see pages xvii to xx for option information

NVH

TEDS

COMPATIBLE

- structural testing
- vibration isolation
- optics
- micromachining

C€ 1/4-28 4-Pin Connector 0.55 (14.0) Cube 10-32 Mtg Hole

Actual Size

Actual Size

4-Pin CE Connector TEDS CIRCUITRY COMPATIBLE .80 (20.3) Cube 10–32 Mtg Hole

Actual Size

1.41

FILTERED OUTPUT SIGNAL

(complete specifications are featured on page 1.49)

■ engine NVH

drive train studies

0.55 (14.0) Cube

1/4-28 4-Pin Connector

These triaxial ICP® accelerometers contain built in electrical filters to help prevent overloads due to excessive high frequency excitation.

TEDS

CIRCUITRY COMPATIBL

- Model 356A66 General purpose
 - 10 mV/g [1.02 mV/(m/s²)] sensitivity
 - 2 Hz to 4000 Hz frequency range (± 5%)
 - 9 gram (0.32 oz) weight
 - ± 500 g (4900 m/s²) amplitude range

Recommended cables and accessories **49** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: HT, T, TLA, TLB, TLC — see pages xvii to xx for option information

Model 356A61 — Integral cable, light weight

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 2 Hz to 5000 Hz frequency range (± 5%)
- 4 gram (0.14 oz) weight
- \pm 500 g (4900 m/s²) amplitude range

Recommended cables and accessories **49** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

Model 356A63 — Rugged 4-pin connector

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 2 Hz to 5000 Hz frequency range (± 5%)
- 5.3 gram (0.19 oz) weight
- ± 500 g (4900 m/s²) amplitude range

Recommended cables and accessories **40** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: HT — see pages xvii to xx for option information

CE

Actual Size

CE

Actual Size

PCB

Model Number ¹⁰ 356A01 356B10 356B11 356B11 356B20 Performance English SI English English <td< th=""></td<>
Performance English SI English SI English SI Sensitivity 5 mV/g $0.5 \text{ mV/m}/s$ 1.0 mV/g $0.1 \text{ mV/m}/s$ 1.0 mV/g </th
Sensitivity 5 mV/g 0.5 mV/m/s ² 1.0 mV/g 0.1 mV/m/s ² 10 mV/g 1.0 mV/g 1.0 mV/g 0.1 mV/m/s ² Sensitivity Tolerance $\pm 100\%$ $\pm 10\%$ $\pm 20\%$ $\pm 20\%$ $\pm 10\%$ $\pm 20\%$ $\pm 10\%$ $\pm 20\%$ $\pm 10\%$ $\pm 2\%$ $\pm 20\%$ $\pm 2\%$ 10%
Sensitivity Tolerance $\pm 10\%$ $\pm 10\%$ $\pm 10\%$ $\pm 20\%$ $\pm 20\%$ $\pm 10\%$ $\pm 20\%$ $\pm 40\%$ m/s' pk $\pm 20\%$ $\pm 40\%$ m/s' pk ± 500 gk $\pm 40\%$ m/s' pk $\pm 50\%$ $\pm 20\%$ $t 40\%$ m/s' pk $t \pm 00\%$ $t \pm 20\%$ $t \pm 55\%$ $t \pm 20\%$ $t $
Measurement Range $\pm 1000 \text{ g pk}$ $\pm 9810 \text{ m/s}^2 \text{ pk}$ $\pm 490 \text{ m/s}^2 \text{ pk}$ $\pm 5000 \text{ g pk}$ $\pm 490 \text{ m/s}^2 \text{ pk}$ $\pm 5000 \text{ g pk}$ $\pm 490 \text{ m/s}^2 \text{ pk}$ $\pm 5000 \text{ g pk}$ $\pm 490 \text{ m/s}^2 \text{ pk}$ $\pm 5000 \text{ g pk}$ $\pm 490 \text{ m/s}^2 \text{ pk}$ $\pm 5000 \text{ g pk}$ $\pm 490 \text{ m/s}^2 \text{ pk}$ $\pm 20 \text{ to 10k Hz}$ $2 to $
Frequency Range (±5%) (Y & Z - axis) 2 to 8000 Hz 2 to 10k Hz
Ifrequency Range (±5%) (X-axis) 2 to 7000 Hz 1 to 700 Hz </td
If requency Range (± 5%)N/AN/AN/AN/AN/AN/AN/AFrequency Range (± 10%)N/AN/AN/AN/AN/AN/AN/AResonant Frequency \geq 50 kHz \geq 55 kHz \leq 56 kEz \leq
If requency Range (± 10%) N/A N/A N/A N/A N/A N/A N/A N/A N/A Resonant Frequency ≥ 50 kHz ≥ 50 kHz ≥ 55 kHz ≥ 255 kHz ≥ 55 kHz <t< td=""></t<>
Resonant Frequency $\geq 50 \text{ kHz}$ $\geq 50 \text{ kHz}$ $\geq 55 \text{ kHz}$ $\leq 255 $
Broadband Resolution (1 to 10k Hz) 0.003 g rms 0.03 g rm
Non-Linearity $^{1/2}$ $\leq 1\%$ $\leq 1\%$ $\leq 2.5\%$ $\leq 2.5\%$ $\leq 1\%$ $\leq 1\%$ $\leq 2.5\%$ $\leq 2.5\%$ Transverse Sensitivity $\leq 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$ $< 5\%$
Transverse Sensitivity $\leq 5\%$ $\leq $
EnvironmentalOverload Limit (Shock) $\pm 10k \ g \ pk$ $\pm 98k \ m/s^2 \ pk$ $\pm 7000 \ g \ pk$ $\pm 68.6k \ m/s^2 \ pk$ $\pm 10k \ g \ pk$ $\pm 98k \ m/s^2 \ pk$ $\pm 68.6k \ m/s^2 \ pk$ Temperature Range (Operating) $-65 \ to +250 \ ^{\circ}F$ $-54 \ to +121 \ ^{\circ}C$ $-65 \ to +250 \ ^{\circ}F$ $-54 \ to +121 \ ^{\circ}C$ $-65 \ to +250 \ ^{\circ}F$ $-54 \ to +121 \ ^{\circ}C$ ElectricalExcitation Voltage18 to 30 VDC18 to 30 VDCConstant Current Excitation2 to 20 mA2 to 20 mA2 to 20 mA2 to 20 mA2 to 20 mAOutput Impedance $\leq 200 \ ohms$ Output Bias Voltage7 to 11 VDC7 to 11 VDCDischarge Time Constant0.3 to 1.0 sec0.3 to 1.0 sec2.5 to 4.5 sec2.5 to 4.5 sec0.3 to 1.0 sec1.5 to 3.0 secPhysicalShearShearShearShearShearShearShearShearShear
Overload Limit (Shock) $\pm 10k \text{ g pk}$ $\pm 98k \text{ m/s}^2 \text{ pk}$ $\pm 7000 \text{ g pk}$ $\pm 7000 \text{ g pk}$ $\pm 10k \text{ g pk}$ $\pm 98k \text{ m/s}^2 \text{ pk}$ $\pm 7000 \text{ g pk}$ $\pm 68.6k \text{ m/s}^2 \text{ pk}$ Temperature Range (Operating)-65 to +250 °F-54 to +121 °C-65 to +250 °F-54 to +121 °C-55 to +250 °F-54 to +121 °C-55 to +250 °F-54 to +121 °C-65 to +250 °F-54 to +121 °C-65 to +250 °F-54 to +121 °C-55 to +250 °F-55 to +250 °F-54 to +121 °C-55 to +250 °F-56 to +120 °C-56 to +250 °F-56 to +120 °C<
Temperature Range (Operating) -65 to +250 °F -54 to +121 °C
Electrical Excitation Voltage 18 to 30 VDC 18 to 30
Excitation Voltage 18 to 30 VDC 10 VDC 10 VDC
Constant Current Excitation2 to 20 mA2 to 20 mA <t< td=""></t<>
Output Impedance ≤ 200 ohms
Output Bias Voltage7 to 11 VDC7
Discharge Time Constant0.3 to 1.0 sec0.3 to 1.0 sec2.5 to 4.5 sec2.5 to 4.5 sec0.3 to 1.0 sec0.3 to 1.0 sec1.5 to 3.0 sec1.5 to 3.0 secPhysicalSensing ElementCeramicCeramicCeramicCeramicCeramicCeramicSensing GeometryShearShearShearShearShearShearSensing GeometryShearShearShearShearShear
Physical Sensing Element Ceramic
Sensing Element Ceramic
Sensing Geometry Shear
Housing Material Titanium
Sealing Hermetic Herm
Size (Height × Length × Width) 0.25 in × 0.25 in × 0.25 in 0.4 in × 0.4 in × 0.4 in 0.4 in × 0.4 in 0.4 in × 0.4 in
(6.35 mm × 6.35 mm × 6.35 mm) (10.2 mm × 10.2 mm × 10.2 mm) (10.2 mm × 10.2 mm × 10.2 mm × 10.2 mm × 10.2 mm)
Weight 0.04 oz 1 gm 0.14 oz 4 gm 0.14 oz 4 gm 0.14 oz 4 gm
Electrical Connection Integral Cable ^[6] S-36 4-Pin Jack
Electrical Connection Position Side
Cable Termination 1/4-28 4-Pin Jack N/A
Cable Length 5 ft 1.5 m 5 ft 1.5 m N/A N/A
Cable Type [3] 034AD005CA 034AD005CA 034AD005CA 034AD005CA 034AD005CA N/A N/A
Mounting Thread Adhesive Adhesive 5-40 Female
Supplied Accessories ⁽³⁾
Petro Wax 080A109 080A109 080A109 080A109 080A109
Quick Bonding Gel 080A90 — — —
Adhesive Mounting Base — 080A15 080A15 080A15
Mounting Stud — 081A27 081A27
Metric Mounting Stud — M081A27 M081A27 M081A27
Cable 034G05 034G05 034G05 034G05
High G Shock Calibration (4) — ACS-14 — ACS-14
Magnetic Mounting Base N/A 080A30 080A30 080A30
Removal Tool — 039A08 039A08 039A08
Mating Cable Connectors AY AY EH
Hecommended Stock Lables U1U, U34 U1U, U34 U1U, U34 U34 U34
Available uptions HI N/A A, HI, J, W HI

NOTES: [1] See note regarding accuracy of information on inside front cover. [2] Zero-based, least-squares, straight line method. [3] See section 4 in this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information. [6] Supplied with cable attached to solder pins on sensor.

Miniature Triaxial ICP [®] Accelerometer Specifications									
Model Number ^[1]	356B	21 🕀	356	A24	356A	32 🐠	356A33 🚸		
Performance	English	SI	English	SI	English	SI	English	SI	
Sensitivity	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	
Sensitivity Tolerance	± 10%	± 10%	± 15%	± 15%	± 10%	± 10%	± 10%	± 10%	
Measurement Range	± 500 g pk	± 4905 m/s² pk	± 500 g pk	± 4905 m/s² pk	± 50 g pk	± 491 m/s² pk	±500 g pk	±4905 m/s² pk	
Frequency Range (± 5%) (Y & Z - axis)	2 to 10k Hz	2 to 10k Hz	N/A	N/A	N/A	N/A	2 to 10k Hz	2 to 10k Hz	
Frequency Range (± 5%) (X-axis)	2 to 7000 Hz	2 to 7000 Hz	N/A	N/A	N/A	N/A	2 to 7000 Hz	2 to 7000 Hz	
Frequency Range (± 5%)	N/A	N/A	1 to 9000 Hz	1 to 9000 Hz	1.0 to 4000 Hz	1.0 to 4000 Hz	N/A	N/A	
Frequency Range (± 10%)	N/A	N/A	0.5 to 12k Hz	0.5 to 12k Hz	0.7 to 5000 Hz	0.7 to 5000 Hz	N/A	N/A	
Resonant Frequency	≥ 55 kHz	≥ 55 kHz	≥ 45 kHz	≥ 45 kHz	≥ 25 kHz	≥ 25 kHz	≥ 55 kHz	≥ 55 kHz	
Broadband Resolution (1 to 10k Hz)	0.003 g rms	0.03 m/s ² rms	0.002 g rms	0.02 m/s ² rms	0.0003 g rms	0.003 m/s ² rms	0.003 g rms	0.03 m/s ² rms	
Non-Linearity ^[2]	≤1%	≤1%	≤1%	≤1%	≤ 1%	≤1%	≤ 1 %	≤ 1 %	
Transverse Sensitivity	≤ 5%	≤ 5%	≤ 5%	≤ 5%	≤ 5%	≤ 5%	≤5 %	≤ 5 %	
Environmental									
Overload Limit (Shock)	±10k gpk	± 98k m/s² pk	±10k gpk	± 98k m/s² pk	± 5000 g pk	± 49k m/s² pk	±10k g pk	±98k m/s² pk	
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	
Electrical									
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	22 to 30 VDC	22 to 30 VDC	18 to 30 VDC	18 to 30 VDC	
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	
Output Impedance	\leq 200 ohms	\leq 200 ohms	≤ 200 ohms	≤ 200 ohms	≤ 200 ohms	≤ 200 ohms	≤ 200 ohms	≤ 200 ohms	
Output Bias Voltage	7 to 11 VDC	7 to 11 VDC	7 to 11 VDC	7 to 11 VDC	7 to 16 VDC	7 to 16 VDC	7 to 11 VDC	7 to 11 VDC	
Discharge Time Constant	0.3 to 1.0 sec	0.3 to 1.0 sec	1.0 to 3.5 sec	1.0 to 3.5 sec	0.5 to 1.5 sec	0.5 to 1.5 sec	0.3 to 1.0 sec	0.3 to 1.0 sec	
Physical									
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	
Size (Height × Length × Width)	0.4	in $\times \ 0.4$ in $\times \ 0.4$ in	0.28 in \times 0.47 in \times 0.47 in 0.45 in \times 0.45 in \times 0.45 in		0.4 ir	1 × 0.77 in × 0.4 in			
Weight	(10.2 mm × 1	0.2 mm × 10.2 mm)	(7.0 mm × 12	.0 mm × 12.0 mm) 3.1 gm	(11.4 mm × 1 0.19 oz	1.4 mm × 11.4 mm)	(10.2 mm × 19	1.6 mm × 10.2 mm)	
Electrical Connection	8-36 /L-Pin Lack	8-36 A-Pin Jack	8-36 /1-Pin Jack	8-36 4-Pin Jack	8-36 4-Pin Jack	9-36 4-Pin Jack	1/4_28 A_Pin	1/4_28 /4_Pin	
Electrical Connection Position	Sido	Sido	Sido	Sido	Sido	Sido	Sido	Sido	
Cable Termination	Side N/A	Side N/A	Side N/A	NI/A	Side N/A	Side N/A	N/A	N/A	
Cable Length	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Ν/A	
Cable Type [3]	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Mounting Thread	5-40 Female	5-40 Female	Adhesive	Adhesive	5-40 Female	5-40 Female	5-40 Female	5-40 Female	
Supplied Accessories ^[3]									
Petro Wax	080	A109	0804	109	080	A109	080A	109	
Quick Bonding Gel		_	080	A90		_		-	
Adhesive Mounting Base	080)A15		_	08	0A15	0804	415	
Mounting Stud	081	A27		_	08	1A27	081/	427	
Metric Mounting Stud	MOE	31A27		_	MO	31A27	M081	A27	
Cable	034	4K10	034	K10	03	4K10		-	
NIST Calibration [4]	AC	S-1T	ACS	G-1T	AC	S-1T	ACS	-1T	
Additional Accessories ^[3]									
Magnetic Mounting Base	080	DA30	N	/A	08	0A30	N/	A	
Removal Tool	039	9A08	_	_	03	9A09	039/	408	
Mating Cable Connectors	E	ΕH	E	Н		EH	A	(
Recommended Stock Cables	0	36	03	38	()40	03	4	
Options ^[5]									
Available Options	А,	HT, J	HT	, J	T, TLA,	TLB, TLC	H	Г	
NOTES: [1] See note regard	ding accuracy of i	nformation on inside	e front cover. [2] Z	Zero-based, least-so	quares, straight line	method.			
[3] See section 4 of this catalog	for cable and ac	cessory information.	[4] See page 1.13	30 for calibration in	formation. [5] See	page xvii to xx for c	ption information		

	ICP® Accelerometer Specifications						
Model Number [1]	356A	02 🚯	356A15 🚸		356A25		
Performance	English	SI	English	SI	English	SI	
Sensitivity	10 mV/g	1.02 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)	25 mV/g	2.6 mV/(m/s ²)	
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	
Measurement Range	± 500 g pk	± 4900 m/s² pk	± 50 g pk	± 490 m/s² pk	± 200 g pk	± 1960 m/s² pk	
Frequency Range (± 5%)	1 to 5000 Hz	1 to 5000 Hz	2 to 5000 Hz	2 to 5000 Hz	1 to 5000 Hz	1 to 5000 Hz	
Frequency Range (± 10%)	0.5 to 6000 Hz	0.5 to 6000 Hz	1.4 to 6500 Hz	1.4 to 6500 Hz	0.5 to 6500 Hz	0.5 to 6500 Hz	
Resonant Frequency	≥ 25 kHz	≥ 25 kHz	≥ 25 kHz	≥ 25 kHz	≥ 25 kHz	≥25 kHz	
Broadband Resolution (1 to 10k Hz)	0.0005 g rms	0.005 m/s ² rms	0.0002 g rms	0.002 m/s ² rms	0.0002 g rms	0.002 m/s ² rms	
Non-Linearity ^[2]	≤ 1 % ^[6]	$\leq 1 \% ^{[6]}$	≤1%	≤ 1%	≤1%	≤1%	
Transverse Sensitivity	$\leq 5\%$	≤ 5%	≤ 5%	≤ 5%	≤ 5%	$\leq 5\%$	
Environmental							
Overload Limit (Shock)	± 7000 g pk	± 68.6k m/s² pk	± 7000 g pk	± 68.6k m/s² pk	± 7000 g pk	± 68.6k m/s² pk	
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C	
Electrical							
Excitation Voltage	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	
Output Impedance	≤ 200 ohms	≤ 200 ohms	≤ 200 ohms	≤ 200 ohms	≤ 100 ohms	≤ 100 ohms	
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	
Discharge Time Constant	0.5 to 2.0 sec	0.5 to 2.0 sec	0.2 to 0.8 sec	0.2 to 0.8 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	
Physical							
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	
Size (Height × Length × Width)	0	.55 in × 0.80 in × 0.55 in	0.55 in × 0.80 in × 0.55 in		($0.55~\text{in}\times0.80~\text{in}\times0.55~\text{in}$	
	(14.0 m	m × 20.3 mm × 14.0 mm)	(14.0 mm × 20.3 mm × 14.0 mm)		(14.0 n	nm × 20.3 mm x 14.0 mm)	
Weight	0.37 oz	10.5 gm	0.37 oz	10.5 gm	0.37 oz	10.5 gm	
Electrical Connection	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack	
Electrical Connection Position	Side	Side	Side	Side	Side	Side	
Cable Termination	N/A	N/A	N/A	N/A	N/A	N/A	
Cable Length	N/A	N/A	N/A	N/A	N/A	N/A	
Cable Type ^[3]	N/A	N/A	N/A	N/A	N/A	N/A	
Mounting Thread	10-32 Female	10-32 Female	10-32 Female	10-32 Female	10-32 Female	10-32 Female	
Supplied Accessories ^[3]							
Petro Wax	0804	A109	080A109		080A109		
Quick Bonding Gel	080A90		080A90		_		
Adhesive Mounting Base	080A12		080A12		080A12		
Mounting Stud	081B05		081B05		081B05		
Metric Mounting Stud	M081B05		M081B05		_		
NIST Calibration [4]	ACS-1T		ACS-1T		ACS-1T		
Additional Accessories [3]							
Magnetic Mounting Base	080A27		080A27		080A27		
Removal Tool	039A10		039A10		039A10		
Mating Cable Connectors	AY		AY		AY		
Recommended Stock Cables	034, 010		034, 010		034, 010		
Options ^[5]							
Available Options	ht, t, tla	, TLB, TLC	A, HT, J, T, 1	LA, TLB, TLC		M	
NOTES: [1] See note regard	ding accuracy of informa	tion on inside front cover.	[2] Zero-based, least-sq	uares, straight line meth	od.		

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

[6] \leq 1% to 400g and \leq 2% to 500g.

Through Hole Triaxial ICP® Accelerometer Specifications						
Model Number [1]	354C02		354	1C03	354C10	
Performance	English	SI	English	SI	English	SI
Sensitivity	10 mV/g	1.02 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%
Measurement Range	± 500 g pk	± 4905 m/s² pk	± 50 g pk	± 490 m/s² pk	± 500 g pk	± 4905 m/s² pk
Frequency Range (± 5%)	0.5 to 2000 Hz	0.5 to 2000 Hz	0.5 to 2000 Hz	0.5 to 2000 Hz	2 to 8000 Hz	2 to 8000 Hz
Frequency Range (± 10%)	0.3 to 4000 Hz	0.3 to 4000 Hz	0.3 to 4000 Hz	0.3 to 4000 Hz	N/A	N/A
Resonant Frequency	$\ge 12 \text{ kHz}$	≥12 kHz	≥ 12 kHz	≥ 12 kHz	$\ge 40 \text{ kHz}$	\ge 40 kHz
Broadband Resolution (1 to 10k Hz)	0.0005 g rms	0.005 m/s ² rms	0.0002 g rms	0.002 m/s ² rms	0.003 g rms	0.03 m/s ² rms
Non-Linearity ^[2]	≤1%	≤1%	≤1%	≤ 1%	≤ 1%	≤1%
Transverse Sensitivity	≤ 5%	≤ 5%	≤ 5%	≤ 5%	≤ 5%	≤ 5%
Environmental						
Overload Limit (Shock)	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk	±10kgpk	± 98k m/s² pk
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-53 to +93 °C	-65 to +250 °F	-54 to +121 °C
Electrical						
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	< 100 ohms	< 100 ohms	< 300 ohms	< 300 ohms	< 200 ohms	< 200_ohms
Output Rias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	7 to 11 VDC	7 to 11 VDC
Discharge Time Constant	0.8 to 2.0 sec	0.8 to 2.0 sec	0.8 to 2.4 sec	0.8 to 2.4 sec	0.3 to 1.0 sec	0.3 to 1.0 sec
Electrical Isolation	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms
Physical						
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Size (Hex × Height)	Homoto	13/16 × 0.45 in	13/16 × 0.45 in		0.30	in $\times 0.55$ in $\times 0.55$ in $^{[6]}$
		(13/16 × 11.4 mm)	(13/16 × 11.4 mm)		(7.6 mm ×	: 14.0 mm × 14.0 mm) ^[6]
Weight	0.55 oz	15.5 gm	0.55 oz	15.5 gm	0.18 oz	5.0 gm
Electrical Connection	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack	Integral Cable	Integral Cable
Electrical Connection Position	Side	Side	Side	Side	Side	Side
Cable Termination	N/A	N/A	N/A	N/A	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack
Cable Length	N/A	N/A	N/A	N/A	5 ft	1.5 m
Cable Type ^[3]	N/A	N/A	N/A	N/A	034AD005CA	034AD005CA
Mounting Thread	Through Hole	Through Hole	Through Hole	Through Hole	Through Hole	Through Hole
Supplied Accessories ^[3]						
Petro Wax	080A1	09	080A109			
Allen Wrench	039A23		039A23		039A21	
Cap Screw	081A60		081A60		081A93	
Cable	—				034G05	
NIST Calibration ^[4]	ACS-IT		ACS-IT		ACS-1T	
Additional Accessories ^[3]						
Magnetic Mounting Base	080M162		080M162		N/A	
Mating Cable Connectors	AY		AY		AY	
Recommended Stock Cables	010, 034		010, 034		034	
Options ^[5]						
Available Options	A, HT, M,	, T, W	A, M,	T, W	N	1
NOTES: [1] Soo poto rogaro	ling accuracy of informativ	on on insido front covor	[2] Zoro based least sa	area straight line mothe	d	

NOTES: [1] See note regarding accuracy of information on inside front cover. [2] Zero-based, least-squares, straight line method.

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information. [6] Size (Height × Length × Width).

High Temperat	ture Charge Outpu	ut Triaxial Accele	erometer Specifi	cations	
Model Number ^[1]	356A	.70	356A71		
Performance	English	SI	English	SI	
Sensitivity	2.7 pC/g	0.28 pC/(m/s ²)	10 pC/g	1.02 pC/(m/s ²)	
Sensitivity Tolerance	± 15%	± 15%	± 15%	± 15%	
Measurement Range	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk	
Frequency Range (± 5%) ^[6]	5000 Hz	5000 Hz	5000 Hz	5000 Hz	
Frequency Range (± 10%) ^[6]	7000 Hz	7000 Hz	7000 Hz	7000 Hz	
Resonant Frequency	≥ 35 kHz	≥35 kHz	≥ 25 kHz	≥ 25 kHz	
Non-Linearity ^[2]	≤ 1 %	≤1 %	≤1 %	≤1 %	
Transverse Sensitivity	≤5 %	≤5 %	≤5 % ≤5		
Environmental					
Overload Limit (Shock)	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	± 49k m/s² pk	
Temperature Range (Operating)	-94 to +490 °F	-70 to +254 °C	-94 to +490 °F	-70 to +254 °C	
Electrical					
Capacitance	240 pF	240 pF	690 pF	690 pF	
Insulation Resistance (at 70° F [21° C])	>10 ¹² ohms	>10 ¹² ohms	>10 ¹² ohms	>10 ¹² ohms	
Insulation Resistance (at 490° F [254° C])	>10 ⁸ ohms >10 ⁸ ohms		>10 ⁸ ohms	>10 ⁸ ohms	
Output Polarity	Negative	Negative	Negative	Negative	
Physical					
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	
Sensing Geometry	Shear	Shear	Shear	Shear	
Housing Material	Titanium	Titanium	Titanium	Titanium	
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	
Size (Height \times Length \times Width)	0.75 (18.5 mm	3 in × 0.90 in × 0.40 in × 22.9 mm × 10.2 mm)	0.96 in × 1.00 in × 0.50 in (24.4 mm × 25.4 mm × 12.7 mm)		
Weight	0.28 oz	7.9 gm	0.8 oz	22.7 gm	
Electrical Connection	5-44 Coaxial Jack	5-44 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	
Electrical Connection Position	Side	Side	Side	Side	
Mounting	Through Hole	Through Hole	Through Hole	Through Hole	
Supplied Accessories ^[3]					
Allen Wrench	039A:	23	039A22		
Quick Bonding Gel	080A	90	080A90		
Mounting Stud	081A	46	081A94		
Adhesive Mounting Base			080A70		
NIST Calibration [4]	ACS-	1T	ACS	S-1T	
Additional Accessories ^[3]					
Mating Cable Connectors	AF, A	G	EB, AH, AK, AW		
Recommended Stock Cables	003		003		
Options 🗉					
Available Options	M, F	þ	M. P		
NOTES: [1] See note regard	ing accuracy of informatio	on on inside front cover			

[2] Zero-based, least-squares, straight line method. [3] See section 4 of this catalog for cable and accessory information.

[4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

[6] Low frequency response is determined by external signal conditioning electronics.

Structural Analysis Triaxial ICP® Accelerometer Specifications						
Model Number 🕅	356 <i>A</i>	356A16 356A17		356B18 🐠		
Performance	English	SI	English	SI	English	SI
Sensitivity	100 mV/g	10.2 mV/(m/s ²)	500 mV/g	51 mV/(m/s ²)	1000 mV/g	102 mV/(m/s ²)
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%
Measurement Range	± 50 g pk	± 490 m/s² pk	± 10 g pk	± 98 m/s² pk	±5 g pk	± 49 m/s² pk
Frequency Range (± 5%)	0.5 to 5000 Hz	0.5 to 5000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz
Frequency Range (± 10%)	0.3 to 6000 Hz	0.3 to 6000 Hz	0.3 to 4000 Hz	0.3 to 4000 Hz	0.3 to 5000 Hz	0.3 to 5000 Hz
Resonant Frequency	≥25 kHz	≥25 kHz	≥ 14 kHz	≥14 kHz	≥ 20 kHz	≥ 20 kHz
Phase Response (± 5 °)	1.0 to 5000 Hz	1.0 to 5000 Hz	2 to 4000 Hz	2 to 4000 Hz	2 to 8000 Hz	2 to 8000 Hz
Broadband Resolution (1 to 10k Hz)	0.0001 g rms	0.001 m/s ² rms	0.00006 g rms	0.0006 m/s ² rms	0.00005 g rms	0.0005 m/s ² rms
Non-Linearity [2]	≤1%	≤ 1%	≤ 1%	≤1%	≤ 1%	≤1%
Transverse Sensitivity	≤ 5%	≤ 5%	≤ 5%	≤ 5%	≤ 5%	≤ 5%
Environmental						
Overload Limit (Shock)	± 7000 g pk	± 68.6k m/s² pk	± 5000 g pk	\pm 49k m/s ² pk	± 5000 g pk	± 49k m/s² pk
Temperature Range (Operating)	-65 to +176 °F	-54 to +80 °C	-65 to +176 °F	-54 to +80 °C	-20 to +170 °F	-29 to +77 °C
Electrical						
Excitation Voltage	20 to 30 VDC	20 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	≤ 200 ohms	≤ 200 ohms	≤ 300 ohms	≤ 300 ohms	≤ 250 ohms	≤ 250 ohms
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC
Discharge Time Constant	1.0 to 3.0 sec	1.0 to 3.0 sec	0.8 to 2.0 sec	0.8 to 2.0 sec	1.0 to 3.0 sec	1.0 to 3.0 sec
Physical						
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Anodized Aluminum	Anodized Aluminum	Anodized Aluminum	Anodized Aluminum	Anodized Aluminum	Anodized Aluminum
Sealing	Epoxy	Epoxy	Epoxy	Epoxy	Epoxy	Epoxy
Size (Hex × Height)	0.5	5 in × 0.80 in × 0.55 in	$0.55 \text{ in } \times 0.80 \text{ in } \times 0.55 \text{ in}$		0.80 in × 1.03 in × 0.80 in	
	(14.0 mm	× 20.3 mm × 14.0 mm)	(14.0 mm × 20.3 mm × 14.0 mm)		(20.3 mr	n × 26.1 mm × 20.3 mm)
Weight	0.26 oz	7.4 gm	0.33 oz	9.3 gm	0.88 oz	25 gm
Electrical Connection	1/4-28 4-Pin	1/4-28 4-Pin	1/4-28 4-Pin	1/4-28 4-Pin	1/4-28 4-Pin	1/4-28 4-Pin
Electrical Connection Position	Side	Side	Side	Side	Side	Side
Mounting Thread	10-32 Female	10-32 Female	5-40 Female	5-40 Female	10-32 Female	10-32 Female
Supplied Accessories ^[3]						
Petro Wax	A080	109	080A109		080A109	
Adhesive Mounting Base	080A12		080A145		080A68	
Mounting Stud	081B05		081A27		081B05	
Metric Mounting Stud	M081B05		M081A27		—	
NIST Calibration [4]	ACS-1T		ACS-1T		ACS-1T	
Additional Accessories [3]						
Magnetic Mounting Base	N/A		N/A		080A27	
Removal Tool	039A10		039A10		_	
Mating Cable Connectors	AY		AY		AY	
Recommended Stock Cables	034		034		010, 034	
Options ^[5]						
Available Options	Α. 1	Г	A	J	A. J.	M, T
NOTES: [1] See note regard	ding accuracy of informati	on on inside front cover.	[2] Zero-based, least-sq	uares, straight line metho	od.	

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

	Filtered	Output Triaxial	ICP® Accelerometer Specifications			
Model Number ^[1]	356A6	1 🐼	356A63 🐠		356A66	
Performance	English	SI	English	SI	English	SI
Sensitivity	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)
Sensitivity Tolerance	± 15%	± 15%	± 15%	± 15%	± 10%	± 10%
Measurement Range	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk
Frequency Range (± 5%)	2 to 5000 Hz ^[7]	2 to 5000 Hz ^[7]	2 to 5000 Hz ^[7]	2 to 5000 Hz ^[7]	2 to 4000 Hz ^{[8] [9]}	2 to 4000 Hz ^{[8] [9]}
Resonant Frequency	≥ 55 kHz	≥ 55 kHz	≥ 55 kHz	≥ 55 kHz	≥ 35 kHz	≥35 kHz
Broadband Resolution (1 to 10k Hz)	0.008 g rms	0.08 m/s ² rms	0.008 g rms	0.08 m/s ² rms	0.002 g rms	0.02 m/s ² rms
Non-Linearity [2]	≤1%	≤ 1%	≤ 1%	≤1%	≤1%	≤1%
Transverse Sensitivity	≤ 5%	≤ 5%	≤ 5%	≤ 5%	≤ 5%	≤ 5%
Environmental						
Overload Limit (Shock)	±10k g pk	± 98k m/s² pk	±10k g pk	± 98k m/s² pk	± 7000 g pk	± 68.6k m/s² pk
Temperature Range (Operating)	-65 to +325 °F	-54 to +163 °C	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C
Electrical						
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	20 to 30 VDC	20 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	≤200 ohms	≤ 200 ohms	≤ 200 ohms	≤ 200 ohms	≤ 200 ohms	≤ 200 ohms
Output Bias Voltage	7 to 11 VDC	7 to 11 VDC	7 to 11 VDC	7 to 11 VDC	7 to 14 VDC	7 to 14 VDC
Discharge Time Constant	0.3 to 1.0 sec	0.3 to 1.0 sec	0.3 to 1.0 sec	0.3 to 1.0 sec	0.1 to 1.0 sec	0.1 to 1.0 sec
Physical						
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Size (Length \times Width \times Height)	0.4 in × 0.4 in × 0.4 in (10.2 mm × 10.2 mm × 10.2 mm)		0.40 in × 0.77 in × 0.40 in (10.2 mm × 19.6 mm × 10.2 mm)		0. (14.0 mr	55 in × 0.80 in × 0.55 in n × 20.3 mm × 14.0 mm)
Weight	0.14 oz	4.0 gm	0.19 oz	5.3 gm	0.32 oz	9.0 gm
Electrical Connection	Integral Cable ^[6]	Integral Cable ^[6]	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack
Electrical Connection Position	Side	Side	Side	Side	Side	Side
Cable Termination	1/4-28 4-Pin Jack	1/4-28 4-Pin Jack	N/A	N/A	N/A	N/A
Cable Length	5.0 ft	1.5 m	N/A	N/A	N/A	N/A
Cable Type ^[3]	034AD005CA	034AD005CA	N/A	N/A	N/A	N/A
Mounting Thread	5-40 Female	5-40 Female	5-40 Female	5-40 Female	10-32 Female	10-32 Female
Supplied Accessories ^[3]						
Petro Wax	080A1	09	080A109		080A109	
Adhesive Mounting Base	080A15		080A15		080A12	
Quick Bonding Gel	_		—		080A90	
Mounting Stud	081A27		081A27		081B05	
Metric Mounting Stud	M081A27		M081A27			
Cable	034G05		_		_	
NIST Calibration [4]	ACS-1T		ACS-1T		ACS-1T	
Additional Accessories ^[3]						
Removal Tool	039A08		039A08		039A10	
Mating Cable Connectors	AY		AY		AY	
Recommended Stock Cables	034		034		034	
Options ^[5]						
Available Options	N/A		H	Т	ht, t, tla	, TLB, TLC
NOTES: [1] See note regard	ing accuracy of information	on on inside front cover	[2] Zero-based, least-sq	uares, straight line metho	od.	
[3] See section 4 of this catalog t	for cable and accessory ir	nformation. [4] See pac	e 1.130 for calibration inf	ormation [5] See page x	vii to xx for ontion inform	nation

 [3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See
 [6] Supplied with cable attached to solder pins on sensor. [7] All axes filtered to provide -5% between 4,000 and 6,000 Hz. e pagi

[8] Upper frequency response is ± 500 Hz from the specified value. [9] X-axis frequency response is limited due to mounting method.

PCB accelerometers are used for testing the structural integrity of space vehicles as well as payload response to simulated environments to ensure survivability and mission success.
- Aerospace vehicle separations
- Pile driver monitoring
- Simulated pyroshock events
- Recoil and penetration
- Impact press monitoring
- Explosive studies
- Shaker impact monitoring

Shock accelerometers are specifically designed to withstand and measure extreme, high-amplitude, short-duration, transient accelerations. Such accelerations characteristically exceed the 1000 g boundary imposed on other typical accelerometer designs. Shock acceleration events may reach 100,000 g or more with pulse durations of less than 10 microseconds. The extremely fast transient and volatile nature of a shock event imposes special demands on the design of a shock accelerometer.

PCB shock accelerometers represent extensive research in materials, assembly techniques, and testing techniques to insure survivability and faithful representation of the shock event. An automated Hopkinson Bar Calibration Station is utilized to evaluate shock sensor performance by simulating actual, high amplitude measurement conditions. This investment allows PCB to assess and improve upon individual sensor characteristics, such as zero shift, ringing, and non-linearity.

Shear mode quartz and ceramic sensing elements are used in shock accelerometer designs to minimize the effects of base strain and thermal transients. Ceramic elements yield a smaller, lighter weight sensor with higher amplitude range and frequency limits. Quartz elements offer a wider operating temperature thereby allowing for a more general purpose measurement device. Built-in signal conditioning circuitry permit ICP® sensors to operate from constant-current signal conditioners for reliable operation and simplicity of use. The addition of mechanical and electrical filtering, in some designs, assists in resonance suppression to eliminate high-frequency "ringing" in the output signal.

A general purpose charge mode unit is available for systems employing external charge amplifiers and where adjustability through a wide measurement range is desired, such as with near- and far-field pyroshock testing.

Vibration Division toll-free 888-684-0013 Fax 716-685-3886 E-mail vibration@pcb.com Web site www.pcb.com **PCB** 716-684-0001

HIGH FREQUENCY ICP[®] Shock Accelerometers

(complete specifications are featured on pages 1.56 to 1.57)

■ metal-to-metal impacts

- simulated pyroshock tests
- pile driver monitoring
- projectile impacts

High frequency ICP[®] shock accelerometers utilize ceramic sensing elements and lightweight, titanium construction. Most incorporate electrical and mechanical filtering to virtually eliminate zero shift.

Model 350B21 — PCB's highest amplitude range shock accelerometer, unfiltered

- \pm 100k g (980k m/s²) amplitude range
- 0.05 mV/g [0.005 mV/(m/s²)] sensitivity
- 1 Hz to 10 kHz frequency range (± 1 dB)
- 4.4 gram (0.15 oz) weight
- Electrical case isolation
- Integral cable
- \geq 200 kHz unfiltered mounted resonance
- Titanium construction

Recommended cables and accessories $\ensuremath{\mathfrak{G}}$ — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

Model 350B02 — General purpose, high amplitude

- ± 50k g (490k m/s²) amplitude range
- 0.1 mV/g [0.01 mV/(m/s²)] sensitivity
- 4 Hz to 10 kHz frequency range (± 1 dB)
- 4.2 gram (0.15 oz) weight
- Electrical case isolation
- Integral cable
- Mechanically and electrically filtered
- Titanium construction

350 802

Actual Size

Select an ICP $^{\oplus}$ sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

Model 350B23 — High sensitivity, with electrical isolation

Recommended cables and accessories **③** — see page 4.2

- ± 10k g (98k m/s²) amplitude range
- 0.5 mV/g [0.05 mV/(m/s²)] sensitivity
- 0.4 Hz to 10 kHz frequency range (± 1 dB)
- 4.5 gram (0.16 oz) weight
- Electrical case isolation
- Integral cable
- Mechanically and electrically filtered
- Titanium construction

Recommended cables and accessories $\[embed{embedde}$ — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

(P) (C) 50 21

HIGH FREQUENCY ICP[®] Shock Accelerometers (continued)

Model 350B03 — General purpose, low amplitude

- ± 10k g (98k m/s²) amplitude range
- 0.5 mV/g [0.05 mV/(m/s²)] sensitivity
- 0.4 Hz to 10 kHz frequency range (± 1 dB)
- 4.5 gram (0.16 oz) weight
- Mechanically and electrically filtered
- Titanium construction

Recommended cables and accessories **2**, **3**, **2**, **8** — see page 4.2 Select an $\mathsf{ICP}^{\scriptscriptstyle \otimes}$ sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

Actual Size

10-32 onnector

Model 350B04 — Low amplitude range, high sensitivity

- ± 5000 g (49k m/s²) amplitude range
- 1 mV/g [0.1 mV/(m/s²)] sensitivity
- 0.4 Hz to 10 kHz frequency range (± 1 dB)
- 4.5 gram (0.16 oz) weight
- · Mechanically and electrically filtered
- Titanium construction

Recommended cables and accessories 2, 3, 2, 8 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

GENERAL PURPOSE ICP® Shock Accelerometers

(complete specifications are featured on page 1.58)

General purpose ICP® shock accelerometers utilize quartz sensing elements and stainless steel housings for durability and wide operating temperature range to +250 °F (121 °C).

- pile driver monitoring
- package and drop testing

CE

payload survivability

Model 350A13 — Longer duration events, higher amplitude

- ± 10k g (98k m/s²) amplitude range
- 0.5 mV/g [0.051 mV/(m/s²)] sensitivity
- 0.4 Hz to 7500 Hz frequency range
- 17.9 gram (0.63 oz) weight
- · Electrically filtered
- Stainless steel construction

Recommended cables and accessories (2), (3), (2), (8) — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

Model 350A14 — Longer duration events and integration

- ± 5000 g (49k m/s²) amplitude range
- 1 mV/g [0.102 mV/(m/s²)] sensitivity
- 0.4 Hz to 7500 Hz frequency range
- 17.9 gram (0.63 oz) weight
- · Electrically filtered
- · Stainless steel construction

Recommended cables and accessories **2**, **3**, **3**, **8** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

CHARGE OUTPUT Shock Accelerometer

(complete specifications are featured on page 1.59)

Charge output shock accelerometers provide flexibility of set-up to accommodate a wide range of test requirements when used with adjustable charge amplifiers.

- near and far-field pyroshock testing
- charge amplified systems

Model 350A96 — High amplitude range, high resonance

- ± 100k g (980k m/s²) amplitude range
- 0.065 pC/g [0.007 pC/(m/s²)] sensitivity
- 15 kHz upper frequency range (± 1 dB)
- 13 gram (0.46 oz) weight
- Stainless steel construction
- Mating cable provided

0.71 (18.0) 1/4-28 Mtg Hole

Recommended cables and accessories (2), (3) — see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP[®] sensor signal conditioner from those featured in section 3 Options: P — see pages xvii to xx for option information

High Frequency ICP® Shock Accelerometer Specifications								
Model Number ^[1]	350B()2 🚯	350)B03	350B04			
Performance	English	SI	English	SI	English	SI		
Sensitivity	0.1 mV/g	0.01 mV/(m/s ²)	0.5 mV/g	0.05 mV/(m/s ²)	1.0 mV/g	0.10 mV/(m/s ²)		
Sensitivity Tolerance	± 30%	± 30%	± 30%	± 30%	± 30%	± 30%		
Measurement Range	± 50k g pk	± 490k m/s² pk	± 10k g pk	± 98k m/s² pk	± 5000 g pk	± 49k m/s² pk		
Frequency Range (± 1 dB)	4 to 10k Hz	4 to 10k Hz	0.4 to 10k Hz	0.4 to 10k Hz	0.4 to 10k Hz	0.4 to 10k Hz		
Frequency Range (-3 dB) [6]	2 to 25k Hz	2 to 25k Hz	0.2 to 25k Hz	0.2 to 25k Hz	0.2 to 25k Hz	0.2 to 25k Hz		
Electrical Filter Corner Frequency (-3 dB) ^[7]	13 kHz	13 kHz	13 kHz	13 kHz	13 kHz	13 kHz		
Mechanical Filter Resonant Frequency ^[8]	23 kHz	23 kHz	23 kHz	23 kHz	23 kHz	23 kHz		
Resonant Frequency	≥ 100 kHz	$\geq 100 \text{ kHz}$	\geq 100 kHz	\geq 100 kHz	\geq 100 kHz	\geq 100 kHz		
Broadband Resolution (1 to 10k Hz)	0.5 g rms	4.9 m/s ² rms	0.04 g rms	0.39 m/s ² rms	0.02 g rms	0.20 m/s ² rms		
Non-Linearity (per 10k g)	≤ 2.5%	≤ 2.5%	≤ 2.0%	≤ 2.0%	≤ 2.0%	≤ 2.0%		
Transverse Sensitivity	≤7%	≤7%	≤7%	≤7%	≤ 7%	≤7%		
Environmental								
Overload Limit (Shock)	± 150k g pk	± 1471k m/s² pk	± 50k g pk	± 490k m/s² pk	± 50k g pk	± 490k m/s² pk		
Temperature Range (Operating)	0 to +150 °F	-18 to +66 °C	0 to +150 °F	-18 to +66 °C	0 to +150 °F	-18 to +66 °C		
Electrical								
Excitation Voltage	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC		
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA		
Output Impedance	≤ 200 ohms	≤ 200 ohms	≤ 200 ohms	≤ 200 ohms	≤ 200 ohms	≤200 ohms		
Output Bias Voltage	8 to 14 VDC	8 to 14 VDC	8 to 14 VDC	8 to 14 VDC	8 to 14 VDC	8 to 14 VDC		
Discharge Time Constant	0.10 sec	0.10 sec	1.0 to 2.0 sec	1.0 to 2.0 sec	1.0 to 2.0 sec	1.0 to 2.0 sec		
Electrical Isolation (Case)	>10 ⁶ ohms	>10 ⁶ ohms	N/A	N/A	N/A	N/A		
Physical								
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic		
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear		
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium		
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic		
Size (Hex × Height)	3/8 in×0.75 in	3/8 in × 19.1 mm	3/8 in × 1.02 in	3/8 in × 25.9 mm	0.375 in × 1.02 in	9.5 mm × 25.9 mm		
Weight	0.15 oz	4.2 gm	0.16 oz	4.5 gm	0.16 oz	4.5 gm		
Electrical Connection	Integral Cable	Integral Cable	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack		
Electrical Connection Position	Тор	Тор	Тор	Тор	Тор	Тор		
Cable Termination	10-32 Coaxial Plug	10-32 Coaxial Plug	N/A	N/A	N/A	N/A		
Cable Length	10 ft	3.05 m	N/A	N/A	N/A	N/A		
Cable Type	031AD010EB	031AD010EB	N/A	N/A	N/A	N/A		
Mounting Thread	1/4-28 Male	1/4-28 Male	1/4-28 Male	1/4-28 Male	1/4-28 Male	1/4-28 Male		
Supplied Accessories ^[3]								
NIST Calibration [4]	ACS	-22	ACS	5-22	ACS	-22		
Additional Accessories ^[3]								
Triaxial Mounting Adaptor	080A	180	080/	180	A080	.180		
Metric Triaxial Mounting Adaptor	M080/	4180	M080	A180	M080.	A180		
Adhesive Mounting Base	080M	217	080N	<i>N</i> 217	080N	1217		
Metric Adhesive Mounting Base	M080N	v1217	M080	M217	M080I	VI217		
Mating Cable Connectors	AL	-	E	В	EE	3		
Connector Adaptor	070A	402	N,	/A	N/	A		
Recommended Stock Cables	N//	А	00	03	00	3		
Options ^[5]								
Available Options	M		Ν	Λ	N	1		
NOTES: [1] See note regard	ling accuracy of informat	ion on inside front cover.	[3] See section 4 of this	catalog for cable and ac	cessory information.			

[4] See page 1.130 for calibration information. [5] See page xvii to xx for option information. [6] Typical corner frequency for coupled electrical and mechanical filters. [7] Electrical filter is a second order filter. [8] Amplitude at resonance is +9 dB.

High Frequency ICP [®] Shock Accelerometer Specifications								
Model Number ^[1]	350	B21	350I	B23				
Performance	English	SI	English	SI				
Sensitivity	0.05 mV/g	0.005 mV/(m/s ²)	0.5 mV/g	0.05 mV/(m/s ²)				
Sensitivity Tolerance	± 30%	± 30%	± 30%	± 30%				
Measurement Range	± 100k g pk	± 980k m/s² pk	± 10k g pk	± 98k m/s² pk				
Frequency Range (± 1 dB)	1 to 10k Hz	1 to 10k Hz	0.4 to 10k Hz	0.4 to 10k Hz				
Frequency Range (-3 dB) ^[6]	N/A	N/A	0.2 to 25k Hz	0.2 to 25k Hz				
Frequency Range (± 3 dB)	0.5 to 35k Hz	0.5 to 35k Hz	N/A	N/A				
Electrical Filter Corner Frequency (-3 dB) ^[7]	N/A	N/A	13 kHz	13 kHz				
Resonant Frequency ^[8]	N/A	N/A	23 kHz	23 kHz				
Resonant Frequency	≥ 200 kHz	≥ 200 kHz	≥ 100 kHz	≥ 100 kHz				
Broadband Resolution (1 to 10k Hz)	0.3 g rms	2.9 m/s ² rms	0.04 g rms	0.39 m/s ² rms				
Non-Linearity (per 10k g)	≤ 0.5%	≤ 0.5%	≤ 2.0%	≤ 2.0%				
Transverse Sensitivity	≤7%	≤ 7%	≤7%	≤7%				
Environmental								
Overload Limit (Shock)	± 200k g pk	± 1961k m/s² pk	± 50k g pk	± 490k m/s² pk				
Temperature Range (Operating)	-65 to +200 °F	-54 to +93 °C	0 to +150 °F	-18 to +66 °C				
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	20 to 30 VDC	20 to 30 VDC				
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA				
Output Impedance	≤ 100 ohms	≤ 100 ohms	≤ 200 ohms	≤ 200 ohms				
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 14 VDC	8 to 14 VDC				
Discharge Time Constant	0.5 to 0.7 sec	0.5 to 0.7 sec	1.0 to 2.0 sec	1.0 to 2.0 sec				
Electrical Isolation (Case)	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁶ ohms	>10 ⁶ ohms				
Physical								
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic				
Sensing Geometry	Shear	Shear	Shear	Shear				
Housing Material	Titanium	Titanium	Titanium	Titanium				
Sealing	Hermetic	Hermetic	Hermetic	Hermetic				
Size (Hex × Height)	3/8 in × 0.73 in	3/8 in x 18.5 mm	3/8 in × 0.75 in	3/8 in × 19.1 mm				
Weight	0.15 oz	4.4 gm	0.16 oz	4.5 gm				
Electrical Connection	Integral Cable	Integral Cable	Integral Cable	Integral Cable				
Electrical Connection Position	Side	Side	Тор	Тор				
Cable Termination	10-32 Coaxial Plug	10-32 Coaxial Plug	10-32 Coaxial Plug	10-32 Coaxial Plug				
Cable Length	10 ft	3.05 m	10 ft	3.05 m				
Cable Type Mounting Throad	1/4 29 Mala	1/4 29 Malo	1/4 29 Malo	1/4.29 Malo				
Supplied Accessories ^[3]	1/4-20 Male	1/4-20 101816	1/4-20 101016	1/4-20 101816				
NIST Calibration [4]	ACS	5-22	ACS	3-22				
Additional Accessories [3]								
Triaxial Mounting Adaptor	080/	\180	080/	4180				
Metric Triaxial Mounting Adaptor	M080	A180	M080)A180				
Adhesive Mounting Base	1080N	<i>I</i> /217		Л217				
Metric Adhesive Mounting Base	M080	M217	M080	M217				
Connectors	A	L A02	A	L A02				
Recommended Stock Cables	070. N.	/A	070. N.	/A				
Ontions 5								
		4		4				
	N	/I	N	/I				
NUTES: [1] See note regardi	ng accuracy of informa	ition on inside front o	cover.					

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information.

[5] See page xvii to xx for option information. [6] Typical corner frequency for coupled electrical and mechanical filters.

[7] Electrical filter is a second order filter. [8] Amplitude at resonance is +9 dB.

General Purpose ICP [®] Shock Accelerometer Specifications								
Model Number [1]	350	A13	350/	A14				
Performance	English	SI	English	SI				
Sensitivity	0.5 mV/g	0.05 mV/(m/s ²)	1.0 mV/g	0.102 mV/(m/s ²)				
Sensitivity Tolerance	± 15%	± 15%	± 15%	± 15%				
Measurement Range	± 10k g pk	± 98k m/s² pk	± 5000 g pk	± 49k m/s² pk				
Frequency Range (± 10%)	0.4 to 7500 Hz	0.4 to 7500 Hz	0.4 to 7500 Hz	0.4 to 7500 Hz				
Electrical Filter Cutoff								
Frequency (-10 %) [2]	≥ /500 Hz	≥ /500 Hz	≥ /500 Hz	≥ /500 Hz				
Resonant Frequency	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz				
Broadband Resolution (1 to TUK HZ)	U.Ub g rms	0.59 m/s ² rms	U.UZ g rms	U.20 m/s ² rms				
Tropovoroo Sopoitivity	≤ 1% < E%	≤ 1% < E%	≤ 1% < E%	≤ 1% < E0/				
Indusverse sensitivity	≤ 3 %	≤ 5%	≤ 3 %	≤ 3 %				
Environmental								
Overload Limit (Shock)	± 30k g pk	± 294k m/s² pk	± 30k g pk	± 294k m/s² pk				
Temperature Range (Operating)	-65 to +250 °F	-54 to +121 °C	-65 to +250 °F	-54 to +121 °C				
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC				
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA				
Output Impedance	≤ 100 ohms	\leq 100 ohms	\leq 100 ohms	≤ 100 ohms				
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC				
Discharge Time Constant	≥ 1.8 sec	≥ 1.8 sec	≥ 1.8 sec	≥ 1.8 sec				
Physical								
Sensing Element	Quartz	Quartz	Quartz	Quartz				
Sensing Geometry	Shear	Shear	Shear	Shear				
Housing Material	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel				
Sealing	Hermetic	Hermetic	Hermetic	Hermetic				
Weight	0.63 oz	17.9 gm	0.63 oz	17.9 gm				
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack				
Electrical Connection Position	Тор	Тор	Тор	Тор				
Mounting Thread	1/4-28 Male	1/4-28 Male	1/4-28 Male	1/4-28 Male				
Supplied Accessories ^[3]								
NIST Calibration [4]	ACS	5-22	ACS	3-22				
Additional Accessories ^[3]								
Mating Cable Connectors	EB,	AW	EB,	AW				
Recommended Stock Cables	002, 00	03, 031	002, 00)3, 031				
Options ^[5]								
Available Options	Ν	Л	Ν	Л				
NOTES:								
[1] See note regarding accuracy	of information on ins	ide front cover.						
[2] Electrical filter is a first order	r low pass filter.							
[3] See section 4 of this catalog	for cable and access	ory information.						
[4] See page 1.130 for calibratio	n information.							
[5] See page xvii to xx for option	i information.							

Madal Number II		
Model Number "	350	JAYb
Performance	English	SI
Sensitivity	0.065 pC/g	0.007 pC/(m/s2
Sensitivity Tolerance	± 20%	± 20°
Measurement Range	± 100k g	± 980k m/
Frequency Range (± 1 dB) ^[6]	15 kHz	15 kł
Resonant Frequency	120 kHz	120 kł
Non-Linearity (per 10k g)	<0.5%	<0.5
Transverse Sensitivity	≤ 5%	≤ 51
Environmental	_	
Overload Limit (Shock)	± 200k g pk	± 1961k m/s² p
Temperature Range (Operating)	0 to +150 °F	-18 to +66 °
Electrical		
Capacitance	125 pF	125 p
Insulation Resistance	>10 ¹⁰ ohms	>10 ¹⁰ ohm
Output Polarity	Negative	Negativ
Physical		
Sensing Element	Ceramic	Ceram
Sensing Geometry	Shear	She
Housing Material	Stainless Steel	Stainless Ste
Sealing	Hermetic	Hermet
Size (Hex × Height)	9/16 in × 0.71 in	9/16 in × 18 m
Weight	0.46 oz	13 g
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jac
Electrical Connection Position	Тор	Тс
Mounting Thread	1/4-28 Female	1/4-28 Fema
Supplied Accessories ^[3]		
Mounting Stud	08	1A96
Metric Mounting Stud	MO	31A96
Cable	00	3A10
	AU	5-2Z
Mating Cable Connectors	EP	۵\۵/
Recommended Stock Cables		, AVV 103
Options ^[5]		
Available Options		Р
NOTES: [1] See note regarding accuracy of [3] See section 4 of this catalog f [4] See page 1.130 for calibration [5] See page xvii to xx for option [6] Low frequency response is de	of information on inside for cable and accessory i information. information. termined by external sig	front cover. information. nal conditioning

Charge output and extreme environment quartz shear ICP $^{\circ}$ accelerometers are used in applications where temperature extremes preclude the use of ordinary ICP $^{\circ}$ accelerometers.

- Interface with existing charge amplifiers
- High temperature vibration measurements
- Engine compartment studies
- Exhaust component vibration tests
- Steam turbine testing
- Jet engine vibration analysis

PCB's charge output accelerometers utilize piezo-ceramic sensing elements, in shear mode configurations, to directly output an electrostatic charge signal that is proportional to applied acceleration.

Ceramic shear sensing elements generate strong charge output signals, while reducing the effects of thermal transients, base strain, and transverse motion. Also, the use of laser-welded, lightweight, titanium housings provide a hermetic seal and help to minimize mass loading effects.

Charge output accelerometers do not contain built-in, signal conditioning electronics. As a result, external signal conditioning is required to interface their generated measurement signals to readout or recording instruments. The sensor's charge output signals can be conditioned with either a laboratory-style, adjustable charge amplifier or, for an economical approach, with an in-line, fixed charge converter.

Since there are no electronics built into charge output accelerometers, they may operate and survive exposure to very high temperatures (to 900 °F (482 °C) for some models). In addition, charge output accelerometers are used for thermal cycling requirements or to take advantage of existing charge amplifier signal conditioning equipment.

It is important to note that measurement resolution and low-frequency response for charge output, acceleration sensing systems are dependent upon the noise floor and discharge time constant characteristics of the signal conditioning and readout devices used.

PCB 716-684-0001 Vibration Division toll-free 888-684-0013 Fax 716-685-3886 E-mail vibration@pcb.com Web site www.pcb.com

MINIATURE

(complete specifications are featured on pages 1.68 to 1.69)

Miniature charge output accelerometers are especially well suited for applications demanding high frequency range, small size, light weight and elevated operating temperatures. Use with charge amplifiers and in-line charge converters.

- high temperature testing
- thermal stress screening
- small component qualifications
- high speed machinery analysis

engine brackets

motor housing

Model 357A08 — PCB's smallest accelerometer

- 0.3 pC/g [0.03 pC/(m/s²)] sensitivity
- 20 kHz upper frequency range
- 0.16 gram (0.006 oz) weight
- -100 to +350 °F (-73 to +177 °C) temperature range
- Adhesive mount
- Mating cable provided
- Electrically ground isolated
- Lightweight aluminum housing

PCB

2x Actual Size

Recommended cables and accessories **36** — see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP[®] sensor signal conditioner from those featured in section 3 Options: P — see pages xvii to xx for option information

Model 357C10 — Lightweight aluminum housing

- 1.7 pC/g [0.17 pC/(m/s²)] sensitivity
- 13 kHz upper frequency range
- 0.45 gram (0.016 oz) weight
- -100 to +350 °F (-73 to +177 °C) temperature range
- · Adhesive mount
- Mating cable provided
- · Electrically ground isolated

PCB

 2x Actual Size

 Recommended cables and accessories ③④ — see page 4.2

 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP® sensor signal conditioner from those featured in section 3

 Options: P — see pages xvii to xx for option information

an in-line charge converter (page 3.8) with an ICP® sensor signal conditioner from those featured in section 3

Model 357A09 — Robust titanium housing

- 1.7 pC/g [0.17 pC/(m/s²)] sensitivity
- 13 kHz upper frequency range
- 0.6 gram (0.02 oz) weight
- -100 to +350 °F (-73 to +177 °C) temperature range

Recommended cables and accessories **36** — see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or,

Options: P — see pages xvii to xx for option information

- Adhesive mount
- Mating cable provided

MINIATURE Charge Output Accelerometers (continued)

Model 357B11 — Side connector provides low profile, simplifies cable routing and strain relief

- 3 pC/g [0.31 pC/(m/s²)] sensitivity
- 16 kHz upper frequency range
- 2 gram (0.071 oz) weight
- -95 to +500 °F (-71 to +260°C) temperature range

Recommended cables and accessories ① — see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, J, M, P, W — see pages xvii to xx for option information

Model 357B14 — 10-32 connector joins to cables common to most accelerometers

- 3 pC/g [0.31 pC/(m/s²)] sensitivity
- 16 kHz upper frequency range
- 2 gram (0.071 oz) weight
- -95 to +500 °F (-71 to +260°C) temperature range

Recommended cables and accessories ⁽²⁾ — see page 4.2 Actual Size Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, J, M, P, W — see pages xvii to xx for option information

Model 357A06 — Through-hole mounting simplifies connector orientation

- 5 pC/g [0.51 pC/(m/s²)] sensitivity
- 15 kHz upper frequency range
- 2.3 gram (0.08 oz) weight
- -65 to +350 °F (-54 to +177 °C) temperature range
- Electrically ground isolated

Actual Size

Recommended cables and accessories 0 — see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP® sensor signal conditioner from those featured in section 3 Options: M, P — see pages xvii to xx for option information

GENERAL PURPOSE

(complete specifications are featured on pages 1.70 to 1.71)

For routine vibration and low-amplitude shock applications, especially at elevated operating temperatures. Use with charge amplifiers or in-line charge converters.

- engines
- turbines
- exhaust systems
- furnace blowers
- turbochargers
- steam handling equipment

Model 357A05 — Through-hole mounting simplifies connector orientation

- 17 pC/g [1.7 pC/(m/s²)] sensitivity
- 12 kHz upper frequency range
- 10 gram (0.35 oz) weight
- -65 to +350 °F (-54 to +177 °C) temperature range
- Electrically ground isolated

Recommended cables and accessories ② — see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP[®] sensor signal conditioner from those featured in section 3

Options: A, M, P, W — see pages xvii to xx for option information

Actual Size

Model 357B03 — General purpose for shaker control, side connector for simplified cable routing

- 10 pC/g [1.02 pC/(m/s²)] sensitivity
- 12 kHz upper frequency range
- 11 gram (0.39 oz) weight
- -95 to +500 °F (-71 to +260 °C) temperature range

Recommended cables and accessories O — see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP® sensor signal conditioner from those featured in section 3 Options: J, P, W — see pages xvii to xx for option information

Actual Size

Model 357B04 — General purpose for shaker control

- 10 pC/g [1.02 pC/(m/s²)] sensitivity
- 12 kHz upper frequency range
- 11 gram (0.39 oz) weight
- -95 to +500 °F (-71 to +260 °C) temperature range

Recommended cables and accessories D — see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP® sensor signal conditioner from those featured in section 3

Options: J, P, W -- see pages xvii to xx for option information

Actual Size

10-32

GENERAL PURPOSE Charge Output Accelerometers (continued)

Model 357B21 — Side connector simplifies cable routing

- 30 pC/g [3.1 pC/(m/s²)] sensitivity
- 7500 Hz upper frequency range
- 21 gram (0.73 oz) weight
- -95 to +500 °F (-71 to +260 °C) temperature range

Recommended cables and accessories 2 - see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP® sensor signal conditioner from those featured in section 3 Options: J, P, W — see pages xvii to xx for option information

Actual Size

Model 357B22 — Top connector installs with narrower footprint

- 30 pC/g [3.1 pC/(m/s²)] sensitivity
- 7500 Hz upper frequency range
- 21 gram (0.73 oz) weight
- -95 to +500 °F (-71 to +260 °C) temperature range

Recommended cables and accessories ② — see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP® sensor signal conditioner from those featured in section 3 Options: J, P, W — see pages xvii to xx for option information

Model 357B33 — High sensitivity for low level measurements, side connector simplifies cable routing

- 100 pC/g [10.2 pC/(m/s²)] sensitivity
- 3500 Hz upper frequency range
- 45 gram (1.6 oz) weight
- -95 to +500 °F (-71 to +260 °C) temperature range

Recommended cables and accessories 2 - see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP® sensor signal conditioner from those featured in section 3 Options: J, P, W — see pages xvii to xx for option information

PCB

Actual Size

Model 357B34 — High sensitivity for low level measurements

- 100 pC/g [10.2 pC/(m/s²)] sensitivity
- 3500 Hz upper frequency range
- 45.4 gram (1.6 oz) weight
- -95 to +500 °F (-71 to +260 °C) temperature range

Recommended cables and accessories 2 - see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP® sensor signal conditioner from those featured in section 3 Options: J, P, W — see pages xvii to xx for option information

PC

Actual Size

Dimensions shown are in inches (millimeters).

HIGH TEMPERATURE

(complete specifications are featured on page 1.72)

These accelerometers utilize special materials that enable them to operate continuously to 900° F (482° C). Both single-ended and differential designs are offered.

- engines
- compressors
- furnaces

- turbomachinery
- rockets

Model 357B61 — Single-ended for lighter weight and laboratory testing

- 10 pC/g [1.02 pC/(m/s²)] sensitivity
- 5000 Hz upper frequency range
- 30 gram (1.1 oz) weight
- -65 to +900 °F (-54 to +482 °C) temperature range
- Mating cable assembly provided

Recommended cables and accessories ② — see page 4.2 Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP[®] sensor signal conditioner from those featured in section 3

Options: P — see pages xvii to xx for option information

7/16-27

Connector

2-Pin

7/16-27 2-Pin

Connector

Actual Size

Model 357B71 — Differential for engines and turbomachinery

- 10 pC/g [1.02 pC/(m/s²)] sensitivity
- 2000 Hz upper frequency range
- 100 gram (3.6 oz) weight
- -65 to +900 °F (-54 to +482 °C) temperature range

Recommended cables and accessories: Series 013 cable $\,-\!\!-$ see page 4.4 Options: none

Model 357B72 — Differential for engines and turbomachinery

- 50 pC/g [5.1 pC/(m/s²)] sensitivity
- 2000 Hz upper frequency range
- 120 gram (4.3 oz) weight
- -65 to +900 °F (-54 to +482 °C) temperature range

Recommended cables and accessories: Series 013 cable -- see page 4.4 Options: none

HIGH TEMPERATURE Charge Output Accelerometers (continued)

Model 357B73 — High sensitivity, differential for engines

- 100 pC/g [10.2 pC/(m/s²)] sensitivity
- 2000 Hz upper frequency range
- 130 gram (4.6 oz) weight
- -65 to +900 °F (-54 to +482 °C) temperature range

Recommended cables and accessories: Series 013 cable — see page 4.4 Options: none

Miniature Charge Output Accelerometer Specifications									
Model Number [1]	357A()6	357	A08	357	7A09			
Performance	English	SI	English	SI	English	SI			
Sensitivity	5 pC/g	0.51 pC/(m/s ²)	0.3 pC/g	0.03 pC/(m/s ²)	1.7 pC/g	0.17 pC/(m/s ²)			
Sensitivity Tolerance	± 20%	± 20%	± 20%	± 20%	± 20%	± 20%			
Measurement Range	± 500 g pk	± 4900 m/s² pk	± 1000 g pk	± 9800 m/s² pk	± 500 g pk	± 4900 m/s² pk			
Frequency Range (+5%) ^[6]	10 kHz	10 kHz	12 kHz	12 kHz	10 kHz	10 kHz			
Frequency Range (+10%) ^[6]	15 kHz ^[7]	15 kHz [7]	20 kHz	20 kHz	13 kHz	13 kHz			
Resonant Frequency	≥ 50 kHz	≥ 50 kHz	≥ 70 kHz	≥ 70 kHz	≥ 50 kHz	≥ 50 kHz			
Non-Linearity [2]	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %			
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %			
Environmental									
Overload Limit (Shock)	±10k g pk	± 98k m/s² pk	± 10k g pk	± 98k m/s² pk	± 5000 g pk	± 49k m/s² pk			
Temperature Range (Operating)	-65 to +350 °F	-54 to +177 °C	-100 to +350 °F	-73 to +177 °C	-100 to +350 °F	-73 to +177 °C			
Electrical					_				
Capacitance	700 pF	700 pF	120 pF	120 pF	310 pF	310 pF			
Insulation Resistance (at 70° F [21°C])	>10 ¹¹ ohms	>10 ¹¹ ohms	>10 ¹⁰ ohms	>10 ¹⁰ ohms	>10 ¹⁰ ohms	>10 ¹⁰ ohms			
Electrical Isolation (Base)	>10 ⁸ ohms ^[8]	>10 ⁸ ohms ^[8]	>10 ⁸ ohms	>10 ⁸ ohms	N/A	N/A			
Output Polarity	Negative	Negative	Negative	Negative	Negative	Negative			
Physical									
Sensing Flement	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic			
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear			
Housing Material	Titanium	Titanium	Anodized Aluminum	Anodized Aluminum	Titanium	Titanium			
Sealing	Hermetic	Hermetic	Ероху	Ероху	Ероху	Ероху			
Size (Height × Length × Width)	0.2	$3 \text{ in} \times .65 \text{ in} \times 0.38 \text{ in}$	0.11 in × 0.16 in × 0.27 in		0.	14 in \times 0.45 in \times 0.25 in			
	5.8 mm	n × 16.4 mm × 9.6 mm	2.8 mm × 4.1 mm × 6.9 mm		3.6 mm × 11.4 mm × 6.4 mm				
Weight	U.U8 oz	2.3 gm	U.UU6 oz	U.16 gm	0.02 oz	0.6 gm			
Electrical Connection	5-44 Coaxial Jack	5-44 Coaxial Jack	3-56 Coaxial Jack	3-56 LOaxial Jack	3-56 Coaxial Jack	3-56 COaxial Jack			
Electrical Connection Position	Side Through Upla	Side Through Uple	A dhaaiya	Side	Adhaaiya	Side Adhasiya			
	Through Hole	Through Hole	Aunesive	Adhesive	Adriesive	Adhesive			
Supplied Accessories 13									
Petro Wax			080/	A109	0804	A109			
Removal Tool			039	A29	039/	A27			
Cap Screw	081A3	6		_		_			
Allen Wrench	039A2	0	-	_		_			
Cable			030	A10	030.	A10			
NIST Calibration ^[4]	ACS-	1	AC	S-1	AC	S-1			
Additional Accessories [3]									
Adhesive Mounting Base	N/A		N	/A	N/	/A			
Magnetic Mounting Base	N/A		N	/A	N/	/A			
Triaxial Mounting Adaptor	N/A		080/	A194	N/	/Α			
Mating Cable Connectors	AF, Al	3	E	K	E	K			
Recommended Stock Cables	003		03	30	03	30			
Options ^[5]									
Available Options	M. P			0	F	0			
NOTES: [1] See note regard	ding accuracy of informatic	n on inside front cover.	[2] Zero-based, least-sq	uares, straight line metho	∙ . od.				

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

[6] Low frequency response is determined by external signal conditioning electronics. [7] 2 kHz less when used with off ground washer. [8] Only when using off ground washer.

	Minia	ture Charge Outp	out Acceleromete	r Specifications				
Model Number [1]	357	C10	3571	811 🚱	357	357B14		
Performance	English	SI	English	SI	English	SI		
Sensitivity	1.7 pC/g	0.17 pC/(m/s ²)	3.0 pC/g	0.31 pC/(m/s ²)	3 pC/g	0.31 pC/(m/s ²)		
Sensitivity Tolerance	± 20%	± 20%	± 10%	± 10%	± 10%	± 10%		
Measurement Range	± 500 g pk	± 4900 m/s² pk	± 2300 g pk	± 22.6k m/s² pk	± 2300 g pk	± 22.6k m/s² pk		
Frequency Range (+5%) ^[6]	10 kHz	10 kHz	12 kHz	12 kHz	12 kHz	12 kHz		
Frequency Range (+10%) [6]	13 kHz	13 kHz	16 kHz	16 kHz	16 kHz	16 kHz		
Resonant Frequency	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz		
Non-Linearity [2]	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %		
Transverse Sensitivity	≤ 5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %		
Environmental								
Overload Limit (Shock)	± 5000 g pk	\pm 49k m/s ² pk	± 10k g pk	± 98k m/s² pk	± 10k g pk	± 98k m/s² pk		
Temperature Range (Operating)	-100 to +350 °F	-73 to +177 °C	-95 to +500 °F	-71 to +260 °C	-95 to +500 °F	-71 to +260 °C		
Electrical								
Capacitance	310 pF	310 pF	340 pF	340 pF	340 pF	340 pF		
Insulation Resistance (at 70° F [21°C])	>10 ¹⁰ ohms	>10 ¹⁰ ohms	>10 ¹² ohms	>10 ¹² ohms	>10 ¹² ohms	>10 ¹² ohms		
Electrical Isolation (Base)	>10 ⁸ ohms	>10 ⁸ ohms	N/A	N/A	N/A	N/A		
Output Polarity	Negative	Negative	Negative	Negative	Negative	Negative		
Physical								
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic		
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear		
Housing Material	Anodized Aluminum	Anodized Aluminum	Titanium	Titanium	Titanium	Titanium		
Sealing	Ероху	Ероху	Hermetic	Hermetic	Hermetic	Hermetic		
Size (Height × Length × Width)	0. 3.6 n	14 in × 0.45 in × 0.25 in nm × 11.4 mm × 6.4 mm		9/32 in \times 0.33 in $^{[9]}$ 9/32 in \times 8.4 mm $^{[9]}$		9/32 in \times 0.64 in $^{[9]}$ 9/32 in \times 16.3 mm $^{[9]}$		
Weight	0.016 oz	0.45 gm	0.071 oz	2.0 gm	0.071 oz	2.0 gm		
Electrical Connection	3-56 Coaxial Jack	3-56 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack		
Electrical Connection Position	Side	Side	Side	Side	Тор	Тор		
Mounting	Adhesive	Adhesive	5-40 Male	5-40 Male	5-40 Male	5-40 Male		
Supplied Accessories ^[3]								
Petro Wax	080A	109	-	_	-	_		
Removal Tool	0394	427	-	_	_	_		
Cap Screw	_	-	-	_	-	_		
Allen Wrench	_	_	-	_	_	_		
Cable	0304	A10	-	—	-	_		
NIST Calibration [4]	ACS	S-1	AC	S-1	AC	S-1		
Additional Accessories ^[3]								
Adhesive Mounting Base	N/	A	080	A15	080	A15		
Magnetic Mounting Base	N/	A	080	A30	080	A30		
Triaxial Mounting Adaptor	N/	A	080	B16	080	B17		
Mating Cable Connectors	Eł	<	A	G	EB, A	H, AK		
Recommended Stock Cables	03	0	0	03	00)3		
Options ^[5]								
Available Options	Р		A, J, I	л, р, W	A, J, N	1, P, W		
NOTES: [1] See note regar	ding accuracy of informat	ion on inside front cover	[2] Zern-hased least-so	uares straight line meth	, , , , , , , , , , , , , , , , , , ,			
	for a ship and so in the second s		1 100 famalitation inf					

[3] See section 4 of this catalog for cable and accessory information. 4] See page 1.130 for calibration information.

[5] See page xvii to xx for option information.[6] Low frequency response is determined by external signal conditioning electronics.

[9] Hex imes Height.

General Purpose Charge Output Accelerometer Specifications								
Model Number [1]	3571	B03	357	B04	357	/A05	357	'B21
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	10 pC/g	1.02 pC/(m/s ²)	10 pC/g	1.02 pC/(m/s ²)	17 pC/g	1.7 pC/(m/s ²)	30 pC/g	3.1 pC/(m/s ²)
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 15%	± 15%	± 10%	± 10%
Measurement Range	± 2000 g pk	± 19k m/s² pk	± 2000 g pk	± 19k m/s² pk	± 500 g pk	± 4900 m/s² pk	± 1500 g pk	± 14.7k m/s² pk
Frequency Range (+5%) ^[6]	9 kHz	9 kHz	9 kHz	9 kHz	10 kHz	10 kHz	6 kHz	6 kHz
Frequency Range (+10%) ^[6]	12 kHz	12 kHz	12 kHz	12 kHz	12 kHz	12 kHz	7.5 kHz	7.5 kHz
Resonant Frequency	≥ 38 kHz	≥38 kHz	≥ 38 kHz	≥ 38 kHz	≥ 35 kHz	≥35 kHz	≥ 25 kHz	≥ 25 kHz
Non-Linearity [2]	≤1 %	≤ 1 %	≤ 1 %	≤1 %	≤ 1 %	≤1 %	≤ 1 %	≤1 %
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %
Environmental								
Overload Limit (Shock)	±21k g pk	± 205k m/s² pk	±21k g pk	± 205k m/s² pk	± 5000 g pk	± 49k m/s² pk	± 6000 g pk	± 58.8k m/s² pk
Temperature Range (Operating)	-95 to +500 °F	-71 to +260 °C	-95 to +500 °F	-71 to +260 °C	-65 to +350 °F	-54 to +177 °C	-95 to +500 °F	-71 to +260 °C
Electrical								
Capacitance	750 pF	750 pF	750 pF	750 pF	1400 pF	1400 pF	750 pF	750 pF
Insulation Resistance (at 70° F [21°C])	>10 ¹² ohms	>10 ¹² ohms	>10 ¹² ohms	>10 ¹² ohms	>10 ¹¹ ohms	>10 ¹¹ ohms	>10 ¹² ohms	>10 ¹² ohms
Output Polarity	Negative	Negative	Negative	Negative	Negative	Negative	Negative	Negative
Physical								
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Size (Hex × Height)		1/2 in × 0.81 in 1/2 in × 20.6 mm	1/2 in × 1.19 in 1/2 in × 30.2 mm		0.40 in × 10.2 mm × 24	0.95 in × 0.63 in ^[7] 1 mm × 16.0 mm ^[7]		5/8 in × 0.85 in 5/8 in × 21.6 mm
Weight	0.39 oz	11 am	0.39 07	11 am	0.35 07	10 am	0.73 07	21 am
Flectrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack
Electrical Connection Position	Side	Side	Тор	Тор	Side	Side	Side	Side
Mounting	10-32 Female	10-32 Female	10-32 Female	10-32 Female	Through Hole	Through Hole	10-32 Female	10-32 Female
Supplied Accessories [3]								
Petro Wax	080A	109	0804	A109	080	DA109	080A	109
Mounting Stud	081E	305	081	B05			0816	305
Metric Mounting Stud	M081	B05	M08	1B05		_	M081	B05
Cap Screw	_	-	_	_	80	1A45	_	_
Allen Wrench		-	_	_	03	9A22	_	-
NIST Calibration [4]	ACS	-1	AC	S-1	A	CS-1	ACS	S-1
Additional Accessories [3]								
Adhesive Mounting Base	080	A	08	0A		N/A	0804	412
Magnetic Mounting Base	080A	27	080	A27		N/A	080	427
Triaxial Mounting Adaptor	080E	310	080	B10		N/A	080	311
Mating Cable Connectors	EB, EJ, A	AH, AK	EB, EJ,	AH, AK	EB, EJ	J, AH, AK	EB, EJ, J	AH, AK
Recommended Stock Cables	00	3	00	03		003	00	3
Options ^[5]								
Available Options	J, P,	W	J, F	?, W	A, N	Л, Р, W	J, P,	W
NOTES: [1] See note rega	rding accuracy of i	nformation on insid	e front cover. [2] 2	Zero-based, least-so	quares, straight line	method.		

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

[6] Low frequency response is determined by external signal conditioning electronics. [7] Height × Length × Width.

	General Purpose Charge Output Accelerometer Specifications								
Model Number ^[1]	357B	22	357	/B33	357	357B34			
Performance	English	SI	English	SI	English	SI			
Sensitivity	30 pC/g	3.1 pC/(m/s ²)	100 pC/g	10.2 pC/(m/s ²)	100 pC/g	10.2 pC/(m/s ²)			
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%			
Measurement Range	± 1500 g pk	± 14.7k m/s² pk	± 150 g pk	± 1470 m/s² pk	± 150 g pk	± 1470 m/s² pk			
Frequency Range (+5%) ^[6]	6 kHz	6 kHz	3 kHz	3 kHz	3 kHz	3 kHz			
Frequency Range (+10%) ^[6]	7.5 kHz	7.5 kHz	3.5 kHz	3.5 kHz	3.5 kHz	3.5 kHz			
Resonant Frequency	≥ 25 kHz	≥ 25 kHz	≥ 13 kHz	\ge 13 kHz	≥ 13 kHz	≥ 13 kHz			
Non-Linearity ^[2]	≤ 1 %	≤ 1 %	≤1 %	≤ 1 %	≤1 %	≤1 %			
Transverse Sensitivity	≤ 5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %			
Environmental									
Overload Limit (Shock)	± 6000 g pk	± 58.8k m/s² pk	± 2000 g pk	± 19.6k m/s² pk	± 2000 g pk	± 19.6k m/s² pk			
Temperature Range (Operating)	-95 to +500 °F	-71 to +260 °C	-95 to +500 °F	-71 to +260 °C	-95 to +500 °F	-71 to +260 °C			
Electrical									
Capacitance	750 pF	750 pF	750 pF	750 pF	750 pF	750 pF			
Insulation Resistance	> 1012 obms	>1012 ohms	>1012 obmo	>1012 ohme	>1012 ohme	>1012 ohme			
Output Polarity	Negative	Negative	Negative	Negative	Negative	Negative			
Physical	-	-	_	_	_	_			
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic			
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear			
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium			
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic			
Size (Hex × Height)	5/8 in × 1.16 in	5/8 in × 29.3 mm	3/4 in × 1.00 in	3/4 in × 25.4 mm	3/4 in × 1.30 in	3/4 in × 33.0 mm			
Weight	0.73 oz	21 gm	1.60 oz	45 gm	1.60 oz	45.4 gm			
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack			
Electrical Connection Position	Тор	Тор	Side	Side	Тор	Тор			
Mounting	10-32 Female	10-32 Female	10-32 Female	10-32 Female	10-32 Female	10-32 Female			
Supplied Accessories ^[3]									
Petro Wax	080A1	09	0804	A109	080A	109			
Mounting Stud	081BC	15	081	B05	081	B05			
Metric Mounting Stud	M081E	05	M08	1B05	M087	1805			
Cap Screw	-		-	_	-	_			
Allen Wrench	-		-	_	-	_			
NIST Calibration [4]	ACS-	1	AC	S-1	ACS	S-1			
Additional Accessories [3]									
Adhesive Mounting Base	080A1	2	080	A12	080/	A12			
Magnetic Mounting Base	080A2	27	080	A27	080/	A27			
Triaxial Mounting Adaptor	080B1	1	080	B11	080	B11			
Mating Cable Connectors	EB, EJ, A	H, AK	EB, EJ,	AH, AK	EB, EJ,	AH, AK			
Recommended Stock Cables	003		00	03	00	03			
Options ^[5]									
Available Options	J, P, V	V	J, P	; W	J, P,	, W			
NOTES: [1] See note regar	ding accuracy of informatio	on on inside front cover.	[2] Zero-based, least-squ	uares, straight line metho	id.				

[6] Low frequency response is determined by external signal conditioning electronics.

High Temperature Charge Output Accelerometer Specifications								
Model Number [1]	357B	61 👁	357	B71	357	/B72	357	B73
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	10 pC/g	1.02 pC/(m/s ²)	10 pC/g	1.02 pC/(m/s ²)	50 pC/g	5.1 pC/(m/s ²)	100 pC/g	10.2 pC/(m/s ²)
Sensitivity Tolerance	± 10%	± 10%	± 5%	± 5%	± 5%	± 5%	± 5%	± 5%
Measurement Range	± 3000 g pk	± 29k m/s² pk	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk
Frequency Range (+5%) ^[6]	5 kHz	5 kHz	2 kHz	2 kHz	2 kHz	2 kHz	2 kHz	2 kHz
Frequency Range (+10%) ^[6]								
Resonant Frequency	≥ 27 kHz	≥ 27 kHz	≥ 16 kHz	≥ 16 kHz	$\geq 10 \text{ kHz}$	≥ 10 kHz	≥8 kHz	≥8 kHz
Non-Linearity [2]	≤ 1 %	≤ 1 %	≤ 1 %	≤ 1 %	≤ 1 %	≤ 1 %	≤ 1 %	≤1 %
Transverse Sensitivity	≤ 3 %	≤ 3 %	≤ 5 %	≤ 5 %	≤ 5 %	≤ 5 %	≤ 5 %	≤5 %
Environmental								
Overload Limit (Shock)	± 5000 g pk	± 49k m/s² pk	± 1000 g pk	± 9810 m/s² pk	± 1000 g pk	± 9810 m/s² pk	± 1000 g pk	± 9810 m/s² pk
Temperature Range (Operating)	-65 to +900 °F	-54 to +482 °C	-65 to +900 °F	-54 to +482 °C	-65 to +900 °F	-54 to +482 °C	-65 to +900 °F	-54 to +482 °C
Electrical								
Capacitance	650 pF	650 pF	220 pF	220 pF	1000 pF	1000 pF	1500 pF	1500 pF
Insulation Resistance (70° F [21°C])	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms	>10 ⁸ ohms
Insulation Resistance (900 °F ± 15 °F [482 °C ± 10 °C])	>105	>105	_	_	_		_	
Output Polarity	Negative	Negative	Differential	Differential	Differential	Differential	Differential	Differential
Physical		1						
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic
Sensing Geometry	Compression	Compression	Compression	Compression	Compression	Compression	Compression	Compression
Housing Material	Inconel	Inconel	Inconel	Inconel	Inconel	Inconel	Inconel	Inconel
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Size (Hex × Height)	5/8 in × 1.0 in	5/8 in × 25.4 mm	1.0 in × 1.82 in [7]	25.4 × 46.2 mm ^[7]	1.25 in × 1.82 in [7]	31.8 × 46.2 mm ^[7]	1.5 in × 1.82 in [7]	38.1 × 46.2 mm ^[7]
Weight	1.1 oz	30 gm	3.6 oz	100 gm	4.3 oz	120 gm	4.6 oz	130 gm
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	7/16-27 2-Pin	7/16-27 2-Pin	7/16-27 2-Pin	7/16-27 2-Pin	7/16-27 2-Pin	7/16-27 2-Pin
Electrical Connection Position	Side	Side	Side	Side	Side	Side	Side	Side
Mounting	10-32 Female	10-32 Female	Through Holes ^[8]	Through Holes [8]	Through Holes ^[8]	Through Holes ^[8]	Through Holes ^[8]	Through Holes ^[8]
Supplied Accessories ^[3]								
Mounting Stud	081	B05		_				-
Metric Mounting Stud	M081	1B05		_		_		-
Cap Screw	-	_	081A99	9 (3 ea.)	081A9	99 (3 ea.)	081A99	(3 ea.)
Hardline Cable	023/	410	-	_		_	-	-
NIST Calibration [4]	ACS	S-1	AC	S-1	A	CS-1	ACS	3-1
Additional Accessories ^[3]								
Mating Cable Connectors	EB, EJ,	AH, AK	ET,	GN	E	Γ, GN	ET, (GN
Recommended Stock Cables	00	13	013,	020	01:	3, 020	013,	020
Options ^[5]								
Available Options	Р)	N,	/A		N/A	N/	A
NOTES: [1] See note rega	rding accuracy of	information on insid	e front cover. [2]	Zero-based, least-so	quares, straight line	method.		
[3] Soo soction 4 of this catalo	a for cable and ac	cossony information	[/] 1 anen aa2 [/]	30 for calibration in	formation			

[3] See section 4 of this catalog for cable and accessory information.[4] See page 1.130 for calibration information.[5] See page xvii to xx for option information.[6] Low frequency response is determined by external signal conditioning electronics.

[7] Height × Width. [8] Triangular base with three mounting holes.

Seismic ICP[®] Accelerometers

- Building vibration monitoring
- Earthquake detection
- Structural testing of bridges
- Floor vibration monitoring
- Geological formation studies
- Foundation vibration monitoring

Seismic accelerometers are specifically designed to enable the detection of ultra-low-level, low-frequency vibrations associated with very large structures, foundations, and earth tremors. These sensors typically possess exceptional measurement resolution as the result of a comparatively larger size, which furnishes a stronger output signal and a lower noise floor.

Both ceramic and quartz sensing elements are utilized in seismic accelerometer designs. The Model 393C, with quartz sensing element, offers the best low-frequency response. Ceramic element styles with built-in, low-noise, signal conditioning circuitry offer the greatest measurement resolution. For best measurement clarity, seismic accelerometers should be used with a unity gain, batterypowered signal conditioner.

Several versions offer rugged, laser-welded, stainless steel housings with durable military-style connectors. Electrical case isolation, hermetic sealing, RF, EMI, ESD, and overload protection all ensure tolerance against environmental influences and mishandling.

SEISMIC ICP® ACCELEROMETERS

(complete specifications are featured on page 1.76 to 1.77)

Seismic ICP® accelerometers are characterized by a low noise floor, high output signal, and low frequency response. They are also larger in size and weight.

Model 393B04 — Low noise, wide amplitude range

- 1000 mV/g [102 mV/(m/s²)] sensitivity
- 0.05 Hz to 750 Hz frequency range
- 50 gram (1.8 oz) weight
- 3 μg (30 μm/s² resolution)

Recommended cables and accessories 20 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

Model 393B05 — High output signal in a small package size

- 10 V/g [1.02 V/(m/s²)] sensitivity
- 0.5 Hz to 750 Hz frequency range
- 50 gram (1.8 oz) weight
- 4 μg (40 μm/s² resolution)

Recommended cables and accessories **29** — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

Model 393A03 — General purpose, rugged

- 1000 mV/g [102 mV/(m/s²)] sensitivity
- 0.3 to 4000 Hz frequency range
- 210 gram (7.4 oz) weight
- 10 μg (100 μm/s²) resolution
- 5000 g (49k m/s²) shock survivability
- Electrical case isolation

Recommended cables and accessories $\,\,\overline{\!\!\mathcal{O}}\,\,$ — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

building vibration

■ large machinery

floor and foundation vibration

10-32 Connector

1/2x Actual Size

1/2x Actual Size

DPCA

1/2x Actual Size

heavy equipment

■ site surveys

Seismic ICP[®] Accelerometers

SEISMIC ICP® ACCELEROMETERS (continued)

Model 393C — Quartz sensing element provides stable, low-frequency measurement capability

- 1000 mV/g [102 mV/(m/s²)] sensitivity
- 0.01 to 1200 Hz frequency range
- 885 gram (31.2 oz) weight
- 100 µg (1mm/s²) resolution
- Electrical ground isolation

Recommended cables and accessories **@O** — see page 4. Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: none

1/2x Actual Size

Model 393B12 — High output signal in a relatively small package size

- 10 V/g [1.02 V/(m/s²)] sensitivity
- 0.1 to 2000 Hz frequency range
- 210 gram (7.4 oz) weight
- 8 µg (80 µm/s²) resolution
- 5000 g shock survivability
- Electrical case isolation

Recommended cables and accessories T — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

5/8-24

1/4-28 Mtg Hole

Connector

1/2x Actual Size

Model 393B31 — Best resolution seismic accelerometer

- 10 V/g [1.02 V/(m/s²)] sensitivity
- 0.07 to 300 Hz frequency range
- 635 gram (22.4 oz) weight
- 1 µg (9 µm/s²) rms resolution
- Electrical case isolation

Recommended cables and accessories \circ — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

1/2x Actual Size

Seismic ICP[®] Accelerometers

Seismic ICP [®] Accelerometer Specifications								
Model Number [1]	39:	3C	393/	\03 	393	B04		
Performance	English	SI	English	SI	English	SI		
Sensitivity	1000 mV/g	102 mV/(m/s ²)	1000 mV/g	102 mV/(m/s ²)	1000 mV/g	102 mV/(m/s ²)		
Sensitivity Tolerance	± 15%	± 15%	± 5%	± 5%	± 10%	± 10%		
Measurement Range	2.5 g pk	24.5 m/s ² pk	±5 g pk	± 49 m/s² pk	±5 g pk	± 49 m/s² pk		
Frequency Range (± 5%)	0.025 to 800 Hz	0.025 to 800 Hz	0.5 to 2000 Hz	0.5 to 2000 Hz	0.06 to 450 Hz	0.06 to 450 Hz		
Frequency Range (± 10%)	0.01 to 1200 Hz	0.01 to 1200 Hz	0.3 to 4000 Hz	0.3 to 4000 Hz	0.05 to 750 Hz	0.05 to 750 Hz		
Resonant Frequency	≥ 3.5 kHz	≥ 3.5 kHz	≥ 10 kHz	≥ 10 kHz	≥ 2500 Hz	≥ 2500 Hz		
Broadband Resolution (1 to 10k Hz)	0.0001 g rms	0.001 m/s ² rms	0.00001 g rms	0.0001 m/s ² rms	0.000003 g rms	0.00003 m/s ² rms		
Non-Linearity ^[2]	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %		
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %		
Environmental								
Overload Limit (Shock)	± 100 g pk	± 981 m/s² pk	± 5000 g pk	± 49k m/s² pk	± 300 g pk	± 2950 m/s² pk		
Temperature Range (Operating)	-65 to +200 °F	-54 to +93 °C	-65 to +250 °F	-54 to +121 °C	0 to +176 °F	-18 to +80 °C		
Electrical								
Excitation Voltage	19 to 20 VDC	19 to 20 VDC	19 to 20 VDC	19 to 20 VDC	19 to 20 VDC	19 to 20, VDC		
Constant Current Excitation	2 to 20 mA	2 to 20 mΛ	2 to 20 mA	2 to 20 mA	2 to 10 mA	2 to 10 mA		
Output Impedance	<100 ohms	<100 ohms	2 to 20 mA	2 to 20 mA	<500 ohms	<500 ohms		
Output Rias Voltage	3 to 4.5 VDC	3 to 4 5 VDC	8 to 12 VDC	8 to 12 VDC	7 to 12 VDC	7 to 12 VDC		
Discharge Time Constant	> 20 sec	> 20 sec	1 to 3 sec	1 to 3 sec	5 to 15 sec	5 to 15 sec		
Electrical Isolation (Case)	> 10 ⁸ ohms ^[7]	> 10 ⁸ ohms ^[7]	> 10 ⁸ ohms	> 10 ⁸ ohms	N/A	N/A		
Physical					.,			
FilySical	-	_						
Sensing Element	Quartz	Quartz	Ceramic	Ceramic	Ceramic	Ceramic		
Sensing Geometry	Compression	Compression	Shear	Shear	Flexural	Flexural		
Housing Material	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	litanium	litanium		
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic		
Veight Size (Diameter v. Height)	31.2 OZ	885 gm	1.2/16 in v 2.10 in [6]	210 gm	1.8 0Z	50 gm		
	2.23 III × 2.10 III	10.22 Copying Look	2 Din MIL C E01E	2 Die MIL C E01E	0.39 III × 1.22 III	20 11111 × 31 11111		
Electrical Connection	10-32 GOAXIAI JACK	10-32 GOAXIAI JACK	Z-PIII IVIIL-G-DUTD	Z-PIII IVIIL-C-DUTD	Ton	Top		
Mounting Throad	10.22 Eomalo	10.22 Eomolo	1/4 29 Eomalo	1/4 29 Eomalo	10.22 Eomolo	10.22 Eomalo		
Supplied Accessories	10-32 Fellidie	10-52 Fellidie	1/4-20 Feilidie	1/4-20 Feilidie	10-32 Feilidie	10-32 Feilidie		
Datro Wex	0004	100						
Petro Wax Mounting Rose	AU8U	109						
Mounting Stud	0816	305			081	- B05		
Metric Mounting Stud	M081	B05	M08	1820		_		
Protective Thermal Jacket		-	085	A31	_	_		
NIST Calibration [4]	ACS-1,	ACS-4	ACS-1	, ACS-4	ACS-1,	ACS-4		
Additional Accessories ^[3]								
Magnetic Mounting Base	080/	121	080	A54	N	/Α		
Triaxial Mounting Adaptor	0801	л16	080	A57	N/	Ά		
Mating Cable Connectors	EB, AH, /	AK, AW	AE, A	M, AP	EB, AH,	AK, AW		
Recommended Stock Cables	002,	003	N	/A	002,	003		
Options ^[5]								
Available Options	N/	A	N	/A	Ν	1		
NOTES: [1] See note regard	ling accuracy of informat	ion on inside front cover.	[2] Zero-based, least-so	uares, straight line metho	- od.			
[3] See section 4 of this catalog	for cable and accessory	information. [4] See page	e 1.130 for calibration inf	ormation.				

[5] See page xvii to xx for option information. [6] $\text{Hex} \times \text{Height}$. [7] Base Isolation.

Seismic ICP[®] Accelerometers

Seismic ICP [®] Accelerometer Specifications								
Model Number [1]	393B0	5 🐠	39	3B12	393	393B31		
Performance	English	SI	English	SI	English	SI		
Sensitivity	10 V/g	1.02 V/(m/s ²)	10.0 V/g	1.02 V/(m/s ²)	10.0 V/g	1.02 V/(m/s ²)		
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 5%	± 5%		
Measurement Range	0.5 g pk	4.9 m/s ² pk	0.5 g pk	4.9 m/s ² pk	0.5 g pk	4.9 m/s ² pk		
Frequency Range (± 5%)	0.6 to 450 Hz	0.6 to 450 Hz	0.15 to 1000 Hz	0.15 to 1000 Hz	0.1 to 200 Hz	0.1 to 200 Hz		
Frequency Range (± 10%)	0.5 to 750 Hz	0.5 to 750 Hz	0.10 to 2000 Hz	0.10 to 2000 Hz	0.07 to 300 Hz	0.07 to 300 Hz		
Resonant Frequency	≥ 2.5 kHz	≥ 2.5 kHz	≥ 10 kHz	≥ 10 kHz	≥ 700 Hz	≥ 700 Hz		
Broadband Resolution (1 to 10k Hz)	0.000004 g rms	0.00004 m/s ² rms	0.000008 g rms	0.00008 m/s ² rms	0.000001 g rms	0.000009 m/s ² rms		
Non-Linearity [2]	≤ 1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %		
Transverse Sensitivity	≤5 %	≤5 %	≤ 7 %	≤ 7 %	≤ 5 %	≤5 %		
Environmental								
Overload Limit (Shock)	± 300 g pk	± 2950 m/s² pk	± 5000 g pk	± 49k m/s² pk	± 40 g pk	± 392 m/s² pk		
Temperature Range (Operating)	0 to +176 °F	-18 to +80 °C	-50 to +180 °F	-45 to +82 °C	0 to +150 °F	-18 to +65 °C		
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30. VDC	18 to 30. VDC	18 to 30. VDC	24 to 28 VDC	24 to 28 VDC		
Constant Current Excitation	2 to 10 mA	2 to 10 m∆	2 to 20 mΔ	2 to 20 mA	24 to 20 VDC	24 to 20 VDC		
Output Impedance	<500 ohms	<500 ohms	<1000 ohms	<1000 ohms	< 500 ohms	< 500 ohms		
Output Rigs Voltage	7 to 12 VDC	7 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 14 VDC	8 to 14 VDC		
Discharge Time Constant	0.5 to 2.0 sec	0.5 to 2.0 sec	> 35 sec	> 35 coc	>5 sec	>5 sec		
Electrical Isolation (Case)	N/A	0.0 to 2.0 300	> 10 ⁸ ohms	> 10 ⁸ ohms	> 10 ⁸ ohms	> 10 ⁸ ohms		
	,	,				_ 10 01110		
Physical								
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic		
Sensing Geometry	Flexural	Flexural	Shear	Shear	Flexural	Flexural		
Housing Material	Titanium	Titanium	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel		
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic		
Weight	1.8 oz	50 gm	7.4 oz	210 gm	22.4 oz	635 gm		
Size (Diameter × Height)	0.99 in × 1.22 in	25 mm × 31 mm	1 3/16 in × 2 3/16 in ^[6]	1 3/16 in × 55.6 mm ^[6]	2 1/4 in × 2.8 in ^[6]	2 1/4 in × 71.1 mm ^[6]		
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	2-Pin MIL-C-5015	2-Pin MIL-C-5015	2-Pin MIL-C-5015	2-Pin MIL-C-5015		
Electrical Connection Position	Тор	Тор	Тор	Тор	Тор	Тор		
Mounting Thread	10-32 Female	10-32 Female	1/4-28 Female	1/4-28 Female	1/4-28 Female	1/4-28 Female		
Supplied Accessories ¹³								
Petro Wax			-		-	_		
Mounting Base			-		-	-		
Mounting Stud	U81B	05		B20	081	B2U		
Protective Inermal Jacket		1				-		
	AC3	-	AU3-1	, AU3-4	AU-	5-4		
Additional Accessories ^[3]								
Magnetic Mounting Base	N/A	4	080)A54	N,	/A		
Iriaxial Mounting Adaptor				JA57		/189		
Becommended Stock Cables	ED, AR, A 002 (AE, P	ινι, ΑΡ /Δ	AE, AI	νι, AP /Δ		
Antions 5	00z, t				11/			
Available Options					Λ	4		
	IVI	en en inside forst -	[0] Zara harri lirri	VI	۱۱ ۱	/1		
[3] See section 4 of this catalog	for cable and accessory in the second s	on on inside front cover nformation. [4] See pag	. ∟∠」∠ero-based, least-sq je 1.130 for calibration inf	uares, straight line metho formation.	Ju.			

[5] See page xvii to xx for option information. [6] ${\rm Hex} \times {\rm Height}.$

Seismic accelerometers are utilized on large civil structures, such as buildings and bridges, to monitor their motion in response to such effects as wind, traffic, and earthquakes.

Extreme Environment ICP[®] Accelerometers

- High temperature
- Cryogenic temperature
- HALT, HASS, ESS
- Thermal stress screening
- Environmental testing
- Combined environmental chambers

PCB offers specially designed and tested ICP® and charge output accelerometers for conducting vibration and shock measurements under demanding environmental conditions. These sensors combine proven quartz, and ceramic shear sensing technology with built-in, microelectronic specialized, signal conditioning circuitry to achieve dependable operation to extreme temperatures and through repetitive temperature cycling. Laser-welded, hermetically sealed, light-weight titanium or stainless-steel housings offer further protection from the environment. Most units operate from conventional, constant-current signal conditioners, permitting reliable operation and simplicity of use.

Three distinct series of accelerometers are offered for extreme environments. The Series 320 is recommended for high temperature applications and thermal cycling requirements from -100 to +325 °F. The Series 351 addresses cryogenic applications to -320 °F. Accelerometers for HALT, HASS, and ESS are designed and tested for operation in rapid, thermal cycling, vibration test applications.

> A variety of sizes and configurations are available in each series to accommodate unique application requirements.

Prior to shipment, each sensor undergoes a battery of tests to ensure survivability for its intended use. Such tests include temperature soak at cryogenic or elevated temperatures, temperature cycling, and exposure to highly accelerated screening procedures with hydraulically actuated shakers.

HIGH TEMPERATURE ICP® ACCELEROMETERS

(complete specifications are featured on page 1.84)

High temperature ICP[®] accelerometers are specially designed and tested to survive temperature extremes beyond the range of standard ICP[®] accelerometers.

- engine testing
- turbine testing
- high-temperature testing

CE

Actual Size

5/16 Hex

0.10(2.5)

5–44 Connector

5-40 Thd

Model 320C15 — Miniature, low profile

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 1.5 Hz to 18 kHz frequency range
- 2 gram (0.07 oz) weight
- -100 to +325 °F (-73 to +163 °C) temperature range
- ± 500 g (± 4900 m/s²) amplitude range
- Quartz shear sensing element

Recommended cables and accessories OO — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: A, J, M, W — see pages xvii to xx for option information

Model 320C18 — 10-32 connector joins to cables common to most accelerometers

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 1.5 Hz to 18 kHz frequency range
- 1.7 gram (0.06 oz) weight
- -100 to +325 °F (-73 to +163 °C) temperature range
- ± 500 g (± 4900 m/s²) amplitude range
- Quartz shear sensing element

Recommended cables and accessories **20** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, J, M, W — see pages xvii to xx for option information

Model 320C03 — General purpose

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 9000 Hz frequency range
- 10.5 gram (0.38 oz) weight
- -100 to +325 °F (-73 to +163 °C) temperature range
- ± 500 g (± 4900 m/s²) amplitude range
- Quartz shear sensing element

Recommended cables and accessories @@ — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: J, W — see pages xvii to xx for option information

HIGH TEMPERATURE ICP® ACCELEROMETERS (continued)

Model 320C33 — High sensitivity

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.7 Hz to 6000 Hz frequency range
- 20 gram (0.7 oz) weight
- -100 to +325 °F (-73 to +163 °C) temperature range
- \pm 50 g (\pm 490 m/s²) amplitude range
- Quartz shear sensing element

Recommended cables and accessories @@ — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: J, W — see pages xvii to xx for option information

CRYOGENIC ICP® ACCELEROMETERS

(complete specifications are featured on pages 1.85 to 1.86)

Cryogenic ICP[®] accelerometers are especially well suited for applications requiring operation to extremely low temperatures.

Model 351B11 — Miniature, low profile

- 5 mV/g [0.51 mV/(m/s²)] sensitivity
- 0.7 Hz to 15 kHz frequency range
- 2 gram (0.07 oz) weight
- -320 to +250 °F (-196 to +121 °C) temperature range
- ± 300 g (± 2942 m/s²) amplitude range

Recommended cables and accessories $@ \bullet -$ see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, J, M, W — see pages xvii to xx for option information

Model 351B14 — 10-32 connector joins to cables common to most accelerometers

- 5 mV/g [0.51 mV/(m/s²)] sensitivity
- 0.7 Hz to 10 kHz frequency range
- 1.8 gram (0.06 oz) weight
- -320 to +250 °F (-196 to +121 °C) temperature range
- \pm 300 g (\pm 2942 m/s²) amplitude range

Recommended cables and accessories @@ — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: A, J, M — see pages xvii to xx for option information cryogenic pumps

- rocket motors
- refrigerant handling

CRYOGENIC ICP® ACCELEROMETERS (continued)

Model 351B03 — General purpose

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 9000 Hz frequency range
- 10.5 gram (0.38 oz) weight
- -320 to +250 °F (-196 to +121 °C) temperature range
- \pm 150 g (\pm 1472 m/s²) amplitude range

Recommended cables and accessories **@@** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: J — see pages xvii to xx for option information

Actual Size

- 50 mV/g [5.1 mV/(m/s²)] sensitivity
- 0.7 Hz to 7 kHz frequency range
- 20 gram (0.7 oz) weight
- -320 to +250 °F (-196 to +121 °C) temperature range
- ± 30 g (± 294 m/s²) amplitude range

Recommended cables and accessories **@@** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: J — see pages xvii to xx for option information

Model 351B41 — High sensitivity, high resolution

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.7 Hz to 3500 Hz frequency range
- 40 gram (1.4 oz) weight
- -320 to +250 °F (-196 to +121 °C) temperature range
- ± 15 g (± 147 m/s²) amplitude range
- 0.0005 g (0.005 m/s²) resolution

Recommended cables and accessories **20** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: J — see pages xvii to xx for option information

HALT, HASS, ESS ACCELEROMETERS

(complete specifications are featured on pages 1.87 to 1.88)

HALT, HASS, and ESS accelerometers are specifically designed and tested to endure the extreme and rapid thermal and vibration cycles encountered in pneumatically actuated vibration tables used for accelerated life testing and stress screening.

- avionics
- servo controls
- circuit boards
- motors

- life support apparatus
- consumer electronics
- machinery monitoring

10 - 32

nnector

3/8 Hex

+ 10-32 Mta Thd

vibration control

0.87

Model 352B30 — Built-in, low-pass filter suppresses overloads

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 10 Hz to 6000 Hz frequency range
- 7 gram (0.25 oz) weight
- \pm 500 g (\pm 4900 m/s²) amplitude range
- -65 to +250 °F (-54 to +121 °C) temperature range

Recommended cables and accessories **20** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information

Model 320C20 — Filtered, high frequency, high temperature, stable sensing element

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 1.5 Hz to 10 kHz frequency range
- 6.5 gram (0.23 oz) weight
- ± 500 g (± 4900 m/s²) amplitude range
- -100 to +325 °F (-73 to +163 °C) temperature range

Recommended cables and accessories **@@** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: M — see pages xvii to xx for option information CE

CE

Actual Size

Actual Size

Model 300A12 — System, including high temperature, charge output accelerometer, in-line charge converter, and high temperature interconnect cable

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 10 Hz to 10 kHz frequency range
- 5.4 gram (0.19 oz) weight
- ± 250 g (± 2450 m/s²) amplitude range
- -100 to +500 °F (-73 to +260 °C) temperature range

Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

	ccelerometer	r Specificatio	ns					
Model Number ^[1]	3200	CO3	320	C15	32()C18	320	C33
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%
Measurement Range	± 500 g pk	\pm 4900 m/s ² pk	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4900 m/s² pk	± 50 g pk	± 490 m/s² pk
Frequency Range (± 5%)	1 to 6000 Hz	1 to 6000 Hz	2.0 to 10k Hz	2.0 to 10k Hz	2.0 to 10k Hz	2.0 to 10k Hz	1 to 4000 Hz	1 to 4000 Hz
Frequency Range (± 10%)	0.7 to 9000 Hz	0.7 to 9000 Hz	1.5 to 18k Hz	1.5 to 18k Hz	1.5 to 18k Hz	1.5 to 18k Hz	0.7 to 6000 Hz	0.7 to 6000 Hz
Resonant Frequency	≥35 kHz	$\ge 35 \text{ kHz}$	≥ 60 kHz	$\ge 60 \text{ kHz}$	≥ 60 kHz	≥60 kHz	≥ 22 kHz	≥ 22 kHz
Broadband Resolution (1 to 10k Hz)	0.005 g rms	0.05 m/s ² rms	0.005 g rms	0.05 m/s ² rms	0.005 g rms	0.05 m/s ² rms	0.0003 g rms	0.003 m/s² rms
Non-Linearity ^[2]	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤ 1 %	≤1 %
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %
Environmental								
Overload Limit (Shock)	±10k gpk	± 98k m/s² pk	± 10k g pk	± 98k m/s² pk	±10k gpk	± 98k m/s² pk	± 2000 g pk	± 19.6k m/s² pk
Temperature Range (Operating)	-100 to +325 °F	-73 to +163 °C	-100 to +325 °F	-73 to +163 °C	-100 to +325 °F	-73 to +163 °C	-100 to +325 °F	-73 to +163 °C
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	\leq 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	\leq 100 ohms	≤ 100 ohms	\leq 100 ohms	\leq 100 ohms
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC
Discharge Time Constant	0.5 to 1.0 sec	0.5 to 1.0 sec	0.25 to 1.0 sec	0.25 to 1.0 sec	0.25 to 1.0 sec	0.25 to 1.0 sec	0.5 to 1.5 sec	0.5 to 1.5 sec
Physical								
Sensing Element	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Welded Hermetic	Welded Hermetic	Welded Hermetic	Welded Hermetic	Welded Hermetic	Welded Hermetic	Welded Hermetic	Welded Hermetic
Size (Hex × Height)	$1/2\ \text{in}\times 0.81\ \text{in}$	$1/2 \text{ in} \times 20.6 \text{ mm}$	$5\!/16$ in $\times 0.43$ in	5/16 in × 10.9 mm	9/32 in × 0.74 in	9/32 in × 18.8 mm	$3/4\ \text{in} \times 0.85\ \text{in}$	3/4 in × 21.6 mm
Weight	0.38 oz	10.5 gm	0.07 oz	2.0 gm	0.06 oz	1.7 gm	0.7 oz	20 gm
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	5-44 Coaxial	5-44 Coaxial	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack
Electrical Connection Position	Side	Side	Side	Side	Тор	Тор	Side	Side
Mounting Thread	10-32 Female	10-32 Female	5-40 Male	5-40 Male	5-40 Male	5-40 Male	10-32 Female	10-32 Female
Supplied Accessories ^[3]								
Petro Wax	080A	109	080/	A109	08	0A109		-
Adhesive Mounting Base			080	A15	30	80A15	0804	412
Mounting Stud	081B	05	-	_			0818	305
Metric Mounting Stud	M081	B05	-	_			M081	B05
NIST Calibration ^[4]	ACS	-1	AC	S-1	A	.CS-1	ACS	5-1
Additional Accessories ^[3]								
Magnetic Mounting Base	080A	27	080	A30	30	80A30	0804	427
Triaxial Mounting Adaptor	080B	10	080	B16	08	80B16	080E	311
Mating Cable Connectors	AH, AK, AV	V, EB, EJ	AF,	AG	AH, AK,	AW, EB, EJ	AH, AK, AV	N, EB, EJ
Recommended Stock Cables	002, 0	003	002,	003	00	2, 003	002,	003
Options ^[5]								
Available Options	J, V	V	A, J,	M, W	A, J	I, M, W	J. \	N
NOTES: [1] See note rega	rding accuracy of i	nformation on insid	e front cover. [2]	Zero-based, least-sc	luares, straight line	method.		

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

Cryogenic ICP® Accelerometer Specifications								
Model Number ^[1]	351B03		351B11		351B14			
Performance	English	SI	English	SI	English	SI		
Sensitivity	10 mV/g	1.02 mV/(m/s ²)	5 mV/g	0.51 mV/(m/s ²)	5 mV/g	0.51 mV/(m/s ²)		
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%		
Measurement Range	±150 g pk	±1472 m/s² pk	± 300 g pk	± 2942 m/s² pk	± 300 g pk	± 2942 m/s² pk		
Frequency Range (± 5%)	1 to 6000 Hz	1 to 6000 Hz	1 to 10k Hz	1 to 10k Hz	1 to 8k Hz	1 to 8k Hz		
Frequency Range (± 10%)	0.7 to 9000 Hz	0.7 to 9000 Hz	0.7 to 15k Hz	0.7 to 15k Hz	0.7 to 10k Hz	0.7 to 10k Hz		
Resonant Frequency	≥ 35 kHz	≥ 35 kHz	$\ge 40 \text{ kHz}$	\geq 40 kHz	\ge 40 kHz	≥ 40 kHz		
Broadband Resolution (1 to 10k Hz)	0.01 g rms	0.1 m/s ² rms	0.01 g rms	0.1 m/s ² rms	0.01 g rms	0.1 m/s ² rms		
Non-Linearity [2]	≤ 1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %		
Transverse Sensitivity	≤ 5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %		
Environmental								
Overload Limit (Shock)	± 5000 g pk	± 49k m/s² pk	± 10k g pk	± 98k m/s² pk	±10k g pk	± 98k m/s² pk		
Temperature Range (Operating)	-320 to +250 °F	-196 to +121 °C	-320 to +250 °F	-196 to +121 °C	-320 to +250 °F	-196 to +121 °C		
Electrical								
Excitation Voltage	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC		
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA		
Output Impedance	\leq 100 ohms	\leq 100 ohms	\leq 100 ohms	\leq 100 ohms	\leq 100 ohms	≤ 100 ohms		
Output Bias Voltage	3 to 10 VDC	3 to 10 VDC	3 to 10 VDC	3 to 10 VDC	3 to 10 VDC	3 to 10 VDC		
Discharge Time Constant	>0.5 sec	>0.5 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec		
Physical								
Sensing Element	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz		
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear		
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium		
Sealing	Welded Hermetic	Welded Hermetic	Welded Hermetic	Welded Hermetic	Welded Hermetic	Welded Hermetic		
Size (Hex × Height)	1/2 in × 0.81 in	1/2 in × 20.6 mm	5/16 in × 0.43 in	5/16 in × 10.9 mm	9/32 in × 0.74 in	9/32 in × 18.8 mm		
Weight	0.38 oz	10.5 gm	0.07 oz	2 gm	0.06 oz	1.8 gm		
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	5-44 Coaxial Jack	5-44 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack		
Electrical Connection Position	Side	Side	Side	Side	Тор	Тор		
Mounting Thread	10-32 Female	10-32 Female	5-40 Male	5-40 Male	5-40 Male	5-40 Male		
Supplied Accessories ^[3]								
Mounting Stud	081B0)5	-	-	-	_		
Metric Mounting Stud	M081B05		_					
NIST Calibration [4]	ACS-1		ACS-1		ACS-1			
Additional Accessories [3]								
Petro Wax	080A109		080A109		080A109			
Adhesive Mounting Base	080A		080A15		080A15			
Magnetic Mounting Base	080A27		080A30		080A30			
Triaxial Mounting Adaptor	080B10		080B16		080B16			
Mating Cable Connectors	EB, AH, AK, AW		AF, AG		EB, AH, AK, AW			
Recommended Stock Cables	003		00	13	00	13		
Options ⁽⁵⁾								
Available Options	J		A, J, M, W		A, J, M			
NOTES: [1] See note regardi [3] See section 4 of this catalog f	ing accuracy of information or cable and accessory in	on on inside front cover. nformation. [4] See page	[2] Zero-based, least-squ 1.130 for calibration info	uares, straight line metho prmation, [5] See page x	od. wii to xx for option inform	nation.		

Cryogenic ICP [®] Accelerometer Specifications									
Model Number ^[1]	351B31		351B41						
Performance	English	SI	English	SI					
Sensitivity	50 mV/g	5.10 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)					
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%					
Measurement Range	± 30 g pk	± 294 m/s² pk	±15 g pk	±147 m/s² pk					
Frequency Range (± 5%)	1 to 4000 Hz	1 to 4000 Hz	1 to 2000 Hz	1 to 2000 Hz					
Frequency Range (± 10%)	0.7 to 7000 Hz	0.7 to 7000 Hz	0.7 to 3500 Hz	0.7 to 3500 Hz					
Resonant Frequency	≥ 22 kHz	≥ 22 kHz	≥ 15 kHz	≥ 15 kHz					
Broadband Resolution (1 to 10k Hz)	0.002 g rms	0.02 m/s ² rms	0.0005 g rms	0.005 m/s ² rms					
Non-Linearity [2]	≤1 %	≤1 %	≤1 %	≤1 %					
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %					
Environmental									
Overload Limit (Shock)	± 2000 g pk	± 19.6k m/s² pk	±1000 a pk	±9810 m/s² pk					
Temperature Range (Operating)	-320 to +250 °F	-196 to +121 °C	-320 to +250 °F	-196 to +121 °C					
Electrical									
	20 to 20 VDC	20 to 20 VDC	20 to 20 MPC	20 to 20 V/DC					
Constant Current Excitation	20 to 20 mA	20 to 30 VDC	20 10 30 VDC	20 to 20 mA					
	2 tū 20 TITA	2 10 20 IIIA	< 100 colms	2 t0 20 TITA					
Output Riss Voltage	≤ 100 011113	≤ 100 011113	≤ 100 01111S	2 to 10 VDC					
Discharge Time Constant	>0.5 coc	>0.5 coc	>0.5 coc	>0.5 coc					
Discharge fille constant	>0.3 Sec	>0.5 Sec	20.0 386	>0.3 Sec					
			0						
Sensing Element	Quartz	Quartz	Quartz	Quartz					
Sensing Geometry	Shear	Shear	Shear	Shear					
Housing Material	litanium	litanium	litanium	litanium					
Sealing	Welded Hermetic	Welded Hermetic	Welded Hermetic	Welded Hermetic					
Size (Hex × Height)	3/4 in × 0.85 in	3/4 in × 21.6 mm	3/4 in × 0.85 in	3/4 in × 21.6 mm					
Weight	0.7 oz	20 gm	1.4 oz	40 gm					
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack					
Electrical Connection Position	Side	Side	Side	Side					
Mounting Thread	10-32 Female	10-32 Female	10-32 Female	10-32 Female					
Supplied Accessories 15		Doc		205					
Mounting Stud	081	1005	081805						
NIETric Mounting Stud	80101	1 BU5							
	AC.	3-1	AC	-0-1					
Retro Wey	000/	100	000	A 100					
Adhesive Mounting Base	U80A109		U80A109						
Magnetic Mounting Base	080A12		080A12						
Triaxial Mounting Adaptor	080B11		080827						
Mating Cable Connectors	EB, AH, AK, AW		EB, AH, AK, AW						
Recommended Stock Cables	commended Stock Cables 003		003						
Options ^[5]									
Available Options		J	J						
 NOTES: [1] See note regarding accuracy of information on inside front cover. [2] Zero-based, least-squares, straight line method. [3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information. 									
Extreme Environment Accelerometers

HALT, HAS	HALT, HASS, ESS ICP [®] Accelerometer Specifications							
Model Number 🛯	320	C20	3521	330				
Performance	English	SI	English	SI				
Sensitivity	10 mV/g	1.02 mV/(m/s ²)	10 mV/g	1.02 mV/(m/s ²)				
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%				
Measurement Range	± 500 g pk	± 4900 m/s² pk	± 500 g pk	± 4905 m/s² pk				
Frequency Range (± 5%)	2.0 to 5000 Hz	2.0 to 5000 Hz	15 to 4500 Hz	15 to 4500 Hz				
Frequency Range (± 10%)	1.5 to 10k Hz	1.5 to 10k Hz	10 to 6000 Hz	10 to 6000 Hz				
Resonant Frequency	≥ 60 kHz	≥60 kHz	≥65 kHz	≥ 65 kHz				
Broadband Resolution (1 to 10k Hz)	0.006 g rms	0.06 m/s² rms	0.004 g rms	0.04 m/s ² rms				
Non-Linearity ^[2]	≤1 %	≤1 %	≤1 %	≤1 %				
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %				
Environmental								
Overload Limit (Shock)	±10k g pk	± 98k m/s² pk	±10k g pk	± 98k m/s² pk				
Temperature Range (Operating)	-100 to +325 °F	-73 to +163 °C	-65 to +250 °F	-54 to +121 °C				
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC				
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA				
Output Impedance	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms				
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC				
Discharge Time Constant	0.25 to 1.0 sec	0.25 to 1.0 sec	<0.1 sec	<0.1 sec				
Physical								
Sensing Element	Quartz	Quartz	Ceramic	Ceramic				
Sensing Geometry	Shear	Shear	Shear	Shear				
Housing Material	Titanium	Titanium	laat2 22alnist2	Stainless Steel				
Sealing	Welded Hermetic	Welded Hermetic	Welded Hermetic	Welded Hermetic				
Size (Hex > Height)	3/8 in < 0.87 in	$3/8 \text{ in } \times 22.1 \text{ mm}$	3/8 in × 0.87 in	$3/8 \text{ in } \times 22 \text{ mm}$				
Weight	0.23 07	65 am	0.25 07	7 am				
Electrical Connection	10-32 Coavial Jack	10-32 Coavial Jack	10-32 Coavial Jack	10-32 Coavial Jack				
Electrical Connection Position	To-32 Coaxial Jack	Ton	Ton	Top				
Mounting Thread	10-32 Male	10-32 Male	10-32 Male	10-32 Male				
Supplied Accessories	10-52 111016	10-32 101016	10-52 101016	10-52 Male				
Betro Way	090/	100	090/	100				
Adhasiya Maunting Basa	4080	N109	080/	4109				
Mounting Stud	00		00	-				
Metric Mounting Stud								
NIST Calibration ^[4]	AC	S-1	AC	S- 1				
Additional Accessories	10	51	7100	5 1				
Magnetia Mounting Rose	N	(A	N	/^				
Triavial Mounting Adapter	IN/	A 17	IN/	/A A17				
Mating Cable Connectors	ER	E1	ER	EI				
Recommonded Stock Cables	ED,	EJ	ED, 002	EJ 002				
	002,	003	002,	003				
Options a		4		4				
		n	N	Л				
NUIES: [1] See note regard	ing accuracy of infor	mation on inside tro	ont cover.					
[3] See section 4 of this catalog	for cable and access	ory information						
[4] See page 1 130 for calibratio	n information	s., momuton.						
[5] See page xvii to xx for option	information.							

Extreme Environment Accelerometers

HALT, HASS, ESS Charge Output Accelerometer Specifications								
	Kit Specif	fications		Component Specifications				
Model Number ^[1]	300A	\12	357	M50	422M136			
Performance	English	SI	English	English SI		SI		
Sensitivity	10 mV/q	1.02 mV/(m/s ²)	0.4 pC/q	0.04 pC/(m/s^2)	N/A	N/A		
Sensitivity Tolerance	± 20%	± 20%	± 15%	± 15%	N/A	N/A		
, Measurement Range	± 250 g pk ± 2450 m/s ² pk		± 500 g pk	± 4900 m/s ² pk	± 2.5 V	± 2.5 V		
Frequency Range (± 5%)	10 to 10k Hz 10 to 10k Hz		10 kHz ^[6]	10 kHz ^[6]	N/A	N/A		
Low Frequency Cutoff (-5%)	N/A	N/A	N/A	N/A	10 Hz	10 Hz		
Resonant Frequency	≥ 60 kHz	≥ 60 kHz	≥ 60 kHz	≥ 60 kHz	N/A	N/A		
Broadband Resolution (1 to 10k Hz)	0.002 g rms	0.02 m/s ² rms	N/A	N/A	N/A	N/A		
Non-Linearity ^[2]	≤1 %	≤1 %	≤1 %	≤1 %	N/A	N/A		
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤ 5 %	N/A	N/A		
Environmental								
Overload Limit (Shock)	± 3000 g pk	± 29k m/s² pk	± 3000 g pk	± 29k m/s² pk	± 1000 g pk	± 9800 m/s² pk		
Temperature Range (Operating)	-100 to +500 °F	-73 to +260 °C	-100 to +500 °F	-73 to +260 °C	-65 to +250 °F	-54 to +121 °C		
Electrical								
Input Range (± 2%)	N/A	N/A	N/A	N/A	± 100 pC	± 100 pC		
Charge Sensitivity (± 2% at 100 Hz)	N/A	N/A	N/A	N/A	25 mV/pC	25 mV/pC		
Broadband Noise (1 to 10k Hz)	N/A	N/A	N/A	N/A	20 µV	20 µV		
Excitation Voltage	18 to 28 VDC	18 to 28 VDC	N/A	N/A	18 to 28 VDC	18 to 28 VDC		
Constant Current Excitation	2.2 to 20 mA	2.2 to 20 mA	N/A	N/A	2.2 to 20 mA	2.2 to 20 mA		
Output Impedance	< 10 ohms	< 10 ohms	N/A	N/A	< 10 ohms	< 10 ohms		
Bias Voltage	8 to 12 VDC	8 to 12 VDC	N/A	N/A	8 to 12 VDC	8 to 12 VDC		
Discharge Time Constant	0.05 sec	0.05 sec	N/A	N/A	0.05 sec	0.05 sec		
Capacitance	N/A	N/A	125 pF	125 pF	N/A	N/A		
Insulation Resistance (at 70° F [21°C])	N/A	N/A	> 10 ¹² ohms	> 10 ¹² ohms	N/A	N/A		
Insulation Resistance (at 500° F (260°C))	N/A	N/A	> 10 ⁸ obms	> 10 ⁸ obms	N/A	N/Δ		
Output Polarity	Positive	Positive	Negative	Negative	N/A	N/A		
Output Related to Input	N/A	N/A	N/A	N/A	Inverted	Inverted		
Physical	, ,	,	,	,				
Sensing Element	N/A	N/A	Ceramic	Ceramic	N/A	N/A		
Sensing Geometry	N/A	N/A	Shear	Shear	N/A	N/A		
Housing Material	N/A	N/A	leat2 sealnics	Stainless Steel	Stainless Steel	Stainless Steel		
Sealing	N/A	N/A	Hermetic	Hermetic	Fnoxy	Enoxy		
Weight	N/A	N/A	0.19 oz	5.4 am	1.1 07	31.2 am		
Size (Hex × Height)	N/A	N/A	3/8 in × 0.87 in	3/8 in × 22 mm	3 4 in × 0 5 in [7]	86.4 mm × 12.7 mm ^[7]		
Electrical Connection (Output)	N/A	N/A	10-32 Coaxial Jack	10-32 Coaxial Jack	BNC Jack	BNC Jack		
Electrical Connection (Input)	N/A	N/A	N/A	N/A	10-32 Coaxial Jack	10-32 Coaxial Jack		
Electrical Connection Position	N/A	N/A	Τορ	Top	N/A	N/A		
Mounting Thread	N/A	N/A	10-32 Male	10-32 Male	N/A	N/A		
Supplied Accessories ^[3]	1	,			,	, i		
Charge Mode Accelerometer	357M	150	_	_	_	_		
Charge Converter	422M	136		_		_		
Cable	16950	-01		_	_	_		
NIST Calibration [4]	ACS	-1	AC	S-1	_	_		
Options ^[5]								
Available Options	N/A	Ą	N	Ά	N	/Α		
NOTES: [1] See note regard	ling accuracy of informati	on on inside front cover.	[2] Zero-based, least-squ	ares, straight line metho	od.			

[3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

[6] Low frequency response is determined by external signal conditioning electronics. [7] Length x Diameter.

- Structural vibration testing
- Multi-channel modal analysis
- Automotive NVH analysis
- "Body-in-white" testing
- Aircraft GVT's

The Series 333 ICP[®] accelerometers, and their accessories, have been specifically designed to address the needs of multi-point modal and structural test measurement applications. This equipment has been developed in conjunction with the world renowned University of Cincinnati Structural Dynamics Research Laboratory and proven in real-world testing situations.

All accelerometers feature high-output, piezoceramic sensing elements for strong output signal levels when measuring lower-amplitude input vibrations. All reduce mass-loading effects by employing ultra-lightweight casing materials. All exhibit minimal phase deviation, an important consideration for mode shape analysis. Within this family exists a variety of packages, mounting, and output cabling options to accommodate virtually any testing situation. Cubic style sensors offer convenience in installation by permitting adhesive mounting on any face. Cylindrical style packages install using convenient adhesive mounting pads and can also be easily configured into biaxial or triaxial sensor arrays with mounting adaptors. Optional "TEDS" circuitry offers "smart sensing" solutions for automating sensor performance bookkeeping and structure coordinate mapping. See section 5 of this catalog for more information about TEDS.

> Mounting pads, multi-conductor signal cables, and patch panels all help to control and organize the cable bundles of sensor arrays. This helps to minimize set-up time and potential errors that are often the result of cable tangles encountered during multichannel structural testing.

PCB 716-684-0001 Vibration Division toll-free 888-684-0013 Fax 716-685-3886 E-mail vibration@pcb.com Web site www.pcb.com

MODAL ARRAY ICP® ACCELEROMETERS

(complete specifications are featured on pages 1.93 to 1.94)

Modal array accelerometers are specifically designed for structural testing and multi-point modal analysis. Shear mode sensing elements are utilized to provide stable, low frequency measurements. Their intelligent mounting schemes utilize adhesive mounting pads for simplified, temporary installations and patch panels to eliminate cable tangles. Installation, set-up and channel identification is accomplished more expediently.

- multi-channel modal analysis
- low cost sensor arrays

0.84 (21.3)

Model 333B — 3-pin, snap-in, socket connector mounts to adhesively installed pad

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 2 Hz to 1000 Hz frequency range
- 5.6 gram (0.2 oz) weight
- 3-pin socket connector mount
- 0.00007 g (0.0007 m/s²) resolution
- · Lightweight, low-cost polymer housing

Recommended cables and accessories **@@** — see pages 4.2 and 4.18 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: T, TLA, TLB, TLC — see pages xvii to xx for option information

ons: T, TLA, TLB, TLC — see pages xvii to xx for option information

TEDS

TEDS

TEDS

Model 333B31 — Installs upright with adhesive or inverted via interfacing adaptor pad

- 100 mV/g (10.2 mV/(m/s²)] sensitivity
- 0.5 Hz to 3000 Hz frequency range
- 4 gram (0.14 oz) weight
- 0.00015 g (0.0015 m/s²) resolution
- Titanium housing

Recommended cables and accessories @@@@ — see pages 4.2 and 4.18 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: N, T — see pages xvii to xx for option information

Actual Size

CE

CE

0.48 (12.2)

3–Pin

Connector

10-32

Connector

Actual Size

Actual Size

Model 333B32 — Convenient cubic shape offers versatile mounting options

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.5 Hz to 3000 Hz frequency range
- 4 gram (0.14 oz) weight
- Adhesive mount

Recommended cables and accessories **②●** — see pages 4.2 and 4.19 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: T, TLA, TLB, TLC — see pages xvii to xx for option information

Model 333B30 — Convenient cubic shape offers versatile mounting options

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.5 Hz to 3000 Hz frequency range
- 4 gram (0.14 oz) weight
- Stud mount

Recommended cables and accessories **@@** — see pages 4.2 and 4.19 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: T, TLA, TLB, TLC — see pages xvii to xx for option information

0.40 (10.2)

MODAL ARRAY (continued)

Model 333B42 — Convenient cubic shape offers versatile mounting options

- 500 mV/g [51 mV/(m/s²)] sensitivity
- 0.5 Hz to 3000 Hz frequency range
- 7.5 gram (0.26 oz) weight
- Adhesive mount

Recommended cables and accessories **20** — see pages 4.2 and 4.19 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: T, TLA, TLB, TLC — see pages xvii to xx for option information

TEDS

Actual Size

CE

Model 333B40 — Convenient cubic shape offers versatile mounting options

- 500 mV/g [51 mV/(m/s²)] sensitivity
- 0.5 Hz to 3000 Hz frequency range
- 7.5 gram (0.26 oz) weight
- Stud mount

Recommended cables and accessories **@@** — see pages 4.2 and 4.19 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: T, TLA, TLB, TLC — see pages xvii to xx for option information

Actual Size

Model 333B52 — Convenient cubic shape offers versatile mounting options

TEDS

Model 333B50 — Convenient cubic shape offers versatile mounting options

- 1000 mV/g [102 mV/(m/s²)] sensitivity
- 0.5 Hz to 3000 Hz frequency range
- 7.5 gram (0.26 oz) weight
- Stud mount

Recommended cables and accessories **20** — see pages 4.2 and 4.19 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: T, TLA, TLB, TLC — see pages xvii to xx for option information

Actual Size

Modal Array Vibration Sensing Systems

Modal Array ICP [®] Accelerometer Specifications								
Model Number ^[1]	333B		3331	B30	333	B31	333B	32 🐨
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	100 mV/g	10.2 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)
Sensitivity Tolerance	± 20% ± 20%		± 10%	± 10%	± 10%	± 10%	± 10%	± 10%
Measurement Range	± 50 g pk	± 490 m/s² pk	±50 g pk	±490 m/s² pk	± 50 g pk	± 490 m/s² pk	± 50 g pk	± 490 m/s² pk
Frequency Range (± 5%)	2 to 1000 Hz	2 to 1000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz
Resonant Frequency	≥5 kHz	≥5 kHz	≥ 40 kHz	$\ge 40 \text{ kHz}$	≥ 40 kHz	$\ge 40 \text{ kHz}$	≥ 40 kHz	≥ 40 kHz
Phase Response (±5 °)	2 to 1000 Hz	2 to 1000 Hz	2 to 3000 Hz	2 to 3000 Hz	2 to 3000 Hz	2 to 3000 Hz	2 to 3000 Hz	2 to 3000 Hz
Broadband Resolution (1 to 10k Hz)	0.00007 g rms	0.0007 m/s ² rms	0.00015 g rms	0.0015 m/s ² rms	0.00015 g rms	0.0015 m/s ² rms	0.00015 g rms	0.0015 m/s ² rms
Non-Linearity ⁽²⁾	≤1%	<u>≤1%</u>	≤1%	≤1 %	≤1%	≤1%	≤1 %	≤1%
Iransverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %	≤ 5 %	≤5 %	≤ 5 %	≤5 %
Environmental								
Overload Limit (Shock)	± 3500 g pk	\pm 34k m/s ² pk	± 5000 g pk	± 49k m/s² pk	± 5000 g pk	\pm 49k m/s ² pk	± 5000 g pk	\pm 49k m/s ² pk
Temperature Range (Operating)	0 to 150 °F	-18 to +66 °C	0 to +150 °F	-18 to +66 °C	0 to +150 °F	-18 to +66 °C	0 to +150 °F	-18 to +66 °C
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	≤ 100 ohms	\leq 100 ohms	≤ 300 ohms	≤ 300 ohms	≤ 300 ohms	\leq 300 ohms	\leq 300 ohms	≤ 300 ohms
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC
Discharge Time Constant	0.7 to 1.3 sec	0.7 to 1.3 sec	1.0 to 3.0 sec	1.0 to 3.0 sec	1.0 to 3.0 sec	1.0 to 3.0 sec	1.0 to 3.0 sec	1.0 to 3.0 sec
Physical								
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Polymer	Polymer	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Size (Height × Length × Width)	21.4	0.84 in × 0.48 in ^[7] 4 mm × 12.2 mm ^[7]	0.40 in × 0.63 in × 0.40 in 10.2 mm × 16.0 mm × 10.2 mm		0.57 in × 0.44 in ^[7] 14.5 mm × 11.2 mm ^[7]		0.40 in × 0.63 in × 0.40 in 10.2 mm × 16.0 mm × 10.2 mm	
Weight	0.2 oz	5.6 gm	0.14 oz	4.0 gm	0.14 oz	4.0 gm	0.14 oz	4.0 gm
Electrical Connection	3-Pin Socket ^[6]	3-Pin Socket [6]	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack
Electrical Connection Position	Bottom	Bottom	Side	Side	Тор	Тор	Side	Side
Mounting	Plug-In ^[6]	Plug-In ^[6]	5-40 Female	5-40 Female	Adhesive	Adhesive	Adhesive	Adhesive
Supplied Accessories ^[3]								
Petro Wax			080A	109	080	A109	080A	109
Quick Bonding Gel			080/	A90	08	0A90	0804	\90
Adhesive Mounting Base			080	A25			-	-
Mounting Stud			081/	A27				-
Metric Mounting Stud		0	MU8	1A27				-
	AUS	-2	AL:	5-1	A	-9-1	AUS	- I
Additional Accessories ^[3]								
Adhesive Mounting Base	080B37, 080B	38, 080B40	N/	/Α	080A115	5, 080A140	N/	A
Triaxial Mounting Adaptor	080B55, 0	B0A141	N/	/Α	080	A114	N/	Α
Removal Iool			039/	AU8		-	0394	AU8
Nating Lable Connectors	Contact F	actory	AH, AK,	AVV, EB	AH, AK	AVV, EB	AH, AK,	AVV, EB
Accommended Stock Cables	Contact r	actory	UL	JZ	l	JUZ	00	2
	T TI A T		T TI A 7			I T	T TI A T	
	I, ILA, IL	B, ILU	I, ILA, I	ILB, ILU	۲ 	l, l	I, ILA, I	lb, Ilu
[3] See section 4 of this catalog [5] See page xvii to xx for option	ding accuracy of in for cable and acc n information. [6]	ntormation on insid essory information. Accelerometer pluc	e tront cover. [2] Z [4] See page 1.13 as into an optional	Cero-based, least-so 30 for calibration in adhesive mounting	quares, straight line formation. 1 socket. [7] Height	method. × Diameter.		

Modal Array ICP® Accelerometer Specifications								
Model Number ^[1]	3331	340	333	B42	333	B50	333	B52
Performance	English	SI	English	SI	English	SI	English	SI
Sensitivity	500 mV/g	51.0 mV/(m/s ²)	500 mV/g	51.0 mV/(m/s ²)	1000 mV/g	102 mV/(m/s ²)	1000 mV/g	102 mV/(m/s ²)
Sensitivity Tolerance	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%	± 10%
Measurement Range	± 10 g pk	± 98 m/s² pk	± 10 g pk	± 98 m/s² pk	±5 g pk	±49 m/s² pk	±5 g pk	± 49 m/s² pk
Frequency Range (± 5%)	0.5 to 3000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz	0.5 to 3000 Hz
Resonant Frequency	≥ 20 kHz	\geq 20 kHz	$\ge 20 \text{ kHz}$	$\ge 20 \text{ kHz}$	≥ 20 kHz	$\geq 20 \text{ kHz}$	≥20 kHz	$\ge 20 \text{ kHz}$
Phase Response (±5 °)	2 to 3000 Hz	2 to 3000 Hz	2 to 3000 Hz	2 to 3000 Hz	2 to 3000 Hz	2 to 3000 Hz	2 to 3000 Hz	2 to 3000 Hz
Broadband Resolution (1 to 10k Hz)	0.00005 g rms	$0.0005 \text{ m/s}^2 \text{ rms}$	0.00005 g rms	0.0005 m/s ² rms	0.00005 g rms	0.0005 m/s ² rms	0.00005 g rms	0.0005 m/s ² rms
Non-Linearity [2]	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤1 %	≤ 1 %	≤1 %
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %
Environmental								
Overload Limit (Shock)	± 5000 g pk	\pm 49k m/s ² pk	± 5000 g pk	± 49k m/s² pk	±4000 g pk	± 39k m/s² pk	± 4000 g pk	± 39k m/s² pk
Temperature Range (Operating)	0 to +150 °F	-18 to +66 °C	0 to +150 °F	-18 to +66 °C	0 to +150 °F	-18 to +66 °C	0 to +150 °F	-18 to +66 °C
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Impedance	≤ 200 ohms	\leq 200 ohms	\leq 200 ohms	≤ 200 ohms	≤ 500 ohms	≤ 500 ohms	≤ 500 ohms	≤ 500 ohms
Output Bias Voltage	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC	7 to 12 VDC
Discharge Time Constant	1.0 to 2.5 sec	1.0 to 2.5 sec	1.0 to 2.5 sec	1.0 to 2.5 sec	1.0 to 2.5 sec	1.0 to 2.5 sec	1.0 to 2.5 sec	1.0 to 2.5 sec
Physical								
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic
Size (Height × Length × Width)	0.45 in 11.4 mm × 1	× 0.68 in × 0.45 in 17.3 mm × 11.4 mm	0.45 in \times 0.68 in \times 0.45 in 11.4 mm \times 17.3 mm \times 11.4 mm		0.45 in × 0.68 in × 0.45 in 11.4 mm × 17.3 mm × 11.4 mm		0.45 in 11.4 mm × 17	× 0.68 in × 0.45 in 7.3 mm × 11.4 mm
Weight	0.26 oz	7.5 gm	0.26 oz	7.5 gm	0.26 oz	7.5 gm	0.26 oz	7.5 gm
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack
Electrical Connection Position	Side	Side	Side	Side	Side	Side	Side	Side
Mounting	5-40 Female	5-40 Female	Adhesive	Adhesive	5-40 Female	5-40 Female	Adhesive	Adhesive
Supplied Accessories ^[3]								
Petro Wax	080A	109	0804	\ 109	080	A109	080A	109
Quick Bonding Gel	080A	.90	080.	A90	08	0A90	080A	(90
Adhesive Mounting Base	080A	.25	N,	/A	08	0A25	N//	4
Mounting Stud	081A	27	N,	/Α	08	1A27	N//	۹.
Metric Mounting Stud	M081	A27	N,	/Α	MO	81A27	N//	4
NIST Calibration [4]	ACS	-1	AC	S-1	A	CS-1	ACS	-1
Additional Accessories ^[3]								
Adhesive Mounting Base	N/2	4	N,	/A	1	N/A	N//	4
Triaxial Mounting Adaptor	N/.	4	N,	/A	1	N/A	N//	4
Removal Tool	039A09		039	A09	03	9A09	039A	.09
Mating Cable Connectors	AH, AK, J	AW, EB	AH, AK,	AW, EB	AH, Ak	K, AW, EB	AH, AK, A	AW, EB
Recommended Stock Cables	00	2	00)2	(002	00	2
Options ^[5]								
Available Options	T, TLA, T	LB, TLC	T, TLA, 1	TLB, TLC	T, TLA,	TLB, TLC	T, TLA, T	LB, TLC
NOTES: [1] See note regar [3] See section 4 of this catalog	ding accuracy of i for cable and acc	nformation on insid cessory information.	e front cover. [2] Z [4] See page 1.13	Zero-based, least-so 30 for calibration in	quares, straight line formation.	method.		

[5] See page xvii to xx for option information.

Modally Tuned® ICP® Impact Hammers and Hammer Kits

- Modal analysis
- Structural testing
- Impulse and response
- Resonance determination
- Laboratory design test evaluation
- Civil structure health determination

PCB's Modally Tuned[®] impact hammers are easy-to-use solutions for delivering impulse forces into test specimens and providing electrical measurement signals of the amplitude and frequency content of the applied force. Response accelerometers then measure the resultant motion of the test specimen for such requirements as detection. modal analysis, resonance transfer characteristics, and structural health determination.

Available hammer kits include response accelerometers, signal conditioners, and all the accessories needed to begin testing with FFT analyzers or data acquisition workstations. The variety of hammer kits are comprised of matched components which are tuned for testing structures within certain size and weight categorizations.

> A selection of tips are included with each hammer which, along with an extender mass, allow the

hammer to be tailored to deliver the desired frequency content of the impulse force waveform the structure under test.

These Modally Tuned[®] impact hammers have been proven over thousands of requirements in such applications as automotive design, bridge health assessment, and aerospace vehicle development. Their design has been refined, through the selection of their materials of construction, to deliver consistent, accurate results. This "modal tuning" of the hammer structure eliminates hammer resonances from corrupting the test data resulting in more accurate test results.

PCB's Modally Tuned[®] impact hammer kit received the IR-100 award as recognition by Industrial Research & Development magazine as one of the most significant technical products of 1983. Since then, hammer kits have continually been improved upon where today, all kits include state-of-the-art, shear-mode ICP® accelerometers which deliver unmatched performance and value.

History of time-varying signals from different hammer structures (different extenders and tips)

PCB 716-684-0001

Vibration Division toll-free 888-684-0013 Fax 716-685-3886 E-mail vibration@pcb.com Web site www.pcb.com

Modally Tuned[®] ICP[®] Impact Hammers are available separately or as complete Hammer Kits which include response accelerometers, signal conditioners, all cables, and accessories needed to begin testing with your FFT analyzer or data acquisition system. Kits may be custom configured to suit specific application requirements and component substitutions are possible. Hammer Kits represent exceptional value, as their cost is less than that of the components if ordered separately. Do not hesitate to call to discuss your specific application or a hammer kit custom tailored to your requirements.

Typical Hammer Kits

KIT MODEL NUMBER		GK291D80	GK291D01	GK291D02	GK291D	GK291D04	GK291D05	GK291D20	GK291D50
Supplied Kit Components									
Impact Hammer	model	086D80	086C01	086C02	086C03	086C04	086D05	086D20	086D50
Accelerometer #1	model	352B10	352B10	352B10	352B10	352B10	353B33	353B33	353B33
for details see pages	page #	1.16	1.16	1.16	1.16	1.16	1.5	1.5	1.5
Accelerometer #2	model	352C68	352C68	352C68	352C68	352C68	352B	352B	393A03
for details see pages page #		1.18	1.18	1.18	1.18	1.18	1.23	1.23	1.74
Signal Conditioner (2 ea.)	model	480E09	480E09	480E09	480E09	480E09	480E09	480E09	480E09
for details see pages	page #	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
Hammer Cable	model	integral	003D10	003D10	003D10	003D10	003D10	003D20	003D20
Accelerometer Cable (2 ea.)	model	003C10	003C10	003C10	003C10	003C10	003C20	003C20	003C20
Accelerometer Cable (2 ea.)	model	—	—	—	—	—	_	—	012E20
Cable Adaptor model		070A02 (2 ea.)	070A02	070A02	070A02	070A02	_	—	—
Output Cable (2 ea.)	model	003D03	003D03	003D03	003D03	003D03	003D03	003D03	003D03

MODALLY TUNED® ICP® IMPACT HAMMERS

(complete specifications are featured on page 1.100 - 1.102)

Hammer model selection involves determining the size and mass of the hammer, which will provide the force amplitude and frequency content required for proper excitation of the structure under test. Each hammer's corresponding frequency response plots indicate the frequency content of the force impulse that can be achieved using the variety of supplied tips. An extender mass, supplied with most hammers, allows further tuning by concentrating more energy at lower frequencies.

Model 086D80 — Mini pencil sized, test very light structures such as compressor blades, disk drives, sheet metal parts, and printed circuit boards at medium to very high frequencies

- 100 mV/lbf (22.5 mV/N) sensitivity
- 20 kHz frequency range
- 50 lbf (220 N) amplitude range
- 0.10 oz (2.9 gm) hammer mass
- 0.25 inch (6.3 cm) head diameter

Recommended cables and accessories 6 — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

Model 086C01 — Lightweight aluminum head, tests light to medium structures such as lightly damped panels and frames at medium to high frequencies

- 50 mV/lbf (11.2 mV/N) sensitivity
- 9500 Hz frequency range
- 100 lbf (440 N) amplitude range
- 0.23 lb (0.1 kg) hammer mass
- 0.6 inch (1.57 cm) head diameter

Recommended cables and accessories B — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: T — see pages xvii to xx for option information

(shown with cable attached)

Model 086C03 — General purpose, tests medium structures such as car frames, engines and machine parts at low to medium frequencies

- 10 mV/lbf (2.25 mV/N) sensitivity
- 8000 Hz frequency range
- 500 lbf (2200 N) amplitude range
- 0.34 lb (0.16 kg) hammer mass
- 0.62 inch (1.57 cm) head diameter

Recommended cables and accessories $\, \circledast \,$ — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

(shown with cable attached)

Model 086C02 — General purpose, high sensitivity

- 50 mV/lbf (11.2 mV/N) sensitivity
- 8000 Hz frequency range
- 100 lbf (440 N) amplitude range
- 0.34 lb (0.16 kg) hammer mass
- 0.62 inch (1.57 cm) head diameter Recommended cables and accessories (6) — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

(shown with cable attached)

Model 086C04 — General purpose, low sensitivity

- 5 mV/lbf (1.1 mV/N) sensitivity
- 8000 Hz frequency range
- 1000 lbf (4400 N) amplitude range
- 0.34 lb (0.16 kg) hammer mass

(shown with cable attached)

Model 086D05 — Tests medium to heavy structures such as machine tools, light trucks, at low to medium frequencies

- 1 mV/lbf (0.23 mV/N) sensitivity
- 5000 Hz frequency range
- 5000 lbf (22k N) amplitude range
- 0.7 lb (0.32 kg) hammer mass
- 1 inch (2.5 cm) head diameter

Recommended cables and accessories (6) — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: none

Model 086D20 — Small sledge, tests medium to heavy structures such as tool foundations and storage tanks at low to medium frequencies

- 1 mV/lbf (0.23 mV/N) sensitivity
- 1000 Hz frequency range
- 5000 lbf (22k N) amplitude range
- 2.4 lb (1.1 kg) hammer mass
- 2 inch (5.1 cm) head diameter

Recommended cables and accessories (6) — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: T — see pages xvii to xx for option information

Model 086D50 — Large sledge, tests very heavy structures such as buildings, locomotives, ships, and foundations at low to very low frequencies

- 1 mV/lbf (0.23 mV/N) sensitivity
- 750 Hz frequency range
- 5000 lbf (22k N) amplitude range
- 12.1 lb (5.5 kg) hammer mass
- 3 inch (7.6 cm) head diameter

Recommended cables and accessories (6) — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

Modally Tuned ICP® Impact Hammer and Hammer Kit Specifications								
Model Number ^[1]	0860	:01	0860	:02	086C0	086C03 🚸		
Performance	English	SI	English	SI	English	SI		
Sensitivity (± 15%)	50 mV/lbf	11.2 mV/N	50 mV/lbf	11.2 mV/N	10 mV/lbf	2.25 mV/N		
Measurement Range	± 100 lbf pk	± 440 N pk	± 100 lbf pk	± 440 N pk	± 500 lbf pk	± 2200 N pk		
Frequency Range for Hard Tip (-10 dB) ^{[2][6]}	9.5 kHz	9.5 kHz	8 kHz	8 kHz	8 kHz	8 kHz		
Frequency Range for Medium Tip (-10 dB) [2][6]	2.5 kHz 2.5 kHz		2.5 kHz	2.5 kHz	2.5 kHz	2.5 kHz		
Frequency Range for Soft Tip (-10 dB) ^{[2][6]}	750 Hz	750 Hz	750 Hz	750 Hz	750 Hz	750 Hz		
Frequency Range for Super Soft Tip (-10 dB) ^{[2][6]}	600 Hz	600 Hz	600 Hz	600 Hz	600 Hz	600 Hz		
Resonant Frequency	≥ 35 kHz	≥ 35 kHz	≥22 kHz	≥ 22 kHz	≥ 22 kHz	≥22 kHz		
Non-Linearity	≤1 %	≤1 %	≤1 %	≤ 1 %	≤1 %	≤1 %		
Electrical								
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC		
Constant Current Excitation	2 to 20 mA 2 to 20 mA		2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA		
Output Impedance ^[2]	<100 ohms	<100 ohms	<100 ohms	<100 ohms	<100 ohms	<100 ohms		
Output Bias Voltage	8 to 12 VDC 8 to 12 VDC		8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC		
Discharge Time Constant ^[2]	$\geq 500 \text{ sec}$	≥ 500 sec	≥ 500 sec	≥ 500 sec	≥ 2000 sec	$\geq 2000 \text{ sec}$		
Physical								
Sensing Element	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz		
Sealing	Ероху	Ероху	Ероху	Epoxy	Ероху	Ероху		
Hammer Mass	0.23 lb	0.10 kg	0.34 lb	0.16 kg	0.34 lb	0.16 kg		
Head Diameter	0.62 in	1.57 cm	0.62 in	1.57 cm	0.62 in	1.57 cm		
Tip Diameter	0.25 in	0.63 cm	0.25 in	0.63 cm	0.25 in	0.63 cm		
Hammer Length	8.5 in	21.6 cm	8.5 in	21.6 cm	8.5 in	21.6 cm		
Electrical Connection	BNC Jack	BNC Jack	BNC Jack	BNC Jack	BNC Jack	BNC Jack		
Electrical Connection Position	Bottom of Handle	Bottom of Handle	Bottom of Handle	Bottom of Handle	Bottom of Handle	Bottom of Handle		
Extender Mass Weight	0.9 oz	25 gm	2.6 oz	75 gm	2.6 oz	75 gm		
Supplied Accessories ^[3]								
Mounting Stud	0816	305	081B	05	081	B05		
Aluminum Extender	084/	406	084A	.08	084	1A08		
Hard Tip	0848	303	084B	03	084	B03		
Medium Tip	0848	304	084B	04	084	B04		
Soft Tip	0848	305	084B	05	084	B05		
Super Soft Tip	084	311	084B	07	084	B11		
Tip Insert (4 each)	0854	407	085A	09	08	0AU7		
Tip Cover (4 each)	085/	100	063A 085A	10	00	5410		
NIST Calibration [4]	HCS	3-2	HCS	-2	H	S-7		
	Hoe		1100	L		50 Z		
Extender Mage	N/	٨	NI//		N	//		
	IN/	~	IN/F	۱ 	IN IN	/^		
	-					()		
			N/A	4	N	/A		
[4] See page 1.130 for calibration informat	icy of information on i ion. [5] See page xvii	nside front cover. [2] to xx for option inform	ypical. [3] See section 4 ation.	i of this catalog for cab	ie and accessory inform	ation.		

[6] Dependent upon stiffness of test structure. Values shown are from hitting a stiff steel mass without extender mass attached.

Modally Tuned ICP® Impact Hammers									
Model Number [1]	086	C04	086	D05	086	D20	086	086D50	
Performance	English	SI	English	SI	English	SI	English	SI	
Sensitivity (± 15%)	5 mV/lbf	1.1 mV/N	1 mV/lbf	0.23 mV/N	1 mV/lbf	0.23 mV/N	1 mV/lbf	0.23 mV/N	
Measurement Range	± 1000 lbf pk	± 1000 lbf pk ± 4400 N pk		± 22k N pk	± 5000 lbf pk	± 22k N pk	± 5000 lbf pk	± 22k N pk	
Frequency Range for Hard Tip (-10 dB) ^{[2][6]}	8 kHz 8 kHz		5 kHz	5 kHz	1 kHz	1 kHz	750 Hz	750 Hz	
Frequency Range for Medium Tip (-10 dB) ^{[2][6]}	2.5 kHz 2.5 kHz		1.7 kHz	1.7 kHz	700 Hz	700 Hz	650 Hz	650 Hz	
Frequency Range for Soft Tip (-10 dB) ^{[2][6]}	750 Hz 750 Hz		250 Hz	250 Hz	450 Hz	450 Hz	350 Hz	350 Hz	
Frequency Range for Super Soft Tip (-10 dB) ^{[2][6]}	600 Hz	600 Hz	150 Hz	150 Hz	400 Hz	400 Hz	250 Hz	250 Hz	
Resonant Frequency	≥ 22 kHz	≥ 22 kHz	≥ 22 kHz	≥ 22 kHz	≥ 12 kHz	\geq 12 kHz	≥5 kHz	≥5 kHz	
Non-Linearity	≤ 1 %	≤ 1 %	≤ 1 %	≤1 %	≤ 1 %	≤1 %	≤ 1 %	≤1 %	
Electrical									
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	
Constant Current Excitation	2 to 20 mA 2 to 20 mA		2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	
Output Impedance [2]	<100 ohms	<100 ohms	<100 ohms	<100 ohms	<100 ohms	<100 ohms	<100 ohms	<100 ohms	
Output Bias Voltage	8 to 12 VDC 8 to 12 VDC		8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	
Discharge Time Constant ^[2]	\geq 2000 sec \geq 2000 sec		≥ 2000 sec	≥ 2000 sec	≥ 2000 sec	≥ 2000 sec	≥ 2000 sec	≥ 2000 sec	
Physical									
Sensing Element	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	Quartz	
Sealing	Enoxy	FDOXV	Enoxy	FDOXV	Hermetic	Hermetic	Hermetic	Hermetic	
Hammer Mass	0.34 lb	0.16 kg	0.70 lb	0.32 kg	2.4 lb	1.1 kg	12.1 lb	5.5 ka	
Head Diameter	0.62 in	1.57 cm	1.0 in	2.5 cm	2.0 in	5.1 cm	3.0 in	7.6 cm	
Tip Diameter	0.25 in	0.63 cm	0.25 in	0.63 cm	2.0 in	5.1 cm	3.0 in	7.6 cm	
Hammer Length	8.5 in	21.6 cm	9.0 in	22.7 cm	14.5 in	37 cm	35 in	89 cm	
Electrical Connection	BNC Jack	BNC Jack	BNC Jack	BNC Jack	BNC Jack	BNC Jack	BNC Jack	BNC Jack	
Electrical Connection Position	Bottom of Handle	Bottom of Handle	Bottom of Handle	Bottom of Handle	Bottom of Handle	Bottom of Handle	Bottom of Handle	Bottom of Handle	
Extender Mass Weight	2.6 oz	75 gm	7.0 oz	200 gm					
Supplied Accessories ^[3]									
Mounting Stud	081	B05	08	1B05	-	_	-	_	
Extender Mass	084	A08	084	1A09	-	_	-	—	
Hard Tip	084	B03	084	4B03	084	A63	084	A33	
Medium Tip	084	·B04	084	4B04	084	A62	084	A32	
Soft Tip	084	B05	084	4B05	084	A61	084	A31	
Super Soft Tip	084	B11	084	4A50	084	A60	084	A30	
Tip Adaptor	-	_	084	4A51		_		_	
Tip Insert (4 each)	085A07	, 085A08	085	5A08	-	_	-	_	
Tip Cover (4 each)	085	A10	085	5A10	-	_	-	_	
NIST Calibration [4]	HCS	5-2	HC	S-2	H	CS-2	HCS	-2	
Additional Accessories ^[3]									
Extender Mass	N/	A	N,	/Α	08	4A16	N/	Α	
Options ^[5]									
Available Options	N/	A	N,	/A		Т	N/A		
NOTES: [1] See note rega	rding accuracy of i	nformation on insid	e front cover. [2] 1	Typical, [3] See sec	tion 4 of this catalo	a for cable and acco	essory information		
[4] Soo page 1 120 for calibrat	ion information	l Soo pago wii to v	v for option inform	nation			,		

[4] See page 1.130 for calibration information. [5] See page xvii to xx for option information.

[6] Dependent upon stiffness of test structure. Values shown are from hitting a stiff steel mass without extender mass attached.

086D80 Modally Tune	d ICP® Impact	Hammer		
Model Number ^[1]	086D80			
Performance	English	SI		
Sensitivity (± 15%)	100 mV/lb	22.5 mV/N		
Measurement Range	± 50 lb pk	± 220 N pk		
Frequency Range for Hard Tip(-10 dB) ^{[2][5][7]}	20 kHz	20 kHz		
Resonant Frequency	$\geq 100 \text{ kHz}$	≥ 100 kHz		
Non-Linearity) [1]	≤1 %	≤ 1 %		
Electrical				
Excitation Voltage	18 to 30 VDC	18 to 30 VDC		
Constant Current Excitation	2 to 20 mA	2 to 20 mA		
Output Impedance	<100 ohms	<100 ohms		
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC		
Discharge Time Constant ^[2]	≥ 100 sec	≥ 100 sec		
Physical				
Sensing Element	Quartz	Quartz		
Sealing	Ероху	Ероху		
Hammer Mass	0.10 oz ^[6] , 0.22 oz ^[7]	2.9 gm ^[6] , 6.2 gm ^[7]		
Head Diameter	0.25 in	6.3 cm		
Tip Diameter	0.10 in	2.5 cm		
Hammer Length	4.00 in	101.6 cm		
Electrical Connection ^[7]	5-44 Coaxial	5-44 Coaxial		
Electrical Connection Position	Bottom of Handle	Bottom of Handle		
Cable Type ^{[3][6]}	035 Twisted Pair	035 Twisted Pair		
Cable Length ^{[3][6]}	10 ft	3.05 m		
Extender Mass Weight	0.044 oz	1.25 gm		
Supplied Accessories ^[3]				
Kit Case	001A2	20		
Miniature coaxial cable	018G ⁻	10		
Petro Wax	080A1	09		
Extender Mass	084A	13		
Plastic Handle Assembly	U84A	14		
	084A	78		
NIST Calibration ^[4]	HCS-	2		
NOTES:				
[1] See note regarding accuracy of info	ormation on inside fro	nt cover.		
[2] Typical.				
[3] See section 4 of this catalog for ca	ble and accessory inf	ormation.		
[4] See page 1.130 for calibration info	rmation.			
[5] Dependent upon stiffness of test s	tructure. Values show	n are from hitting a		
stiff steel mass without extender n	nass attached.			
[7] With aluminum handle attached. V	Vhen using the alumin	um handle, the		

extender mass must be used.

Metric ICP[®] and Charge Output Accelerometers

- Metric mounting threads
- Metric hex sizes
- Directly replaceable with alternate manufacturer's units
- M3 coaxial electrical connectors
- Metric standardized sensitivities with 159.2 Hz reference frequency calibration

Metric accelerometers are offered for use when it is convenient to have sensors with metric features and mechanical dimensions. Each installs with metric mounting threads, utilizes metric threaded electrical connectors, and may utilize a metric hex for its housing.

Sensitivities are standardized about metric values. Both ICP[®] and charge output types are offered. A triaxial charge output unit is also featured.

Additional metric designed accelerometers can be provided for unique or specialized applications.

Metric ICP[®] and Charge Output Accelerometers

METRIC ICP® ACCELEROMETERS

(complete specifications are featured on page 1.106)

Miniature ICP[®] accelerometers are especially well suited for applications demanding high frequency range, small size, and light weight.

- NVH studies
- printed circuit boards
- card cages and chassis

CE

Actual Size

Actual Size

brackets

- thin panels
- shrouds
- conduits
- bearings

8 mm Hex

M3 Connector

 $M3 \times 0.5$ Thd

Model 340A15 — Side connector provides low profile, simplifies cable routing and strain relief

- 1.0 mV/(m/s²) [9.8 mV/g] sensitivity
- 0.7 Hz to 18 kHz frequency range
- 2.0 gram (0.07 oz) weight
- 4900 m/s² (500 g) amplitude range

Select an ICP $^{\circ}$ sensor signal conditioner from those featured in section 3 Options: A. J, W — see pages xvii to xx for option information

Model 340A16 — Installs with small footprint

- 1.0 mV/(m/s²) [9.8 mV/g] sensitivity
- 0.7 Hz to 18 kHz frequency range
- 2.0 gram (0.07 oz) weight
- 4900 m/s² (500 g) amplitude range

Select an ICP* sensor signal conditioner from those featured in section 3 Options: A. J, W — see pages xvii to xx for option information

Model 340A65 — Side connector provides low profile, simplifies cable routing and strain relief

- 10.0 mV/(m/s²) [98.1 mV/g] sensitivity
- 0.3 Hz to 12 kHz frequency range
- 2.0 gram (0.07 oz) weight
- 490 m/s² (50 g) amplitude range

Select an ICP $^{\circ}$ sensor signal conditioner from those featured in section 3 Options: A. J, W — see pages xvii to xx for option information

Actual Size

Model 340A66 — Installs with small footprint

- 10.0 mV/(m/s²) [98.1 mV/g] sensitivity
- 0.3 Hz to 12 kHz frequency range
- 2.0 gram (0.07 oz) weight
- 490 m/s² (50 g) amplitude range

Select an ICP* sensor signal conditioner from those featured in section 3 Options: A. J, W — see pages xvii to xx for option information

Actual Size

Metric ICP[®] and Charge Output Accelerometers

METRIC CHARGE OUTPUT ACCELEROMETERS

(complete specifications are featured on page 1.107)

Miniature charge output accelerometers are especially well suited for applications demanding high frequency range, small size, light weight, and elevated operating temperatures. Use with charge amplifiers and in-line charge converters.

- high temperature testing
- thermal stress screening
- small component qualifications
- high speed machinery analysis
- engine brackets
- motor housing

8 mm Hex

Connector

M3 0.5 Thd

- Model 340A75 Side connector provides low profile, simplifies cable routing and strain relief
 - 0.3 pc/(m/s²) [2.9 pC/g] sensitivity
 - 16 kHz frequency range
 - 2.0 gram (0.07 oz) weight
 - 22,600 m/s² (2300 g) amplitude range
 - -70 to +260 °C (-91 to +500 °F) temperature range

Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP[®] sensor signal conditioner from those featured in section 3 Options: A. J — see pages xvii to xx for option information

Model 340A76 — Installs with small footprint

- 0.3 pc/(m/s²) [2.9 pC/g] sensitivity
- 16 kHz frequency range
- 2.0 gram (0.07 oz) weight
- 22,600 m/s² (2300 g) amplitude range
- -70 to +260 °C (-91 to +500 °F) temperature range

Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or,

an in-line charge converter (page 3.8) with an ICP $^{\circ}$ sensor signal conditioner from those featured in section 3 Options: A. J — see pages xvii to xx for option information

METRIC TRIAXIAL ACCELEROMETER

(complete specifications are featured on page 1.108)

- motors
- steam pipes
- turbines

Triaxial accelerometers provide simultaneous measurements in three orthogonal directions. Charge output styles offer the ability for high temperature operation.

Model 340A50 — High temperature, charge output operation

- 0.28 pc/(m/s²) [2.7 pC/g] sensitivity
- 10 kHz frequency range
- 11.0 gram (0.39 oz) weight
- 9800 m/s² (1000 g) amplitude range
- -70 to +260 °C (-94 to +500 °F) temperature range

Select Model 443B01 Dual Mode Vibration Amplifier (page 3.5), or, an in-line charge converter (page 3.8) with an ICP[®] sensor signal conditioner from those featured in section 3 Options: A. J — see pages xvii to xx for option information

Actual Size

0.40

(10.2)

0.85 (21.6)

M3

Connector

(84)

0.13 (3.3) Dia,

2 places

05(12

exhaust systems

VIBRATION DIVISION TOLL-FREE 🕿 888-684-0013

1.105

0.73 (11.5).

Dimensions shown are in inches (millimeters).

Actual Size

Actual Size

Metric ICP[®] and Charge Output Accelerometers

Metric ICP [®] Accelerometer Specifications									
Model Number ^[1]	340/	A15	340/	A16	340	A65	340	A66	
Performance	English	SI	English	SI	English	SI	English	SI	
Sensitivity (± 10 %)	9.8 mV/g	1.0 mV/(m/s ²)	9.8 mV/g	1.0 mV/(m/s ²)	98.1 mV/g	10.0 mV/(m/s ²)	98.1 mV/g	10.0 mV/(m/s ²)	
Measurement Range	± 500 g pk	± 4,900 m/s² pk	± 500 g pk	± 4,900 m/s² pk	± 50 g pk	± 490 m/s² pk	± 50 g pk	± 490 m/s² pk	
Frequency Range (± 5%)	1 to 12k Hz 1 to 12k Hz		1 to 12k Hz	1 to 12k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	0.5 to 10k Hz	
Frequency Range (± 10%)	0.7 to 18k Hz	0.7 to 18k Hz	0.7 to 18k Hz	0.7 to 18k Hz	0.3 to 12k Hz	0.3 to 12k Hz	0.3 to 12k Hz	0.3 to 12k Hz	
Frequency Range (± 3 dB)	0.35 to 25k Hz	0.35 to 25k Hz	0.35 to 25k Hz	0.35 to 25k Hz	0.2 to 20k Hz	0.2 to 20k Hz	0.2 to 20k Hz	0.2 to 20k Hz	
Resonant Frequency	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz	≥ 35 kHz	≥35 kHz	≥ 35 kHz	≥ 35 kHz	
Broadband Resolution (1 to 10k Hz) [2]	0.0006 g rms	0.006 m/s ² rms	0.0006 g rms	0.006 m/s ² rms	0.00016 g rms	0.0016 m/s ² rms	0.00016 g rms	0.0016 m/s ² rms	
Non-Linearity ^[6]	≤1 %	≤1 %	≤1 %	≤1%	≤ 1%	≤1%	≤1%	≤1%	
Transverse Sensitivity ^[7]	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	≤5 %	
Environmental									
Overload Limit (Shock)	±10k gpk	\pm 98k m/s ² pk	±10k gpk	± 98k m/s² pk	±5k gpk	\pm 49k m/s ² pk	±5k gpk	± 49k m/s² pk	
Temperature Range (Operating)	-67 to +257° F	-55 to +125° C	-67 to +257° F	-55 to +125° C	-67 to +203° F	-55 to +95° C	-67 to +203° F	-55 to +95° C	
Electrical									
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	
Output Impedance	\leq 100 ohms \leq 100 ohms		\leq 100 ohms	≤ 100 ohms	≤ 300 ohms	\leq 300 ohms	\leq 300 ohms	\leq 300 ohms	
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	
Discharge Time Constant	0.4 to 1.2 sec	0.4 to 1.2 sec	0.4 to 1.2 sec	0.4 to 1.2 sec	0.8 to 2.4 sec	0.8 to 2.4 sec	0.8 to 2.4 sec	0.8 to 2.4 sec	
Physical									
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	Ceramic	
Sensing Geometry	Shear	Shear	Shear	Shear	Shear	Shear	Shear	Shear	
Housing Material	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	Titanium	
Sealing	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	Hermetic	
Size (Hex $ imes$ Height)	$0.31\ \times\ 0.43$ in	$8.0 \times 10.9 \text{ mm}$	0.31 in $\times 0.66$ in	8.0 × 16.8 mm	0.31 × 0.43 in	$8.0 \times 10.9 \text{ mm}$	0.31 × 0.66 in	$8.0 \times 16.8 \text{ mm}$	
Weight	0.07 oz	2.0 gm	0.07 oz	2.0 gm	0.07 oz	2.0 gm	0.07 oz	2.0 gm	
Electrical Connection	M3 Coaxial Jack	M3 Coaxial Jack	M3 Coaxial Jack	M3 Coaxial Jack	M3 Coaxial Jack	M3 Coaxial Jack	M3 Coaxial Jack	M3 Coaxial Jack	
Electrical Connection Position	Side	Side	Тор	Тор	Side	Side	Тор	Тор	
Mounting Thread	$M3 \times 0.50$ Male	$M3 \times 0.50$ Male	$M3 \times 0.50$ Male	$M3 \times 0.50$ Male	M3 × 0.50 Male	$M3 \times 0.50$ Male	M3 × 0.50 Male	$M3 \times 0.50$ Male	
Mounting Torque	8 to 12 in-lb	90 to 135 N-cm	8 to 12 in-lb	90 to 135 N-cm	8 to 12 in-lb	90 to 135 N-cm	8 to 12 in-lb	90 to 135 N-cm	
Supplied Accessories ^[3]	0004		000	100		4.4.00	0004	100	
Petro Wax	A080	109	U80A	109	UBL	JA109	A080	109	
Adnesive Mounting Base	IVIU8U.	A15	INU8U	JA15	MU	3UA 15	101080	A15	
	ALS	-	AL	2-1	A	22-1	ALS	- [
Mating Cable Connectors	ED)	E	D		ED	CC)	
Recommended Stock Cables	002.003	3. 018	002.00	13. 018	002.0	03.018	002.00	3. 018	
Options ^[5]	002,000	5, 613	002,00		002, 003, 010		002,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Available Options	A ^[8] J	, W	A ^[8]	J, W	A ^[8]	, J, W	A ^[8] .	, W	
NOTES:	,0			-,		,	,,,,,	<u>,</u>	
[1] See note regarding accuracy	INDIES. [1] See note regarding accuracy of information on inside front cover.								

[2] Typical.

[3] See section 4 of this catalog for cable and accessory information.

[4] See page 1.130 for calibration information.

[5] See page xvii to xx for option information.

[6] Zero-based, least-squares, straight line method.

[7] Transverse sensitivity is typically <= 3%.

[8] Mounting stud removed, adhesive mounting base not required.

Metric Cha	Specification	S				
Model Number [1]	340/	A75	340/	476		
Performance	English	SI	English	SI		
Sensitivity (± 15%)	2.9 pC/g	0.3 pC/m/s ²	2.9 pC/g	0.3 pC/m/s ²		
Measurement Range	± 2300 g pk	± 22.6k m/s² pk	± 2300 g pk	± 22.6k m/s² pk		
Frequency Range (+ 5%) ^[7]	12 kHz	12 kHz	12 kHz	12 kHz		
Frequency Range (+ 10%) ^[7]	16 kHz	16 kHz	16 kHz	16 kHz		
Frequency Range (+3 dB) ^[7]	26 kHz	26 kHz	26 kHz	26 kHz		
Mounted Resonant Frequency	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz	≥ 50 kHz		
Non-Linearity (1000 g [9800 m/s ²]) [6]	≤1 %	≤1%	≤1 %	≤1 %		
Non-Linearity (2300 g, [22.6k m/s ²]) ^[6]	≤ 2.3 %	\leq 2.3 %	≤ 2.3 %	≤ 2.3 %		
Transverse Sensitivity	<5%	<5%	<5%	<5%		
Environmental						
Overload Limit (Shock)	± 10k g pk	± 98k m/s² pk	± 10k g pk	± 98k m/s² pk		
Temperature Range (Operating)	-94 to +500° F	-70 to +260° C	-94 to +500° F	-70 to +260° C		
Electrical						
Capacitance ^[2]	380 pF	380 pF	380 pF	380 pF		
Insulation Resistance (at 70 °F[(21 °C] ^[2]	> 10 ¹² ohms	> 10 ¹² ohms	> 10 ¹² ohms	> 10 ¹² ohms		
Insulation Resistance (at 500 °F [260° F] ^[2]	> 10 ⁸ ohms	> 10 ⁸ ohms > 10 ⁸ ohms >		> 10 ⁸ ohms		
Output Polarity	Negative	Negative	Negative	Negative		
Physical						
Sensing Element	Ceramic	Ceramic	Ceramic	Ceramic		
Sensing Geometry	Shear	Shear	Shear	Shear		
Housing Material	Titanium	Titanium	Titanium	Titanium		
Sealing	Hermetic	Hermetic	Hermetic	Hermetic		
Size (Hex × Height)	$0.31~\times~0.43$ in	$8.0 \times 10.9 \text{ mm}$	0.31 in × 0.66 in	8.0 × 17.0 mm		
Weight	0.07 oz	2.0 gm	0.07 oz	2.0 gm		
Electrical Connection	M3 Coaxial Jack	M3 Coaxial Jack	M3 Coaxial Jack	M3 Coaxial Jack		
Electrical Connection Position	Side	Side	Тор	Тор		
Mounting Thread	$M3 \times 0.5$ Male	$\mathrm{M3} \times 0.5~\mathrm{Male}$	$M3 \times 0.5$ Male	$M3 \times 0.5$ Male		
Supplied Accessories ^[3]						
Petro Wax	080A	109	0804	\109		
Adhesive Mounting Base	M080)A15	M08	DA15		
NIST Calibration ^[4]	ACS	S-1	AC	S-1		
Additional Accessories ^[3]			_	-		
Mating Cable Connectors	E	р 10	E	P		
Recommended Stock Cables	UU	13	UL	13		
Available Uptions	А,	J	А,	J		
 NOTES: [1] See note regarding accuracy of information on inside front cover. [2] Typical. [3] See section 4 of this catalog for cable and accessory information. [4] See page 1.130 for calibration information. [5] See page xvii to xx for option information. [6] Zero-based, least-squares, straight line method. 						
[7] Low frequency response is det	ermined by external	signal conditioning	g electronics.			

Metric ICP[®] and Charge Output Accelerometers

Metric Triaxial Charge Accelerometer Specifications							
Model Number ^[1]	340A50						
Performance	English	SI					
Sensitivity (± 15 %)	2.7 pC/g	0.28 pC/(m/s ²)					
Measurement Range	± 1000 g pk	± 9800 m/s² pk					
Frequency Range (± 5 %)	8 kHz	8 kHz					
Frequency Range (± 10 %)	10 kHz	10 kHz					
Resonant Frequency	≥ 25 kHz	≥ 25 kHz					
Non-Linearity [6]	≤1 %	≤1%					
Transverse Sensitivity	≤5 %	≤ 5 %					
Environmental							
Overload Limit (Shock)	± 5000 g pk	± 49k m/s² pk					
Temperature Range (Operating)	-94 to +500° F	-70 to +260° C					
Electrical							
Capacitance ^[2]	240 pF	240 pF					
Insulation Resistance (at 70 °F[(21 °C] ^[2]	> 10 ¹² ohms	> 10 ¹² ohms					
Insulation Resistance (at 500 °F [260° F] ^[2]	> 10 ⁸ ohms	> 10 ⁸ ohms					
Output Polarity ^[8]	Negative	Negative					
Physical	5	5					
Sensing Element	Ceramic	Ceramic					
Sensing Geometry	Shear	Shear					
Housing Material	Titanium	Titanium					
Sealing	Hermetic	Hermetic					
Size (Height \times Length \times Width)	$0.85\ \times\ 0.5\ \times\ 0.4$ in	21.6 × 12.7 × 10.2 mm					
Weight	0.39 oz	11.0 gm					
Electrical Connection	M3 Coaxial Jack	M3 Coaxial Jack					
Mounting Thread	M3 x 0.50 Male	M3 x 0.50 Male					
Mounting Torque	4.0 to 5.0 in-lb	45 to 55 N-cm					
Supplied Accessories							
Petro Wax	080	A109					
Quick Bonding Gel	080)A90					
Removal Tool	039	JA25					
Adhesive Mounting Base	080	A147					
Mounting Screw	80	A95					
NIST Calibration		9AZZ S-1T					
Additional Accessories [3]	Au	0 11					
Mating Cable Connectors		D					
Recommended Stock Cables	0	_1					
Ontions 5							
Available Options	Р	[8]					
NOTES:	<u> </u>						
[1] See note regarding accuracy of inf	ormation on inside t	front cover.					
[2] Typical. [3] See section 4 of this ca	atalog for cable and	accessory information.					
[4] See page 1.130 for calibration info	rmation.						
[5] See page xvii to xx for option infor	mation.						
[6] Zero-based, least-squares, straight	ine method.	nol conditioning					
electronics. [8] Acceleration from str	ucture into sensor h	nar conuntionning iase.					

- Uniform acceleration measurement
- Low-frequency vibration analysis
- Automotive ride quality assessment
- Modal analysis
- Robotics
- Elevator ride quality
- Tilt measurement

Single axis and triaxial capacitive accelerometers measure low-level, low-frequency vibration and uniform, static acceleration. They possess true DC frequency response capability. Capacitive accelerometers utilize the properties of an opposedplate capacitor. When influenced by acceleration, a displaced spring-mass creates a proportional capacitance shift.

PCB's capacitive accelerometers offer many advantages. They are durable and utilize a multi-pin connector, or integral cable, for a single-point hookup. Pneumatic damping provides resistance to overloads, insensitivity to thermal transients, and resonance suppression. By design, they are inherently insensitive to base strain, transverse motion, and electromagnetic influences. The threewire system delivers a low-impedance output signal that can be transmitted over long cable lengths, without degradation of signal quality.

Choose from either the precision Series 3700 housed in lightweight, hermetically-sealed titanium housings, or the low cost Series 3800 with injection-molded Ryton housings. Both types offer a selection of models that offer a variety of full-scale ranges, sensitivities, and measurement resolutions.

The units require DC voltage excitation, however, built in voltage regulators eliminate the need for expensive, regulated power sources. A variety of powering options are offered for fixed or portable operation and adapt the units to benchtop power supplies, automotive batteries, or laptop PC data acquisition power sources.

Each unit is fabricated in PCB's ISO-9001 approved manufacturing facility and supplied with an A2LAaccredited certificate of calibration traceable to N.I.S.T.

PRECISION CAPACITIVE ACCELEROMETERS

(complete specifications are featured on page 1.112)

Precision capacitive accelerometers offer true, DC frequency response capability for laboratory or field testing applications.

- ride quality assessments
- stabilization control
- structural testing
- tilt measurements

Series 3701 — Precision, single-axis capacitive accelerometers with 4-pin connector or integral cable

Series 3703 — Precision, triaxial capacitive accelerometers with 4-pin connector or integral cable

- Choice of four different measurement ranges
 - ± 3 g (29.4 m/s²) 0 to 150 Hz

 - $\pm 200 \text{ g} (1961 \text{ m/s}^2)$ 0 to 1000 Hz
- Choice of three different voltage excitation ranges
 - 5 to 30 VDC, 10 to 30 VDC, 16 to 30 VDC
- Lightweight, hermetically-sealed, titanium housings
- Operating temperature range -40 to +185 °F (-40 to +85 °C)

Recommended cables and accessories: Model 037P10 — see page 1.116 Select a capacitive sensor signal conditioner from those shown on page 1.115 Options: HT — see pages xvii to xx for option information See model configuration matrix on next page

	Model Numbering System for Precision Capacitive Accelerometers											
1.) Seri	es (ad	d "HT" pre	fix for	optional l	high te	mperature	operation)					
3701	Sin	gle axis c	apacit	tive acce	lerom	eter						
3703	Tria	xial capa	citive	accelero	meter							
	2.)	Full scale	output									
	D ± 2 volt (Required for use with 20 g and 200 g units. Required for 3 g and 50 g units specified for 5 to 30 VDC excitation voltage)											
	G	± 3 vo	lt (Rec	quired for	r use v	with 3 g a	nd 50 g units) ^[1]					
		3.) Exci	tation	voltage								
		1	5 to	o 30 VDC	; (May	be used	with 5 VDC power supplies or 9 VDC batteries) ^[1]					
		2	10	to 30 VD	C (Ma	iy be used	I with 12 VDC automotive or marine batteries)					
		3	16	to 30 VD	C (Ma	iy be used	l with PCB signal conditioners and other laboratory power supplies)					
			4.)	Electrical	conne	ction						
			FA	4-pin ł	herme	tic jack (F	or use with single axis sensors)					
			FB	010 Se	eries 4	1-conduct	or integral cable (For use with single axis sensors)					
			FD	9-pin ł	herme	tic jack (F	or use with triaxial sensors)					
			FE	037 Se	Series 10-conductor integral cable (For use with triaxial sensors)							
				5.) Mea	asuren	ient Range						
				3G	± 3	g measu	rement range corresponding to 1000 mV/g sensitivity and \pm 3 volts full scale output $^{[1]}$					
				20G	± 2	0 g meas	urement range corresponding to 100 mV/g sensitivity and \pm 2 volts full scale output					
				50G	± 5	0 g meas	urement range corresponding to 60 mV/g sensitivity and \pm 3 volts full scale output $^{[1]}$					
				200G	± 2	00 g mea	surement range corresponding to 10 mV/g sensitivity and \pm 2 volts full scale output					
					6.)	Integral ca	ble length (add only if selecting integral cable other than standard 10 ft. (3,0 m.) length)					
					/XXX	Specify	XXX as desired cable length in feet (or meters, if ordering metric version) insert "M" prefix to cable length					
						7.) Cabl	e termination (add only if selecting integral cable with other than pigtail connection)					
						AY	4-pin plug (For use with single axis sensors)					
						EN	9-pin plug (For use with triaxial sensors)					
Example	es:											
HT3703	D	1	FD	20G			Triaxial Sensor: 100 mV/g, 20 g range, \pm 2 volt FS output, 9-pin connector, operates from 5 to 30 VDC power and to 250 °F (121 °C)					
3701	G	3	FB	3G	/5	AY	Single Axis Sensor: 1000 mV/g, 3 g range, \pm 3 volt FS output, with 5 foot integral 010 series cable terminating with 4-pin plug operates from 16 to 30 VDC power					

Note: [1] When ordering ±3 g or ±50 g range sensors requiring 5 to 30 VDC excitation voltages, full-scale output code "D" (±2 volt) must be specified. The sensitivity for these sensors will be set at 700 mV/g and 40 mV/g respectively.

Series 3701 (Single Axis) and 3703 (Triaxial) Precision Capacitive Accelerometer Specifications

Individual Specifications ^[1] (based upon selected configuration from the model numbering system matrix)

Voltage Sensitivity (± 5%)		Measurement Range		Frequency Range		Resonant Frequency	Broadband Resolution ^[6] 0.5 to 100 Hz	
English	SI	English	SI	(± 5%)	(± 10%)		English	SI
10 mV/g	1.02 mV/(m/s ²)	200 g	1961 m/s ²	0 to 800 Hz	0 to 1000 Hz	≥ 2500 Hz	600 µg rms	5880 µm/s² rms
60 mV/g ^[7]	6.12 mV/(m/s ²) ^[7]	50 g	490 m/s ²	0 to 450 Hz	0 to 600 Hz	≥ 1500 Hz	120 µg rms	1176 µm/s ² rms
100 mV/g	10.2 mV/(m/s ²)	20 g	196 m/s ²	0 to 300 Hz	0 to 500 Hz	≥ 900 Hz	80 µg rms	785 µm/s² rms
1000 mV/g ^[7]	102.0 mV/(m/s ²) [7]	3 g	29.4 m/s ²	0 to 100 Hz	0 to 150 Hz	≥ 400 Hz	30 µg rms	294 µm/s² rms

Series 3701 (Single Axis) and 3703 (Intaxial) Accelerometer Specifications							
Common Specifications ^[1]							
Performance		English	SI				
Non-Linearity ^[2]		≤1	%				
Transverse Sensitivity		≤ 3	%				
Environmental							
Overload Limit (Shock)		3000 a pk 29k m/s2 pk					
Temperature Bange (Operating)		-40 to ±185 °F	-40 to ±85 °C				
iomporataro nango (oporating)	with "HT" Option	-40 to +250 °F	-40 to +121 °C				
Temperature Range (Storage)		-85 °F to +250 °F	-65 °C to +121 °C				
Electrical							
Excitation Voltage		16 to 30 VDC 10 to 30	VDC or 5 to 30 VDC				
Typical Current Consumption		< 10 mA	per axis				
Output Impedance		50 of	ims				
Electrical Isolation (Base)		> 108 (ohms				
Physical							
Housing Material		Titanium	Titanium				
Sealing		Hermetic	Hermetic				
Size (Height x Length x Width)	Single Axis	0.45 × 0.85 × 0.85 in	11.4 × 21.6 × 21.6 mm				
	Triaxial	1.1 in cube	28 mm cube				
Weight	Single Axis	0.62 oz	17.5 gm				
	Triaxial	2.7 oz	78.1 gm				
Electrical Connector	Single Axis	4-Pin Jack or Series	010 Integral Cable				
Triaxial		9-Pin Jack or Series	037 Integral Cable				
Mounting	Single Axis	Through	n Hole				
Triaxial 10-32 Female							
Supplied Accessories [3]							
Easy Mount Clip	Single Axis	080A	152				
Adhesive Mounting Base	Triaxial	080A	190				
Mounting Screws	Single Axis	081A64 (2 ea.)					
Metric Mounting Screws	Single Axis	M081A64 (2 ea.)					
Mounting Stud	Triaxial	081A05					
Metric Mounting Stud	Triaxial	M081A05					
NIST Calibration [4]	Single Axis	ACS-11					
NIST Calibration [4]	Triaxial	ACS-	11T				
Options 🔊							
Available Options		HT (operation from -40 to -	+250 °F (-40 to +121 °C))				
NOTES: [1] See note reg	arding accuracy of	f information on inside front cov	er.				
[2] Zero-based, least-squares	, straight line meth	nod.					
[3] See section 4 of this catalog for cable and accessory information.							
[4] See page 1.130 for calibra	ation information.	[5] See pages xvii to xx for optic	on information.				
[6] For 16 to 30 V/DC excitation version [7] For $\pm 3 \sigma$ (29 Å m/s ²) and $\pm 50 \sigma$ (490 m/s ²) versions with 5 to							

30 VDC excitation, sensitivity will be 700 mV/g (71.4 mV/(m/s²)) and 40 mV/g (4.1 mV/(m/s²)) respectively.

Series 3801 Single Axis Low-Cost Capacitive Accelerometer Specifications									
Individual Creatifications [1] (heard upon calcated configuration from the model numbering system metric)									
illulviuuai spe		aseu upon si	electeu coli	iiyulativii iiviii		univerniy system	liidu IX)		
Voltage Se	nsitivity (± 10%)	Measurement Range		Frequency Range		Resonant Frequency	Broadband 0.5 to	Resolution ^[6] 100 Hz	
English	SI	English	SI	(± 5%)	(± 10%)		English	SI	
10 mV/g	1.02 mV/(m/s ²)	200 g	1960 m/s ²	0 to 600 Hz	0 to 800 Hz	≥ 2000 Hz	600 µg rms	5880 µm/s² rms	
60 mV/g ^[7]	6.12 mV/(m/s ²)	50 g	490 m/s ²	0 to 350 Hz	0 to 500 Hz	≥ 1200 Hz	180 µg rms	1764 µm/s² rms	
100 mV/g	10.2 mV/(m/s ²)	20 g	196 m/s ²	0 to 200 Hz	0 to 400 Hz	≥ 800 Hz	120 µg rms	1176 µm/s² rms	
1000 mV/g ^[7]	102.0 mV/(m/s ²)	3 g	29.4 m/s ²	0 to 80 Hz	0 to 100 Hz	≥ 350 Hz	60 µg rms	588 µm/s² rms	

Series 3801 Single Axis Capacitive Accelerometer Specifications						
Common Specifications [1]						
Performance	English	SI				
Non-Linearity ^[2]	≤2	%				
Transverse Sensitivity	≤ 5	%				
Environmental						
Overload Limit (Shock)	3000 g pk	29k m/s2 pk				
Temperature Range (Operating)	-40 to +185 °F	-40 to +85 °C				
with "HT" Option	-40 to +250 °F	-40 to +121 °C				
Temperature Range (Storage)	-85 °F to +250 °F	-65 °C to +121 °C				
Temperature Coefficient of Sensitivity	$\leq 0.005\%$ / °F	$\leq 0.009\%$ / °C				
Electrical						
Excitation Voltage	16 to 30 VDC o	r 5 to 30 VDC				
Typical Current Consumption	≤ 10	mA				
Output Impedance	50 oł	nms				
Electrical Isolation (Base)	> 10 ⁸ ohms					
Physical						
Housing Material	Polymer	Polymer				
Sealing	Ероху	Ероху				
Size (Height x Length x Width)	0.5 × 0.85 × 0.85 in	12.7 × 21.6 × 21.6 mm				
Weight	0.62 oz	17.5 gm				
Electrical Connector	Series 010 In	tegral Cable				
Mounting	Through	n Hole				
Supplied Accessories ^[3]						
Easy Mount Clip	080A	152				
Mounting Screws	081A98	(2 ea.)				
Metric Mounting Screws	M081A98	3 (2 ea.)				
NIST Calibration [4]	ACS	-11				
Options ^[5]						
Available Options	HT (operation from -40 to	+250 °F (-40 to +121 °C))				
NOTES: [1] See note regarding accuracy of	f information on inside front cov	er.				
[2] Zero-based, least-squares, straight line method.						
[3] See section 4 of this catalog for cable and accessory information.						

[4] See page 1.130 for calibration information. [5] See pages xvii to xx for option information.

[6] For 16 to 30 VDC excitation version. [7] For \pm 3 g (29.4 m/s²) and \pm 50 g (490 m/s²) versions with 5 to 30 VDC excitation, sensitivity will be 700 mV/g (71.4 mV/(m/s²)) and 40 mV/g (4.1 mV/(m/s²)) respectively.

LOW COST CAPACITIVE ACCELEROMETERS

(complete specifications are featured on page 1.113)

Low cost capacitive accelerometers offer true, DC frequency response capability for laboratory testing applications.

- modal analysis
- structural testing
- stabilization control
- tilt measurements

Series 3801 — Low cost, single-axis capacitive accelerometers with integral cable

Choice of four different measurement ranges

± 3 g (29.4 m/s²)	0 to 100 Hz
± 20 g (196 m/s²)	0 to 400 Hz
± 50 g (490 m/s²)	0 to 500 Hz
± 200 g (1961 m/s²)	0 to 800 Hz

- Choice of two different voltage excitation ranges 5 to 30 VDC, 16 to 30 VDC
- Lightweight, injection-molded, Ryton housings
- Operating temperature range -40 to +185 °F (-40 to +85 °C)

Select a capacitive sensor signal conditioner from those shown on page 1.115 Options: HT — see pages xvii to xx for option information See model configuration matrix below

Model Numbering System for Low Cost Capacitive Accelerometers												
1). Sei	ries (Add	'HT' prefi	ix for High	n Operatin	g Temper	ature Opt	ion — e.g., HT3801D3FB20G)					
3801	Low	cost, singl	e axis ca	pacitive ad	ccelerome	ter						
	2). F	ull Scale	e Output									
	D ± 2 volt (Required for use with all 20 g and 200 g units. Required for 3 g and 50 g units specified for 5 to 30 VDC excitation voltage)											
	G	± 3 V0	lt (Requir	ed for use	with 3 g	and 50 g	units specified for 16 to 30 VDC excitation voltage) ⁽¹⁾					
		3). E)		voltage	lav ha vaa	d with D(2D sizzal conditioners, other laboratory neuror symplice, 0.VDC betterice, or 12.VDC betterice\[1]					
		3	5 to 3	30 VDC (IVI 30 VDC (IVI	ay be use Mav be us	ed with F	2CB signal conditioners, other laboratory power supplies, a voc batteries of 12 voc batteries) in					
		-	4). E	lectrical	Connect	ion						
			FB	010 Se	ries 4-cor	ductor in	tegral cable					
				5). Me	easurement Range							
				3G	± 3 g	± 3 g measurement range corresponding to 1000 mV/g sensitivity and ± 3 volts full scale output ^[1]						
				20G	± 20 g	\pm 20 g measurement range corresponding to 100 mV/g sensitivity and \pm 2 volts full scale output						
				50G	\pm 50 g measurement range corresponding to 60 mV/g sensitivity and \pm 3 volts full scale output $^{[1]}$							
				200G	\pm 200 g measurement range corresponding to 10 mV/g sensitivity and \pm 2 volts full scale output							
					6). Integral Cable Length (Add only if selecting integral cable with other than standard 10 ft (3 m) length)							
	/XXX Specify XXX as desired cable length in feet (or meters, if ordering metric version insert "M" prefix to cable length)											
	7). Cable Termination (Add only if selecting integral cable with other than pigtail connection)											
						AY	4-pin threaded plug, Microtech style					
						GE	6-pin bayonet plug, MS-3111F-10-6P style					
Examp	le											
3801	G	3	FB	3G	/5	AY	Single Axis Sensor: 1000 mV/g, 3 g range, \pm 3 volt FS output, with 5 foot integral 010 series cable terminating with 4-pin plug, operates from 16 to 30 VDC power					

Note: [1] When ordering ± 3 g or ± 50 g range sensors requiring 5 to 30 VDC excitation voltages, full-scale output code 'D' (± 2 volt) must be specified. The sensitivity for these sensors will be set at 700 mV/g and 40 mV/g, respectively.

CAPACITIVE SENSOR SIGNAL CONDITIONERS

PCB's capacitive accelerometers contain a built-in voltage regulator that permits them to operate from virtually any conventional power supply. The signal conditioners

offered provide the added benefit of a offset adjustment for nulling the inherent zero offset voltage.

Œ

CE

Model 478A01 — Single channel, battery-powered, capacitive sensor signal conditioner

- Single channel
- Unity gain
- Powered by three 9 VDC batteries (optional AC adaptor, Model 488A03)
- DC offset null adjustment
- 4-pin input jack
- BNC output jack

Model 478A05 — Three-channel, line powered, capacitive sensor signal conditioner

- Three channels
- Unity gain
- Universal line powered (100 to 240 VAC, 50 to 60 Hz)
- DC offset null adjustment
- Input terminal strip
- Three BNC output jacks
- Optional DC power pack, Model 488B07

Model 445B01 — Single channel, line powered, modular-style, capacitive sensor signal conditioner

- Single channel
- Selectable gain ×1, ×10, ×100
- Universal line powered (100 to 240 VAC, 50 to 60 Hz)
- DC offset null adjustment
- 4-pin input jack
- BNC output jack

Model 478A16 — pre-configured, multi-channel, rack-mountable, capacitive sensor signal conditioner

- 16 channels per rack
- Unity gain
- Universal line powered (100 to 240 VAC, 50 to 60 Hz)
- DC offset null adjustment for each channel
- 4-pin input jack
- BNC output jack
- Optional Model 478A17 features expandable architecture with selectable gain, filtering, output channel switching, DC voltage operation, RS-232 computer control, and more

ACCESSORIES FOR CAPACITIVE ACCELEROMETERS

Model 080A152 — Easy-mount clip

- Installs via adhesive, double-sided tape, or screw
- Sensor "snaps" in and out of place
- Adapts a single sensor for triaxial or multi-point successive measurements
- Compatible with all Series 3701 capacitive accelerometers

Model 080A153 — Triaxial mounting block (plastic)

- Adapts Series 3701 capacitive accelerometers for triaxial measurements
- Includes three Model 080A152 Easy-mount clips
- Easy-mount clips install onto block, sensors snap in and out of clips
- Alternate Model 080A151 features anodized aluminum construction

Model 010D10 — 10 ft (3 m) cable for single axis capacitive accelerometers

- 4-conductor, shielded cable
- 4-socket plug on each end
- Alternate lengths available 5 ft (1.5 m), 20 ft (6.1 m), 30 ft (9.1 m)
- Alternate model with 4-socket plug to pigtail termination (10 ft (3 m)) Model 010P10

Model 037P10 — 10 ft (3 m) cable for triaxial capacitive accelerometers

- 9-conductor, shielded cable
- 9-socket plug to pigtail termination
- Alternate lengths available 5 ft (1.5 m), 20 ft (6.1 m), 30 ft (9.1 m)
- Alternate model with three, 4-socket plug terminations --- Model 037A10

Model 488B07 — DC voltage power pack for Model 478B05 signal conditioner

- Permits portable, battery-powered operation of Model 478B05
- Operates from four 9 VDC batteries

Miscellaneous

- Model 081A64 screw assembly with 4-40 thread for mounting Series 3701
- Model M081A64 screw assembly with M2.5 × 0.45 thread for mounting Series 3701
- Model 081A98 screw assembly with 4-40 thread for mounting Series 3801
- Model M081A98 screw assembly with M2.5 × 0.45 thread for mounting Series 3801
- Model 081A05 10-32 thread to 10-32 thread stud for mounting Series 3703
- **Model M081A05** 10-32 thread to $M6 \times 0.75$ thread adaptor stud for mounting Series 3703
- Model 080A190 1-1/4 hex × 0.25 in stainless steel, adhesive mounting base for Series 3703
- Model 080A154 anodized aluminum adhesive mounting base for Series 3701

- Low cost / OEM sensors
- Dynamic strain measurements
- Whole-body vibrations
- Mechanical impedance

PCB has many accelerometers specifically tailored for a multitude of applications. These range in scope from single-copy, exclusive-use devices to sensors of which thousands are produced to satisfy special application requirements. An extensive commitment of resources for the design, development, manufacture, and test of sensors, instrumentation, and accessories allows PCB to respond to customer's needs by producing accelerometers suited for unique or specific tasks.

For many requirements, the use of an available standard option may be all that is necessary to configure a compatible sensor. Available standard options are listed in the specification tables for most units in this catalog. A description of standard options begins on page *xvii*. Special options may range from additional qualification testing or calibration to a complete re-configuration or design from scratch. Whether the application is routine or out-of-the-ordinary, PCB has the resources to address specialized needs.

The models offered in this section are only a minor representation of available special purpose accelerometers. PCB welcomes requests for instrumentation tailored to satisfy any unique test requirements.

ECONOMY / OEM

(complete specifications are featured on page 1.121)

- value-added resale
- limited budged circumstances

Model 338B34 — Low sensitivity, low cost, ICP® accelerometer

- 10 mV/g [1.02 mV/(m/s²)] sensitivity
- 0.7 Hz to 3000 frequency range
- 34 gram (1.2 oz) weight
- Single point calibration
- Stainless steel housing

Recommended cables and accessories $@ \Theta -$ see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: W - see pages xvii to xx for option information

Model 338B35 — High sensitivity, low cost, ICP[®] accelerometer

- 100 mV/g (10.2 mV/(m/s²)] sensitivity
- 0.7 Hz to 3000 frequency range
- 34 gram (1.2 oz) weight
- Single point calibration
- Stainless steel housing

Recommended cables and accessories **@@** — see page 4.2 Select an ICP[®] sensor signal conditioner from those featured in section 3 Options: W — see pages xvii to xx for option information

DYNAMIC STRAIN

(complete specifications are featured on page 1.122)

The dynamic, ICP[®] strain sensor utilizes a quartz sensing element in a durable, titanium housing. The device adhesively attaches to the test specimen and is re-usable.

composite materials testing

- noise path analysis
- active vibration control
- machinery monitoring

Model 740B02 — Dynamic ICP[®] Strain Sensor

- 50 mV/με sensitivity
- 0.5 Hz to 100 kHz frequency range
- 0.5 gram (0.02 oz) weight
- 0.6 nε resolution
- Integral 10 ft (3 m) cable with 10-32 coaxial plug termination

Recommended cables and accessories \odot — see page 4.2 Select an ICP^{\odot} sensor signal conditioner from those featured in section 3 Options: none

TRIAXIAL ICP[®] SEAT PAD ACCELEROMETER

(complete specifications are featured on page 1.122)

The triaxial seat pad accelerometer measures whole body vibration influences associated with vehicle operation. The unit houses a triaxial accelerometer within a molded, rubber pad that can be placed under a seated person, beneath a weighted test object, or strapped onto the body.

- operator comfort studies
- construction vehicle exposure vibration
- seat design studies
- seat mounting, suspension, bracket and damping tests

Model 356B40 — Triaxial ICP® seat pad accelerometer

- 100 mV/g [10.2 mV/(m/s²)] sensitivity
- 0.5 to 1000 Hz frequency range
- 180 gram (6.3 oz) weight
- 4-pin connector
- Supplied with Model 010G05 interface cable 5 ft (1.5 m) length

Select an ICP $^{\scriptscriptstyle \otimes}$ sensor signal conditioner from those featured in section 3 Options: none

HUMAN VIBRATION MEASUREMENTS

The Human Vibration Meter utilizes accelerometer inputs to provide vibration severity measurements relative to human exposure to vibration. The unit is directly compatible with the model 356B40 shown above, as well as any other single axis or triaxial ICP[®] accelerometer.

- hand-arm vibration
- whole-body vibration
- operator comfort studies

Model 381A20

- · Data logging of rms, peak, and vector sum values
- RS-232 computer interface
- Programmable AC and DC outputs

ICP® MECHANICAL IMPEDANCE SENSOR

(complete specifications are featured on page 1.123)

The mechanical impedance sensor simultaneously measures an applied, driving-point force and response acceleration of a test structure for determining parameters such as mechanical mobility and mechanical impedance. The unit consists of a precision, shear mode accelerometer and a quartz force sensor in a common housing.

Installation is primarily facilitated at the structural excitation points, in series with a stinger and vibratory shaker.

structural testing

modal analysis

Model 288D01 — Driving point, mechanical impedance sensor

- 100 mV/g [10.2 mV/(m/s²)] acceleration sensitivity
- 100 mV/lb [22.4 mV/N] force sensitivity
- 0.7 to 7000 Hz frequency range
- 19.2 gram (0.68 oz) weight

Recommended cables and accessories ${\rm \ensuremath{\Theta}}$ — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: none

Actual Size

Economy / OEM ICP [®] Accelerometer Specifications									
Model Number [1]	338	B34	338B35						
Performance	English	SI	English	SI					
Sensitivity (± 15%)	10 mV/g	1.02 mV/(m/s ²)	100 mV/g	10.2 mV/(m/s ²)					
Measurement Range	± 500 g pk	± 4900 m/s² pk	± 50 g pk	± 490 m/s² pk					
Frequency Range (± 5%)	1 to 2000 Hz	1 to 2000 Hz	1 to 2000 Hz	1 to 2000 Hz					
Frequency Range (± 10%)	0.7 to 3000 Hz	0.7 to 3000 Hz	0.7 to 3000 Hz	0.7 to 3000 Hz					
Resonant Frequency	≥ 12 kHz	≥ 12 kHz	≥12 kHz	≥12 kHz					
Broadband Resolution (1 to 10k Hz)	0.01 g rms	0.10 m/s ² rms	0.001 g rms	0.01 m/s ² rms					
Non-Linearity ^[2]	≤1 %	≤1 %	≤1 %	≤1 %					
Transverse Sensitivity	≤5 %	≤5 %	≤5 %	≤5 %					
Environmental									
Overload Limit (Shock)	± 2000 g pk	± 19.6k m/s² pk	± 2000 g pk	± 19.6k m/s² pk					
Temperature Range (Operating)	-65 to +250° F	-54 to +121° C	-65 to +250° F	-54 to +121° C					
Electrical									
Excitation Voltage	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC	20 to 30 VDC					
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA					
Output Impedance	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms	≤ 100 ohms					
Output Bias Voltage	7.5 to 11.5 VDC	7.5 to 11.5 VDC	7.5 to 11.5 VDC	7.5 to 11.5 VDC					
Discharge Time Constant	>3.0 sec	>3.0 sec	0.5 to 2.0 sec	0.5 to 2.0 sec					
Physical									
Sensing Element	Quartz	Quartz	Quartz	Quartz					
Sensing Geometry	Shear	Shear	Shear	Shear					
Housing Material	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel					
Sealing	Hermetic	Hermetic	Hermetic	Hermetic					
Weight	1.2 oz	34 gm	1.2 oz	34 gm					
Size (Hex × Height)	11/16 × 1.2 in	17.5 × 30.5 mm	11/16 × 1.2 in	17.5 × 30.5 mm					
Electrical Connection	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack					
Electrical Connection Position	Тор	Тор	Тор	Тор					
Mounting Thread	10-32 Female	10-32 Female	10-32 Female	10-32 Female					
Supplied Accessories [3]									
NIST Calibration ^[4]	AC	S-2	AC	S-2					
Additional Accessories ^[3]									
Adhesive Mounting Base	080	A12	080	A12					
Quick Bonding Gel	080	A90	080A90						
Mounting Stud	081	B05	081B05						
Metric Mounting Stud	M08	1B05	M081B05						
Mating Cable Connectors	EB, EJ, Ał	H, AK, AW	EB, EJ, AH, AK, AW						
Recommended Stock Cables	002,	003	002,	003					
Options ^[5]									
Available Options	V	V	V	V					
NOTES: [1] See note regard	ing accuracy of infor	mation on inside fr	ont cover.						
[2] Zero-based, least-squares, straight line method.									
[3] See section 4 of this catalog for cable and accessory information.									
[4] See page 1.130 for calibration information.									
[5] See pages xvii to xx for option information.									

Dynamic ICP [®] Strain Sensor Specifications							
Model Number ^[1]	740B02						
Performance	English	SI					
Sensitivity (± 20 %) ^[6]	50 mV/με	50 mV/με					
Measurement Range	100 pk με	100 pk µɛ					
Frequency Range ^[7]	0.5 to 100k Hz	0.5 to 100k Hz					
Broadband Resolution (1 to 10k Hz)	0.6 ne	0.6 ne					
Non-Linearity ^[4]	≤1 %	≤1 %					
Transverse Sensitivity	≤5 %	≤5 %					
Environmental							
Overload Limit (Shock)	± 10k g pk	± 98k m/s² pk					
Operating Temperature Range	-65 to +250° F	-54 to +121° C					
Acceleration Sensitivity ^[5]	0.001 µɛ/g	0.0001 με/(m/s²)					
Electrical							
Excitation Voltage	20 to 30 VDC	20 to 30 VDC					
Constant Current Excitation	2 to 20 mA	2 to 20 mA					
Output Bias Voltage	9 to 13 VDC	9 to 13 VDC					
Discharge Time Constant	1 to 3 sec	1 to 3 sec					
Physical							
Sensing Element	Quartz	Quartz					
Housing Material	Titanium	Titanium					
Sealing	Ероху	Ероху					
Weight	0.02 oz	0.5 gm					
Size (Width \times Length \times Height)	0.2×0.6 $\times0.07$ in	5.1 × 15.2 × 1.8 mm					
Electrical Connection	Integral Cable	Integral Cable					
Cable Length	10 ft	3 m					
Cable Termination	10-32 Coaxial Plug	10-32 Coaxial Plug					
Cable Type	030 Coaxial	030 Coaxial					
Mounting	Adhesive	Adhesive					
Supplied Accessories [3]							
Removal Tool	039A07						
Quick Bonding Gel	080A90						
Additional Accessories [3]							
Connector Adaptor	Connector Adaptor 070A02						
NOTES: [1] See note regarding accuracy of information on inside front cover. [3] See section 4 of this catalog for cable and accessory information. [4] Zero-based, least-squares, straight line method. [5] Measured perpendicular to sensing axis. [6] Calibrated on stool box							

[7] Based on cable drive of 100 ft at 30 pF/ft, 20 mA excitation.

Triaxial ICP [®] Seat Pad Accelerometer Specifications							
Model Number 🛯	356B40						
Performance	English	SI					
Sensitivity (± 10%)	100 mV/g	10.2 mV/(m/s ²)					
Measurement Range	± 10 g pk	± 98 m/s² pk					
Frequency Range (± 5 %)	0.5 to 1000 Hz	0.5 to 1000 Hz					
Resonant Frequency	≥ 27 kHz	≥27 kHz					
Broadband Resolution (1 to 10k Hz)	0.0002 g rms	0.002 m/s ² rms					
Non-Linearity ^[2]	≤1 %	≤1 %					
Transverse Sensitivity	≤5 %	≤5 %					
Environmental							
Overload Limit (Shock)	± 2000 g pk	\pm 19.6k m/s ² pk					
Operating Temperature Range	+14 to +122° F	-10 to +50° C					
Temperature Response	<0.10 %/°F	<0.17 %/°C					
Electrical							
Excitation Voltage	6 to 30 VDC	6 to 30 VDC					
Constant Current Excitation	0.3 to 10 mA	0.3 to 10 mA					
Output Impedance	≤ 500 ohms	≤ 500 ohms					
Output Bias Voltage	2.8 to 4.2 VDC	2.8 to 4.2 VDC					
Discharge Time Constant	1 to 3 sec	1 to 3 sec					
Physical							
Sensing Element	Ceramic	Ceramic					
Sensing Geometry	Shear	Shear					
Housing Material	Titanium	Titanium					
Sealing	Hermetic	Hermetic					
Weight	6.3 oz	180 gm					
Size (Diameter × Width)	7.87×0.472 in	200 × 12 mm					
Electrical Connection	1/4-28 4-Pin	1/4-28 4-Pin					
Electrical Connection Position	Side	Side					
Mounting Thread	10-32 Female	10-32 Female					
Supplied Accessories 🛛							
Cable 010G05							
Allen Wrench 039B23							
NIST Calibration [4]	ACS-17						
NOTES:							
[1] See note regarding accuracy of information on inside front cover.							

[2] Zero-based, least-squares, straight line method. [3] See section 4 of this catalog for cable and accessory information.

[4] See page 1.130 calibration information.
Special Purpose Sensors

Nodel Number 💷	288	3D01
Performance-Acceleration	Fnalish	SI
Sensitivity (+ 10%)	100 mV/a	10.2 m\//m/s
Measurement Bange (for + 5V output)	+ 50 a pk	+ 490 m/s ² n
Frequency Bange (+ 5%)	1 to 5000 Hz	1 to 5000 H
Frequency Range (± 10%)	0.7 to 7000 Hz	0.7 to 7000 H
Mounted Resonant Frequency	> 20 kHz	> 20 kH
Phase Besponse (+ 5° at 70 °F 21 °C)	4 to 5000 Hz	4 to 5000 H
Broadband Besolution (1 Hz to 10 kHz)	0.002 a rms	0.02 m/s ² rm
Discharge Time Constant	0.5 to 1.5 sec	0.5 to 1.5 se
Transverse Sensitivity	≤ 5%	≤ 5%
Overload Limit (Shock)	+ 3000 a pk	+ 29.4k m/s ² n
Output	Polarity	Positiv
Sensing Element	Ceramic/Shear	Ceramic/Shea
Performance-Force		,
Someitivity (+ 109/)	100 m\//lb	22.4 m\//
Sensitivity (± 10%)		22.4 mV/I
Neasurement Range (for ± 5V output)	± 50 lD pK	± 222.4 N p
Resonant Frequency (unmounted- no load) >40 KHZ	>4U KF
Dicaubanu nesolution	UI 200.0	0.00891
Discharge Time Constant	≥ bU sec.	≥ 60 Sec
Niaximum Force	DUU ID Polority	ZZZ4 I Positiv
End Dista Mass		POSILIV
Enu Plate Mass	0.10 0Z	4.8 yr
	Qualtz/Complession	dualiz/compressio
Neg Linewity [6]	< 10/	< 10
Operating Temperature Bange	≤ 1%	≤ 17 19 to 105°
	19 to 20 VDC	-10 t0 +35
Excitation Voltage	2 to 20 mA	2 to 20 m
Output Rias	8 to 14 VDC	8 to 14 VD
Output Impedance		~250 ohm
Housing Material	Titanium	Titaniur
Sealing	Hermetic	Hermeti
Weight	0.68.07	19.2 gr
Size (Hex × Height)	0.00 02	17.5 × 20.83 mr
Electrical Connection	10-32 Coaxial	10-32 Coaxia
Mounting Thread (both ends)	10-32 Female	10-32 Femal
Supplied Accessories ^[3]		
Mounting Stud	081	305
Adhesive Mounting Base	0011	ο ΣΟΟ ΣΟΟ
NIST Calibration ^[4]	ACS-1, ACS	S-4, FCS-1
Additional Accessories 3	7,000 1,77,00	
	ER EL /	
Mating Cable Connectors	ED, EJ, #	
Mating Cable Connectors Becommended Stock Cables	00Z,	005
Mating Cable Connectors Recommended Stock Cables Reticipe [5]		
Mating Cable Connectors Recommended Stock Cables		-
Mating Cable Connectors Recommended Stock Cables Options (5) Available Options	M,	Т
Mating Cable Connectors Recommended Stock Cables Diptions Available Options NOTES:	M,	Т
Mating Cable Connectors Recommended Stock Cables Dptions Available Options NOTES: [1] See note regarding accuracy of i	M,	T ront cover.
Mating Cable Connectors Recommended Stock Cables Dptions Available Options NOTES: [1] See note regarding accuracy of i [2] Zero-based, least-squares, straig	M, information on inside fr ght line method.	T ont cover.

PCB's machining capabilities allow full control of the production of precision parts to insure quality and timely delivery. Capabilities including dual spindle CNC lathes, wire EDM machines, and injection molding machines fabricate in excess of 100,000 parts per month to exacting standards.

- Handheld shakers
- Reference standard accelerometers
- Vibration calibration workstations
- High amplitude shock calibrator
- Calibration services
- Special testing services

PCB strives to provide the most accurate and complete calibration and testing services in the industry. Considerable investment in equipment, NIST traceability, A2LA accreditation, and conformance to industry and ISO standards ensure that delivered equipment will perform in accordance with its specifications. Page 1.130 to 1.131 highlight some of the performance verification reports or, "calibration certificates", which are included with most sensors.

Additional testing services are available which help qualify accelerometers for use in particular applications. Such tests include: amplitude response to extended low and high frequencies, transverse sensitivity through 360°, effects of elevated or reduced temperatures, high amplitude shock response, exposure to high pressures, and leak testing. Page 1.132 identifies PCB's model numbers associated with additional testing services available for many new sensors, or existing units which may be sent in for service.

Also available from PCB are a variety of test instruments which permit users to conduct their own accelerometer performance verification tests. It is often advantageous to conduct routine calibrations on-site to maintain conformance to quality assurance standards and avoid the delay and inconvenience of being without equipment that is returned for such services. The following pages highlight some of the more popular available items ranging from basic handheld shakers and reference standard accelerometers to complete calibration workstations.

PCB 716-684-0001 Vibration Division toll-free 888-684-0013 Fax 716-685-3886 E-mail vibration@pcb.com Web site www.pcb.com

PORTABLE 1g HANDHELD SHAKER

The Model 394C06 handheld shaker is a small, self-contained, battery powered, vibration exciter specifically designed to conveniently verify accelerometer and vibration system performance. It accepts sensors weighing up to 210 grams* in weight and delivers a controlled, 1 g mechanical excitation. Conduct on-the-spot sensor sensitivity checks, identify channels for multi-point data acquisition, perform end-to-end system troubleshooting, and confirm system gain settings. *total weight including mounting hardware and cable influence

Model 394C06

- Provides mechanical excitation at 1 g rms or 1 g pk
- Fixed, 159.2 Hz frequency
- Powered by four "AA" alkaline batteries (included)
- Automatic shut-off or continuous operation
- Mechanical stops protect from overload
- Optional AC power adaptor (Model 073A16)
- Optional Model M394C06 offers 10 m/sec² excitation

GRAVIMETRIC CALIBRATION FIXTURE

Model 9961C gravimetric calibration fixture is a convenient mechanism for calibrating accelerometers, force sensors, and impact hammers over a low to mid frequency range. Using Earth's gravity as a reference, accelerometers and force sensors are "drop" calibrated using the vertical suspension. Impact hammers are "ratio" calibrated utilizing the pendulous suspension, known mass, and calibrated reference accelerometer, in accordance with Newton's second law, F=ma. The fixture includes an adjustable frame, vertical and pendulous suspensions and calibrated test masses. The system is an economical, educational, and versatile tool for building confidence in sensor performance.

- Calibrates accelerometers, impact hammers and force sensors
- References measurements to Earth's gravity
- Utilizes "drop" and "ratio" techniques
- Applies Newton's law F=ma
- Builds confidence in sensor performance
- Provides educational insight of sensor behavior

Model 9961C

BACK-TO-BACK COMPARISON CALIBRATION STANDARDS

Back-to-back comparison calibration standard accelerometers permit NIST traceable calibration of accelerometers, and other vibration sensors, by the reference comparison method. The back-to-back reference calibration accelerometer is mounted to a mechanical exciter and the sensor to be calibrated is installed onto its surface. The output signals from the reference standard and transducer under test (TUT) are compared, permitting sensitivity, frequency response and phase response verification of the tested unit. Frequency and amplitude inputs to the exciter can be varied to suit the desired test parameters. Included are interconnect cables and a dedicated signal conditioner for use with the reference standard to insure a precise sensitivity at a common reference frequency. Also provided are a variety of mounting studs and an NIST traceable calibration certificate. Readout instruments, shakers, and their controllers are not included. A complete, turnkey system, Model 9150C, is offered on the next page.

Model 394A10

- 100 mV/g sensitivity
- 0.5 to 10 kHz (± 5%) frequency range
- 85 to264 VAC, 47 to 440 Hz powered
- 1/4-28 threaded, test sensor mounting hole

Model 394A11

- 100 mV/g sensitivity
- 0.5 Hz to 10 kHz (± 5%) frequency range
- 85 to 264 VAC, 47 to 440 Hz powered
- optional battery powered
- 10-32 threaded, test sensor mounting hole
- CE compliant

Models 394A10, 394A11

System Model	394A10	394A11	
Included Components:			
Sensor Model	301A10	301A11	
Sensor Cable (10 ft.)	002C10	003C10	
Signal Conditioner	482A23	482A23	
Output Cable (3 ft.)	012A03	003D03	

ACCELERATION CALIBRATION WORKSTATION

Model 9150C is a complete, fully integrated, turnkey calibration system which performs automated, NIST or PTB-traceable calibration of ICP[®], charge mode, piezoresistive and capacitive vibration sensors.

All system components operate under control of the supplied PC workstation running a programmed LabWindows application. A function generator delivers a frequency sweep which drives the shaker / exciter, while a pair of digital multi-meters monitor the output generated from the reference standard sensor and transducer under test (TUT). By comparison method, the associated reference sensitivity and amplitude response of the TUT is determined. Resultant data may then be viewed, printed and saved electronically.

The system features components selected for high precision and cost effectiveness and requires only a desktop computer and minimal floor space. The LabWindows program allows user-customization of calibration routines, data display, and calibration certificates. A typical calibration session takes only a few minutes. In-house calibration saves time, money and inconvenience and, in most cases, return on investment for this system will be justified within just two years.

The Modal Shop (A PCB Group Co.), provides sales and technical support for the model 9150C calibration workstation. Contact The Modal Shop toll-free at 800-860-4867 or visit www.modalshop.com.

Model 9150C

- Fast, automated accelerometer calibrations
- Fully integrated, turnkey system
- NIST or PTB traceability
- PC workstation and LabWindows platform
- Comma Separated Variable output to database

Model 9150C

MODEL 9150C					
Vibration Calibration System:					
Frequency Range	5 to 15 000 Hz				
Acceleration Levels	1 g (9,8 m/s2) to 10 g (98,0 m/s2)				
Reference Frequencies 100 and 159 Hz					
Maximum Displacement	1 inch (2,54 cm)				
Total Estimated Accuracy: (1)					
5 to 2 000 Hz	1.8 %				
2 000 to 10 000 Hz	2.7 %				
Included System Components:					
PC compatible computer with mo	nitor and printer				
GPIB controller card					
LabWindows software					
Instrumentation cabinet					
Function generator					
Power amplifier					
50 lb. electrodynamic shaker					
(2) Digital multi-meters					
Model 394A10 reference standar	d accelerometer system				
Model 482BU6 TUT signal condit	ioner				
Model 352A78 check accelerome	eter				
(3) Series 422E In-line charge col	Iverters				
Accessory kit (mounting studs, a	unesives, cables, etc.)				
Available options:					
PUB modular series signal condit	ioners (UE compliant)				
Low frequency, air-bearing shake	r				
System set-up and training					
NOTE: 1. System accuracy for NI	ST traceable calibration;				
can also be ordered wi	IN PIB traceable calibration.				

HOPKINSON BAR FOR HIGH G ACCELEROMETER CALIBRATION SYSTEM

Model 925A01 is a fully automated system for calibrating and verifying high g range shock accelerometers, and for testing of small, lightweight specimens, at acceleration levels from 1,000 to 100,000 g. A triggered lifting pin releases a specially shaped, air-driven, plastic or metal projectile, which impacts one end of the Hopkinson Bar. This action generates a compression wave, which imparts a highamplitude acceleration to a test accelerometer, or specimen that is mounted on the opposite end of the bar. As a reference, a pair of strain gauges is bonded to the middle of the bar and measures the propagation of the compression wave. Automated data collection is performed by a high speed, 5 MHz, PC data acquisition workstation. Software running under National Instruments Labview processes and analyzes the reference and test measurement signals. The system verifies accelerometer performance characteristics such as sensitivity, frequency response, zero shift, linearity, and survivability.

Model 925A01

- Sensitivity calibration from 1,000 to 100,000 g
- Frequency response verification
- Tests for zero shift and non-linearity
- Durable, reusable impact projectiles
- Automated data acquisition and analysis
- Complete with PC workstation and Labview Software

MODEL 925A01		
Shock Calibration System:		
Acceleration Levels		
(plastic projectile)	1,000 to 10,000 g	
(metal projectile)	10,000 to 100,000 g	
Pulse Duration		
(plastic projectile)	150 to 200 µsec	
(metal projectile)	30 to 40 µsec	
Air pressure required	2 to 20 psi	
Velocity to Test Specimen (max)	50 ft/sec	
Calibration Uncertainty	± 5%	
Maximum Test Specimen Mass	15 gm	
Hopkinson Bar		
(size)	0.75 " dia. x 80 " length	
(material)	6AL-4V Titanium	
Included System Components:		
Instrumented Hopkinson Bar with	steel base	
Air-actuator assembly with trigger	ed release pin	
Set of (4) projectiles		
Table top bar support		
Windows PC data acquisition syst	em	
National Instruments Labview sof	tware	
Signal conditioners		
Air-supply equipment		

See next page for typical calibration results.

CALIBRATION PROCEDURES

PCB's calibration laboratory is accredited by A2LA to ISO 17025. PCB's calibration procedures are in compliance with ISO standard 10012-1:1992 - Quality assurance requirements for measuring equipment, Part 1 - Metrological confirmation system for measuring equipment and the former MIL-STD-45662A. In addition, calibration reference standard accelerometers are maintained with traceability to NIST over 44 frequency data points and all other equipment utilized for calibration purposes is maintained with current NIST traceability. PCB is committed to providing customers with the most accurate, reliable calibration data through maintaining state-of-the-art equipment and reference traceability, conforming to industry standards and procedures, and ensuring conformity through quality assurance.

Typical results obtained with the Model 925A01 Hopkinson Bar Calibration System

Typical transverse sensitivity calibration (ATS-7)

CALIBRATION CERTIFICATE

For each tested accelerometer, measured data is supplied on the calibration certificate to support its performance characteristics. Automated, computer controlled calibration procedures test individual frequency data points over the test accelerometer's usable range and provide a continuous plot of the unit's frequency response. Additional tests determine the axial sensitivity, maximum transverse sensitivity, resonant frequency, output bias level or insulation resistance and the discharge time constant value (which establishes the low frequency limit) or sensing element capacitance.

PERFORMANCE CONCERNS

Calibration of an accelerometer determines its ability to perform within published specifications. It is important to be aware that measurement or environmental influences. beyond specified limits, can cause corruption of accelerometer performance and acquired data. Low frequency range, for an accelerometer, is defined by the high-pass, filtering effect of the discharge time constant of the signal conditioning circuitry. This circuitry is built into ICP® sensors or is external to charge mode sensors. High frequency range is established by the mechanical gain associated with the natural resonance of the accelerometer, which is characterized as a single-degree-of-freedom, secondorder, mechanical system. Exposing an accelerometer to frequencies above specified limits may cause excitation of its natural resonance resulting in erroneous or corrupted data. Other environmental influences, such as base strain, thermal transients, EMI, and RFI, can affect accuracy or cause erroneous outputs. Best measurement practices require an understanding of the environment in which the sensor is to be used so that errors can be accounted for. Often, additional testing of an accelerometer, with respect to the undesired influence, will help to quantify its behavior so that measurement data is better understood. Some testing services that are available from the Vibration Division are shown on the next page.

A typical ICP[®] accelerometer calibration certificate (ACS-1)

A calibration certificate for extended low frequency testing (ACS-4)

CALIBRATION AND TESTING

Calibration of an accelerometer typically involves a series of tests which are intended to verify its performance and adherence to its specifications. Results of this testing are provided on a report or "Calibration Certificate". See pages 1.130 and 1.131 for examples of typical PCB calibration certificates.

Routine calibration of PCB's accelerometers includes an amplitude response test from 10 Hz to the specified 5% upper frequency range (ACS-1), a transverse sensitivity test and a test to determine the unit's discharge time constant. Seismic accelerometers receive an additional low frequency response test down to 0.5 Hz (ACS-4). Shock accelerometers receive and additional high amplitude shock test (ACS-14). Certain low cost accelerometers are tested at only one reference frequency point (ACS-2).

PCB's calibration laboratory is accredited by A2LA to ISO 17025. To insure testing accuracy, PCB calibrations are traceable to NIST and in accordance with ISO standards and industry procedures. It is important to note that PCB maintains traceability to NIST for 44 discrete frequency points for the primary standards used for reference acceleration comparison. PCB also maintains traceability to NIST for all test instrumentation utilized during calibration.

The following is a partial list of calibration and testing services that are available for your existing PCB accelerometers or to complement the testing supplied with a new sensor.

Calibration services for piezoelectric accelerometers not manufactured by PCB are also available. Please contact the Vibration Division for further information regarding such services for non-PCB accelerometers.

Calibration and Testing Services

Code	Description
ACS-1	Single axis amplitude response calibration from 10 Hz to upper 5% frequency range, NIST traceable
ACS-1T	Triaxial amplitude response calibration from 10 Hz to upper 5% frequency range, NIST traceable
ACS-2	Single axis one point @ 100 Hz amplitude response calibration, NIST traceable
ACS-2T	Triaxial one point @ 100 Hz amplitude response calibration, NIST traceable
ACS-3	Single axis phase calibration from 10 Hz to upper 5% frequency range
ACS-3T	Triaxial phase calibration from 10 Hz to upper 5% frequency range
ACS-4	Single axis low frequency phase and amplitude response calibration from 0.5 to 10 Hz
ACS-4T	Triaxial low frequency phase and amplitude response calibration from 0.5 to 10 Hz
ACS-5	Single axis extended frequency, amplitude response cal. from upper 5% frequency to 15 kHz, NIST traceable
ACS-5T	Triaxial extended frequency, amplitude response cal. from upper 5% frequency to 15 kHz, NIST traceable
ACS-6	Single axis high frequency, amplitude response calibration from 15 kHz to 20 kHz
ACS-6T	Triaxial high frequency, amplitude response calibration from 15 kHz to 20 kHz
ACS-7	Single axis high frequency, amplitude response calibration from 100 Hz to 50 kHz for units up to 12 grams
ACS-8	Single axis high frequency, amplitude response calibration from 100 Hz to 100 kHz for units up to 3 grams
ACS-11	Single axis amplitude response calibration of 370 series capacitive accelerometers from 0.5 Hz to upper 5% frequency
ACS-14	High G shock accelerometer calibration using Hopkinson bar, to 100,000 g
ATS-1	High temperature sensitivity test, provides coefficient at one selected temp. from +71 to +400 °F, single axis
ATS-1A	Additional temperature test points from +71 to +400 °F, single axis
ATS-2	High temperature sensitivity test, provides coefficient at one selected temp. from +401 to +650 °F, single axis
ATS-2A	Additional temperature test points from +401 to +650 °F, single axis
ATS-3	Low temperature sensitivity test, provides coefficient at one selected temp. from +69 to -320 °F, single axis
ATS-3A	Additional temperature test points from +69 to -320 °F, single axis
ATS-4	Gross leak test
ATS-5	Helium leak test for hermeticity
ATS-6	Hyrdostatic pressure test — cable/sensor assembly in water environment to 3000 psi for 30 minutes
ATS-7	360 $^{\circ}$ transverse sensitivity test with polar plot

- Sound power testing
- Engine noise analysis
- Environmental noise analysis
- Near-field acoustic holography
- Building noise studies
- Acoustic chamber testing
- Sound pressure mapping

The Vibration Division provides acoustic measurement products to support the efforts of the sound and vibration measurement community. The product focus is on microphones and preamplifiers that operate from ICP® sensor power, which may already be available in the S&V lab for use with ICP® accelerometers. This approach can represent a significant cost savings compared to the use of conventional, externally-polarized microphones, preamplifiers, and power supplies.

Included are high-accuracy prepolarized microphone cartridges, which operate with ICP® microphone preamplifiers, and array microphones with integral or separate ICP® microphone preamplifiers. In addition, a selection of conventional, high-accuracy, externally-polarized microphones, preamplifiers, power supplies, calibration devices, and accessories are offered.

1/8, 1/4, 1/2 and 1 inch diameter precision microphones with free-field, random incidence, or pressure responses are included in the Vibration Division acoustic line. The lower cost array microphones are featured in 1/4 inch diameter with free field response.

> Whether you are new to acoustic measurements or a veteran acoustician, the Vibration Division can support your requirements with quality products, backed by a Total Customer Satisfaction guarantee.

PCB 716-684-0001 Vibration Division toll-free 888-684-0013 Fax 716-685-3886 E-mail vibration@pcb.com Web site www.pcb.com

PRECISION CONDENSER MICROPHONE CARTRIDGES

(complete specifications are featured on pages 2.11 to 2.12)

Precision condenser microphone cartridges are offered in both externally polarized and prepolarized versions.

Prepolarized versions offer the advantage of operation with an ICP[®] microphone preamplifier for reduced system cost. Free-field, random incidence, and pressure responses are offered in a variety of standard microphone sizes.

precision acoustic measurements

- 1/8 inch diameter with pressure response
- 200 V polarization voltage
- 1 mV/Pa sensitivity
- 6.5 Hz to 140 kHz frequency range
- 178 dB sound pressure limit
- 40 dB noise floor

Compatible with ICP® microphone preamplifiers — see page 2.13

Model 377A01 — Prepolarized with free-field response

- 1/4 inch diameter with free-field response
- Prepolarized
- 4 mV/Pa sensitivity
- 4 Hz to 80 kHz frequency range
- 166 dB sound pressure limit
- 30 dB (A) noise floor

Compatible with ICP® microphone preamplifiers — see page 2.13

Available with matched TEDS ICP $^{\circ}$ preamplifier as Model 378A01 — see page 2.13

Model 377A10 — Prepolarized with pressure response

- 1/4 inch diameter with pressure response
- Prepolarized
- 1.6 mV/Pa sensitivity
- 4 Hz to 70 kHz frequency range
- 170 dB sound pressure limit
- 34 dB (A) noise floor

Compatible with ICP® microphone preamplifiers — see page 2.13

Available with matched TEDS ICP® preamplifier as Model 378A10 — see page 2.13

Model 377A02 — Prepolarized with free-field response

- 1/2 inch diameter with free-field response
- Prepolarized
- 50 mV/Pa sensitivity
- 3.15 Hz to 20 kHz frequency range
- 148 dB sound pressure limit
- 14.5 dB (A) noise floor

Compatible with ICP® microphone preamplifiers — see page 2.13

Available with matched TEDS ICP® preamplifier as Model 378A02 — see page 2.13

Model 377A03 — Prepolarized with free-field or random incidence response

- 1/2 inch diameter with free-field response
- Prepolarized
- 50 mV/Pa sensitivity
- 6.5 Hz to 12.5 kHz frequency range
- >146 dB sound pressure limit
- 15 dB (A) noise floor
- Supplied with Model 079A01 random incidence adaptor

Compatible with ICP® microphone preamplifiers — see page 2.13

Available with matched TEDS ICP® preamplifier as Model 378A03 — see page 2.13

Model 377A11 — Prepolarized with pressure response

- 1/2 inch diameter with pressure response
- Prepolarized
- 50 mV/Pa sensitivity
- 3.15 Hz to 10 kHz frequency range
- 148 dB sound pressure limit
- 16 dB noise floor

Compatible with ICP® microphone preamplifiers — see page 2.13

Available with matched TEDS ICP $^{\circ}$ preamplifier as Model 378A11 — see page 2.13

Model 377A20 — Prepolarized with random incidence response

- 1/2 inch diameter with random incidence response
- Prepolarized
- 50 mV/Pa sensitivity
- 3.15 Hz to 12.5 kHz frequency range
- 148 dB sound pressure limit
- 16 dB noise floor

 $\label{eq:compatible} \begin{array}{l} \mbox{Compatible with ICP^{\circledast}\ microphone\ preamplifiers\ --\ see\ page\ 2.13} \\ \mbox{Available with\ matched\ TEDS\ ICP^{\circledast}\ preamplifier\ as\ Model\ 378A20--\ see\ page\ 2.13} \end{array}$

Model 377A40 — Externally polarized with free-field response

- 1/2 inch diameter with free field response
- 200 V polarization voltage
- 14.5 mV/Pa sensitivity
- 3.15 Hz to 40 kHz frequency range
- >160 dB sound pressure limit
- 20 dB (A) noise floor

Compatible with conventional microphone preamplifiers — see page 2.13

Dimensions shown are in inches (millimeters).

Model 377A41 — Externally polarized with free-field response

- 1/2 inch diameter with free field response
- 200 V polarization voltage
- 44.5 mV/Pa sensitivity
- 3.15 Hz to 20 kHz frequency range
- >146 dB sound pressure limit
- 15 dB (A) noise floor

Compatible with conventional microphone preamplifiers — see page 2.13

auttersam

Model 377A42 — Externally polarized with free-field response

- 1 inch diameter with free field response
- 200 V polarization voltage
- 48 mV/Pa sensitivity
- 2.6 Hz to 20 kHz frequency range
- 146 dB sound pressure limit
- 10 dB (A) noise floor

Model 377A53 — Externally polarized with pressure response

- 1 inch diameter with pressure response
- 200 V polarization voltage
- 45 mV/Pa sensitivity
- 2.6 Hz to 8000 Hz frequency range
- 146 dB sound pressure limit
- 10 dB (A) noise floor

Compatible with conventional microphone	e preamplifiers — see page 2.13
---	---------------------------------

• 166 dB sound pressure limit

Model 377A26 — Prepolarized microphone probe, with BNC jack output connector

• 160 dB sound pressure limit

Common features:

- Operates in harsh or inaccessible locations
- 1 mm diameter probe
- 3 mV/Pa sensitivity
- 1 Hz to 20 kHz frequency range
- 40 dB noise floor

PREAMPLIFIERS FOR PRECISION MICROPHONE CARTRIDGES

(complete specifications are featured on page 2.13)

ICP® microphone preamplifiers operate from ICP® sensor signal conditioners and are used to condition the output signal of prepolarized precision microphone cartridges for reduced system cost. Conventional microphone preamplifiers operate from precision microphone power supplies, which provide the necessary polarization voltage for the precision microphone cartridge.

Model 426B03 — ICP[®] preamplifier for 1/4 inch, prepolarized, precision microphone cartridges

This ICP[®] preamplifier interfaces with 1/4 inch, prepolarized microphone cartridges. It requires constant current (2 to 20 mA) excitation, which is provided by an ICP® sensor signal conditioner. Many FFT analyzers and data acquisition instruments also incorporate ICP® sensor power for direct connection to this preamplifier. This model includes TEDS circuitry.

Model 426D01 — ICP[®] preamplifier for 1/2 inch, prepolarized, precision microphone cartridges

This ICP[®] preamplifier interfaces with 1/2 inch, prepolarized microphone cartridges. It requires constant current (2 to 20 mA) excitation, which is provided by an ICP[®] sensor signal conditioner. Many FFT analyzers and data acquisition instruments also incorporate ICP® sensor power for direct connection to this preamplifier. This model includes TEDS circuitry.

Model 426A30 — Conventional preamplifier for 1/2 inch, externally polarized, precision microphone cartridges

This conventional preamplifier interfaces with 1/2 inch precision microphone cartridges and is compatible with microphones as defined in the international standard IEC 61094. It requires power from a precision microphone power supply. This preamplifier can also be used with prepolarized, precision microphone cartridges.

PRECISION MICROPHONE POWER SUPPLY

A precision microphone power supply is required for externally polarized precision microphone cartridges and conventional microphone preamplifiers. The supplied power provides the necessary polarization voltage for the micro-

Model 480A25 — Precision microphone power supply

- 0 to 50 dB gain
- Delivers O and 200 V polarization
- A weighted, C weighted, and flat output signals
- 7-pin LEMO input connector
- Powered by internal batteries or supplied AC adaptor

phone cartridge and excitation voltage for the preamplifier.

- precision acoustic measurements
- externally polarized condenser microphones
- conventional precision microphone preamplifiers

ARRAY MICROPHONES WITH INTEGRAL PREAMPLIFIER

(complete specifications are featured on page 2.14)

Array microphones provide a cost effective method for large channel count sound pressure measurements. Each requires ICP[®] sensor power for excitation.

- sound pressure mapping acoustic mode analysis
- near-field acoustic holography vibro-acoustic testing

Model 130D21 — Free-field response, 10-32 coaxial jack connector

- 1/4 inch diameter with free-field response
- Prepolarized with integral preamplifier
- 45 mV/Pa sensitivity
- 10 Hz to 15 kHz frequency range
- >122 dB sound pressure limit
- <40 dB noise floor

Recommended cables and accessories @@ — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: T

Model 130D20 — Free-field response, BNC jack connector

- 1/4 inch diameter with free-field response
- Prepolarized with integral preamplifier
- 45 mV/Pa sensitivity
- 10 Hz to 15 kHz frequency range
- >122 dB sound pressure limit
- <40 dB noise floor

Recommended cables and accessories $\circledast\,-\!\!-\!\!-\!\!$ see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: T

ARRAY MICROPHONE CARTRIDGE

(complete specifications are featured on page 2.14)

The array microphone cartridge operates in conjunction with one of its dedicated preamplifiers shown below.

It is useful for severe applications where there is potential for microphone damage, as it can be easily replaced and the preamplifier reused.

Model 130D10 — used in conjunction with an array microphone preamplifier

- 1/4 inch diameter with free-field response
- Prepolarized, requires array microphone ICP® preamplifier
- 45 mV/Pa sensitivity (with preamplifier)
- 10 Hz to 15 kHz frequency range
- >122 dB sound pressure limit
- <40 dB noise floor

Compatible with array microphone preamplifiers $-\!\!-\!\!$ see below

PREAMPLIFIERS FOR USE WITH ARRAY MICROPHONE CARTRIDGE

(complete specifications are featured on page 2.14)

Model 130P10 — with BNC jack connector

- Accepts 1/4 inch array microphone cartridge
- 10 Hz to 30 kHz frequency range
- Operates from ICP® sensor signal conditioner
- BNC jack connector

Recommended cables and accessories \circledast — see page 4.2 Select an ICP $^{\circ}$ sensor signal conditioner from those featured in section 3 Options: T

Model 130P11 — with 10-32 coaxial jack connector, 2.1 in (53.4 mm) length

Model 130P22 — with 10-32 coaxial jack connector, 4.1 in (104.1 mm) length

- Accepts 1/4 inch array microphone cartridge
- 10 Hz to 30 kHz frequency range
- Operates from ICP® sensor signal conditioner
- 10-32 coaxial jack connector

Recommended cables and accessories @@ — see page 4.2 Select an ICP® sensor signal conditioner from those featured in section 3 Options: T

Array microphone preamplifiers operate from ICP® sensor

power and are used exclusively with the array microphone

cartridge shown above.

OPCB P

2.7

CALIBRATORS AND ACCESSORIES

Acoustic calibrators build confidence in measurements and their use leads to more accurate results. Field verification of microphone performance can compensate for such variables as temperature, humidity, and barometric pressure.

- Easy to use
- Meet IEC and ANSI standards

Model 394A40 — Pistonphone

The 394A40 pistonphone is a precision, high-level sound source for the calibration of 1/2 inch or 1/4 inch microphones. It produces a constant sound pressure level of 114 dB at 250 Hz. It complies with the requirements of IEC 942 (1988) Class 1 and is PTB approved. The unit operates from 4-AA batteries.

Model CAL200 — Acoustic Calibrator

The CAL200 is a precision sound pressure level calibrator for use with 1/2 inch microphones. An optional Model 079A04 adaptor permits use with 1/4 inch microphones. The unit is capable of either 94 dB or 114 dB at 1000 Hz. It conforms to both ANSI SI.40-1984 and IEC 942 (1988) Class 1 standards.

Model 079A04 — Adaptor for attaching a 1/4 inch microphone to the CAL200 acoustic calibrator

ACOUSTIC MEASUREMENT ACCESSORIES

■ filters

adaptors

cables

wind screens

Model 426B02 — In-line "A-weighting" filter

This in-line A-weighting filter is powered by constant current excitation and is compatible with ICP[®] microphone preamplifiers. When using this filter, however, a minimum of 4 mA excitation current is required of the ICP[®] sensor signal conditioner or readout device, which incorporates ICP[®] sensor power.

Model 079A03 — Adaptor for attaching a 1/2 inch microphone cartridge to a 1/4 inch microphone preamplifier
 Model 079A25 — Adaptor for attaching a 1 inch microphone cartridge to a 1/2 inch microphone preamplifier
 Model 079A02 — Adaptor for attaching a 1/4 inch microphone cartridge to a 1/2 inch microphone preamplifier
 Model 079A26 — Adaptor for attaching a 1/8 inch microphone cartridge to a 1/4 inch microphone preamplifier

Model 079A10 — Holder for 1/4 inch microphone preamplifiers Model 079A11 — Holder for 1/2 inch microphone preamplifiers

Model 079A01 — Random incidence adaptor for Model 377A03 1/2 inch free-field microphone

Model 079A20 — Nose cone for 1/4 inch microphones Model 079A21 — Nose cone for 1/2 inch microphones

Model 079A23 — Swivel head adaptor for 1/2 inch and 1/4 inch microphones

Model 079A18 — Flexible microphone clamp

Model 079A06 — Windscreen for 1/2 inch microphones Model 079A07 — Windscreen for 1/4 inch microphones

Model 011A10 — Microphone cable, 10 ft. length. 7-pin Lemo plug and jack connectors

Precision Microphone Cartridge Specifications									
Model Number [1]	377/	401	377A	377A02 🐠		377A03		377A10	
Performance	English	SI	English	SI	English	SI	English	SI	
Microphone Diameter	1/4 in	1/4 in	1/2 in	1/2 in	1/2 in	1/2 in	1/4 in	1/4 in	
Response	Free-Field	Free-Field	Free-Field	Free-Field	Free-Field ^[3]	Free-Field [3]	Pressure	Pressure	
Open Circuit Sensitivity (at 250 Hz)	4 mV/Pa	4 mV/Pa	50 mV/Pa	50 mV/Pa	50 mV/Pa	50 mV/Pa	1.6 mV/Pa	1.6 mV/Pa	
Frequency Response (± 2 dB)	4 to 80k Hz	4 to 80k Hz	3.15 to 20k Hz	3.15 to 20k Hz	6.5 to 12.5k Hz	6.5 to 12.5k Hz	4 to 70k Hz	4 to 70k Hz	
Dynamic Range (3% Distortion Limit) ^{[5][6]}	166 dB	166 dB	148 dB	148 dB	146 dB	146 dB	170 dB	170 dB	
Noise Floor ^[5]	30 dB (A)	30 dB (A)	14.5 dB (A)	14.5 dB (A)	15 dB (A)	15 dB (A)	34 dB (A)	34 dB (A)	
Environmental									
Temperature Range (Operating)	-40 to +250 °F	-40 to +121 °C	-40 to +302 °F	-40 to +150 °C	-40 to +176 °F	-40 to +80 °C	-40 to +302 °F	-40 to +150 °C	
Electrical									
Polarization Voltage	0 V [2]	0 V [2]	0 V [2]	0 V [2]	0 V [2]	0 V ^[2]	0 V ^[2]	0 V [2]	
Physical									
Diameter (with Grid)	0.27 in	6.9 mm	0.52 in	13.2 mm	0.52 in	13.2 mm	0.27 in	6.9 mm	
Height (with Grid)	0.41 in	10.5 mm	0.64 in	16.2 mm	0.68 in	17.3 mm	0.41 in	10.5 mm	
Weight	0.07 oz	2 gm	0.25 oz	7 gm	0.32 oz	9 gm	0.07 oz	2 gm	
Preamplifier Connection	0.2244 in - 60 UNS	5.7 mm - 60 UNS	0.4606 in - 60 UNS	11.7 mm - 60 UNS	0.4606 in - 60 UNS	11.7 mm - 60 UNS	0.2244 in - 60 UNS	5.7 mm - 60 UNS	
NOTES: [1] See note rega	Inding accuracy of i	nformation on insid	e front cover. [2] F	Prepolarized [3] Su	pplied with Model 0	79A01 Random Inc	idence Adaptor [5]	re 20µPa	

[6] Maximum dynamic range is based on the physical characteristics of the microphone. The actual range may be lower, depending on the type of preamplifier used and the voltage supplied. Please refer to the technical notes section for information on calculating the maximum range for a specific microphone and preamplifier combination.

Precision Microphone Cartridge Specifications									
Model Number ^[1]	377A11		377.	377A20		377A40		377A41	
Performance	English	SI	English	SI	English	SI	English	SI	
Microphone Diameter	1/2 in	1/2 in	1/2 in	1/2 in	1/2 in	1/2 in	1/2 in	1/2 in	
Response	Pressure [4]	Pressure [4]	Random Incidence	Random Incidence	Free-Field	Free-Field	Free-Field	Free-Field	
Open Circuit Sensitivity (at 250 Hz)	50 mV/Pa	50 mV/Pa	50 mV/Pa	50 mV/Pa	14.5 mV/Pa	14.5 mV/Pa	44.5 mV/Pa	44.5 mV/Pa	
Frequency Response (± 2 dB)	3.15 to 10k Hz	3.15 to 10k Hz	3.15 to 12.5k Hz	3.15 to 12.5k Hz	3.15 to 40k Hz	3.15 to 40k Hz	3.15 to 20k Hz	3.15 to 20k Hz	
Dynamic Range (3% Distortion Limit) [5][6]	148 dB	148 dB	148 dB	148 dB	160 dB	160 dB	146 dB	146 dB	
Noise Floor ^[5]	16 dB	16 dB	16 dB	16 dB	20 dB (A)	20 dB (A)	15 dB (A)	15 dB (A)	
Environmental									
Temperature Range (Operating)	-40 to +302 °F	-40 to +150 °C	-40 to +302 °F	-40 to +150 °C	-40 to +302 °F	-40 to +150 °C	-40 to +302 °F	-40 to +150 °C	
Electrical									
Polarization Voltage	0 V [2]	0 V [2]	0 V [2]	0 V ^[2]	200 V	200 V	200 V	200 V	
Physical									
Diameter (with Grid)	0.52 in	13.2 mm	0.52 in	13.2 mm	0.52 in	13.2 mm	0.52 in	13.2 mm	
Height (with Grid)	0.64 in	16.2 mm	0.64 in	16.2 mm	0.5 in	12.7 mm	0.54 in	16.3 mm	
Weight	0.32 oz	9 gm	0.32 oz	9 gm	0.32 oz	9 gm	0.32 oz	9 gm	
Preamplifier Connection	0.4606 in - 60 UNS	11.7 mm - 60 UNS	0.4606 in - 60 UNS	11.7 mm - 60 UNS	0.4606 in - 60 UNS	11.7 mm - 60 UNS	0.4606 in - 60 UNS	11.7 mm - 60 UNS	

NOTES: [1] See note regarding accuracy of information on inside front cover. [2] Prepolarized [4] Can also be used as a Random Incidence Microphone [5] re 20µPa [6] Maximum dynamic range is based on the physical characteristics of the microphone. The actual range may be lower, depending on the type of preamplifier used and the voltage supplied. Please refer to the technical notes section for information on calculating the maximum range for a specific microphone and preamplifier combination.

Precision Microphone Cartridge Specifications								
Model Number ^[1]	377	A42	377.	A50	377/	377A53		
Performance	English	SI	English	SI	English	SI		
Microphone Diameter	1 in	1 in	1/8 in	1/8 in	1 in	1 in		
Response	Free-Field	Free-Field	Pressure	Pressure	Pressure	Pressure		
Open Circuit Sensitivity (at 250 Hz)	48 mV/Pa	48 mV/Pa	1 mV/Pa	1 mV/Pa	45 mV/Pa	45 mV/Pa		
Frequency Response (± 2 dB)	2.6 to 20k Hz	2.6 to 20k Hz	6.5 to 140k Hz	6.5 to 140k Hz	2.6 to 8000 Hz	2.6 to 8000 Hz		
Dynamic Range (3% Distortion Limit) [5][6]	146 dB	146 dB	178 dB	178 dB	146 dB	146 dB		
Noise Floor ^[5]	10 dB(A)	10 dB(A)	40 dB	40 dB	10 dB(A)	10 dB(A)		
Environmental								
Temperature Range (Operating)	-40 to +302 °F	-40 to +150 °C	-40 to +302 °F	-40 to +150 °C	-40 to +302 °F	-40 to +150 °C		
Electrical								
Polarization Voltage	200 V	200 V	200 V	200 V	200 V	200 V		
Physical								
Diameter (with Grid)	0.936 in	2.77 mm	0.18 in	3.5 mm	0.936 in	2.77 mm		
Height (with Grid)	0.748 in	19 mm	0.26 in	6.7 mm	0.748 in	19 mm		
Weight	1.09 oz	31 gm	0.053 oz	1.5 gm	1.09 oz	31 gm		
Preamplifier Connection	0.9098 in - 60 UNS	23.11 mm - 60 UNS	N/A	M3 x 0.2	0.9098 in - 60 UNS	23.11 mm - 60 UNS		

NOTES: [1] See note regarding accuracy of information on inside front cover. [5] re 20µPa [6] Maximum dynamic range is based on the physical characteristics of the microphone. The actual range may be lower, depending on the type of preamplifier used and the voltage supplied. Please refer to the technical notes section for information on calculating the maximum range for a specific microphone and preamplifier combination.

Microphone Probe Specifications									
Model Number ^[1]	377	/A25	377A26						
Performance	English	English SI		SI					
Microphone Diameter	1 mm Probe	1 mm Probe	1 mm Probe	1 mm Probe					
Response	Probe	Probe	Probe	Probe					
Open Circuit Sensitivity (at 250Hz)	3 mV/Pa	3 mV/Pa	3 mV/Pa	3 mV/Pa					
Frequency Response (+/- 3 dB)	1 to 20k Hz	1 to 20k Hz	1 to 20k Hz	1 to 20k Hz					
Dynamic Range (3% Distortion Limit) [2][4]	166 dB	166 dB	160 dB	160 dB					
Noise Floor [2]	40 dB	40 dB	40 dB	40 dB					
Environmental									
Temperature Range (Operating)	-13 to +158 °F	-25 to +70 °C	-13 to +158 °F	-25 to +70 °C					
Temperature Range Probe Tip	-13 to 1472 °F	-25 to 800 °C	-13 to 1472 °F	-25 to 800 °C					
Electrical									
Excitation Voltage (Single Supply)	28 to 120 V	28 to 120 V	N/A	N/A					
Excitation Voltage (Double Supply)	± 14 to ± 60 V	± 14 to ± 60 V	N/A	N/A					
Constant Current Voltage	N/A	N/A	2 to 20 mA ^[3]	2 to 20 mA [3]					
Physical									
Case Material	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel					
Probe Material	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel					
Diameter	0.5 in	12.7 mm	0.5 in	12.7 mm					
Length	3.3 in	83.8 mm	3.3 in	83.8 mm					
Probe Tube Outside Diameter	0.049 in	1.25 mm	0.049 in	1.25 mm					
Probe Tube Inside Diameter	0.039 in	1 mm	0.039 in	1 mm					
Weight	1.4 oz	40 gm	1.4 oz	40 gm					
Electrical Connector	Integral Cable	Integral Cable	BNC	BNC					
Cable Termination	7-pin Lemo Plug	7-pin Lemo Plug	N/A	N/A					
Cable Length	9.8 ft	3 m	N/A	N/A					

NOTES: [1] See note regarding accuracy of information on inside front cover. [2] re 20µPa [3] Powered by ICP[®] Sensor Power Supplies [4] Maximum dynamic range is based on the physical characteristics of the microphone. The actual range may be lower, depending on the type of preamplifier used and the voltage supplied. Please refer to the technical notes section for information on calculating the maximum range for a specific microphone and preamplifier combination.

TEDS Microphone Assemblies [2]									
Model Number ^[1]	378A01	378A02	378A03	378A10	378A11	378A20			
Supplied Components									
Prepolarized microphone cartridge	377A01	377A02	377A03	377A10	377A11	377A20			
Cartridge size	1/4 in	1/2 in	1/2 in	1/4 in	1/2 in	1/2 in			
Response	Free-Field	Free-Field	Free-Field ^[3]	Pressure	Pressure	Random Incidence			
TEDS ICP® preamplifier 426B03 426D01 426B03 426D01 426B03 426D01									
NOTES: [1] See note regarding accuracy of information on inside front cover. [2] All assemblies are furnished with factory programmed TEDS [3] Supplied with Model 079A01 random incidence adaptor									

Preamplifiers for Precision Microphone Cartridge Specifications Model Number ^[1] 426A30 426D01 🕀 426B03 English SI SI English SI Performance English Microphone Diameter 1/4 in 1/4 in 1/2 in 1/2 in 1/2 in 1/2 in Gain -0.15 dB -0.15 dB -0.25 dB -0.25 dB -0.08 dB -0.08 dB 3.15 to 126 kHz [2] 16 to 100k Hz ^[3] 3.15 to 126 kHz [2] 16 to 100k Hz [3] 8 to 50k Hz [4] 8 to 50k Hz [4] Frequency Response Electrical Noise (Flat 20 Hz to 20kHz) <5.6 µV <5.6 µV <7 µV <7 µV <8 µV <8 µV Electrical Noise (A-Weight) <3.2 µV <3.2 µV <4.5 µV <4.5 µV <5 µV <5 µV **TEDS Compliant** Yes Yes N/A N/A Yes Yes Environmental -40 to +149 °F -40 to 185 °F -40 to 149 °F Temperature Range (Operating) -40 to +65 °C -40 to +85 °C -40 to +65 °C Electrical Dual \pm 10 to \pm 18 VDC Dual ± 10 to ± 18 VDC 20 to 32 VDC 20 to 32 VDC 20 to 32 VDC 20 to 32 VDC Excitation Voltage Single 20 to 150V Single 20 to 150V Constant Current Excitation 2 to 20 mA 2 to 20 mA N/A N/A 2 to 20 mA 2 to 20 mA **Output Bias Voltage** 0.2 pF 0.2 pF 0.5 pF 0.5 pF 0.15 pF 0.15 pF Capacitance 2×10¹⁰ ohms 2×10¹⁰ ohms 10¹⁰ ohms 10¹⁰ ohms 10¹⁰ ohms 10¹⁰ ohms Input Impedance Output Impedance <50 ohms <50 ohms <50 ohms <50 ohms <50 ohms <50 ohms Output Voltage - Maximum (+/- V pK) 8 8 28 Vpp 28 Vpp 8 8 Physical Case Material Stainless Steel Stainless Steel Stainless Steel Stainless Steel Stainless Steel Stainless Steel 0.25 in Diameter 6.33 mm 0.5 in 12.7 mm 0.5 in 12.7 mm 1.74 in 44.2 mm 5.2 in 132 mm 3.18 in 80.7 mm Height Weight 0.2 oz 6 gm **Electrical Connection** 10-32 Coaxial Jack 10-32 Coaxial Jack 7 Pin LEMO 7 Pin LEMO BNC Jack BNC Jack Mounting Thread (Microphone to Preamplifier) 0.2244 in -60 UNS 5.7 mm - 60 UNS 0.4606 in - 60 UNS 11.7 mm - 60 UNS 0.4606 in - 60 UNS 11.7 mm - 60 UNS NOTES: [1] See note regarding accuracy of information on inside front cover. [2] Frequency Response at +/- 0.2 dB [3] Frequency Response at +/- 0.15 dB [4] Frequency Response at +/- 0.1 dB

Dimensions shown are in inches (millimeters).

Array Microphone Specifications									
1301	D10	130D	20 🗶	1301	130D21				
English	SI	English	SI	English	SI				
1/4 in	1/4 in	1/4 in	1/4 in	1/4 in	1/4 in				
Free-Field	Free-Field	Free-Field	Free-Field	Free-Field	Free-Field				
45 mV/Pa	45 mV/Pa	45 mV/Pa	45 mV/Pa	45 mV/Pa	45 mV/Pa				
10 to 15k Hz	10 to 15k Hz	10 to 15k Hz	10 to 15k Hz	10 to 15k Hz	10 to 15k Hz				
122 dB	122 dB	122 dB	122 dB	122 dB	122 dB				
40 dB	40 dB	40 dB	40 dB	40 dB	40 dB				
+14 to +122 °F	-10 to +50 °C	+14 to +122 °F	-10 to +50 °C	+14 to +122 °F	-10 to +50 °C				
18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC				
2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA				
8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC				
0 V ^[2]	0 V ^[2]	0 V ^[2]	0 V ^[2]	0 V ^[2]	0 V ^[2]				
Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel				
0.275 in ^[3]	6.99 mm ^[3]	0.5 in	12.7 mm	0.22 in	5.5 mm				
1.02 in	25.9 mm	2.67 in	68 mm	3.2 in	81.8 mm				
0.11 oz	3 gm	0.66 oz	18.5 gm	0.19 oz	5.4 gm				
10-32 Coaxial Jack	10-32 Coaxial Jack	BNC Jack	BNC Jack	10-32 Coaxial Jack	10-32 Coaxial Jack				
N//	Ą	-	Г	Т					
	1301 English 1/4 in Free-Field 45 mV/Pa 10 to 15k Hz 122 dB 40 dB +14 to +122 °F 18 to 30 VDC 2 to 20 mA 8 to 12 VDC 0 V ^[2] Stainless Steel 0.275 in ^[3] 1.02 in 0.11 oz 10-32 Coaxial Jack	Array Microph 130D10 English SI 1/4 in 1/4 in Free-Field Free-Field 45 mV/Pa 45 mV/Pa 10 to 15k Hz 10 to 15k Hz 10 to 15k Hz 10 to 15k Hz 122 dB 122 dB 40 dB 40 dB 40 dB 40 dB +14 to +122 °F -10 to +50 °C 2 to 20 mA 2 to 20 mA 2 to 20 mA 2 to 20 mA 8 to 12 VDC 8 to 12 VDC 0 V ^[2] 0 V ^[2] Stainless Steel Stainless Steel 0.275 in ^[3] 6.99 mm ^[3] 1.02 in 25.9 mm 0.11 oz 3 gm 10-32 Coaxial Jack 10-32 Coaxial Jack	Array Microphone Specification 130D10 130D10 English SI English 1/4 in 1/4 in 1/4 in 1/4 in 1/4 in 1/4 in Free-Field Free-Field Free-Field 45 mV/Pa 45 mV/Pa 45 mV/Pa 10 to 15k Hz 10 to 15k Hz 10 to 15k Hz 122 dB 122 dB 122 dB 40 dB 40 dB 40 dB 40 dB 40 dB 40 dB +14 to +122 °F -10 to +50 °C +14 to +122 °F +14 to +122 °F -10 to +50 °C +14 to +122 °F 18 to 30 VDC 18 to 30 VDC 18 to 30 VDC 2 to 20 mA 2 to 20 mA 2 to 20 mA 2 to 20 mA 2 to 20 mA 2 to 20 mA 3 to 12 VDC 8 to 12 VDC 8 to 12 VDC 0 V ^[2] 10 2 in 25.9 mm 2.67 in 1.02 in 25.9 mm 2.67 in	Array Microphone Specifications 130D10 130D20 € English SI English SI 1/4 in 1/4 in 1/4 in 1/4 in 1/4 in 1/4 in 1/4 in 1/4 in Free-Field Free-Field Free-Field 45 mV/Pa 45 mV/Pa 45 mV/Pa 10 to 15k Hz 10 to 15k Hz 10 to 15k Hz 122 dB 122 dB 122 dB 40 dB 40 dB 40 dB 40 dB 40 dB 40 dB 414 to +122 °F -10 to +50 °C +14 to +122 °F +14 to +122 °F -10 to +50 °C +14 to +122 °F 18 to 30 VDC 18 to 30 VDC 18 to 30 VDC 18 to 30 VDC 18 to 30 VDC 18 to 30 VDC 2 to 20 mA 2 to 20 mA 2 to 20 mA 2 to 20 mA 2 to 20 mA 2 to 20 mA 0 V ^[2] 10.22	Array Microphone Specifications 130D10 130D20 Image: Colspan="2">1300 English SI English SI English SI English English English SI English English SI English English SI English English SI SI SI SI SI SI English SI SI SI SI SI SI SI SI S				

NOTES: [1] See note regarding accuracy of information on inside front cover. [2] Prepolarized [3] Preamplifier sold separately. Maximum microphone diameter specifications substituted [4] re 20µPa [5] See pages xvii to xx for option information. [6] Typical.

Preamplifiers for Array Microphone Cartridge Specifications						
Model Number ^[1]	130P10		130P11		130P22	
Performance	English	SI	English	SI	English	SI
Microphone Diameter	1/4 in	1/4 in	1/4 in	1/4 in	1/4 in	1/4 in
Frequency Response (+/- 0.05 dB)	10 to 30k Hz	10 to 30k Hz	10 to 30k Hz	10 to 30k Hz	10 to 30k Hz	10 to 30k Hz
Electrical Noise (Flat 20 Hz to 20kHz)	<20 µV	<20 µV	<10 µV	<10 µV	<10 µV	<10 µV
Electrical Noise (A-Weight)	<7 µV	<7 μV	<7 µV	<7 µV	<7 µV	<7 μV
Environmental						
Temperature Range (Operating)	+14 to +122 °F	-10 to +50 °C	+14 to +122 °F	-10 to +50 °C	+14 to +122 °F	-10 to +50 °C
Electrical						
Excitation Voltage	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC	18 to 30 VDC
Constant Current Excitation	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA	2 to 20 mA
Output Bias Voltage	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC	8 to 12 VDC
Output Voltage - Maximum (+/- VpK)	<10 ohms	<10 ohms	<10 ohms	<10 ohms	<10 ohms	<10 ohms
Physical						
Case Material	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel	Stainless Steel
Diameter	0.5 in	12.7 mm	0.22 in	5.5 mm	0.22 in	5.5 mm
Length	1.7 in	43.2 mm	2.1 in	53.3 mm	4.1 in	104.1 mm
Weight	0.71 oz	20 gm	0.13 oz	3.7 gm	0.25 oz	7.1 gm
Electrical Connection	BNC Jack	BNC Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack	10-32 Coaxial Jack
Mounting Thread (Microphone to Preamplifier)	10-32 Female	10-32 Female	10-32 Female	10-32 Female	10-32 Female	10-32 Female
Options ^[5]						
Available Options	T T T					
NOTES: [1] See note regarding accuracy of information on inside front cover. [5] See pages xvii to xx for option information.						

Signal Conditioners

- Battery powered signal conditioners
- Line powered signal conditioners
- Modular signal conditioners
- Vibration meters
- Charge converters
- Sensor simulators
- Signal conditioner kits

Model 443B01 Dual-Mode Vibration Amplifier for use with both charge and ICP® accelerometers

PCB 716-684-0001 Vibration Division toll-free 888-684-0013 Fax 716-685-3886 E-mail vibration@pcb.com Web site www.pcb.com

Battery-Powered Signal Conditioners

BATTERY-POWERED ICP® SENSOR SIGNAL CONDITIONERS

Battery-powered signal conditioners offer portable, convenient methods for powering ICP[®] sensors and conditioning their output signals for transmittal to readout and recording instruments. These units operate, and are supplied, with standard 9 volt alkaline batteries. Each features a color coded input circuit checkout meter to alert of proper sensor turn-on or input fault due to open or short circuit connections. Optional rechargeable versions are equipped with ni-cad batteries and supplied with an AC powered recharger unit.

Model 480C02 Unity gain, low noise, high frequency

Model 480E09 Gain x1, x10, x100

CE Model 480B10 Integrating: acceleration, velocity, displacement

Model 480B21 3 channel, triaxial, gain x1, x10, x100

Battery-Powered Signal Conditioners					
Model Numbers	480C02	480E09	480B10	480B21	
Style	Basic	Gain	Integrating, accel, vel., displ.	Triaxial, with gain	
Channels	1 channel	1 channel	1 channel	3 channels	
Sensor excitation	27 volt, 2 mA	27 volt, 2 mA	18 volt, 2 mA	27 volt, 3 mA	
Gain	unity	×1, ×10, ×100	unity	×1, ×10, ×100	
Low frequency response (-5%) ^[1]	0.05 Hz	0.15 Hz	0.07 (a), 8 (v), 15 (d)	0.15 Hz	
High frequency response (-5%)	500 kHz	100 kHz	100 (a), 10(v), 1 (d) kHz	100 kHz	
Broadband noise (at unity gain)	3.25 µV rms	3.25 μV rms	N/A	3.54 µV rms	
Battery (qty) type	(3) 9 V	(3) 9 V	(2) 9 V	(3) 9 V	
Average battery life	100 hour	50 hour	30 hour	33 hour	
Input/output connectors	BNC/BNC	BNC/BNC	BNC/BNC	4-pin, BNC/BNC	
External DC powerable	yes	yes	no	yes	
DC power input jack	3.5 mm	3.5 mm	_	6-pin mini DIN	
Size (height \times width \times depth)	4.0 × 2.9 × 1.5 in	4.0 × 2.9 × 1.5 in	4.0 × 2.9 × 1.5 in	7.5 × 5.0 × 2.0 in	
	101.6 × 73.7 × 38.1 mm	101.6 × 73.7 × 38.1 mm	101.6 × 73.7 × 38.1 mm	190.5 × 127 × 50.8 mm	
Weight	10.5 oz (298 gm)	12 oz (340.2 gm)	9.75 oz (276.4 gm)	17.6 oz (499 gm)	
Optional Models					
10-32 input/output connectors	480C	480E06	N/A	N/A	
Rechargeable	R480C02	R480E09	R480B10	N/A	
(supplied with ni-cad batteries and					
AC powered recharger unit)					
Optional Accessories					
AC powered recharger unit with	488A02	488A02	488A02	N/A	
(3) 9 V ni-cad batteries					
AC power supply	488A03	488A03	_	488A10	
Ultralife lithium batteries (3)	400A81	400A81	_	400A81	
NOTE: [1] Achieved with readout device having a 1 megohm input impedance.					

Line-Powered Signal Conditioners

LINE-POWERED ICP® SENSOR SIGNAL CONDITIONERS

Line-powered signal conditioners offer benchtop methods for powering ICP[®] sensors in the laboratory and conditioning their output signals for transmittal to readout and recording instruments. Each features a color coded input circuit checkout meter to alert of proper sensor turn-on or input fault due to open or short circuit connections. AC and DC powerable units can operate either with the supplied AC powered transformer or optional external battery pack. AC/DC coupled outputs offer the ability to achieve true DC frequency response in order to accurately condition very low frequency vibrations or long duration shock pulses.

Model 482A21 Unity gain, low noise, AC and DC powerable

Model 482A22 4 channel, unity gain, low noise, AC and DC powerable

Model 482B06 Basic, unity gain

Model 482B11 Gain x1, x10, x100

Model 484B06 Low frequency, unity gain, AC/DC coupled output

Model 484B11 Low frequency, gain x1, x10, x100, AC/DC coupled output

Line-Powered Signal Conditioners						
Model Numbers	482A21	482A22	482B06	482B11	484B06	484B11
Style	Low noise	Low noise	Basic	Gain	Low frequency	Low frequency
	AC and DC power	AC and DC power			AC/DC coupled	with gain
Channels	1 channel	4 channels	1 channel	1 channel	1 channel	1 channel
Sensor excitation [1]	26 volt, 2 to 20 mA	26 volt, 2 to 20 mA	24 volt, 2 to 20 mA	24 volt, 2 to 20 mA	24 volt, 2 to 20 mA	24 volt, 2 to 20 mA
Gain	unity	unity	unity	×1, ×10, ×100	unity	×1, ×10, ×100
Low frequency response (-5%)	< 0.1 Hz ^[2]	< 0.1 Hz ^[2]	< 0.05 Hz	0.17 Hz	DC	DC
High frequency response (-5%)	> 1000 kHz	> 1000 kHz	1000 kHz	200 kHz	200 kHz	200 kHz
Broadband noise (at unity gain)	< 3.25 µV rms	< 3.25 µV rms	< 3.64 µV rms	700 µV	28.8 µV rms	10 µV rms
Power required	36 VDC	36VDC	115 VAC	115 VAC	115 VAC	115 VAC
	120 mA ^[3]	120 mA [3]	50 to 400 Hz	50 to 400 Hz	50 to 400 Hz	50 to 400 Hz
Input/output connectors	BNC/BNC	BNC/BNC	BNC/BNC	BNC/BNC	BNC/BNC	BNC/BNC
External DC powerable	yes	yes	no	no	no	no
DC power input jack	DIN	DIN	_	_	-	_
Size (height \times width \times depth)	6.3 × 2.4 × 11 in	$6.3\times2.4\times11$ in	4.3 × 1.8 × 6 in	4.3 × 1.8 × 6 in	4.3 × 1.8 × 6 in	4.3 × 1.8 × 6 in
	160 × 61 × 279 mm	$160 \times 61 \times 279 \text{ mm}$	109.2 × 45.7 × 152.4 mm	$109.2 \times 45.7 \times 152.4 \text{ mm}$	$109.2 \times 45.7 \times 152.4 \text{ mm}$	109.2 × 45.7 × 152.4 mm
Weight	24.2 oz (685 gm)	26.7 oz (756 gm)	19.2 oz (544 gm)	32 oz (907.2 gm)	32 oz (907.2 gm)	32 oz (907.2 gm)
Optional Models						
10-32 input/output connectors	N/A	N/A	N/A	N/A	484B	484B10
210 to 250 VAC powerable	standard	standard	F482B06	F482B11	F484B06	F484B11
Options						
External 36 VDC battery pack	488B07	488B07	N/A	N/A	N/A	N/A
NOTES: [1] Current is factory set at 4 m. [2] Achieved with readout device	A but is user adjustable betwo	een 2 and 20 mA. npedance.				

[3] Supplied with Model 488A04 AC power adaptor (100 to 240 VAC, 50 to 60 Hz input; 36 VDC 120 mA output).

Line-Powered Signal Conditioners

MULTI-CHANNEL, LINE-POWERED ICP® SENSOR SIGNAL CONDITIONERS WITH GAIN

These full-featured, multi-channel, line-powered signal conditioners offer push-button, selectable gain for each channel and optional output switching to simplify data acquisition. Each features a bank of LED's on each channel to indicate gain setting, input overload, and input fault due to open or short circuit connections. In addition to the channel specific BNC's, the optional switched output units offer additional output BNC's that carry the signals of the switch-selected channel.

Full-Featured, Line-Pov	wered Signal Condi	tioners with Gain
Model Numbers	482A16	482A20
Style	Full Feature with gain	Full Feature with gain
Channels	4 channels	8 channels
Sensor excitation [1]	24 volt, 2 to 20 mA	24 volt, 2 to 20 mA
Gain (each channel)	×1, ×10, ×100	×1, ×10, ×100
Low frequency response (-5%)	0.225 Hz ^[2]	0.225 Hz ^[2]
High frequency response (-5%)	100 kHz	100 kHz
Broadband noise (at unity gain)	9.1 µV rms	9.1 µV rms
Power required	90 to 130 VAC	90 to 130 VAC
	50 to 400 Hz	50 to 400 Hz
Input/output connectors	BNC/BNC	BNC/BNC
Size (height \times width \times depth)	6.3 × 2.9 × 9.7 in	6.3 × 4.0 × 9.7 in
	160 × 73.7 × 246.4 mm	160 × 101.6 × 246.4 mm
Weight	32 oz (907.2 gm)	97.6 oz (2767 gm)
Optional Models		
4 to 1 output switching	482A17	482A19 ^[3]
8 to 1 output switching	N/A	482A18
210 to 250 VAC powerable	F482A16	F482A20
NOTES: [1] Current is factory set at 4 mA b [2] Achieved with readout device h [3] Model 482A19 offers dual 4 to	ut is user adjustable between 2 and 20 aving a 1 megohm input impedance. 1 output switching and is ideally suited	mA. for use with two

Model 482A19 offers dual 4 to 1 output switching and is in channel analyzers.

DC POWER CONDITIONERS

Models 485B and **485B12** serve to regulate available current from any conventional DC power supply or battery source to a constant value between 2 and 20 mA as required by ICP[®] sensors. In addition, the units decouple the sensor's output bias voltage from the measurement signal to enable zero based measurements with any readout device.

Model 485B features a 10-32 coaxial jack input connector, while Model 485B12 features a BNC jack input connector. Both units feature BNC jack output connectors.

Model 485B

Model 485B12

Modular Style Signal Conditioners

MODULAR STYLE SIGNAL CONDITIONERS

Modular signal conditioners are comprised of selected signal conditioning modules, and an AC power supply module, assembled into a 2-, 3-, 5-, or 9-slot chassis. Available modules condition ICP®, charge, or capacitive sensor signals. The common chassis backplane architecture permits mixing and matching of modules to achieve the desired number of channels and signal conditioning features. Preconfigured models offer ease of ordering units possessing the most commonly requested features. Request the "Series 440 Modular Signal Conditioners" brochure for full details of available items.

Model 442B02 Single channel, gain x1, x10, x100 for ICP® sensors

Model 442C04 4 channel, gain x1, x10, x100 for ICP[®] sensors

Preconfigured Modular Style Signal Conditioners

Model 442B06 Single channel, gain x1, x10, x100 AC and DC coupling for ICP® sensors

Model 443B01 Dual-Mode Vibration Amplifier for charge and $\text{ICP}^{\text{\tiny{(3)}}}$ sensors

Modular Style Signal Conditioners					
Model Numbers	442B02	442C04	442B06	443B01	
Style	ICP Sensor with gain	ICP Sensor with gain	ICP Sensor AC/DC coupling	Charge Mode and ICP Sensor	
Channels	1 channel	4 channels	1 channel	1 channel	
Sensor excitation [1]	24 volt, 1 to 20 mA	25.5 volt, 0.5 to 20 mA	24 volt, 1 to 20 mA	24 volt, 2 to 20 mA [2]	
Gain (each channel)	×1, ×10, ×100	×1, ×10, ×100	×1, ×10, ×100	0.1 to 1000	
Charge sensitivity	N/A	N/A	N/A	0.0001 to 10 volts/pC	
Low frequency response	0.05 Hz (-5%) [3]	0.05 Hz (-5%) ^[3]	DC	0.2/2 Hz (-10%) ^[4]	
High frequency response (-5%)	100 kHz	100 kHz	100 kHz	0.1, 1, 3, 10, 100 kHz ^[5]	
Broadband noise (at unity gain)	9.5 µV rms	9.98 µV rms	9.11 μV rms	9 μV rms	
Power required	100 to 240 VAC	100 to 240 VAC	100 to 240 VAC	100 to 240 VAC	
	50 to 60 Hz	50 to 60 Hz	50 to 60 Hz	50 to 60 Hz	
Input/output connectors	BNC/BNC	BNC/BNC	BNC/BNC	BNC/BNC	
Size (height × width × depth)	6.2 × 4.25 × 10.2 in	6.2 × 4.25 × 10.2 in	6.2 × 4.25 × 10.2 in	6.2 × 6.05 × 10.2 in	
	157.5 × 108 × 259.1 mm	157.5 × 108 × 259.1 mm	157.5 × 108 × 259.1 mm	157.5 × 153.7 × 259.1 mm	
Weight	70.7 oz (2 kg)	70.7 oz (2 kg)	70.7 oz (2 kg)	168.6 oz (4.78 kg)	
NOTES: [1] Current is factory set at 4 m [2] Excitation is disabled for cha [3] Achieved with readout devic	A but is user adjustable up to 20 m arge mode sensor input. te having a 1 megohm input impeda	A.			

[4] Adjusted by Discharge Time Constant selection

Multi-Channel Signal Conditioners

MULTI-CHANNEL SIGNAL CONDITIONERS

Multi-channel rack mount signal conditioners contain 8 or 16 channels of simultaneous signal conditioning and can be configured for multiple unit, daisy-linking with computerized set-up and control. The building block style architecture permits factory configuration to include characteristics which best tailor a unit for the specific application and data acquisition requirements. Optional features include ICP[®] sensor excitation, LED indicators for input fault monitoring

and overload detection, programmable gain, autoranging, filtering, output switching, integration, IEEE-488, RS-232, and RS-485 interface, and keypad control with LCD display. Units are available to condition signals from ICP sensors, charge mode sensors or can be set up to accept voltage input signals from other types of sensors. Request the "Series 481 Multi-Channel Signal Conditioners" brochure for full details of available items.

Series 481A30 8 channel signal conditioners

Series 481A 16 channel signal conditioners

USB POWERED, TWO CHANNEL, ICP® SENSOR POWER CONDITIONER

Model 485B36 power conditioner provides current-regulated, ICP[®] sensor power for two sensor input channels. The unit operates from power obtained from a computer's USB (Universal Serial Bus) port. Additionally, the sensor bias voltage is decoupled from the measurement signals, which are output via a 3.5 mm stereo jack. Other features include: unity gain, 19.5 VDC @ 4.5 mA sensor excitation power, 50 kHz upper frequency range, BNC jack input connectors, and compact size. The device is ideal for use in portable measurement applications such as ride control, road testing, and cabin noise.

Model 485B36 2 channel, ICP[®] sensor power conditioner

MODEL 381A05 HANDHELD VIBRATION METER KIT

The Model 381A05 Vibration Meter Kit provides an easy, yet effective method for conducting overall vibration measurements. The kit is designed for general purpose use, product testing, or bearing, gearbox, and spindle vibration monitoring.

The kit is supplied with headphones for audible monitoring, a precision quartz ICP[®] accelerometer, a cable assembly, a high-strength mounting magnet, and a convenient storage case. The portable, lightweight, battery-powered meter provides both overall acceleration and velocity measurements.

Ideal for measuring the vibration severity of fans, motors, and pumps, it also verifies the DC bias voltage of ICP[®] accelerometers for troubleshooting sensors, cables, and system integrity.

Model 381A05 Handheld Vibration Meter Kit

Model 381	A05 Handhe	eld Vibration Met	er Kit	
Performance		English	SI	
Accelerometer Sensitivity	(± 5%)	100 mV/g	10.2 mV/(m/s ²)	
Accelerometer Frequency Res	ponse (± 5%)	1 to 4000 Hz	1 to 4000 Hz	
	(± 10%)	0.7 to 7000 Hz	0.7 to 7000 Hz	
	(± 3 dB)	0.35 to 12k Hz	0.35 to 12k Hz	
Meter Frequency Response (a	cceleration \pm 3 dB)	5 to 50k Hz	5 to 50k Hz	
(velocit	y +10%, -20%)	1 to 1000 Hz	1 to 1000 Hz	
Meter Display Range	(acceleration)	0.01 to 19.9 g rms	N/A	
	(velocity)	0.001 to 1.999 in/sec rms	N/A	
Meter Resolution		± 2 counts	± 2 counts	
Accuracy		± 3%	± 3%	
Electrical				
Power Required (one battery)		9 VDC	9 VDC	
Battery Life (alkaline)		10 hours	10 hours	
Battery Life (rechargeable)		3 hours	3 hours	
Environmental				
Temperature Range (ad	ccelerometer)	-65 to +250 °F	-54 to +121 °C	
	(meter)	+32 to +122 °F	0 to +50 °C	
Physical				
Sensor (size,	hex × height)	7/8 in × 1.9 in	7/8 in × 48.3 mm	
	(weight)	2.8 oz	80 gm	
(mou	inting thread)	10-32 female	10-32 female	
Meter (siz	e, h \times w \times d)	5.9 × 3.15 × 1.2 in	$50 \times 80 \times 30$ mm	
(weight,	with battery)	9.1 oz	258 gm	
(inp	ut connector)	BNC jack	BNC jack	
(headphoi	ne connector)	1/8" stereo jack	1/8" stereo jack	
Supplied Components				
Model 487A20 Handheld Vibr	ation Meter	Model 070A47 Headphones		
Model 353B34 Quartz ICP® Ac	celerometer	Model 080A27 Magnetic Mounting Base		
Model 003C10 Cable		NIST Traceable Calibra	tion Certificate	
Options				
Model M381A05 — Metric U	nit Display			
Model R381A05 — Recharge	able Version: includ	es Model 073M12 External	Charger and	
Model 07	3A09 Ni-Cad batter	y replaces alkaline battery.		

TRUE G RMS VIBRATION MONITOR

Model 487B07 provides ICP[®] sensor excitation and accepts input from either a 10 or 100 mV/g accelerometer. Overall vibration levels within a frequency range of 2 to 10,000 Hz are displayed on an analog meter whose full scale range is adjustable to 1, 4, 10 or 40 g rms. High and low set points activate rear panel relays

Model 487B07

to alarm of upset conditions. An analog output for waveform analysis and a DC output for recording are included. 105 to 125 VAC, 50 to 400 Hz powered.

PORTABLE G RMS VIBRATION METER

Model 487C08 provides ICP[®] sensor excitation and accepts input from a 100 mV/g accelerometer. Overall vibration levels within a frequency range of 5 to 10,000

Hz are displayed on an analog meter whose full scale range is adjustable to 0.25, 2.5 or 25 g rms. An analog output for waveform analysis is included. Battery powered by two standard 9 volt batteries. Ni-cad batteries with recharger option and kit configuration including accelerometer and mounting accessories are also available.

Model 487C08

IN-LINE CHARGE CONVERTERS

Series 422E charge converters serve to convert charge mode sensor signals to low impedance voltage signals, for transmission over long cables, and interface to data acquisition equipment. They are low in noise, powered by standard ICP[®] sensor signal conditioners, and install in-line between the sensor and signal conditioner. Models 422E35 and 422E36 are specifically designed to operate with sensors that operate at extreme, elevated temperatures, >400 $^{\circ}$ F (204 $^{\circ}$ C).

Charge Converters for Use with Charge Mode Sensors					
Charge Converter Models	422E11	422E12	422E13	422E35 ^[2]	422E36 ^[2]
Gain	100 mV/pC ± 5%	10 mV/pC ± 2%	1 mV/pC ± 2%	1 mV/pC ± 2%	10 mV/pC ± 2%
Input range ± 2%	± 25 pC	± 250 pC	± 2500 pC	± 2500 pC	± 250 pC
Output voltage range	± 2.5 volts	± 2.5 volts	± 2.5 volts	± 2.5 volts	± 2.5 volts
Frequency response (± 5%) [1]	5 to 110k Hz	5 to 100k Hz	5 to 100k Hz	5 to 100k Hz	5 to 100k Hz
Broadband noise	60 µV rms	20 µV rms	11 µV rms	10.02 µV rms	71.0 µV rms
Power required	18 to 28 VDC	18 to 28 VDC			
Constant current required	2.2 to 20 mA	2.2 to 20 mA			
Input connector	10-32 jack	10-32 jack	10-32 jack	10-32 jack	10-32 jack
Output connector	BNC jack	BNC jack	BNC jack	BNC jack	BNC jack
Size (length × diameter)	3.4 × 0.5 in	3.4 × 0.5 in			
	85.1 × 12.7 mm	85.1 × 12.7 mm			
Weight	1.1 oz (31.2 gm)	1.1 oz (31.2 gm)			
Optional Models					
0.5 Hz (-5%) low frequency	422E01	422E02	422E03	_	_
BNC plug output connector	-	_	_	422E35/C	422E36/C
10-32 jack output connector	-	_	_	422E35/A	422E36/A
TEDS addressable, on-board EEPROM	-	_	_	T422E35	T422E36
NOTE: [1] High frequency achieved at 20mA excitation. [2] Specifically designed for use with sensors that operate at extreme, elevated temperatures, >400 °F (204 °C).					

ICP® SENSOR SIMULATOR

Model 492B

Model 492B ICP[®] sensor simulator installs in place of an ICP[®] sensor and serves to verify signal conditioning settings, cable integrity, and tune long lines for optimum system performance. By use of an internal oscillator, the unit delivers a 100 Hz sine or square wave at a selectable peak to peak voltage. External test signals from a function generator may also be inserted. This portable unit is battery powered.

ICP[®] SENSOR SIMULATOR

Model 401A04

Model 401A04 ICP[®] sensor simulator installs in place of an ICP[®] sensor and accepts test signals from a voltage function generator. The unit serves to verify signal conditioning settings, cable integrity, and tune long lines for optimum system performance. This unit requires power from an ICP[®] sensor signal conditioner.

STEP FUNCTION GENERATOR

Model 492B03

Model 492B03 generates a rapid charge or voltage step function from zero to a selected peak value between either 0 and 100,000 pC or 0 and 10 volts DC. The unit is useful for setting trigger points in recording equipment and verifying charge amplifier and data acquisition equipment setup. This unit is battery powered and portable.

TEDS Instrumentation

TEDS READ/WRITE PDA

Model 400A75 is a fully-functional Palm[™] m105 PDA with software, adaptor, and sensor cable, which permits upload and download of TEDS data. The unit provides read and write capability to the on board memory circuitry contained within a TEDS sensor, or in-line TEDS memory modules.

TEDS functionality permits data storage within a non-volatile EEPROM memory circuit to store information such as model number, serial number, sensitivity, location, and orientation. The standard TEDS protocol complies with IEEE P1451.4, which facilitates automated bookkeeping and measurement system setup to speed testing and reduce errors.

IN-LINE TEDS MEMORY MODULES

Models 070A70 and **070A71** are TEDS memory modules, which can be added in-line with standard ICP[®] sensors, to construct a sensor system with TEDS functionality.

Both units are identical except for their electrical connectors. Model 070A70 features a BNC jack input connector and a BNC plug output connector, whereas Model 070A71 features 10-32 coaxial jack input and output connectors.

ICP[®] sensor excitation is passed through the units to the sensor. Under reverse bias, the memory circuitry is activated for read and write capability per IEEE P1451.4.

TEDS functionality permits data storage within a non-volatile EEPROM memory circuit to store information such as model number, serial number, sensitivity, location, and orientation. The standard TEDS protocol complies with IEEE P1451.4, which facilitates automated bookkeeping and measurement system setup to speed testing and reduce errors.

Model 070A71

Sensor Signal Conditioning Kits

SIGNAL CONDITIONER AND SENSOR KITS

To simplify ordering, predefined kits are available which supplement the ICP[®] sensor of choice with appropriate cables, accessories and a selected signal conditioner. Kits are designated with a letter code which, when assigned as a prefix to the sensor model number, defines the complete kit including sensor, input and output cables, signal conditioner, accessories, and storage case.

Ordering by kit designation simplifies the ordering process and insures that the correct cables are included for proper connectivity. In addition, the kit represents a better value since the cost of the components purchased separately would exceed the cost of the kit and also, up to 50 ft. of sensor cable can be specified at no additional charge.

Choose the prefix letter code corresponding to the signal conditioner desired from the table below. The letter code designates a complete kit when assigned as a prefix to the sensor model, e.g., GK353B33.

A typical sensor kit including signal conditioner, interconnect cables and storage case

Letter Designations for Signal Conditioners					
Prefix	SIGNAL C	ONDITIONER	FEATURES		
Kits with Batte	ery Powered Signal	Conditioners:			
K	480C02	(see page 3.2)	Basic, unity gain		
KR	R480C02	(see page 3.2)	Basic, unity gain, with rechargeable batteries and recharger		
GK	480E09	(see page 3.2)	Gain ×1, ×10, ×100		
GKR	R480E09	(see page 3.2)	Gain \times 1, \times 10, \times 100, with rechargeable batteries and recharger		
Kits with 105 t	o 125 VAC Line Powe	ered Signal Conditioners:			
KL	482B06	(see page 3.3)	Basic, unity gain		
GKL	482B11	(see page 3.3)	Gain ×1, ×10, ×100		
DKL	484B06	(see page 3.3)	Unity gain, AC/DC coupling		
GDKL	484B11	(see page 3.3)	Gain ×1, ×10, ×100, AC/DC coupling		
Kits with 210 t	o 250 VAC Line Powe	ered Signal Conditioners:			
FKL	F482B06	(see page 3.3)	Basic, unity gain		
FGKL	F482B11	(see page 3.3)	Gain ×1, ×10, ×100		
FDKL	F484B06	(see page 3.3)	Unity gain, AC/DC coupling		
FGDKL	F484B11	(see page 3.3)	Gain ×1, ×10, ×100, AC/DC coupling		
NOTES: All k a) a -or- b) if inste	its include Model OC longer sensor cable the sensor has an ir ead of a sensor cable	2C10 sensor cable (10 ft.) is specified (up to 50 ft. av tegral cable (in which case a).	and Model 012A03 output cable (3 ft.) unless: ailable at no additional charge). e the kit will include Model 070A02 adaptor (10-32 jack to BNC plug)		

A signal conditioner kit may also be purchased separately, without a sensor. To achieve this, specify the kit prefix designator in association with the signal conditioner model number, e.g., GK480E09.

In addition to the signal conditioner, these kits include the vinyl storage case, the standard 10 ft. input cable, Model 002C10, and 3 ft. output cable, Model 012A03. Longer input cables, to 50 ft. may be specified at no additional charge.

Cable Assemblies and Connector Adaptors

- Custom cable ordering guide
- Cable connector descriptions
- Cable specifications and stock cable assemblies
- Multi-conductor cables
- Patch panels
- Connector adaptors

RECOMMENDED, POPULAR CABLES AND ACCESSORIES

Within the product sections of this catalog, code numbers are provided for most models, which refer to the most popular cable and / or accessory choices for that model. A code number can refer to more than one choice for the model. The key below provides the cross reference for the code numbers. Detailed specifications, descriptions, and photographs for the cable and accessory models are offered on the following pages.

Code	Model Number	Description
0	018C10	Lightweight 10 ft. (3 m) cable assembly, 5-44 coaxial plug to BNC plug
0	002P10	General purpose 10 ft. (3 m) cable assembly, 5-44 coaxial plug to BNC plug
1	003P10	Low noise 10 ft. (3 m) cable assembly, 5-44 coaxial plug to BNC plug
0	002C10	General purpose 10 ft. (3 m) cable assembly, 10-32 coaxial plug to BNC plug
2	003C10	Low noise 10 ft. (3 m) cable assembly, 10-32 coaxial plug to BNC plug
€	070A02	Adaptor, 10-32 coaxial jack to BNC plug
3	030A10	Miniature, low noise 10 ft. (3 m) cable assembly, 3-56 coaxial plug to 10-32 coaxial plug
4	010G10	General purpose 10 ft. (3 m) triaxial accelerometer cable assembly, 1/4-28 thread, 4-pin plug to (3) BNC plugs
4	034G10	Lightweight 10 ft. (3 m) triaxial accelerometer cable assembly, 1/4-28 thread, 4-pin plug to (3) BNC plugs
6	010D10	General purpose 10 ft. (3 m) triaxial accelerometer cable assembly, 1/4-28 thread 4-pin plug, to 1/4-28 thread 4-pin plug (also used for single axis capacitive accelerometers)
5	034K10	Lightweight 10 ft. (3 m) triaxial accelerometer cable assembly, 8-36 thread, mini 4-pin plug to (3) BNC plugs
0	059AN010AC	Industrial 10 ft. (3 m) triaxial accelerometer cable assembly, 4-pin MIL plug to (3) BNC plugs
6	003D10	Low noise 10 ft (3 m) cable assembly, BNC plug to BNC plug
6	003D20	Low noise 20 ft (6.1 m) cable assembly, BNC plug to BNC plug
0	080B37	Adhesive pad for 333B with 25 ft (7.6 m) integral cable, terminating with IDC connector
0	080B38	Adhesive pad for 333B with 50 ft (15.2 m) integral cable, terminating with IDC connector
0	080B40	Adhesive pad for 333B with 10 ft (3 m) integral cable, terminating with IDC connector
7	024R10	Industrial 10 ft (3 m) cable assembly, 2-socket MIL connector to BNC plug
8	080A115	Adhesive pad for 333B31 with 10 ft (3 m) integral cable, terminating with BNC plug
8	080A140	Adhesive pad for 333B31 with 10-32 plug receptacle and 10-32 jack output connector
8	031A10	Lightweight 10 ft (3m) twisted cable pair, 10-32 coaxial plug to 10-32 coaxial plug
0	080B55	Triaxial mounting block for 333B, 0.812 in (20.6 mm)
0	080A141	Triaxial mounting block for 333B, 1.125 in (28.6 mm)
0	080A114	Triaxial mounting block for 333B31, 0.9 in (22.9 mm)
CUSTOM CABLE ASSEMBLIES

Many standard cable assemblies are offered on the following pages, however, in the event that a standard cable assembly will not fulfill the requirements of the application, the ability to configure a custom cable assembly is offered. Start by

CABLE - CONNECTOR COMPATIBILITY MATRIX

The following table provides compatibility information for cables and cable connectors. A " \checkmark " denotes compatibility of the connector type shown in the rows going down the table with the cable type of the intersecting column going across the table.

Some assembled cable types, particularly for triaxial accelerometers, are spliced assemblies which may join two different types of cables. For example, an 010 series cable, with 4 conductors (x, y, z, and common ground) and 4-pin

insuring compatibility of the connector type with the cable type desired from the chart below and then configure the custom cable model number from the steps on the next page.

connector installed on the sensor end may be spliced to three individual coaxial cables with a BNC coaxial termination connector installed on the signal conditioner end. Such possibilities are indicated with a "*" which denotes that a cable assembly is possible, through a spliced interface to an appropriate cable. Some of these types of spliced assemblies are available as standard configurations on subsequent pages.

Cable	002	003	005	006	010	012	013	018	020	023	030	031	032	034	037	038	059
Connector																	
AB	1	1	1	1	*	1		1			1	1	1	*		1	
AC	1	1	1	~	*	1		1			1	1	1	*		1	
AD	✓	1	1	~	1	1		1	1		1	1	1	1	1	✓	1
AE						1			1								
AF	1	1	1	1				1			1						
AG	√	 ✓ 	1	~				✓			√						
AH	1	1	1	√	*			1			1		1	*			
AK					*									*			
AL	√	<i>✓</i>	√	√	*			~					~	*			
AM	~	~	~	~		~										~	
AU																	
AK																	
AVV					1							•		1			
					V									v ./			
FR	./	./	./	./	*							./		*			
FH	v	v	v	v								v		1			
EJ	1	1	1	1	*			1			1		1	*			
EK	-			•				•			1						
EN											-				1		
EP	1	1	1	1				1			1						
ET									1								
FZ										1							
GA										1							
GN							1										
GP							1										

" \checkmark " denotes compatibility of the connector type shown in the rows going down the table with the cable type of the intersecting column going across the table.

"*" denotes that a cable assembly is possible, through a spliced interface to an appropriate cable.

4.3

Custom Cable Assemblies

HOW TO **CONFIGURE CUSTOM CABLE MODELS**:

- 1. Choose the cable length format desired, either English (ft) or Metric (m) unit lengths.
- 2. Choose the desired raw cable type (see pages 4.6 to 4.13 for complete cable specifications).
- 3. Choose desired sensor connector type (see page 4.5 for connector photographs).
- 4. Determine the cable length required in English (ft) or Metric (m) unit lengths. 5. Choose desired termination connector type (see page 4.5 for connector photographs).

Example:

Model 003AK025AC defines a 25 ft, low-noise cable with right angle 10-32 plug sensor connector, BNC plug termination connector.

CONNECTOR TYPES

RAV	N CABLE TYPES					
COA)	KIAL CABLE		DIAI	METER	MAX.	TEMP.
002	General purpose, white Teflon jacket		0.075 in	1.9 mm	400°F	204°C
003	Low noise, blue Teflon jacket	Œ	0.079 in	2.0 mm	500°F	260°C
005	Ruggedized 002 type, general purpose		0.2 in	5.08 mm	275°F	135°C
006	Ruggedized 003 type, low noise	Œ	0.2 in	5.08 mm	275°F	135°C
012	RG-58/U, black vinyl jacket	Œ	0.193 in	4.90 mm	176°F	80°C
018	Lightweight, black PVC jacket		0.051 in	1.3 mm	221°F	105°C
030	Low noise, mini, blue Teflon jacket	Œ	0.043 in	1.1 mm	500°F	260°C
038	Low noise, blue polyurethane jacket	€	0.119 in	3.02 mm	250°F	121°C
TWIS	STED/SHIELDED PAIR CABLE					
020	High temperature, red Teflon jacket	€	0.157 in	3.99 mm	392°F	200°C
032	Lightweight, Teflon jacket		0.085 in	2.16 mm	392°F	200°C
TWIS	STED PAIR CABLE					
031	Red / white Teflon jacket		*0.03 in	*0.8 mm	392°F	200°C
SHIE	LDED 4-CONDUCTOR CABLE					
010	General purpose, Teflon jacket	CE	0.1 in	2.54 mm	392°F	200°C
034	Lightweight, Teflon jacket	Œ	0.07 in	1.77 mm	392°F	200°C
059	Industrial, black polyurethane jacket	œ	0.25 in	6.35 mm	250°F	121°C
HARI	DLINE CABLE					
013	Hardline, 2-conductor, Inconel jacket		0.125 in	3.20 mm	1200 °F	650 °C
023	Hardline, coaxial, 304L SS jacket		0.059 in	1.5 mm	1200 °F	650 °C
MISC	CELLANEOUS CABLE					
037	10-cond. shielded, black poly jacket		0.024 in	0.610 mm	250°F	121°C
* dia The c	meter of each conductor	sted ar	e only recor	mmended cor	nfiguration	s: other

* diameter of each conductor
The combination of cables and connectors listed are only recommended configurations; other
configurations may be available. Consult PCB before ordering.

 $\boldsymbol{\mathsf{CE}}$ designates that cable maintains $\boldsymbol{\mathsf{CE}}$ conformance

COA	XIAL CABLE CONNECTORS
EB	10-32 Coaxial Plug (straight)
EJ	10-32 Coaxial Plug (straight, o-ring seal, spring loaded)
AH	10-32 Coaxial Plug (straight, with wire locking hex)
AK	10-32 Coaxial Plug (right angle)
AW	10-32 Coaxial Plug / Solder Adaptor (user repairable)
FZ	10-32 Coaxial Plug (for hardline cable)
AL	10-32 Coaxial Jack (straight)
GA	10-32 Coaxial Jack (for hardline cable)
AG	5-44 Coaxial Plug (straight)
AF	5-44 Coaxial Plug (right angle)
EK	3-56 Coaxial Plug
EP	M3 Coaxial Plug
AC	BNC Plug
AB	BNC Jack
MUL	TI-LEAD CONNECTORS (FOR TRIAXIAL SENSORS)
AY	4-Socket Plug, 1/4-28 Thread (for triaxial sensors)
CA	4-Pin Jack, 1/4-28 Thread (for triaxial sensors)
EH	4-Pin Mini Plug, 8-36 Thread (for triaxial sensors)
EN	9-Pin Plug (for triaxial capacitive accelerometers))
MISC	CELLANEOUS CONNECTORS
GN	2-Socket Plug, 7/16-27 Thread (high temperature)
ET	2-Socket Plug, 7/16-27 Thread
GP	2-Pin Jack, 7/16-27 Thread (high temperature)
AM	2-Socket MS3106 Plug
AE	2-Socket MS3106 Plug (with environmental boot)
AD	Pigtail (leads stripped and tinned)

Cable Connector Descriptions

AB **BNC Jack** CA 4-Pin Jack, 1/4-28 Thread (for triaxial sensors) Max Temp 212 °F (100 °C) Max Temp 350 °F (177 °C) AC **BNC Plug** EB 10-32 Coaxial Plug (straight) Max Temp 212 °F (100 °C) Max Temp 490 °F (254 °C) AD 4-Socket Mini Plug, 8-36 Thread (for triaxial sensors) Pigtail (leads stripped and tinned) EH Max Temp 490 °F (254 °C)* Max Temp 490 °F (254 °C) 10-32 Coaxial Plug (straight, o-ring seal, spring loaded) ΔF 2-Socket MS3106 Plug (with environmental boot) EJ Max Temp 325 °F (163 °C) Max Temp 490 °F (254 °C) AF 5-44 Coaxial Plug (right angle) EK 3-56 Coaxial Plug Max Temp 325 °F (163 °C) Max Temp 350 °F (177 °C) 5-44 Coaxial Plug (straight) 9-Socket Plug (for triaxial capacitive accelerometers) AG FN Max Temp 490 °F (254 °C) Max Temp 325 °F (163 °C) AH 10-32 Coaxial Plug (straight, with wire locking hex) EP M3 Coaxial Plug Max Temp 490 °F Max Temp 490 °F (254 °C) (254 °C) AK 10-32 Coaxial Plug (right angle) ET 2-Socket Plug, 7/16-27 Thread Max Temp 490 °F (254 °C) Max Temp 325 °F (163 °C) AL 10-32 Coaxial Jack (straight) FZ 10-32 Coaxial Plug (for hardline cable) Max Temp 325 °F (163 °C) Max Temp 900 °F (482 °C) AM 2-Socket MS3106 Plug 10-32 Coaxial Jack (for hardline cable) GA Max Temp 325 °F (163 °C) Max Temp 500 °F (260 °C) 2-Socket Plug, 7/16-27 Thread (high temperature) AW 10-32 Coaxial Plug / Solder Adaptor (user repairable) GN Max Temp 490 °F (254 °C)* Max Temp 900 °F (482 °C) AY 4-Socket Plug, 1/4-28 Thread (for triaxial sensors) GP 2-Pin Jack, 7/16-27 Thread (high temperature) Max Temp 325 °F (163 °C) Max Temp 900 °F (482 °C)

VIBRATION DIVISION TOLL-FREE 🕿 888-684-0013

*Max Temp may be less depending upon cable application.

CABLE SPECIFICATIONS AND STANDARD CABLE MODELS

The following tables provide specifications and configuration diagrams for the variety of available cable types. Where applicable, standard cable assembly model numbers are provided. Standard models can be less costly than custom cables and available for overnight shipment. For alternate cable lengths or custom model numbering, follow the guidelines provided on page 4.4. If there is an urgent need, please let us know. Most cables can be fabricated and shipped within 24 hours.

		Series	002 Standard C	oaxial Cable	
Usage			Con	struction	
General purpose use with IC	CP® sensors and low i	mpedance volta	age signals.		
Outer Jacket	Extruded FEP Tef	on (waterproof), white		Shield (ground) Dielectric
Diameter	0.075 in	1.9 r	nm _F	ËP	Stranded
Capacitance	29 pF/ft	95 pf	/m Ja	flon cket	Conductor
Temperature Range	-130 to 400 °F	-90 to 2	04 °C		(əiyinai)
Impedance	50 ohm				
Standard Cable Assembl	lies				
Model Number I	Length (feet)	Length (meter	s)		
_					
002C03	3 ft	0.9 m			
002C05	5 ft	1.5 m			and the second
002C10	10 ft	3.0 m	1		2
002C20	20 ft	6.1 m	_		
002C30	30 ft	9.1 m	10-32 Coaxial I	Plug (EB)	BNC Plug (AC)
002C50	50 ft	15.2 m			
002A03	3 ft	0.9 m			
002A05	5 ft	1.5 m			
002A10	10 ft	3.0 m	finite states		
002A20	20 ft	6.1 m	Provide States		
002A30	30 ft	9.1 m			
002A50	50 ft	15.2 m	10-32 Coaxial I	Plug (EB)	10-32 Coaxial Plug (EB)
002801	1 ft	0.3 m	A NOT		
002B03	3 ft	0.9 m			
			10-32 Coaxial	Plug (EB)	BNC Jack (AB)
002T03	3 ft	0.9 m			
002100	10 ft	3.0 m			the second s
002T20	20 ft	6.0 m	Allowing & Street, or other	met g	
002120	2011		BNC Blug (AC)	BNC Plug (AC)
			BINC Plug (AC)	3 (,
002002	0 ft	0.0			
	।। চ ft	U.9 III 1 E			
	ว II 10 ft	1.5 M			
	10 IL 20 ft	3.U []] 6.1 m			
	20 IL 20 ft	0.1 [1]			
002F30	30 IL	9.1 []]	5-44 Coaxia	l Plug (AG)	BNC Plug (AC)
					Bito Fildg (AO)

		Series	003 Low-N	oise Coaxial Cabl	e
Usage				Construction	
General purpose and high t	emperature use with cl	narge mode s	sensors,		
high impedance signals, IC	P® sensors, and low imp	pedance volta	age		
signals. Maintains CE con	formance.				Shield (ground) Teflon Dielectric Graphite
Outer Jacket	Wrapped T	FE Teflon, blu	Je	TFE	Tape Coating
Diameter	0.079 in	2.0	mm	Vrapped	Solid Conductor
Capacitance	29 to 32 pF/ft	95 to 10	05 pF/m	Outer	(signal)
Temperature Range	-130 to 500 °F	-90 to	260 °C	Jackel	
Impedance	50 ohm				
Standard Cable Assemb	lies				
Model Number	Lenath (feet) L	enath (mete	ers)		
			,		
003003	3 ft	0.9 m			
003C05	5 ft	1.5 m		a second second	
003C10	10 ft	30 m	Contraction of the local division of the loc		
003020	20 ft	6.0 m			
003020	30 ft	9.1 m	10-32 Coa	ixial Plug (EB)	BNC Plug (AC)
000000	00 11	0.1 111		- 3()	Bho hug (Ao)
003001	1 ft	0.3 m			
003A01	2 ft	0.5 m			
003A03	5 IL E ft	0.3 III 1 E m	A BOARD	and the second	1
003A03	10 ft	1.0 III 2.0 m	Contraction of the local division of the loc		
003A10	10 IL	3.0 III C 1 m			
003A20	20 IL	0.1 (1)	10-32 Coa	ixial Plug (EB)	10-32 Coaxial Plug (EB)
003A30	30 IL	9.1 m			
000001	1 ()	0.0			
003B01	1 ft	0.3 m			A State of the second sec
003B03	3 ft	0.9 m	1000		
			10-32 Coa	axial Plug (FR)	BNC Jack (AB)
			10 02 000		
000000	0.4	0.0	8		Comment of the second
003003	3π 10 ft	U.9 M			
003D10	10 ft	3.0 m	Res 1	Ale and a local diversity of the local divers	
003D20	20 ft	6.1 m			
			BNC F	Plug (AC)	BNC Plug (AC)
000000	0.6				
003P03	3 ft	0.9 m			
003P05	5 ft	1.5 m		and the second se	
003P10	10 ft	3.0 m			
003P20	20 ft	6.1 m			
003P30	30 ft	9.1 m	5-44 Coa	xial Plug (AG)	BNC Plua (AC)

		Series 018 Lig	htweight Coaxial Cable	
Usage			Construction	
General purpose use with I	CP [®] sensors and lov	v impedance voltage		
signals. Recommended for	use with miniature	sensors to reduce		
cable strain.	1			Shield (ground) Dielectric
Outer Jacket		PVC, black	PVC Jacket	Conductor
Diameter	0.051 in	1.3 mm		
Capacitance	55 pF/ft	180 pF/m		
Temperature Range	-22 to 221 °F	-30 to 105 °C		
Impedance	32 ohm			
Standard Cable Assemb	lies			
Model Number	Length (feet)	Length (meters)		
018C03	3 ft	0.9 m		
018C05	5 ft	1.5 m		
018C10	10 ft	3.0 m		
018C20	20 ft	6.1 m		
018C30	30 ft	9.1 m	5-44 Coaxial Plug (AG)	BNC Plug (AC)
	0.6			
018G03	3 ft	0.9 m		
018G05	5 ft	1.5 m		
018G10	10 ft	3.0 m		
018G20	20 ft	6.1 m	5-44 Coaxial Plug (AG)	10-32 Coaxial Plug (EB)
018G30	30 ft	9.1 m		

	Se	eries 030 Miniature	Low-Noise Coaxia	l Cable	
Usage			Construction		
General purpose use w	vith ICP® sensors and low ir	npedance			
voltage signals.			_	Shield (g	round) Dielectric
Outer Jacket	PTFE	Tape, blue			
Diameter	0.043 in	1.10 mm	FEP		Stranded
Capacitance	30 pF/ft	98 pF/m	Jacket		Conductor (signal)
Temperature Range	-130 to 500 °F	-90 to 260 °C			(orginal)
Impedance	50 ohm				
Standard Cable Asso	emblies				
Model Number	Length (feet) L	ength (meters)			
030A10	10 ft	3.0 m	3-56 Coa)	kial Plug (EK)	10-32 Coaxial Plug (EB)
030C10	10 ft	3.0 m	3-56 Coa	xial Plug (EK)	BNC Plug (AC)

						_
	S	eries 012 Low-Cost	: Coaxial Cable (RG58,	/U)		
Usage			Construction			
General purpose use with I	CP® sensors and low im	pedance voltage sig-				
nals. Recommended for use	e as a sensor extension	cable for long dis-			N I I I	
tance signal transmission a	ind as output cable from	n signal conditioner.		Shield (ground)	Dielectric	
Maintains CE conformance	e.		PVC		Conductor	
Outer Jacket	PVC	, black	Outer Jacket		(signal)	
Diameter	0.193 in	4.90 mm				
Capacitance	29 pF/ft	95 pF/m				
Temperature Range	-40 to 176 °F	-40 to 80 °C				
Impedance	52 ohm					
Standard Cable Assemb	lies					
Model Number	Length (feet) Le	ength (meters)				
012A03	3 ft	0.9 m	14		field and and and and and and and and and an	
012A10	10 ft	3.0 m				
012A20	20 ft	6.1 m	-			
012A50	50 ft	15.2 m	BNC Plug (AC)		BNC Plug (AC)	
			2 ()		• • • •	

	Series 005 Ruggedized, General Purpose Coaxial Cable (002 Type)							
Usage			Construction					
For use with ICP® sensors w	/here cable may be pror	e to being pinched or						
crushed.								
Outer Jacket Clear, Polyolefin Heat-Shrink Tubing]	Tin-plated white Copper Braid Teflon Jacket Shield (ground) Dielectric				
	Over Tin-Plated C	opper Braid	Clear Heat					
Diameter	0.200 in	5.08 mm	Shrink	Stranded Conductor				
Capacitance	29 pF/ft	95 pF/m	Tubing	(signal)				
Temperature Range	-67 to +275 °F	-55 to +135 ℃]					
Impedance	50	ohm]					

	Series 006 Ruggedized, Low-Noise Coaxial Cable (003 Type)								
Usage			Construction						
For use with charge output	sensors where cable ma	ay be prone to being							
pinched or crushed.				Tin-plated Wranned Teflon Shield Teflon or chief					
Outer Jacket	Clear, Polyolefin Heat-Shrink Tubing			Copper Braid Jacket (ground) Tape Dielectric Coatin					
	Over Tin-Plated Copper Braid								
Diameter	0.200 in	5.08 mm	Heat- Shrink	Solid					
Capacitance	29 to 32 pF/ft	95 to 105 pF/m	Tubing	(signal)					
Temperature Range	-67 to +275 °F	-55 to +135 °C							
Impedance	50	ohm							

	Series 038 Polyurethane Low-Noise, Coaxial Cable									
Usage			Construction							
For use with charge output	sensors. Suitable for su	bmerged use.								
Outer Jacket	Polyureth	Polyurethane Outer	Teflon Tane	Shield	Teflon	Dielectric	Graphite			
Diameter	0.119 in	3.02 mm	Coating	Jacket	(ground)	Tape		Coating		
Capacitance	29 to 32 pF/ft	95 to 105 pF/m		<u>`</u>		1		Solid		
Temperature Range	-58 to +250 °F	-50 to +121 °C						(signal)		
Impedance	50	ohm								

	Serie	s 031 Twisted Two (Conductor (field-repairable)	
Usage			Construction	
General purpose use with IC	CP® sensors and low im	pedance voltage		
signals. Recommended whe	en a lightweight, flexible	e cable is required	Teflon Insulating	Conductor #1
as with high shock applicati	ons and drop tests.			(winte)
Outer Jacket	Extruded PTFE Te	flon, red and white		
Diameter (each conductor)	0.03 in	0.76 mm		Conductor #2
Capacitance	7 pF/ft	23 pF/m		(red)
Temperature Range	-67 to 392 °F	-55 to 200 °C		
Standard Cable Assembl	ies			
Model Number L	Length (feet) Le	ength (meters)		
031A05	5 ft	1.5 m		
031A10	10 ft	3.0 m		-
031A20	20 ft	6.1 m		
				and the second se
			10-32 Coaxial Plug (AW)	10-32 Coaxial Plug (AW)

Series 032 General Purpose, Twisted Shielded Pair						
Usage			Construction			
For use with ICP® sensors in	high RFI and EMI envi	ronments.				
Recommended for use with	case-isolated sensors.		Toflan lookat		0 1 4 14	
Outer Jacket	FEP Teflon, Clear		Tenon Jacket	Shield	(white)	
Diameter	0.085 in	2.16 mm				
Capacitance	20 pF/ft	66 pF/m				
Temperature Range	-130 to +392 °F	-90 to +200 °C			Conductor #2	
Impedance	45	ohm			(DIACK)	

Series 020 High-Temperature, Twisted Shielded Pair						
Usage			Construction			
For use with ICP® sensors in	high RFI and EMI envir	ronments. 100%				
foil shield.						
Outer Jacket	FEP Tef	lon, Red	FEP Teflon Jacket	Conductor #1 (red)		
Diameter	0.157 in	3.99 mm				
Capacitance (between	51 pF/ft	167 pF/m		Conductor #2		
conductors			Foil Shield and Drain Wire	(black)		
Capacitance (between	97 pF/ft	318 pF/m				
conductor & shield)						
Temperature Range	-90 to +392 °F	-70 to +200 °C				
Impedance	29	ohm				

Series 013 Hardline 2-Conductor Cable					
Usage			Construction		
For use in extreme tempera	tures and pressurized lie	quids with ICP® and			
charge output sensors.			Inconel 600 Jacket		
Outer Jacket	Incon	el 600	Conductor #1		
Diameter	0.125 in	3.2 mm	Conductor #2		
Capacitance	230 pF/ft	752 pF/m			
Temperature Range	-300 to +1200 °F	-184 to +650 °C	Pressed Silicon Dioxide // Mineral Powder Dielectric		
Impedance	50	ohm			

Series 059 Shielded, Twisted 4-Conductor Cable						
Usage			Construction			
For use with industrial, triax	kial ICP [®] sensors.			Shield		
Outer Jacket	Polyureth	nane, Black				
Diameter	0.250 in	6.35 mm	Polyurethane	Conductors Signal (3)		
Capacitance	36 pF/ft	118 pF/m		Ground (1)		
Temperature Range	-58 to +250 °F	-50 to +121 °C				

		Series 037 Shielde	d, Ten Conductor Ca	able
Usage			Construction	
For use with triaxial capacit	tive accelerometers			Shield
Outer Jacket	Polyureth	ane, Black		
Diameter	0.154 in	3.91 mm	Polyurethane	
Temperature Range	-58 to +250 °F	-50 to +121 °C	Jacket	Conductors (10)

Series 010 Twisted, Shielded Four-Conductor					
Usage			Construction		
General purpose use with t	General purpose use with triaxial ICP® accelerometers and single axis			Shield	
capacitive accelerometers.	Maintains CE confo	rmance.			
Outer Jacket	-	Teflon	Teflon	Conductors	
Diameter	0.1 in	2.54 mm	Jacket	(3-signal, 1-ground)	
Capacitance	31 pF/ft	102 pF/m			
Temperature Range	-130 to +392 °F	-90 to +200 °C		~	
Standard Cable Assemb	lies				
Model Number	Length (feet)	Length (meters)			
010G05	5 ft	1.5 m			
010G10	10 ft	3.0 m		L	
010G15	15 ft	4.5 m			
010G20	20 ft	6.1 m			
010G25	25 ft	7.6 m			
010G30	30 ft	9.1 m			
010G50	50 ft	15.2 m	4-Socket Plug (AY)	(3) BNC Plugs (AC)	
010505	Б ft	1 5 m			
010F10	10 ft	1.J III 2.0 m			
010F15	10 IL 15 ft	1.5 m		X X	
010F20	20 ft	4.J m		2	
010F25	25 ft	7.6 m			
010F30	20 ft 30 ft	9.0 m	4-Socket Plug (AY)	(3) 10-32 Coaxial Plugs (EB)	
010100	00 11	0.1 11			
010D05	5 ft	1.5 m			
010D10	10 ft	3.0 m	白語		
010D20	20 ft	6.1 m		Antest	
010D25	25 ft	7.6 m	4-Socket Plug (AY)	4-Socket Plug (AY)	
010D30	30 ft	9.1 m	U (<i>v</i>)		

		Series 034 S	hielded Four-Conductor		
Usage			Construction		
General purpose use with	triaxial ICP® accelerom	eters and single			
axis capacitive accelerom	eters. Exhibits low noise	e emission and is		Shield	
lightweight. Maintains C	conformance.		Toflan		Conductors
Outer Jacket	Extrude	d FEP Teflon	Jacket		Signal (3) Ground (1)
Diameter	0.07 in	1.77 mm			Ground (1)
Capacitance	28 pF/ft	92 pF/m			
Temperature Range	-130 to +392 °F	-55 to +200 °C			
Standard Cable Assem	blies				
Model Number	Lenath (feet)	enath (meters).			
					-
034605	5 ft	15 m		5	1
034G10	10 ft	3 0 m			
034G15	15 ft	4.6 m	400 mm	Y	-
034G20	20 ft	6.1 m		X S	
034625	25 ft	7.6 m			
034630	20 ft	9.0 m			~
03/1650	50 ft	15.7 m			
004000	50 11	15.2 111	4-Socket Plug (AY)	(3) BNC	Plugs (AC)
03/E05	5 ft	1 5 m			
034F10	10 ft	1.5 m			X
034F20	20 ft	5.0 m	5-5		Y
034120	20 ft	0.1 m			
034130	50 IL E0 ft	J. I III 15.2 m			-
034F30	50 H	13.2 111	4-Socket Plug (AY)	(3) 10-32 Coaxia	Plugs (EB)
034D05	5 ft	1 5 m			
034D03	10 ft	3.0 m	E Br		
034D10	20 ft	6.1 m	Spanning St.		,
034D20	20 ft	0.1 m	4-Socket Plug (AY)	4-Soc	ket Plug (AY)
034050	50 ft	15.7 m	· ••••••••••••••••••••••••••••••••••••		y ()
034030	50 H	13.2 111			
					and the
03/K10	10 ft	3.0 m			-
034K20	20 ft	5.0 m			
034120	20 IL 20 ft	0.1 m		- Fa	
034K50	50 IL 50 ft	9.1 III 15.2 m			
034N00	50 11	10.2 111	Mini 4 Socket Dlug (EH)	(2) BNC Blugs (AC)	
			Mini 4-Socket Plug (ER)	(3) BINC Plugs (AC)	
034H05	5 ft	1.5 m			7
U34H10	10 tt	3.0 m			Y -
034HZU	20 TT 20 ft	b.I M 0.1 m			X
034H50	50 ft	9.1 III 15.2 m	Mini A-Socket Dive (E4)		
	00 11	10.2 111	WITH 4-SOCKEL Plug (ER)	(3) 10-32 P	lugs (EB)

Multi-Conductor Cables

MULTI-CONDUCTOR CABLES

Multi-conductor cables minimize tangles and reduce overall cable costs. They also offer the user numerous cable/ termination variations to suit a particular data transmission

requirement, as well as the ability to consolidate several cables into one.

Model 009F "xx" Flat ribbon cable DB50 female to DB50 male Specify "xx" length in feet

Model 009H "xx" Shielded ribbon cable DB50 female to DB50 male Specify "xx" length in feet

Model 009L05 Multi-Conductor Cable VXI to 4 BNC plugs 5 ft (1.5 m) length

Model 009S05 Multi-Conductor Cable VXI to VXI 5 ft (1.5 m) length

Model 009B "xx" Ruggedized Shielded multi-conductor cable DB50 female to DB50 male Specify "xx" length in feet

Model 009A "xx" Ruggedized Multi-Conductor Cable DB50 female to 16 BNC Plugs Specify "xx" length in feet

Patch Panels

PATCH PANELS

Input patch panels serve as a central collection point for individual sensor cables installed in multi-channel measurement arrays. The sensor signal paths are then consolidated and transmission to readout or data acquisition equipment is accomplished by a single, multi-conductor cable. Output patch panels connect via multi-conductor cables to the output connectors on high density rack or modular signal conditioners. The sensor signal paths are then expanded to individual BNC's for each channel for subsequent connection to data acquisition equipment.

Model 070C21

16-channel input patch panel 16 IDC pin inputs DB50 output

Model 070C29

16-channel input patch panel 16 BNC jack and 16 IDC pin inputs DB50 output

0	0	0	0	0 0 0 0
0	0	0	0	0.0.0.0.
0	0	0	0	0 0 0 0
0.	0	0	0	0.0.0.0.

Model 070A33

32-channel input patch panel 32 BNC jack and 32 IDC pin inputs 2 DB50 outputs Rack mount

Model 070A34 (not pictured)

32-channel output patch panel 2 DB37 inputs 32 BNC jack outputs Rack mount

Dimensions shown are in inches (millimeters).

Connector Adaptors

070A01 SCOPE INPUT T CONNECTOR BNC plug to two 10-32 coaxial jacks. Used for splitting low-impedance signals.

10-32 COAXIAL COUPLER

10-32 coaxial jack 070A05 to 10-32 coaxial jack. Joins two cables terminating in 10-32 coaxial plugs.

070A11 BNC plug to two BNC jacks. Used as a

10-32

HERMETIC

wall thickness 5/16 in mtg thd 070A14

1/4 in max

FEED-THRU 10-32 coaxial jack to 10-32 coaxial jack. Tapped 5/16-32.

MODEL "EB" 10-32 **COAXIAL CONNECTOR**

10-32 crimp-on style coaxial connector. Requires tool contained in 076C31 kit.

MODEL 076C31 10-32 COAXIAL **CRIMP-ON CONNECTOR KIT**

Includes 1 pin insertion tool, 1 sleevecrimping tool, and 20 Model "EB" connectors with cable strain reliefs. (Wire stripper and soldering iron not included).

SCOPE INPUT ADAPTOR 10-32 coaxial jack to BNC plug. For adapting BNC connectors for use with 10-32 coaxial plugs.

ADAPTOR 10-32 coaxial jack to BNC jack. Joins cables terminating in a BNC plug and a 10-32 coaxial plug.

COUPLER BNC jack to BNC jack. Joins two

CABLE

BNC

cables terminating in BNC plugs.

10-32 COAXIAL **RIGHT ANGLE** CONNECTOR ADAPTOR

10-32 coaxial jack to 10-32 coaxial plug. For use in confined locations.

076A05 076A05 10-32 COAXIAL PLUG Microdot connector, screw-on type.

076A25 CONNECTOR TOOL Used to install 076A05 screw-on type microdot connector.

MODEL 076A30 MICRODOT SCREW-ON CONNECTOR KIT

One Model 076A25 Tool and 20 Model 076A05 10-32 coaxial connectors for emergency repair of 002-type cables.

CONNECTOR ADAPTOR

10-32 coaxial plug to BNC jack. Converts 10-32 connectors for use with BNC plugs. Do not use on sensor connectors.

070B09 SOLDER CONNECTOR ADAPTOR 10-32 coaxial plug to solder terminals. Excellent for high-shock applications. User-repairable.

1/8 in max wall thickness 1/2 in mtg thd

coaxial jack.

070A13

070A03

FEED-THRU ADAPTOR 10-32 coaxial jack to BNC jack. Bulkhead connects BNC plug to 10-32

085A18

PLASTIC PROTECTIVE CAP

Provides strain relief for solder connector adaptors, as well as protects 10-32 cable ends.

10-32 COAXIAL SHORTING CAP Used to short charge mode sensor connectors during storage and transportation.

Mounting Accessories

- Adhesive mounting bases
- Easy-mount clips
- Tools
- Magnetic mounting bases
- Mounting studs
- Triaxial mounting adaptors

ADHESIVE MOUNTING BASES

Adhesive mounting bases are utilized to facilitate adhesively mounting an accelerometer to a test surface. The base is secured to the test object with a suitable adhesive such as epoxy, super-glue or wax. The accelerometer is then stud mounted to the adhesive mounting base. The use of the adhesive mounting base eliminates the adhesive from being in direct contact with the sensor and potentially clogging its tapped mounting hole. Accelerometers may easily be moved about multiple bases installed in various locations. All bases are machined of lightweight aluminum with a grooved side for applying the adhesive and a hardcoat finish which provides electrical isolation between the test object and the accelerometer. For proper mounting, match the hex size on the accelerometer to the hex size on the adhesive base. Use the next larger adhesive base hex size if a match is unavailable.

Model No.	Hex size	Thick	ness	Mtg. Thread
080A14	5/16 in	0.32 in	8.1 mm	10-32
M080A14	5/16 in	0.32 in	8.1 mm	$M5 \times 0.8$
080A15	5/16 in	0.125 in	3.18 mm	5-40
M080A15	5/16 in	0.125 in	3.18 mm	M3 × 0.50
080A04	3/8 in	0.200 in	5.08 mm	10-32
M080A04	3/8 in	0.200 in	5.08 mm	M6 × 0.75
080A178	1/2 in	0.120 in	3.05 mm	10-32 male
080A	1/2 in	0.187 in	4.75 mm	10-32
M080A	1/2 in	0.187 in	4.75 mm	M6 × 0.75
080A12	3/4 in	0.200 in	5.08 mm	10-32
M080A12	3/4 in	0.200 in	5.08 mm	M6 × 0.75
080A13	3/4 in	0.200 in	5.08 mm	1/4-28
*080A19	3/4 in	0.375 in	9.53 mm	10-32
080A68	7/8 in	0.200 in	5.08 mm	10-32
M080A68	7/8 in	0.200 in	5.08 mm	M6 × 0.75

* suitable for use as a stud mounted, electrical isolation

base with a 10-32 accelerometer mounting stud inserted into each end.

Model 080A

Model 080A12

Model 080A178

Model 080A19

MOUNTING PADS FOR ARRAY ACCELEROMETERS

These specially designed mounting pads are for use with array accelerometers that incorporate their electrical connection within their mounting surface

Model
080B40
080B37
080B38

Cable Length 10 ft (3 m) 25 ft (7.6 m) 50 ft (15.2 m)

Mounting pad with 3-socket adhesive base with integral cable that terminates with a 3-socket IDC connector for use with Model 333B (available with BNC plug termination by specifying suffix /AC to model number, e.g., 080B40/AC)

Model 080A140 Mounting pad with 10-32 electrical connector for use with Model 333B31

Model 080A115 Mounting pad with integral 10 ft (3 m) cable and BNC plug termination for use with Model 333B31

Mounting Accessories

EASY-MOUNT CLIPS

Easy-Mount Clips offer practical and economical installation techniques for accelerometers in multi-channel vibration measurement applications.

The clips can be attached to the test structure via doublesided tape or adhesive. Once the clips are installed, accelerometers are simply snapped into the clips to make vibration measurements.

More measurement points and orientations can be accommodated with fewer sensors by installing clips at all desired

Models 080A160, 080A172, 080A173 points and populating them with as many sensors as are available. Sensors are then moved to remaining clip locations until all measurements are accomplished. Triaxial measurements can be made with single axis, cubic shaped accelerometers by changing axis orientation for successive measurements.

Swivel style clips permit sensors installed on curved or sloped surfaces to be aligned along the desired plane and axis. These clips both rotate and pivot to provide full flexibility in alignment.

Shown with sensor (sensor not included)

Easy-Mount Clip Model	080A172	080A173	080A160
Size (length width haight)	0.55 × 0.55 × 0.25 in	0.6 × 0.6 × 0.25 in	0.81 × 0.81 × 0.32 in
Size (length × which × height)	$(14 \times 14 \times 6.4 \text{ mm})$	(15.2 × 15.2 × 6.4 mm)	(20.6 × 20.6 × 8.1 mm)
Weight	0.5 gm	0.6 gm	1.4 gm
Frequency Limit (± 5%) (grease mount)	2000 Hz	2000 Hz	2000 Hz
Frequency Limit (± 10%) (grease mount)	4000 Hz	3000 Hz	2500 Hz
Frequency Limit (± 5%) (dry mount)	1000 Hz	1000 Hz	1000 Hz
Frequency Limit (± 10%) (dry mount)	1300 Hz	1300 Hz	1300 Hz
Temperature Range (continuous)	-65 to 125 °F (-54 to 52 °C)	-65 to 125 °F (-54 to 52 °C)	-65 to 125 °F (-54 to 52 °C)
High Temperature Limit (short term exposure)	175 °F (79 °C)	175 °F (79 °C)	175 °F (79 °C)
Compatible Accelerometers	333B32, 333B33, 356B11, 356B21	333B42, 333B53, 356A12, 356A22	356A02, 356A15, 356A16, 356A17

Notes:

Actual attainable frequency limits may be higher than specified, particularly for lower weight accelerometers, and may differ depending on axis of motion. An interface of silicone grease between clip and accelerometer aids in mechanical coupling to improve attainable frequency range.

Ordering Information			
100-Piece Bag of Easy-Mount Clips	080A181	080A183	080A185

Models 080A174, 080A176, 080A177

Shown with sensor (sensor not included)

Easy-Mount, Swivel Clip Model	080A174	080A176	080A177					
Size (base diameter × maximum height)	0.5 × 1.22 in (12.7 × 31.0 mm)	0.5 × 1.22 in (12.7 × 31.0 mm)	0.75 × 1.39 in (19.1 × 35.2 mm)					
Weight	3.6 gm	3.6 gm	5.5 gm					
Frequency Limit (± 10%) (grease mount)	1000 Hz	1000 Hz	1000 Hz					
Temperature Range (continuous)	-65 to 125 °F (-54 to 52 °C)	-65 to 125 °F (-54 to 52 °C)	-65 to 125 °F (-54 to 52 °C)					
High Temperature Limit (short term exposure)	175 °F (79 °C)	175 °F (79 °C)	175 °F (79 °C)					
Compatible Accelerometers	333B32, 333B33, 356B11, 356B21	333B42, 333B53, 356A12, 356A22	356A02, 356A15, 356A16, 356A17					
Notes: Actual attainable frequency limits may be higher than specified, particularly for lower weight accelerometers, and may differ depending on axis of motion. An interface of silicone grease between clip and accelerometer aids in mechanical coupling to improve attainable frequency range.								
Ordering Information								

080A182

25-Piece Bag of Easy-Mount Swivel Clips

080A186

080A184

Mounting Accessories

ADHESIVES

Many adhesives have been successfully used for securing adhesive mounting bases to test objects. These include epoxies, waxes, super glues, hot melt glues, and dental cement. Some provide more permanent attachment than others. Stiffer adhesives provide better transmission of high frequencies. Adhesives should be selected which perform adequately for the required application and environmental conditions. PCB offers petro wax and quick bonding gel.

Model No.	Description	Quantity Provided
080A24	Petro Wax	4 squares, 1 x 1 x 0.25 in ea.
080A109	Petro Wax	1 square, 1 x 1 x 0.25 in
080A90	Quick bonding gel	1 tube, 0.10 oz (3 gm)

Model 080A90 Quick bonding gel

ADHESIVE MOUNT REMOVAL (other than wax)

 \mathbf{Note} — A debonder should always be used to avoid sensor damage.

To avoid damaging the accelerometer, a debonding agent must be applied to the adhesive prior to sensor removal. With so many adhesives in use (everything from super glues, dental cement, epoxies, etc.), there is no universal debonding available. The debonder for the Loctite 454 adhesive that PCB offers is Acetone. If you are using anything other than Loctite 454, you will have to check with the individual manufacturers for their debonding recommendations. The debonding agent must be allowed to penetrate the surface in order to properly react with the adhesive, so it is

advisable to wait a few minutes before removing the sensor.

TOOLS

Removal tools help avoid sensor damage and assist with the removal of adhesively mounted "teardrop" style accelerometers. The shear force applied snaps the bond of most super glues and epoxies.

Model No.	Applicable Sensor
039A27	352A21, 352C22, 357A09, 357C10
039A26	352C23
039A28	352A24
039A29	357A08
039A07	740B02
039A31	352A60
039A08	0.4 in (10.2 mm) cube shaped accelerometers
039A09	0.45 in (11.4 mm) cube shaped accelerometers
039A10	0.55 in (14 mm) cube shaped accelerometers

Probe tips install onto accelerometers to enable their use as hand-held vibration sensors. This technique is useful if installation space is severely limited or for determining installation locations where vibration is most prevalent.

Removal tool for miniature teardrop accelerometers

Removal tool for cube shaped accelerometers

Model 076A22 BNC connector tool Helps grip BNC's for connection to crowded panels

MAGNETIC MOUNTING BASES

Magnetic mounting bases allow a convenient, temporary method of installing accelerometers to ferrous, magnetic surfaces. Select a magnetic base with a larger diameter than the accelerometer base. Note - always exercise caution when using a magnetic base as the attractive installation forces can cause excessive shock to the sensor. It is recommended to install the magnet to the test object on an edge and then "roll" the assembly gently into position.

Model 080A30

Model 080A27

Model 080A179

Model 080A130

Model 080A54

Model No.	Diameter	Thickness	Mounting Thread	l i	Force	Uses
080A30	3/8 in hex	0.23 in 5.84 mm	5-40 female	2.5 lb	11 N	miniature, 2 gm accelerometers
M080A30	3/8 in hex	0.2 in 5.08 mm	$M3 \times 0.5$ female	2.5 lb	11 N	miniature, 2 gm accelerometers
080A27	3/4 in hex	0.27 in 6.86 mm	10-32 male	12 lb	54 N	general purpose
080A179	0.75 in	0.42 in 10.7 mm	10-32 female	12 lb	54 N	general purpose
080A54	1-3/8 in hex	0.49 in 12.45 mm	1/4-28 male	50 lb	225 N	industrial accelerometers
080A130	0.75 in	0.72 in 18.29 mm	1/4-28 stud	15 lb	68 N	curved surfaces
080A26	0.75 in	0.37 in 9.4 mm	adhesive	N/A	N/A	mounting pad to mate with magnet

MOUNTING STUDS

Mounting studs are used to secure the accelerometer to the test object. To insure accurate measurements, always mount the accelerometer with the recommended mounting torque and avoid bottoming the stud into the test object's or the accelerometer's tapped mounting hole. The use of a stud with a shoulder will usually avoid bottoming, however insure that the base of the sensor is counter-bored to accept the shoulder. Once installed the accelerometer's base should be in close contact with the test object surface.

Model 081A08

Model 081B05

Model 081B20

Model 081A21

Model 080A149

Model		Threads		Comment
081A27	5-40 male	to	5-40 male	for some triaxial accelerometers
081A90	5-40 male	to	10-32 male	adaptor stud
080A149	5-40 female	to	10-32 male	mounting adaptor
M080A149	$M3 \times 0.5$ female	to	10-32 male	mounting adaptor
080M260	6-32 female	to	10-32 male	adapts ring sensors to existing 10-32 tapped mounts
081B05	10-32 male	to	10-32 male	with shoulder, for most accelerometers
M081B23	10-32 male	to	$M5 \times 0.8$ male	adaptor stud
M081B05	10-32 male	to	$M6 \times 0.75$ male	adaptor stud, with shoulder
081A08	10-32 male	to	1/4-28 male	adaptor stud
081B20	1/4-28 male	to	1/4-28 male	with shoulder, for industrial accelerometers
081A96	1/4-28 male	to	1/4-28 male	stainless stl. for Model 350A96 shock accelerometer
M081B20	1/4-28 male	to	$M6 \times 0.75$ male	adaptor stud, with shoulder
081A21	10-32 male	to	10-32 male	electrical isolation mounting pad/stud
081C21	10-32 male	to	10-32 male	electrical isolation mounting pad/longer stud
081A45	6-32 thd. × 0.625 ir	nch lengt	h	cap screw for Series 355 ring shaped accelerometers
M081A45	M3 × 0.5 thd. × 16	mm lenç	jth	cap screw for Series 355 ring shaped accelerometers

Mounting Accessories

TRIAXIAL MOUNTING ADAPTORS

Adapts three standard, uni-axial accelerometers for monitoring vibration in three orthogonal axes. Hex size listed represents the maximum allowable hex size for the installed uni-axial accelerometers.

Style "A"

Style "B"

Style "C"

Triaxial Mounting Adaptors

Model	Dimensions		Material	Mounting via	Accel. fasteners	Max. hex	Style
080B16	0.37 in (9.4 mm) cube	anodized Al	10-32 tap	5-40 taps	5/16 in	А
M080B16	0.37 in (9.4 mm) cube	anodized Al	10-32 tap	$M3 \times 0.5$ taps	5/16 in	А
080A196	0.44 in (11.18 n	nm) cube	anodized Al	10-32 tap	5-40 taps	3/8 in	А
080A17	0.812 in (20.62	mm) cube	stainless stl.	10-32 screws	10-32 taps	3/8 in	В
M080A17	0.812 in (20.62	mm) cube	stainless stl.	$M5 \times 0.8$ screws	$M5 \times 0.8$ taps	3/8 in	В
080B10	0.866 in (22 mr	n) cube	stainless stl.	8-36 screws	10-32 taps	1/2 in	В
M080B10	0.866 in (22 mr	n) cube	stainless stl.	$M4 \times 0.7$ screws	M6 × 0.75 taps	1/2 in	В
080C10	0.866 in (22 mr	n) cube	anodized Al	8-36 screws	10-32 taps	1/2 in	В
080A180	1.00 in (25.4 m	m) cube	titanium	10-32 screws	1/4-28 taps	7/8 in	С
M080A180	1.00 in (25.4 m	m) cube	titanium	$M5 \times 0.8$ screws	M6 × 0.75 taps	7/8 in	С
080B11	1.24 in (31.5 m	m) cube	anodized Al	10-32 screws	10-32 screws	7/8 in	В
M080B11	1.24 in (31.5 m	m) cube	anodized Al	$M5 \times 0.8$ screws	10-32 screws	7/8 in	В
080A62	1.23 in (31.24 r	nm) cube	stainless stl.	10-32 screws	1/4-28 screws	7/8 in	В
080A57	1.48 in (37.6 m	m) cube	stainless stl.	10-32 screws	1/4-28 screws	1-1/4 in	В
M080A57	1.48 in (37.6 m	m) cube	stainless stl.	$M5 \times 0.8$ screws	1/4-28 screws	1-1/4 in	В
Model	Dimensions	Material	Mounting via	Accel. fasteners	Note		
080A114	0.90 cube	Aluminum	10-32 tap	10-32 electrical	jack use only v	with models 33	3A31, 333A41 or 333A51
080B55	0.812 cube	Ryton	adhesive	press fit	use only v	with model 333	В
080A141	1.125 cube	Crastin	adhesive	press fit	use only v	with model 333	В
080A153	1.265 cube	Delrin	10-32 tap	4-40 screws	use with	series 3701	

Technical Information

Introduction to accelerometers

- Driving long cable lengths
- Introduction to microphones
- TEDS Transducer Electronic Data Sheet
- Conversions, article reprints, glossary

Information to assist with vibration analysis is readily available. Many technical papers have been published and may be found by searching for specific topics on the worldwide web. Information pertinent to PCB accelerometers and their operation is offered within this catalog section. Additional information may be obtained through the following:

Professional Organizations

IEST (Institute of Environmental Sciences and Technology) 5005 Newport Dr., Rolling Meadows, IL 60008 ph: (847) 255-1561 • fax: (847) 255-1699 www.iest.org

SEM (Society for Experimental Mechanics, Inc.) 7 School St., Bethel, CT 06801 ph: (203) 790-6373 • fax: (203) 790-4472 www.sem.org

SAVIAC (Shock and Vibration Information Analysis Center) 5136 Celestial Way Columbia, MD 21044 ph: (301) 596-0100 • fax: (301) 596-6400 www.saviac.org

Vibration Institute 6262 South Kingery Hwy., Ste. 212 Willowbrook, IL 60527 ph: (630) 654-2254 • fax: (630) 654-2271

Trade Magazines

Sound and Vibration 27101 E. Oviatt Rd., Bay Village, OH 44140 ph: (440) 835-0101 • fax: (440) 835-9303

Sensors

One Phoenix Mill Lane, Suite 401 Peterborough, NH 03458 ph: (603) 924-5400 • fax: (603) 924-5401

Vibrations

A Publication of the Vibration Institute (see Professional Organizations at left)

Test Engineering & Management 3756 Grand Ave., Ste. 205, Oakland, CA 94610 ph: (510) 839-0909 • fax: (510) 839-2950

Noise & Vibration Worldwide

Multi-Science Publishing Co. Ltd. 5 Wates Way, Brentwood, Essex CM15 9TB United Kingdom ph: 44 (0) 1277 224632 • fax: 44 (0) 1277 223453

Publications

Mechanical Vibrations: Theory and Applications Francis Sing Tse, Ivan E. Morse, Rolland Theodore Hinkle Allyn and Bacon ISBN 0-205-05940-6

Shock & Vibration Handbook Cyril M. Harris McGraw-Hill, Inc. ISBN 0-07-026801-0

Vibration Testing: Theory and Practice Kenneth G. McConnell John Wiley & Sons Inc. ISBN 0-471-30435-2

On-Line

www.vibrationworld.com

www.equipment-reliability.com

TYPICAL APPLICATIONS FOR ACCELEROMETERS

If something moves, it experiences acceleration. Measurement of this acceleration helps us gain a higher understanding of the nature of the motion, understanding that increases our awareness of an event or encourages refinement of the engineering design of a moving device. For a man made object, motion is regarded as either desirable or undesirable. Desirable motion, for example, is the monitoring of performance of a controlled process, such as the action of an intake valve on an automobile engine. Two situations demonstrating motion that is undesirable are the monitoring of a process undergoing an upset, such as the excessive vibration caused by a worn motor bearing, or a process in need of control, such as the motion stabilization of a sophisticated optical instrument platform. Some applications in which PCB's accelerometers have demonstrated to be successful include:

Machinery Vibration Analysis — Increased vibration levels, detected by periodically monitoring rotating machinery vibration, are an indication of bearing or gear wear, imbalance, or broken mounts. Machinery like motors, pumps, compressors, turbines, paper machine rolls, and fans, engaged in critical processes, are routinely monitored to predict failure, intelligently schedule maintenance, reduce downtime, and avoid catastrophic interruption of production runs. Such programs have successfully proven to increase production and save money by minimizing downtime.

Balancing — Performance and longevity of rotating machinery is improved when rotors, turbines, and shafts are properly balanced. Measurement signals generated by accelerometers implemented into balancing machinery provide indication of the severity of any imbalance. This measurement, in conjunction with a timing signal provided by a tachometer or key phasor, allows for proper counterweight sizing and placement to bring machinery into acceptable balance.

Environmental Stress Screening — Latent defects, such as inadequate solder bonds of a printed circuit board or inadequately tightened fasteners, often appear in the hands of an end user after a product is transported or subjected to its service environment. Many such defects can be discovered by intentionally inducing vibration stress to the product before final release. Test specimens are mounted to a vibrating shaker and instrumented with accelerometers to flag abnormal response characteristics. Such practices help reduce the number of faulty goods reaching end users, improving customer satisfaction, the manufacturer's reputation for quality, and the costs associated with providing warranty repairs. Often, temperature, humidity, or other simulated conditions are combined with vibration to better simulate the environment in which a product is used.

Vibration Control — Desired vibration, such as that induced for the purpose of environmental stress screening, must be precisely controlled. Accelerometers sense generated vibration at the driving point of a vibration exciter or shaker. This sensor's measurement signal is then fed into a vibration controller, which adjusts the input parameters that drive the shaker. This is known as a closed-loop feedback control system and is not unlike the cruise control feature of an automobile.

Active Vibration Reduction — To enhance user comfort levels of sound and motion generated by such items as household appliances, aircraft, and machinery, designers are now considering the use of active electronic techniques where passive methods, such as isolation, insulation, and damping have become insufficient or impractical. Accelerometers are used to sense the disturbing vibration induced, structure-borne sound, or motion. The measurement signal is then manipulated, typ-ically with digital signal processing, into one of opposing phase for use in driving an actuator or shaker to null the annoying vibration. This closed-loop control method proves useful in applications like helicopters, marine hulls, dishwashers, and air-craft fuselages.

Structural Testing — Accelerometers measure stimulus response and structural resonance characteristics of a wide variety of mechanical devices, from small computer disk drive components to massive bridges, buildings, and civil structures. Such measurements allow designers to optimize product performance and life cycle by selecting construction materials with proper strength and stiffness characteristics. Vibration measurements can also provide an indication of stress, fatigue, damage, or defective assembly due to loose or missing fasteners, welds or joints on finished goods, or items undergoing maintenance assessment.

Modal Analysis — Accelerometers measure relative phase and amplitude of structural motion, allowing operating deflection shape determination, which offers a virtual study of the animated mode shapes. This computerized representation enables designers to optimize performance and user comfort for such items as automobiles, aircraft, and satellites.

Seismic Vibration — Accelerometers detect motion of the ground, buildings, floors, foundations, bridges, and other civil structures for purposes of earthquake detection, geological exploration, condition assessment monitoring, and impact surveys of nearby activities such as mining, construction, or heavy vehicle transportation.

Package Testing — Measuring the shock experienced by a packaged product compared to the level of actual shock exposure allows assessment of the effectiveness of a packing material or package design. Package testing can also be used to measure vibration and shock that a product may experience during transport.

Shock — Accelerometers measure the maximum impact acceleration levels experienced by such items as vehicles and crash dummies. Metal-to-metal impacts, pyroshock studies, and shock exposure experienced by space vehicles and cargo during liftoff and stage separation are also measured and analyzed using shock accelerometers.

Motion and Attitude Detection and Stabilization — Accelerometers monitor motion and orientation of items that rely on precise positioning for proper operation. The measurement signal can be used to warn of excessive motion during upset conditions so that equipment is not operated when inadequate performance is certain. Measurement signals can also be used in a feedback-control-loop scenario to perform active motion reduction to maintain levels within acceptable limits. Apparatus requiring such attention to motion includes sensitive optical instruments, satellite antennas, lasers, surveillance cameras, and semiconductor fabrication equipment.

Ride Quality, Response, and Simulation — Accelerometers play a key role in vehicle design by measuring their response to on- and off-road conditions. Suspension performance, chassis and frame evaluations, engine mount damping, drivetrain NVH, and rider comfort levels are among the many studies conducted. Proving ground tests, dynamometers, electrodynamic shaker, and hydraulic motion simulators are all methods of providing input stimulus to vehicle structures for which accelerometers are used to measure the resulting vibration, shock, and motion of the vehicle and its components.

Flight Testing — Accelerometers are used to measure the dynamic properties of aircraft wings and structure during their development. They are also used during development and testing of engines, landing gear, and other subcomponents.

INTRODUCTION TO ACCELEROMETERS

Accelerometers are sensing transducers that produce an electrical output signal proportional to the acceleration aspect of motion, vibration, and shock. Some accelerometers also measure the uniform acceleration aspect of earth's gravitational effect. Most accelerometers generate an electrical output signal that is proportional to an induced force. This force is proportional to acceleration, according to Newton's law of motion, F=ma, where "F" is the induced and subsequently measured force, "m" is the mass creating the force, and "a" is acceleration. Acceleration measurements are quite useful for a wide variety of applications due to this proportionality to force, one of science's truly fundamental, physical measurement parameters.

Types of Accelerometers Offered by PCB

PCB designs and manufactures accelerometers that utilize either piezoelectric or capacitive sensing technology. Piezoelectric accelerometers rely on the self-generating. piezoelectric effect of either quartz crystals or ceramic materials to produce an electrical output signal proportional to acceleration. Many such accelerometers contain built-in signal conditioning circuitry and are known as voltage mode, low-impedance, Integrated Electronic Piezoelectric (IEPE) or Integrated Circuit - Piezoelectric (PCB's trademarked name, "ICP®") sensors. Piezoelectric accelerometers that do not contain any additional circuitry are known as charge output or high-impedance sensors. Piezoelectric accelerometers are capable of measuring very fast acceleration transients such as those encountered with machinery vibration and high-frequency shock measurements. Although they can respond to slow, low-frequency phenomenon, such as the vibration of a bridge, piezoelectric accelerometers cannot measure truly uniform acceleration, also known as static or DC acceleration. Capacitive accelerometers sense a change in electrical capacitance, with respect to acceleration, to vary the output of an energized circuit. Capacitive accelerometers are capable of uniform acceleration measurements, such as the gravitational effect of the earth. They can also respond to varying acceleration events but with limitation to low frequencies of up to several hundred hertz.

Function of Piezoelectric Accelerometers

As stated above, piezoelectric accelerometers rely on the self-generating, piezoelectric effect of either quartz crystals or ceramic materials to produce an electrical output signal proportional to acceleration. The piezoelectric effect is that which causes a realignment and accumulation of positively and negatively charged electrical particles, or ions, at the opposed surfaces of a crystal lattice, when that lattice undergoes stress. The number of ions that accumulate is directly proportional to the amplitude of the imposed stress or force. The piezoelectric effect is depicted in the following figure of a quartz crystal lattice.

Piezoelectric Effect of a Quartz Crystal Lattice

In the creation an accelerometer, it is necessary that the stress imposed upon the piezoelectric material be the direct result of the device undergoing an acceleration. To accomplish this, a mass is attached to the crystal which, when accelerated, causes force to act upon the crystal. The mass, also known as a seismic mass, creates a force direct-ly proportional to acceleration according to Newton's law of motion, F=ma. Thin metallic electrodes, typically made of gold foil, serve to collect the accumulated ions. Small lead wires interconnect the electrodes to an electrical connector or feed-through, to which signal transmission cabling is attached. Piezoelectric accelerometer signals generally require conditioning before being connected to readout, recording, or analysis equipment. This signal conditioning is either remotely located or built into the accelerometer.

Introduction to Accelerometers

Piezoelectric Sensing Materials

Two categories of piezoelectric material predominantly used in accelerometer designs are quartz and polycrystalline ceramics. Quartz is a naturally occurring crystal; however, the quartz used in sensors today is produced by a process that creates material free from impurities. Ceramic materials, on the other hand, are man made. Different specific ingredients yield ceramic materials that possess certain desired sensor properties. Each material offers distinct benefits, and material choice depends on the particular performance features desired of the accelerometer.

Quartz

Quartz is widely known for its ability to perform accurate measurement tasks and contributes heavily in everyday applications for time and frequency measurements, such as wrist watches, radios, computers, and home appliances. Accelerometers also benefit from several unique characteristics of quartz. Since quartz is naturally piezoelectric, it has no tendency to relax to an alternative state and is considered the most stable of all piezoelectric materials. Quartzbased sensors, therefore, make consistent, repeatable measurements and continue to do so over long periods of time. Also, quartz has no output occurring from temperature fluctuations, a formidable advantage when placing sensorsin thermally active environments. Because quartz has a low capacitance value, the voltage sensitivity is relatively high compared to most ceramic materials, making it ideal for use in voltage-amplified systems. Conversely, the charge sensitivity of quartz is low, limiting its usefulness in charge-amplified systems, where low noise is an inherent feature. The useful temperature range of quartz extends from -440 °F (-262 °C) to approximately +600 °F (+315 °C).

Ceramics

A wide variety of ceramic materials are used for accelerometers, and which material to use depends on the requirements of the particular application. All ceramic materials are man made and are forced to become piezoelectric by a polarization process. This process, known as "poling," exposes the material to a high-intensity electrical field, which aligns the electric dipoles, causing the material to become piezoelectric. If ceramic is exposed to temperatures exceeding its range or to electric fields approaching the poling voltage, the piezoelectric properties may be drastically altered or destroyed. Accumulation of high levels of static charge also can have this effect on the piezoelectric output.

Differences in ceramics utilized determine such factors as charge sensitivity, voltage sensitivity, and temperature range. High charge output ceramics may be mated with built-in charge amplifier circuits to achieve high output signals, high resolution, and an excellent signal to noise ratio. Certain high-temperature ceramics are used for charge mode accelerometers — some with temperature ranges to 900 °F (482 °C). Applications for such high temperature accelerometers include the monitoring of engine manifolds and superheated turbines.

Structures for Piezoelectric Accelerometers

A variety of mechanical structures are available to perform the transduction principles required of a piezoelectric accelerometer. These configurations are defined by the nature in which the inertial force of an accelerated mass acts upon the piezoelectric material. Such terms as compression mode, flexural mode and shear mode describe the nature of the stress acting upon the piezoelectric material. Current designs of PCB accelerometers utilize, almost exclusively, the shear mode of operation for their sensing elements. Therefore, the information provided herein is limited to that pertaining to shear mode accelerometers.

Introduction to Accelerometers

Shear Mode

Shear mode accelerometer designs feature sensing crystals attached between a center post and a seismic mass. A compression ring or stud applies a pre-load force to the element assembly to insure a rigid structure and linear behavior. Under acceleration, the mass causes a shear stress to be applied to the sensing crystals. This stress results in a proportional electrical output by the piezoelectric material. The output is collected by electrodes and transmitted by lightweight lead wires to either the built-in signal conditioning circuitry of ICP sensors, or directly to the electrical connector for charge mode types. By having the sensing crystals isolated from the base and housing, shear mode accelerometers excel in rejecting thermal transient and base-bending effects. Also, the shear geometry lends itself to small size, which promotes high frequency response while minimizing mass loading effects on the test structure. With this combination of ideal characteristics, shear mode accelerometers offer optimum performance.

Shear Mode Accelerometer

Function of Capacitive Accelerometers

Capacitive accelerometers sense a change in electrical capacitance, with respect to acceleration, to vary the output of an energized circuit. The sensing element consists of two parallel plate capacitors acting in a differential mode. These capacitors operate in a bridge circuit, along with two fixed capacitors, and alter the peak voltage generated by an oscillator when the structure undergoes acceleration. Detection circuits capture the peak voltage, which is then fed to a summing amplifier that processes the final output signal.

Structure of Capacitive Accelerometers

Capacitive accelerometers sense a change in electrical capacitance, with respect to acceleration, to vary the output of an energized circuit. When subject to a fixed or constant acceleration, the capacitance value is also a constant, resulting in a measurement signal proportional to uniform acceleration, also referred to as DC or static acceleration. PCB's capacitive accelerometers are structured with a diaphragm, which acts as a mass that undergoes flexure in the presence of acceleration. Two fixed plates sandwich the diaphragm, creating two capacitors, each with an individual fixed plate and each sharing the diaphragm as a movable plate. The flexure causes a capacitance shift by altering the distance between two parallel plates, the diaphragm itself being one of the plates. The two capacitance values are utilized in a bridge circuit, the electrical output of which varies with input acceleration.

ACCELERATION MEASUREMENT SYSTEMS

Piezoelectric accelerometers can be broken down into two categories that define their mode of operation. Internally amplified ICP[®] accelerometers contain built-in microelectronic signal conditioning. Charge output accelerometers contain only the sensing element with no electronics.

ICP[®] Accelerometers

ICP[®], as described earlier, is PCB's registered trademark that stands for "Integrated Circuit - Piezoelectric" and identifies PCB sensors that incorporate built-in, signal-conditioning electronics. PCB is credited as the company most responsible for development of this technology. The built-in electronics convert the high-impedance charge signal that is generated by the piezoelectric sensing element into a usable low-impedance voltage signal that can be readily transmitted, over ordinary two-wire or coaxial cables, to any voltage readout or recording device. The low-impedance signal can be transmitted over long cable distances and used in dirty field or factory environments with little degradation. In addition to providing crucial impedance conversion, ICP® sensor circuitry can also include other signal conditioning features, such as gain, filtering, and self-test features. The simplicity of use, high accuracy, broad frequency range, and low cost of ICP® accelerometers make them the recommended type for use in most vibration or shock applications.

However, an exception to this assertion must be made for circumstances in which the temperature, at the installation point, exceeds the capability of the built-in circuitry. The routine temperature range of ICP[®] accelerometers is 250 °F (121 °C); specialty units are available that operate to 350 °F (177 °C).

The electronics within ICP[®] accelerometers require excitation power from a constant-current regulated, DC voltage source. This power source is sometimes built into vibration meters, FFT analyzers, and vibration data collectors. A separate signal conditioner is required when none is built into the readout. In addition to providing the required excitation, power supplies may also incorporate additional signal conditioning, such as gain, filtering, buffering, and overload indication. A typical system set-up for ICP[®] accelerometers is shown below.

Charge Output Accelerometers

Charge output sensors output a high-impedance, electrical charge signal that is generated by the piezoelectric sensing element. This signal is sensitive to corruption from environmental influences. To conduct accurate measurements, it is necessary to condition this signal to a low-impedance voltage before it can be input to a readout or recording device. A charge amplifier or in-line charge converter is generally used for this purpose. These devices utilize high-input-impedance, low-output-impedance inverting amplifiers with capacitive feedback. Adjusting the value of the feedback capacitor alters the transfer function or gain of the charge amplifier.

Typically, charge output accelerometers are used when high temperature survivability is required. If the measurement signal must be transmitted over long distances, PCB recommends the use of an in-line charge converter, placed near the accelerometer. This minimizes the chance of noise. In-line charge converters can be operated from the same constant-current excitation power source as ICP[®] accelerometers for a reduced system cost.

Sophisticated laboratory-style charge amplifiers usually include adjustments for normalizing the input signal and altering the feedback capacitor to provide the desired system sensitivity and full-scale amplitude range. Filtering also conditions the high and low frequency response. Some charge amplifiers provide dual-mode operation, which can be used to provide power for ICP[®] accelerometers or to condition charge output sensors.

Because of the high-impedance nature of the output signal generated by charge output accelerometers, several important precautionary measures must be followed. Always use special low-noise coaxial cable between the accelerometer and the charge amplifier. This cable is specially treated to reduce triboelectric (motion induced) noise effects. Also, always maintain high insulation resistance of the accelerometer, cabling, and connectors. To insure high insulation resistance, all components must be kept dry and clean.

Introduction to Accelerometers

Capacitive Accelerometers

Capacitive accelerometers operate on a three-wire system with one wire carrying the excitation power, one wire carrying the measurement signal, and the third wire serving as a common ground. Once energized, the capacitive accelerometer generates an output measurement signal directly proportional to input acceleration, with respect to its specific acceleration sensitivity value. The output signal is a low-impedance voltage capable of being transmitted over ordinary wires and over long distances.

The excitation voltage required of a capacitive accelerometer is a fixed, DC voltage ranging in value from 10 to 28 VDC, depending on specific model. Additional conditioning of this voltage, such as current limitation, is unnecessary. An attractive feature of the capacitive accelerometer is its ability to operate from basic power requirements. It may be used with a simple battery hookup. Some low-voltage-supply versions may even be operated from a 12 VDC automobile battery.

A peculiar item of concern with capacitive accelerometers is their inherent zero-g offset voltage. This voltage is the result of electrical component tolerances and is typically a value less than 200 mV. This value can be nulled by the zero-adjust feature of most common oscilloscopes, however, all PCB signal conditioners for use with capacitive accelerometers include a zero-offset adjust feature to null this ouput. The ability to null the offset in the signal conditioner is especially advantageous when utilizing readout or recording instruments that may not have a zero-offset feature.

ACCELEROMETER MOUNTING CONSIDERATIONS

Frequency Response

One of the most important considerations in dealing with accelerometer mounting is the effect the mounting technique has on the accuracy of the usable frequency response. The accelerometer's operating frequency range is determined, in most cases, by securely stud mounting the test sensor directly to the reference standard accelerometer. The direct, stud mounted coupling to a very smooth surface generally yields the highest mounted resonant frequency and therefore, the broadest usable frequency range. The addition of any mass to the accelerometer, such as an adhesive or magnetic mounting base, lowers the resonant frequency of the sensing system and may affect the accuracy and limits of the accelerometer's usable frequency range. Also, compliant materials, such as a rubber interface pad, can create a mechanical filtering effect by isolating and damping high-frequency transmissibility.

Surface Preparation

For best measurement results, especially at high frequencies, it is important to prepare a smooth and flat machined surface where the accelerometer is to be attached. Inspect the area to ensure that no metal burrs or other foreign particles interfere with the contacting surfaces. The application of a thin layer of silicone grease between the accelerometer base and the mounting surface also assists in achieving a high degree of intimate surface contact required for best high-frequency transmissibility.

Stud Mounting

For permanent installations, where a very secure attachment of the accelerometer to the test structure is preferred, stud mounting is recommended. First, grind or machine on the test object a smooth, flat area at least the size of the sensor base, according to the manufacturer's specifications. Then, prepare a tapped hole in accordance with the supplied installation drawing, ensuring that the hole is perpendicular to the mounting surface. Install accelerometers with the mounting stud and make certain that the stud does not bottom in either the mounting surface or accelerometer base. Most PCB mounting studs have depthlimiting shoulders that ensure that the stud cannot bottom-out into the accelerometer's base. Each base incorporates a counterbore so that the accelerometer does not rest on the shoulder. Acceleration is transmitted from the structure's surface into the accelerometer's base. Any stud bottoming or interfering between the accelerometer

base and the structure inhibits acceleration transmission and affects measurement accuracy. When tightening, apply only the recommended torque to the accelerometer. A thread-locking compound may be applied to the threads of the mounting stud to safeguard against loosening.

Screw Mounting

When installing accelerometers onto thin-walled structures, a cap screw passing through a hole of sufficient diameter is an acceptable means for securing the accelerometer to the structure. The screw engagement length should always be checked to ensure that the screw does not bottom into the accelerometer base. A thin layer of silicone grease at the mounting interface ensures highfrequency transmissibility.

Adhesive Mounting

Occasionally, mounting by stud or screw is impractical. For such cases, adhesive mounting offers an alternative mounting method. The use of separate adhesive mounting bases is recommended to prevent the adhesive from damaging the accelerometer base or clogging the mounting threads (miniature accelerometers are provided with the integral stud removed to form a flat base). Most adhesive mounting bases available from PCB also provide electrical isolation, which eliminates potential noise pick-up and ground loop problems. The type of adhesive recommended depends on the particular application. Petro Wax (available from PCB) offers a very convenient, easily removable approach for room temperature use. Two-part epoxies offer stiffness, which maintains high-frequency response and a permanent mount. Other adhesives, such as dental cement, hot glues, instant glues, and duct putty are also viable options with a history of success.

There is no one "best" adhesive for all applications because of the many different structural and environmental considerations, such as temporary or permanent mount, temperature, type of surface finish, and so forth.

A variety of adhesives are available from many manufacturers, who usually provide specification charts and application bulletins for their adhesives. A Consumer Report's article entitled "Which Glue for Which Job" (Jan. 1988) provides rating information on adhesives. A Popular Science magazine article, "Secrets of the Superglues" (Feb. 1989), provides informative data on the use of superglues. Loctite provides an adhesive "Selector Guide" for its products.

For most accelerometer adhesive mounting applications, PCB Series 080 Adhesive Mounting Bases are suggested. These mounting pads keep the accelerometer base clean and free of epoxy that may be very difficult to remove. Also, Series 080 Mounting Bases allow the accelerometer to be easily removed from the test structure without damage to either the sensor or the test object.

Surface flatness, adhesive stiffness, and adhesion strength affect the usable frequency range of an accelerometer. Almost any mounting method at low acceleration levels provides the full frequency range of use if the mounting surface is very flat and the sensor is pressed hard against the surface to wring out all extra adhesive. Generally, as surface irregularities or the thickness of the adhesive increase, the usable frequency range decreases. The less-stiff, temporary adhesives reduce an accelerometer's usable frequency range much more than the more rigid, harder adhesives. Generally, temporary adhesives are recommended more for low-frequency (<500 Hz) structural testing at room temperature. Petro Wax is generally supplied with most of the accelerometers for a quick, temporary mounting method used during system set-up and check-out. When quick installation and removal is required over a wide frequency range up to 10 kHz, use a Series 080A Adhesive Mounting Base with one of the stiffer, more permanent adhesives. Also, consider a magnetic mount, using the Series 080A27 Super Magnet with Model 080A20 Steel Adhesive Mounting Pad for such measurements. For both, the mounting surface must be very flat to achieve accurate high-frequency information.

Care should be exercised in selecting and testing an adhesive when concern exists regarding the possible discoloration or damage to the test structure's surface finish. Test the adhesive first on a hidden location or a sample of the structure's finish. Temporary adhesives like Petro Wax or beeswax offer a good solution for quick installation in room-temperature applications. When higher temperatures are involved, apply a piece of aluminized mylar tape to the test structure and mount the accelerometer with adhesive base using one of the other types of adhesives. After the test, the tape can be easily removed with no damage to the surface finish of the structure.

	Mountin Cor	ng Surface	Temperature		Availability	
Adhesives	Flat & Smooth Surfaces	Rough Surfaces (Casting, etc.)	Room Temp. Only	Elevated Temp. (see Mtg. Spec.)	Commercial	PCB Piezotronics (request sample)
Temporary/Easily Removed						
Petro Wax						
Bee's Wax						
Duct Putty						
Two-sided Sticky Tape						
Semi-Permanent/Permanent						
Super Glue (Thin one part quick dry)						
Loctite® 430 Super Bonder				-65°F to +175°F		
Eastman 910				-65°F to +180°F		
Super Glue-Gap Filling (thick liquid & gel)						
Pacer RX-50 "Gel"				-114°F to +180°F		
Loctite® 498 Super Bonder				-40°F to +223°F		
Loctite® 422 "Gap Filling"				-65°F to +175°F		
Hot Glue (apply with hot glue gun)				Various Grades from +150°F		
Permanent						
Two Part Std Commercial Epoxies	•			to +250°F	•	
Loctite® 325 Speed Bonder				-65°F to +350°F		

Magnetic Mounting

Magnetic mounting bases offer a very convenient, temporary attachment to magnetic surfaces. Magnets offering high pull strengths provide best highfrequency response. Wedged dual-rail magnetic bases are generally used for installations on curved surfaces, such as motor and compressor housings and pipes. However, dual-rail magnets usually significantly decrease the operational frequency range of an accelerometer. For best results, the magnetic base should be attached to a smooth, flat surface. A thin layer of silicone grease should be applied between the sensor and magnetic base, as well as between the magnetic base and the structure. When surfaces are uneven or non-magnetic, steel pads can be welded or epoxied in place to accept the magnetic base. Use of such a pad ensures that periodic measurements are taken from the exact same location. This is an important consideration when trending measurement data.

Probe Tips

Handheld vibration probes or probe tips on accelerometers are useful when other mounting techniques are impractical and for evaluating the relative vibration characteristics of a structure to determine the best location for installing the accelerometer. Probes are not recommended for general measurement applications due to a variety of inconsistencies associated with their use. Orientation and amount of hand pressure applied create variables, which affect the measurement accuracy. This method is generally used only for frequencies less than 1000 Hz.

Mass Loading

The vibrational characteristics of a structure can be altered by adding mass to that structure. Since most measurements are conducted to quantify the structural vibration, any alteration of the vibration leads to an inaccurate evaluation of the vibration. An accelerometer that is too heavy, with respect to the test structure, may produce data that does not correctly represent the vibration of interest. Use care when selecting an accelerometer and mounting hardware to avoid the effects of mass loading.

Ground Isolation, Ground Noise, and Ground Loops

When installing accelerometers onto electrically conductive surfaces, a potential exists for ground noise pick-up. Noise from other electrical equipment and machines that are grounded to the structure, such as motors, pumps, and generators, can enter the ground path of the measurement signal through the base of a standard accelerometer. When the sensor is grounded at a different electrical potential than the signal conditioning and readout equipment, ground loops can occur. This phenomenon usually results in current flow at the line power frequency (and harmonics thereof), potential erroneous data, and signal drift. Under such conditions, it is advisable to electrically isolate or "float" the accelerometer from the test structure. This can be accomplished in several ways. Most accelerometers can be provided with an integral ground isolation base. Some standard models may already include this feature, while others offer it as an option. Optional ground-isolated models are identified by the prefix "J"; for example, Model J353B33. The use of insulating adhesive mounting bases, isolation mounting studs, isolation bases, and other insulating materials, such as paper beneath a magnetic base, are effective ground isolation techniques. Be aware that the additional ground-isolating hardware can reduce the upper frequency limits of the accelerometer.

Cables and Connections

Cables should be securely fastened to the mounting structure with a clamp, tape, or other adhesive to minimize cable whip and connector strain. Cable whip can introduce noise, especially in high-impedance signal paths. This phenomenon is known as the triboelectric effect. Also, cable strain near either electrical connector can lead to intermittent or broken connections and loss of data.

To protect against potential moisture and dirt contamination, use RTV sealant or heat-shrinkable tubing on cable connections. O-rings with heat shrink tubing have proven to be an effective seal for protecting electrical connections for short-term underwater use. The use of only RTV sealant is generally only used to protect the electrical connection against chemical splash or mist.

Introduction to Accelerometers

Under high shock conditions or when cables must undergo large amounts of motion, as with package drop testing applications, the use of a solder connector adaptor and lightweight ribbon cables are generally recommended. These solder connector adaptors provide a more durable connection and can be installed onto the accelerometer with a thread locking compound to prevent loosening. Use of lightweight cables helps to minimize induced strain at the connector, which can create an erroneous output signal. Electrical connection fatigue is also minimized, reducing the possibility of intermittent or open connections and loss of data. Solder connector adaptors are installed onto the cable with solder. This easy connection makes this type of connector user- or field-repairable in times of crisis. Normally, a flexible plastic plug is placed over the electrical connections for protection, as well as to provide cable strain relief.

The solder connector adaptor provides an affordable and simplistic method for making cables in the field, as well as a ruggedized connection that is capable of surviving 100,000 g. Only solder and a soldering iron are required. No special tools or equipment are necessary for installation on a cable end. Because of the reliability and strength of this connection, these connectors are recommended for use in shock applications.

CABLE DRIVING CONSIDERATIONS AND CONSTANT CURRENT LEVEL

Operation over long cables may effect frequency response and introduce noise and distortion when an insufficient current is available to drive cable capacitance.

Unlike charge mode systems, where the system noise is a function of cable length, ICP[®] sensors provide a high voltage, low impedance output well-suited for driving long cables through harsh environments. While there is virtually no increase in noise with ICP[®] sensors, the capacitive loading of the cable may distort or filter higher frequency signals depending on the supply current and the output impedance of the sensor.

Generally, this signal distortion is not a problem with lower frequency testing within a range up to 10,000 Hz. However, for higher frequency vibration, shock, or transient testing over cables longer than 100 ft. (30 m.), the possibility of signal distortion exists. The maximum frequency that can be transmitted over a given cable length is a function of both the cable capacitance and the ratio of the peak signal voltage to the current available from the signal conditioner according to:

$$=\frac{10^9}{2\pi CV / (l_c-1)}$$

where, $f_{max} = maximum$ frequency (hertz)

fmax

- C = cable capacitance (picofarads)
- V = maximum peak output from sensor (volts)
- I_c = constant current from signal conditioner (mA)
- 10^9 = scaling factor to equate units

Note that in the equation, 1 mA is subtracted from the total current supplied to the sensor (1c). This is done to compensate for powering the internal electronics. Some specialty sensor electronics may consume more or less current. Contact the manufacturer to determine the correct supply current. When driving long cables, the equation

Driving Long Cable Lengths

above shows that as the length of cable, peak voltage output or maximum frequency of interest increases, a greater constant current will be required to drive the signal.

The nomograph on the next page provides a simple, graphical method for obtaining the expected maximum frequency capability of an ICP[®] measurement system. The maximum peak signal voltage amplitude, cable capacitance, and supplied constant current must be known or presumed.

For example, when running a 100 ft. cable with a capacitance of 30 pF/ft, the total capacitance is 3000 pF. This value can be found along the diagonal cable capacitance lines. Assuming the sensor operates at a maximum output range of 5 volts and the constant current signal conditioner is set at 2 mA, the ratio on the vertical axis can be calculated to equal 5. The intersection of the total cable capacitance and this ratio result in a maximum frequency of approximately 10.2 kHz.

The nomograph does not indicate whether the frequency amplitude response at a point is flat, rising, or falling. For precautionary reasons, it is good general practice to increase the constant current (if possible) to the sensor (within its maximum limit) so that the frequency determined from the nomograph is approximately 1.5 to 2 times greater than the maximum frequency of interest.

Experimentally Testing Long Cables

To more accurately determine the effect of long cables, it is recommended to experimentally determine the high frequency electrical characteristics.

The method illustrated below involves con-

necting the output from a standard signal generator into a unity gain, low-output impedance (<5 ohm) instrumentation amplifier in series with the ICP® sensor. The extremely low output impedance is required to minimize the resistance change when the signal generator/amplifier is removed from the system.

In order to check the frequency/amplitude response of this system, set the signal generator to supply the maximum amplitude of the expected measurement signal. Observe the ratio of the amplitude from the generator to that shown on the scope. If the ratio is 1:1, the system is adequate for your test. (If necessary, be certain to factor in any gain in the signal conditioner or scope.) If the output signal is rising (1:1.3 for example), add series resistance to attenuate the signal. Use of a variable 100 ohm resistor will help set the correct resistance more conveniently. Note that this is the only condition that requires the addition of resistance. If the signal is falling (1:0.75 for example), the constant current level must be increased or the cable capacitance reduced.

It may be necessary to physically install the cable during cable testing to reflect the actual conditions encountered during data acquisition. This will compensate for potential inductive cable effects that are partially a function of the geometry of the cable route.

Note that higher current levels will deplete battery-powered signal conditioners at a faster rate. Also, any current not used by the cable goes directly to power the internal electronics and will create heat. This may cause the sensor to exceed its maximum temperature specification. For this reason, do not supply excessive current over short cable runs or when testing at elevated temperatures.

Driving Long Cable Lengths

Cable Driving Nomograph

Frequency (Hz)

fmax = Maximum frequency given the following characteristics

V= Maximum output voltage from sensor (volts)

 I_c = Constant current level from power unit (mA) 10^9 = Scale factor to equate units

C= Cable capacitance (pF)

TYPICAL APPLICATIONS FOR MICROPHONES

Microphones measure broadband sound pressure levels from multiple sources. When the microphone signal is post processed, the frequencies can be correlated with the sound source, and if necessary, related back to the wavelength of the sound. Acoustical measurement of this sound, through the use of high-precision condenser microphones, provides a better understanding of the nature of the sound. Sound can be desirable, as in music, or undesirable sound, referred to as noise. Some applications for acoustical studies that require microphones include:

Research and Product Design — Excessive sound pressure can cause damage to products or human hearing. Microphones are used to measure the pressure level exerted on a surface. Sound pressure can shake plaster off walls or cause damage to an airplane wing. Sound measurement is used in a variety of applications including: the study of door slams, clutch engagements, starter impact and sunroof noise. Analysis of engine noise in a cabin or car interior, or sound exhibited from consumer appliances are tested to extend the lifespan of the product and keep the external noise minimal, for the comfort of the user

Preventive Maintenance — Increased sound levels, or changes in frequency can indicate that a product is not working to its capacity. Motors, gears, bearings, blades, or other industrial components can all experience changes in decibel level or frequency shift when not working properly. High precision microphones can be utilized to confirm that a product is experiencing a problem, or can be used to predict failure of a component.

Audiometric Calibration — Universities, governments and independent companies have audio testing equipment to perform hearing tests and research projects. Microphones are used to test and calibrate the systems to ensure the accuracy of the test equipment.

Compliance — Microphone tests can be performed and recorded for verification of pressure levels on products, and can be utilized in legal situations. Companies will use high precision microphone tests for proof of sound pressure levels during design. Microphones are used on sound level meters to ensure compliance with national standards for shop noise

Environmental Noise Analysis — There are certain sound pressure levels that the human ear can be subjected to for specific amounts of time before ear damage can occur (dose). A few of these are industrial shop noise, airports, and automotive highway noise. Acoustic testing is performed so that a better understanding of the sound levels that are experienced in these surroundings is achieved, and the necessary adjustments can be made in order to provide greater personal protection. The automotive market will utilize high precision microphones for "Squeak and Rattle" tests in order to provide a quieter ride.

Multiple Channel Testing — Acoustic holography, and pressure mapping are areas where microphone use has been increasing. Grids of microphones can be set-up to tell the difference in the sound pressure at different points around an engine or a car tire well. Calculations can be made per zone or spectrum. Some applications include seismic activity monitoring, satellite tracking, and automotive and industrial noise source identification. Microphones can be utilized to transform 2-dimensional complex sound pressure information into 3-dimensional acoustic fields, using basic wave equations, to indicate surface intensity and radiation patterns.

Introduction to Microphones

INTRODUCTION TO MICROPHONES

High precision microphones are used in acoustical test and measurement applications to determine the sound pressure, in decibels (dB), that is exerted on an object at different frequencies and wavelengths. Acoustic testing is performed for a variety of applications, including new product design, product monitoring, predictive maintenance, and personal protection. Pressure from sound not only can damage material items, but also can damage the most precious and delicate design created to perceive it, the human ear.

Condenser Microphone

A condenser microphone is constructed by forming a capacitor between a thin, flexible diaphragm and a back plate. As sound pressure levels approach the diaphragm, it causes the diaphragm to deflect. The distance that the diaphragm moves, in relationship to the back plate, will cause a change in the capacitance. The capacitance change is then detected electrically. In order to measure the capacitance, a charge must be applied to the cartridge. In traditional microphones, a DC polarization voltage is supplied by an external power supply. In the modern (prepolarized) designs, a polymer (called an electret), contains its own internal polarization. The electret contains frozen electrical charges, which are stimulated by low-cost, ICP® constant current supply (2 - 20 mA). A voltage can then be measured and output from the changes in capacitance. Programs in external devices can then convert this output into sound pressure levels in decibels.

Cutaway Drawing of a Precision Microphone

Microphones Field Types Offered by PCB

PCB offers the three most common microphone types used for testing; free-field, pressure, and random incident. A free-field microphone is designed to be most accurate when measuring sound radiating from a single source, pointing directly at the microphone. The sound waves propagate freely, with no objects present which may disturb or influence the sound field. The free-field microphone measures the sound pressure as it exits from the sound source, without the influence of the microphone itself. These microphones work best in open areas, where there is no hard or reflective surfaces, such as anechoic rooms.

Sound Field Measured by a Free-Field Microphone

A pressure field microphone is designed to measure the sound pressure that exists in front of the diaphragm. It is described to have the same magnitude and phase at any position in the field. It is usually found in an enclosure, or cavity, which is small when compared to wavelength. The microphone will include the measurement changes in the sound field caused by the presence of the microphone. The sound being measured is coming from one source at a direction pointing directly at the microphone. Testing of pressure exerted on walls, structures, or pressure exerted on airplane wings are examples of pressure field microphone applications.

Sound Field Measured by a Pressure Microphone

A random incident microphone, also referred to as a "diffuse field" type, is designed to be omni-directional and measure sound pressure coming from multiple directions. The random incident microphone will measure the sound as if it existed before the introduction of the microphone itself into the diffuse field. When taking sound measurements in a church or in a shop with hard, reflective walls, you would utilize this type of microphone.
Introduction to Microphones

Sound Field Measured by a Random Incident Microphone

Dynamic Response

Sound pressure level is typically measured in Pascals (Pa). The lowest amplitude that a normal healthy human ear can detect is 20 millionths of a Pascal (20mPa). Since the pressure numbers represented by Pascals are generally very low and not easily managed, another scale was developed and is more commonly used, called the Decibel (dB). The decibel scale is logarithmic and more closely matches the response reactions of the human ear to the pressure fluctuations.

Cound Decouver Louis Defense

Sound Pressure Level	References
0 dB = 0.00002 Pa	Threshold of Hearing
60 dB = 0.02 Pa	Business Office
80 dB = 0.2 Pa	Shop Noise
94 dB = 1 Pa	Large Truck
100 dB = 2 Pa	Jackhammer
120 dB = 20 Pa	Airplane Take-Off
140 dB = 200 Pa	Threshold of Pain

PCB specifies the maximum dynamic range of its microphone cartridges based on allowable harmonic distortion levels and the design and physical characteristics of the microphone. The specified maximum dB level will refer to the point where the diaphragm will approach the back-

plate. The maximum decibels that a microphone will output in a certain application is dependent upon the voltage supplied, and the particular microphone's sensitivity. In order to calculate the maximum output for a microphone, using a specific preamplifier and its corresponding peak voltage, use the following formulas:

Pressure (Pa) =
$$\frac{\text{Voltage (V)}}{\text{Sensitivity (mV/Pa)}}$$

dB = 20 log (P/P₀)
P = Pressure in Pascals (Pa)

^P0= Reference Pressure (0.00002 Pa)

Formulas for determining maximum microphone output

ACOUSTIC MEASUREMENT SYSTEMS

There are two types of precision condenser microphones offered by PCB; externally polarized and prepolarized. The cartridge from a condenser microphone operates on basic transduction principles. It transforms the sound pressure into capacitance variations, which are then converted to an electrical signal. This conversion process requires a constant electrical charge (polarization voltage), which is either applied by a by a power supply or built into the microphone. Externally Polarized microphones will differ, when compared to the Prepolarized microphones, in the relationship of how the constant charge of the capacitance between the diaphragm and backplate is applied. Externally Polarized and Prepolarized microphones will each require different components for optimum operation.

Externally polarized microphones are based on a capacitive transduction principle. These high precision condenser microphones require a constant electrical charge for polarization from an external source. This voltage source comes from an external power supply, which ranges from 0V (and can be used with Prepolarized microphones) to 200V. PCB's Externally Polarized microphone set-up requires the use of

Externally Polarized Microphone System

Introduction to Microphones

7-conductor cabling with LEMO connectors. Externally polarized microphones are the traditional design, and are still utilized for compatibility reasons.

Prepolarized microphones are also high precision condenser type microphones. The polarization process is accomplished by adding a polymer that is applied to the backplate. This permanently charged polymer contains frozen electrical charges and is commonly referred to as an electret. The prepolarized microphones can be powered by inexpensive and easy-to-operate ICP[®] sensor power supplies (constant current signal conditioners) or directly powered by a readout device that has constant current power built-in. This enables the owner to use low impedance coaxial cables with BNC or 10-32 microdot connectors (rather than 7 Pin conductor cabling with LEMO connectors), for both current supply and signal to the readout device. This newer design has become very popular in recent years due to its cost savings and ease of use characteristics. Array microphones are free-field type microphones which are designed to offer a cost effective solution for multiple channel sound measurement. This makes Nearfield Acoustic Holography (NAH) measurements practical. Grids can be constructed to take 2D mapping measurements. The 130D20 and 130D21 have an integrated microphone and preamplifier. The 130 series utilizes the prepolarized microphone design, and are powered by any constant current (2 - 20mA) signal conditioner. Although the 130 series is more sensitive to changes in temperature and less accurate than the 377 series, the 130 series is very accurate for frequency response, ideal for trending, and offer an inexpensive alternative to the 377 series of microphones.

Array Microphone System

TEDS – Transducer Electronic Data Sheet

- Digital communication enables transducer self identification and retrieval of calibration data
- Self-identification organizes multi-channel testing
- Saves time and reduces errors
- Automatically identify PM data collection points
- Standardized for industry compatibility
- Stores NIST traceable calibration data
- On-board calibration data satisfies ISO & QS 9000 requirements

SMART SENSORS PROVIDE SELF IDENTIFICATION

TEDS is a "**T**ransducer **E**lectronic **D**ata **S**heet" embedded in a sensor for the purpose of maintaining critical sensor information, reducing paperwork, providing better management of transducers, reducing user error, and saving time and money.

Sensors incorporating Transducer Electronic Data Sheet (TEDS) are mixed-mode (analog/digital) sensors that have a built in read/write memory that contains relevant information about the sensor and its use. Also referred to as "smart" transducers or sensors, a portion of the memory is reserved for sensor specifications as defined by the manufacturer while another portion is user definable. Manufacturer information includes manufacturer name, model number, serial number, sensor type, sensitivity, etc. The user can select from dozens of transducer templates that include more sensor specific information and/or test information like channel ID, location, position, direction, tag number, etc.

The mixed-mode design allows the transducer to operate in two different modes. The first is its traditional IEPE (Integrated Circuit Piezoelectric) measurement mode, with its wide bandwidth, wide range, and analog output signal. The second mode is the digital communication mode, which switches the analog circuitry out of the system and passes the transducer's memory content over the same wires used to access the analog output. This enables the additional capability of the TEDS to operate with existing cabling. The TEDS feature was designed with a "plug-n-play" concept in mind. By containing relevant information that can be accessed digitally, a sensor simply needs to be "plugged into" a system which can digitally read all of the pertinent information about the sensor. This includes NIST traceable calibration data that satisfies ISO 9001 and QS 9000 requirements, which can eliminate the need for maintaining to printed calibration records.

Even though TEDS sensors contain digital information, the basic sensor design and performance is unchanged. It still operates as a standard ICP[®] sensor and can be used with existing ICP[®] sensor signal conditioners. In order to access the digital TEDS information however, additional circuitry is required in the signal conditioner or data collector. Since the basic sensor is unchanged, not only are its wide bandwidth, dynamic range, and 2-wire system maintained, but also its cost effectiveness.

Conversions and Useful Formulas

Voltage sensitivity of a charge output piezoelectric sensor:

$$V = \frac{q}{C}$$

- V = voltage sensitivity
- q = charge sensitivity
- C = capacitance of sensor

Voltage sensitivity of a charge output piezoelectric sensor with source follower:

$$V = \frac{q}{c_1 + c_2 + c_3}$$

- C_1 = capacitance of sensor
- C_2 = capacitance of interconnecting cable
- C₃ = input capacitance of unity gain source follower

Time constant for a first order, high pass filter:

Lower corner frequency (-3 dB) for an RC time constant:

$$f_{C} = \frac{1}{2 \pi RC}$$

 f_{C} = frequency at which signal is attenuated by -3 dB

Lower -5 % frequency point for an RC time constant:

$$f_{-5\%} = \frac{3}{2 \pi RC}$$

 $f_{-5\%}$ = frequency at which signal is attenuated by 5 %

Approximate upper +5 % frequency point for single degree-of-freedom mechanical system:

$$f_{+5\%} = \frac{f_r}{5}$$

 $f_{+5\%}$ = frequency at which signal is amplified by 5 % f_r = natural (resonant) frequency

Approximating two time constants in series for oscillating signals:

$$\sqrt{\frac{(R_1C_1) (R_2C_2)}{(R_1C_1)^2 + (R_2C_2)^2}}$$

Approximating two time constants in series for transient inputs lasting up to 10 % of the smaller time constant value:

$$\frac{(R_1C_1) (R_2C_2)}{(R_1C_1) + (R_2C_2)}$$

Rise time of a piezoelectric sensor:

$$t_r = \frac{1}{2 f_r}$$

t_r = rise time

fr = natural (resonant) frequency of the sensor

Acceleration:

$$\frac{m}{\sec^2} = \frac{g}{9.81}$$

Temperature:

$$^{\circ}C = \frac{(^{\circ}F-32) 5}{9}$$

Weight:

$$gm = \frac{lb}{453.59}$$
$$gm = \frac{oz}{28.35}$$

Article Reprints

To order copies of the following articles, simply request the "AR" number preceding each article; just write or call the Vibration Division toll-free at 1-888-684-0013.

- AR-1 Application of Integrated-Circuits to Piezoelectric Transducers, Paper P4-2 PHYMID 67 ICP[∞] transducer - basic operation and application / Cornell Aeronautical Lab, Robert Lally, 1967.
- AR-2 ICP[®] Concept Integrated-circuit piezoelectric. Low impedance, voltage mode system, PCB, 1967.
- AR-3 Piezoelectric Analogies Electrostatic vs. hydrostatic system. Piezoelectric vs. hydraulic circuit, Robert Lally, 1967.
- AR-4 Guide to ICP[®] Instrumentation Voltage vs. charge systems. Effect of coupling and time constant on response. Powering ICP system, Robert Lally, 1971.
- **AR-7** How to Balance with Your Real Time Analyzer Model 302A04 accelerometer / measure bearing vibration, George Lang, 1977.
- AR-8 Impulse Technique for Structural Frequency Response Testing Theory, display of frequency response; equipment requirements and measurement procedures, Wm. Halvorsen, D. Brown, 1977.
- AR-9 Testing the Behavior of Structures Rigid body, structural, and acoustic modes of behavior testing, Robert Lally, 1978.
- AR-11 Transduction The effect of sensor mass and/or stiffness on the quantity being measured, Robert Lally, 1982.
- AR-14 Modal Analysis Test Set-Up Fixturing, boundary conditions, transducer selection, calibration, applying excitation, and typical test, Jeff Poland, Richard Lally, 1985.
- AR-15 Modal-Tuning Improves Impact Testing Modally tuned[®] instrumented force hammers solve problem of spurious glitches in the frequency response during impact testing, Rick Lally, 1985.
- AR-16 Predictive & Selective Machinery Maintenance Digital velocity meter, model 396A / U.S. Navy shipboard applications, William Young, 1985.
- AR-18 Introduction to Piezoelectric Sensors Basic accelerometer, pressure, and force sensor design considerations and typical applications, Jim Lally, 1985.
- AR-19 Calibration of Piezo Sensors Calibration systems for dynamic pressure sensors, force sensors, and accelerometers with typical calibration results, Jim Lally, 1985.
- **AR-20** Integrity The Priceless Ingredient in Testing Model 305A triaxial configuration / firing of projectile, muzzle of machine gun application, Cover Application Photo, Test Magazine, 1985.
- AR-27 Six-Axis Dynamic Calibration of Accelerometers Calibration technique for modal systems, A. Severyn, Richard Lally, D. Brown, R. Zimmerman, 1987.
- AR-28 Accelerometer Calibration: Is It Credible? Compliance with MIL-STD-45662A, Jim Lally, 1987.

AR-32 Analyzing the Noise of a Fan

ICP[®] Accelerometer with magnetic base / effect of "accelerometer's mounting location on a fan" upon vibration spectrum, George Lang, 1988.

- AR-33 Diagnosing Faults in Rolling Element Bearings PCB rms vibration meter 396 / periodic machinery monitoring, J. Berggren, 1988.
- AR-35 Frequency Response Considerations for Piezoelectric Sensors and Related Inst. Time constant and AC coupling or DC coupling effects on frequency response. Time constant vs. shock pulse input duration, Ray Limburg, 1988.
- AR-39 High Frequency Calibration with the Structural Gravimetric Technique Model 965A system with 961A drop tester, 911A shaker / calibrate from 0.1 to 100,000 Hz (calibration capability for MIL-STD-740-2), Richard Lally, J. Lin, P. Kooyman, 1990.
- AR-43 Troubles With Cables Cables for voltage and charge mode systems. Cable management system, J.F. Lally, 1990.
- AR-47 Low Frequency Calibration With the Structural Gravimetric Technique Model 963A system - comparison of calibration test results between structural gravimetric, laser, and back-to-back methods, Richard Lally, Jing Lin, David Lally, 1991.

AR-48 Multichannel Management Concepts for Modal Analysis and Testing Using 496 channels - 12 force, 208 acoustic, 276

accelerometer responses / aircraft structure - all tests performed in 27 hours, Michael Lally, T. Severyn, 1991.

- AR-59 Recommended Practices: Accelerometer, Wiring and Connections Reliability of ICP[®] and charge mode systems based upon selection of cables and connections / long cable use with cable drive nomograph, James Lally, 1993.
- AR-61 Tuning of Piezoceramic Inertial Actuators for Active Noise and Vibration Suppression, Jeffrey Dosch, 1994
- AR-63 Specialized Accelerometers for Automotive Noise and Vibration Measurements, Manfred Vieten, Phil Weber, Mark Lapin, 1996
- AR-66 Hopkinson Bar Acceptance Testing for Shock Accelerometers, J. Dosch and Lin Jing, 1999
- AR-69 Automated Testing of Accelerometer Transverse Sensitivity, Jeffrey Dosch, 2000
- AR-70 Accelerometer Selection Consideration Charge and Internal Electronic Piezo Electric, Jim Lally 2001
- AR-71 Reduction of the Ski Slope Effect When Integrating from Acceleration to Velocity, Roger Lemieux, IMI
- AR-72 Lower Accelerometer Cost by Reducing Calibration Requirements, Eric Saller, IMI
- AR-73 Design & Application of Vibration Sensors, Eric Saller, IMI
- AR-75 Selecting Accelerometers for High-Frequency Measurements, Eric Saller, Duane Brzezowski, IMI

Reprinted with permission from Application Note: AN 243-1, "Effective Machinery Measurements Using Dynamic Signal Analyzers," Hewlett-Packard Company, 1991. Editing and additions performed by PCB Piezotronics, Depew, NY, 2003.

- **A-Weighting Filter** A broadband filter used to approximate the loudness level sensitivity of the human ear when listening to pure tones.
- Acceleration The time rate of change of velocity. Typical units are ft/s2, meters/s2, and G's (1G = 32.17 ft/s2 = 9.81 m/s2). Acceleration measurements are usually made with accelerometers.
- Accelerometer Transducer whose output is directly proportional to acceleration. Most commonly use piezoelectric crystals to produce output.
- Aliasing A phenomenon which can occur whenever a signal is not sampled at greater than twice the maximum bandwidth of the signal. Causes high frequency signals to appear at low frequencies. Aliasing is minimized by filtering the signal to a bandwidth less than fi the sample rate. When the signal starts at 0 Hz (baseband signals), *bandwidt*h can be exchanged to *maximum frequency* in the definition above.
- Alignment A condition whereby the axes of machine components are either coincident, parallel, or perpendicular, according to design requirements.
- Amplification Factor (Synchronous) A measure of the susceptibility of a rotor to vibration amplitude when rotational speed is equal to the rotor natural frequency (implies a flexible rotor). For imbalance type excitation, synchronous amplification factor is calculated by dividing the amplitude value at the resonant peak by the amplitude value at a speed well above resonance (as determined from a plot of synchronous response vs. rpm).
- Amplitude The magnitude of dynamic motion or vibration. Amplitude is expressed in terms of peak-to-peak, zero-to-peak, or rms. For pure sine waves only, these are related as follows: rms = 0.707 times zero-to-peak; peak-to-peak = 2 times zero-to-peak. DSAs generally read rms for spectral components, and peak for time domain components.
- Anti-Aliasing Filter Most commonly a low-pass filter designed to filter out frequencies higher than fi the sample rate in order to minimize aliasing.
- Anti-Friction Bearing See Rolling Element Bearing.
- Asymmetrical Support Rotor support system that does not provide uniform restraint in all radial directions. This is typical for most heavy industrial machinery where stiffness in one plane may be substantially different than stiffness in the perpendicular plane. Occurs in bearings by design, or from preloads such as gravity or misalignment.

- **Asynchronous** Vibration components that are not related to rotating speed (also referred to as nonsynchronous).
- Attitude Angle (Steady-State) The angle between the direction of steady-state preload through the bearing centerline, and a line drawn between the shaft centerline and the bearing centerline. (Applies to fluid-film bearings.)
- Auto Spectrum (Power Spectrum) DSA spectrum display whose magnitude represents the power at each frequency, and which has no phase.
- Averaging In a DSA, digitally averaging several measurements to improve accuracy or to reduce the level of asynchronous components. Refer to definitions of rms, time, and peakhold averaging.

Axial — In the same direction as the shaft centerline.

- Axial Position The average position, or change in position, of a rotor in the axial direction with respect to some fixed reference position. Ideally the reference is a known position within the thrust bearing axial clearance or float zone, and the measurement is made with a displacement transducer observing the thrust collar.
- **Balancing Resonance Speed(s)** A rotative speed that corresponds to a natural resonance frequency.
- **Balanced Condition** For rotating machinery, a condition where the shaft geometric centerline coincides with the mass centerline.
- **Balancing** A procedure for adjusting the radial mass distribution of a rotor so that the mass centerline approaches the rotor geometric centerline.
- **Band-Pass Filter** A filter with a single transmission band extending from lower to upper cutoff frequencies. The width of the band is normally determined by the separation of frequencies at which amplitude is attenuated by 3 dB (a factor 0.707).
- Bandwidth The distance between frequency limits at which a band-pass filter attenuates the signal by 3 dB. In a DSA, the measurement bandwidth is equal to [(frequency span)/(number of filters) x (window factor)]. Window factors are: 1 for uniform, 1.5 for Hanning, and 3.4 for flat top (P301) and 3.6 for flat top (P401). See flat top for more information.
- **Baseline Spectrum** A vibration spectrum taken when a machine is in good operating condition; used as a reference for monitoring and analysis.
- **Blade Passing Frequency** A potential vibration frequency on any bladed machine (turbine, axial compressor, fan, etc.). It is represented by the number of blades times shaft-rotating frequency.

- **Block Size** The number of samples used in a DSA to compute the Fast Fourier Transform. Also the number of samples in a DSA time display. Most DSAs use a block size of 1024. Smaller block size reduces frequency resolution.
- **Bode** Rectangular coordinate plot of 1x component amplitude and phase (relative to a keyphasor) vs. running speed.
- **BPFO, BPFI** Common abbreviations for ball pass frequency of defects on outer and inner bearing races, respectively.
- **Bow** A shaft condition such that the geometric centerline of the shaft is not straight.
- **Brinneling (False)** Impressions made by bearing rolling elements on the bearing race; typically caused by external vibration when the shaft is stationary.
- **Broadband Noise** Unwanted sound that contains multiple frequencies.
- **Calibration** A test during which known values of the measured variable are applied to the transducer or readout instrument, and output readings varied or adjusted.
- **Campbell Diagram** A mathematically constructed diagram used to check for coincidence of vibration sources (i.e. 1 x imbalance, 2 x misalignment) with rotor natural resonances. The form of the diagram is like a spectral map (frequency versus rpm), but the amplitude is represented by a rectangular plot, the larger the amplitude the larger the rectangle. Also known as an interference diagram.
- Cascade Plot See Spectral Map.
- **Cavitation** A condition which can occur in liquid-handling machinery (e.g. centrifugal pumps) where a system pressure decrease in the suction line and pump inlet lowers fluid pressure and vaporization occurs. The result is mixed flow which may produce vibration.
- **Center Frequency** For a bandpass filter, the center of the transmission band, measured in a linear scale.
- **Charge Amplifier** Amplifier used to convert accelerometer output impedance from high to low, making calibration much less dependent on cable capacitance.
- **Coherence** Measures how much of the output signal is dependent on the input signal in a linear and time-invariant way. It is an effective means of determining the similarity of vibration at two locations, giving insight into the possibility of cause and effect relationships.
- **Condenser Microphone** A high precision measuring device, constructed by forming a capacitor between a thin, flexible diaphragm and a back plate. In conventional microphones a DC voltage is applied externally. In modern (prepolarized) designs, frozen electric charges are contained in a polymer within the microphone cartridge.

- **Constant Bandwidth Filter** A band-pass filter whose bandwidth is independent of center frequency. The filters simulated digitally by the FFT in a DSA are constant bandwidth.
- **Constant Percentage Bandwidth** A band-pass filter whose bandwidth is a constant percentage of center frequency. 1/3 octave filters, including those synthesized in DSAs, are constant percentage bandwidth.
- **Critical Machinery** Machines which are critical to a major part of the plant process. These machines are usually unspared.
- Critical Speeds In general, any rotating speed which is associated with high vibration amplitude. Often, the rotor speeds which correspond to natural frequencies of the system.
- **Critical Speed Map** A rectangular plot of system natural frequency (y-axis) versus bearing or support stiffness (x-axis).
- **Cross Axis Sensitivity** A measure of off-axis response of velocity and acceleration transducers.
- Cycle One complete sequence of values of a periodic quantity.
- Damping The quality of a mechanical system that restrains the amplitude of motion with each successive cycle. Damping of shaft motion is provided by oil in bearings, seals, etc. The damping process converts mechanical energy to other forms, usually heat.
- **Damping, Critical** The smallest amount of damping required to return the system to its equilibrium position without oscillation.
- **Decibel** A logarithmic value used to commonly describe sound pressure levels.
- **Decibels (dB)** A logarithmic representation of amplitude ratio, defined as 10 times the base ten logarithm of the ratio of the measured power to a reference. dBV readings, for example, are referenced to 1 volt rms. dB amplitude scales are required to display the full dynamic range of a DSA. dB values for power or voltage measurements yields the same result.
- **Degrees of Freedom** A phrase used in mechanical vibration to describe the complexity of the system. The number of degrees of freedom is the number of independent variables describing the state of a vibrating system.
- **Digital Filter** A filter which acts on the data after it has been sampled and digitized. Often used in DSAs to provide anti-aliasing protection before internal re-sampling.
- **Differentiation** Representation in terms of time rate of change. For example, differentiating velocity yields acceleration. In a DSA, differentiation is performed by multiplication by *j*w in the frequency domain, where w is frequency multiplied by 2p. (Differentiation can also be used to convert displacement to velocity.)

- **Discharge Time Constant (DTC)** Time required for a sensor or measuring system to discharge its signal to 37% of the original value from a step change of measurand. This time constant directly relates to the low frequency measuring capability for both transient and sinusoidal events. (it should not be confused with rise time, which relates to high frequency response).
- **Discrete Fourier Transform** A procedure for calculating discrete frequency components (filters or lines) from sampled time data. Since the frequency domain result is complex (i.e., real and imaginary components), the number of frequency points is equal to half the number of time samples (for a real FFT). When using zoom analysis, the FFT uses complex time data and then the number of frequency lines is equal to the number of time samples.
- **Displacement** The change in distance or position of an object relative to a reference.
- **Displacement Transducer** A transducer whose output is proportional to the distance between it and the measured object (usually the shaft).
- **DSA** See Dynamic Signal Analyzer.
- **Dual Probe** A transducer set consisting of displacement and velocity transducers. Combines measurement of shaft motion relative to the displacement transducer with velocity of the displacement transducer to produce absolute motion of the shaft.
- **Dual Voting** Concept where two independent inputs are required before action (usually machine shutdown) is taken. Most often used with axial position measurements, where failure of a single transducer might lead to an unnecessary shutdown.
- **Dynamic Motion** Vibratory motion of a rotor system caused by mechanisms that are active only when the rotor is turning at speeds above slow roll speed.
- **Dynamic Signal Analyzer (DSA)** Vibration analyzer that uses digital signal processing and the Fast Fourier Transform to display vibration frequency components. DSAs also display the time domain and phase spectrum, and can usually be interfaced to a computer.
- **Eccentricity, Mechanical** The variation of the outer diameter of a shaft surface when referenced to the true geometric centerline of the shaft. Out-of-roundness.
- **Eccentricity Ratio** The vector difference between the bearing centerline and the average steady-state journal centerline.
- Eddy Current Electrical current which is generated (and dissipated) in a conductive material in the presence of an electromagnetic field.
- Electrical Runout An error signal that occurs in eddy current displacement measurements when shaft surface conductivity varies.

- **Engineering Units** In a DSA, refers to units that are calibrated by the user (e.g., in/s, g's).
- **External Sampling** In a DSA, refers to control of data sampling by a multiplied tachometer signal. Provides a stationary display of rpm-related peaks with changing speed.
- Far Field A region that is located far from the source where the acoustic pressure and particle velocity are essentially in-phase. This permits acoustic intensity to be determined from measurements of acoustic pressure coming from a single source in a reflection-free environment. The distance should be at least equal to the dimensions of the sound source, and at least one wavelength of the frequency of interest.
- Fast Fourier Transform (FFT) A computer (or microprocessor) procedure for calculating discrete frequency components from sampled time data. A special case of the Discrete Fourier Transform, DFT, where the number of samples is constrained to a power of 2 for speed.
- Filter Electronic circuitry designed to pass or reject a specific frequency band.
- **Finite Element Modeling** A computer aided design technique for predicting the dynamic behavior of a mechanical system prior to construction. Modeling can be used, for example, to predict the natural frequencies of a flexible rotor.
- Flat Top Filter FFT window function which provides the best amplitude accuracy for measuring discrete frequency components. Note: there are several different flat top windows. The HP proprietary P401 is the "best" flat top window. P301 is the most common.
- Fluid-Film Bearing A bearing which supports the shaft on a thin film of oil. The fluid-film layer may be generated by journal rotation (hydrodynamic bearing), or by externally applied pressure (hydrostatic bearing).
- **Forced Vibration** The oscillation of a system under the action of a forcing function. Typically forced vibration occurs at the frequency of the exciting force.
- Free Field A sound field that does not contain reflections. In this type of field, sound waves travel without disturbance. Outdoor environments or anechoic chambers are examples.
- **Free Vibration** Vibration of a mechanical system following an initial force typically at one or more natural frequencies.
- **Frequency** The repetition rate of a periodic event, usually expressed in cycles per second (Hz), revolutions per minute (rpm), or multiples of a rotational speed (orders). Compare to orders that are commonly referred to as 1x for rotational speed, 2x for twice rotational speed, etc.
- **Frequency Response Function** The amplitude and phase response characteristics of a system.

- G The value of acceleration produced by the force of gravity.
- **Gear Mesh Frequency** A potential vibration frequency on any machine that contains gears; equal to the number of teeth multiplied by the rotational frequency of the gear.
- Hanning Window FFT window function that normally provides better frequency resolution than the flat top window, but with reduced amplitude accuracy.
- **Harmonic** Frequency component at a frequency that is an integer multiple of the fundamental frequency.
- **Heavy Spot** The angular location of the imbalance vector at a specific lateral location on a shaft. The heavy spot typically does not change with rotational speed.
- Hertz (Hz) The unit of frequency represented by cycles per second.
- **High Spot** The angular location on the shaft directly under the vibration transducer at the point of closest proximity. The high spot can move with changes in shaft dynamics (e.g., from changes in speed).
- **High-Pass Filter** A filter with a transmission band starting at a lower cutoff frequency and extending to (theoretically) infinite frequency.
- **Hysteresis** Non-uniqueness in the relationship between two variables as a parameter increases or decreases. Also called deadband, or that portion of a system's response where a change in input does not produce a change in output.
- **Imbalance** Unequal radial weight distribution on a rotor system; a shaft condition such that the mass and shaft geometric center lines do not coincide.
- **Impact Test** Response test where the broad frequency range produced by an impact is used as the stimulus. Sometimes referred to as a bump test. See impulse response for more information.
- **Impedance, Mechanical** The mechanical properties of a machine system (mass, stiffness, damping) that determine the response to periodic forcing functions.
- **Impulse Response** The response of a system to an impulse as input signal. The output then produces the impulse response that is the time domain equivalent to the Frequency Response Function, FRF.
- **Influence Coefficients** Mathematical coefficients that describe the influence of system loading on system deflection.
- **Integration** A process producing a result that, when differentiated, yields the original quantity. Integration of acceleration, for example, yields velocity. Integration is performed in a DSA by dividing the frequency lines by *jw*, where w is frequency multiplied by 2p. (Integration is also used to convert velocity to displacement.)

- **Journal** Specific portions of the shaft surface from which rotor applied loads are transmitted to bearing supports.
- Keyphasor A signal used in rotating machinery measurements, generated by a transducer observing a once-per-revolution event. The keyphasor signal is used in phase measurements for analysis and balancing. (Keyphasor is a Bently Nevada trade name.)
- Lateral Location The definition of various points along the shaft axis of rotation.

Lateral Vibration — See Radial Vibration.

- Leakage In DSAs, a result of finite time record length that results in smearing of frequency components. Its effects are greatly reduced by the use of weighted time functions such as Flat top or Hanning windows.
- **Linearity** The response characteristics of a linear system remain constant with input level and/or excitation signal type. That is, if the response to input *a* is $k \cdot a$, and the response to input *b* is $k \cdot b$, then the response of a linear system to input (a + b) will be $(k \cdot a + k \cdot b)$, independent of the function *k*. An example of a nonlinear system is one whose response is limited by mechanical stop, such as occurs when a bearing mount is loose.
- Lines Common term used to describe the filters of a DSA produced by the FFT (e.g., 400 line analyzer).
- Linear Averaging See Time Averaging.
- **Loudness** a subjective physiological description of the magnitude of an auditory sensation.
- **Low-Pass Filter** A filter whose transmission band extends from dc to an upper cutoff frequency.
- **Mechanical Runout** An error in measuring the position of the shaft centerline with a displacement probe that is caused by out-of-roundness and surface imperfections.
- **Micrometer (MICRON)** One millionth (.000001) of a meter. (1 micron = 1 x E-6 meters @ 0.04 mils.)
- Microphone An electromechanical sensor for measuring acoustical properties. Designed to convert sound pressure level into an electrical output that can be quantified.
- MIL One thousandth (0.001) of an inch. (1 mil = 25.4 microns)
- **Modal Analysis** The process of breaking complex vibration into its component modes of vibration, very much like frequency domain analysis breaks vibration down to component frequencies.
- **Mode Shape** The resultant deflected shape of a rotor at a specific rotational speed to an applied forcing function. A three-dimensional presentation of rotor lateral deflection along the shaft axis.

- **Modulation, Amplitude (AM)** The process where the amplitude of a signal is varied as a function of the instantaneous value of a another signal. The first signal is called the carrier, and the second signal is called the modulating signal. Amplitude modulation always produces a component at the carrier frequency, with components (sidebands) at the frequency of the carrier frequency plus minus the modulating signal.
- **Modulation, Frequency (FM)** The process where the frequency of the carrier is determined by the amplitude of the modulating signal. Frequency modulation produces a component at the carrier frequency, with adjacent components (sidebands) at frequencies around the carrier frequency related to the modulating signal. The carrier and sidebands are described by Bessel functions.
- Natural Frequency The frequency of free vibration of a system. The frequency at which an undamped system with a single degree of freedom will oscillate upon momentary displacement from its rest position.
- **Near Field** The region near a complex sound source where the acoustic pressure and particle velocity are not in phase.
- Nodal Point A point of minimum shaft deflection in a specific mode shape. May readily change location along the shaft axis due to changes in residual imbalance or other forcing function, or change in restraint such as increased bearing clearance.
- **Noise** (1) A subjected characteristic of sound waves that is not desirable. Unwanted sound is considered noise.

(2) Any component of a transducer output signal that does not represent the variable intended to be measured.

- **Nyquist Criterion** Requirement that a sampled system needs to be sampled at a frequency greater than twice the bandwidth of the signal to be sampled.
- **Nyquist Plot** A plot of real versus imaginary spectral components that is often used in servo analysis. Should not be confused with a polar plot of amplitude and phase of 1x vibration.
- **Octave** The interval between two frequencies with a ratio of 2 to 1. A doubling of frequency.
- **Octave Filter** A band pass filter having an equal bandwidth of its center frequency. Most common octave filters are the 1/1 octave filter containing 11 bands, and the 1/3 octave filter containing 32 bands.
- **Oil Whirl/Whip** An unstable free vibration whereby a fluid-film bearing has insufficient unit loading. Under this condition, the shaft centerline dynamic motion is usually circular in the direction of rotation. Oil whirl occurs at the oil flow velocity within the bearing, usually 40 to 49% of shaft speed. Oil whip occurs when the whirl frequency coincides with (and becomes locked to) a shaft resonant frequency. (Oil whirl and whip can occur in any case where fluid is between two cylindrical surfaces.)

- **Orbit** The path of the shaft centerline motion during rotation. The orbit is observed with an oscilloscope connected to x and y-axis displacement transducers. Some dual-channel DSAs also have the ability to display orbits.
- **Oscillator-Demodulator** A signal conditioning device that sends a radio frequency signal to an eddy-current displacement probe, demodulates the probe output, and provides output signals proportional to both the average and dynamic gap distances. (Also referred to as Proximitor, a Bently Nevada trade name.)
- **Peak Hold** In a DSA, a type of averaging that holds the peak signal level for each frequency component.
- **Period** The time required for a complete oscillation or for a single cycle of events. The reciprocal of frequency.
- Phase A measurement of the timing relationship between two signals, or between a specific vibration event and a keyphasor pulse. Phase is often measured as a function of frequency.
- Piezoelectric Any material which provides a conversion between mechanical and electrical energy. For a piezoelectric crystal, if mechanical stresses are applied on two opposite faces, electrical charges appear on some other pair of faces.
- **Pink Noise** Pink noise has equal energy in each octave band. Its energy is equal to 1/f, which describes a -dB/octave response.
- **Polar Plot** Polar coordinate representation of the locus of the 1x vector at a specific lateral shaft location with the shaft rotational speed as a parameter.

Power Spectrum — See Auto Spectrum.

- Preload, Bearing The dimensionless quantity that is typically expressed as a number from zero to one where a preload of zero indicates no bearing load upon the shaft, and one indicates the maximum preload (i.e., line contact between shaft and bearing).
- **Preload, External** Any of several mechanisms that can externally load a bearing. This includes "soft" preloads such as process fluids or gravitational forces as well as "hard" preloads from gear contact forces, misalignment, rubs, etc.
- **Pressure Field** An area that is small compared to its corresponding wavelength. In this field type, the sound pressure being measured should have the same magnitude and phase at any point. You will find pressure fields in enclosures, cavities, calibrators, pistonphones or other small chambers.
- Proximitor See Oscillator/Demodulator.
- Pure Tone A sound that contains a single frequency.
- Radial Direction perpendicular to the shaft centerline.
- **Radial Position** The average location, relative to the radial bearing centerline, of the shaft dynamic motion.

- **Radial Vibration** Shaft dynamic motion or casing vibration which is in a direction perpendicular to the shaft centerline.
- Random Incidence Field Sound arriving from multiple directions simultaneously with equal level. Also referred to as a diffuse field. An area that contains reflective surfaces which produce reverberation. Halls, churches and factories with hard walls will produce this type of field.

Real-Time Analyzer — See Dynamic Signal Analyzer.

Real-Time Rate — For a DSA, the broadest frequency span at which data is sampled continuously. Real-time rate is mostly dependent on FFT processing speed. If the definition of real-time rate is "not miss any data", the real-time rate will be window dependent. The real-time rate will decrease when using any other window than uniform.

Rectangular Window — See Uniform Window.

- **Reference Sound Pressure** The minimal amount of sound that a healthy human ear can detect. Quantified as 20 micro Pascals (20mPa). Used for the logarithmic conversion of pascals to decibals.
- **Relative Motion** Vibration measured relative to a chosen reference. Displacement transducers generally measure shaft motion relative to the transducer mounting.
- **Repeatability** The ability of a transducer or readout instrument to reproduce readings when the same input is applied repeatedly.
- **Resolution** The smallest change in stimulus that will produce a detectable change in the instrument output.
- **Resonance** The condition of vibration amplitude and phase change response caused by a corresponding system sensitivity to a particular forcing frequency. A resonance is typically identified by a substantial amplitude increase, and related phase shift.
- **Rolling Element Bearing** Bearing whose low friction qualities derive from rolling elements (balls or rollers), with little lubrication.
- Root Mean Square (rms) Square root of the arithmetical average of a set of squared instantaneous values. DSAs perform rms averaging digitally on successive vibration spectra, frequency line by frequency line.
- **Rotor, Flexible** A rotor which operates close enough to, or beyond its first bending critical speed for dynamic effects to influence rotor deformations. Rotors which cannot be classified as rigid rotors are considered to be flexible rotors.
- Rotor, Rigid A rotor which operates substantially below its first bending critical speed. A rigid rotor can be brought into, and will remain in, a state of satisfactory balance at all operating speeds when balanced on any two arbitrarily selected correction planes.

- **Runout Compensation** Electronic correction of a transducer output signal for the error resulting from slow roll runout.
- Seismic Refers to an inertially referenced measurement or a measurement relative to free space.
- Seismic Transducer A transducer that is mounted on the case or housing of a machine and measures casing vibration relative to free space. Accelerometers and velocity transducers are seismic.
- Signal Conditioner A device placed between a signal source and a readout instrument to change the signal and/or bandwidth. Examples: attenuators, preamplifiers, charge amplifiers, filters.
- Signature Term usually applied to the vibration frequency spectrum which is distinctive and special to a machine or component, system or subsystem at a specific point in time, under specific machine operating conditions, etc. Used for historical comparison of mechanical condition over the operating life of the machine.
- **Slow Roll Speed** Low rotative speed at which dynamic motion effects from forces such as imbalance are negligible.
- **Sound Pressure** The physical characteristic of sound that can be measured by microphones. Typically measured in decibels, pascals, newtons per square meter, or pounds per square inch (psi).
- **Spectral Map** A three-dimensional plot of the vibration amplitude spectrum versus another variable, usually time or rpm.
- **Spectrum Analyzer** An instrument which displays the frequency spectrum of an input signal.
- Stiffness The spring-like quality of mechanical and hydraulic elements to elasticity deform under load.
- Strain The physical deformation, deflection, or change in length resulting from stress (force per unit area).
- **Subharmonic** Sinusoidal quantity of a frequency that is an integral submultiple of a fundamental frequency.
- **Subsynchronous** Component(s) of a vibration signal which has a frequency less than shaft rotative frequency.
- Synchronous Sampling In a DSA, it refers to the control of the effective sampling rate of data; which includes the processes of external sampling and computed resampling used in order tracking.
- **Temperature Coefficient** The percentage change in the sensitivity of a sensor as a result of a unit change in the operating temperature of the sensor; expressed as a percent per degree: i.e., %/°F of %/°C.
- **Time Averaging** In a DSA, averaging of time records that results in reduction of asynchronous components with reference to the trigger.

- **Time Record** In a DSA, the sampled time data converted to the frequency domain by the FFT. Most DSAs use a time record of 1024 samples.
- **Torsional Vibration** Amplitude modulation of torque measured in degrees peak-to-peak referenced to the axis of shaft rotation.
- **Tracking Filter** A low-pass or band-pass filter which automatically tracks the input signal versus the rpm. A tracking filter is usually required for aliasing protection when data sampling is controlled externally.
- **Transducer** A device for translating the magnitude of one quantity into another quantity.
- **Transient Vibration** Temporarily sustained vibration of a mechanical system. It may consist of forced or free vibration or both. Typically this is associated with changes in machine operating condition such as speed, load, etc.

Transverse Sensitivity - See Cross-Axis Sensitivity.

- **Trigger** Any event which can be used as a timing reference. In a DSA, a trigger can be used to initiate a measurement.
- Unbalance See Imbalance.
- **Uniform Window** In a DSA, a window function with uniform weighting across the time record. This window does not protect against leakage, and should be used only with transient signals contained completely within the time record.
- Vector A quantity which has both magnitude and direction (phase).
- Waterfall Plot See Spectral Map.
- Wavelength The distance from one pressure peak to the next corresponding pressure peak. Derived by dividing the speed of sound by a frequency. The lower the frequency, the larger its wavelength.
- White Noise Unwanted sound that contains spectral properties that are the same for all frequencies, given that the same bandwidth is used for all frequencies.

Vibration Application Inquiry Form

The vibration sensors listed in this catalog represent our most popular sensors, which are only a fraction of the sensors we offer. In addition to our standard sensors, PCB can customize sensors to meet your specific needs. Please fill out this inquiry form with any information available to you, so that we may help you with your dynamic measurement application. If you would like to discuss your application, or if it is not listed, please call, fax, E-mail, or write to PCB for suggestions.

Nam	ie:		Date: _	Date:					
Com	ipany:		Phone	_ Phone:		Ext.:			
Dept	t.:		Fax:						
Addr	ress:		City/St	ate:		Zip			
			-						
1.	NATURE OF REQUI	NATURE OF REQUEST							
	 Inquiry Order Service or Repair 	 Quotation De Equipment Operation 	elivery Information	□ Complaint rom PCB or Sales	Trouble with Equ Representative in your	ipment area			
2.	DESCRIBE THE AP	DESCRIBE THE APPLICATION (check all that apply)							
	INDUSTRY		M	EASUREMENT TY	'PE				
	Aerospace	Laboratory Research		Balancing	Predictive N	laintenance			
	Pulp and Paper	Microelectronics		ESS	Modal Analy	ysis To vi			
	Power Plant Military	Civil Engineering		Shock		ency lesting			
				Seismic		plation			
				Trend Analysis	C Other				
3.	PHYSICAL								
	Physical Design: 🛛 Si	ngle-Axis Accelerometer	Triaxial Accelerom	eter 🗅 Thru-Hol	e or Ring-Type Acceler	ometer			
	Desired Characteristics:								
	Sonoitivity	ml/a or							
		mv/g or	po/g	0()		2)			
		to	H2 (within ± _	76) (01 (± 0E))			
	Resonance Frequ								
		grams	14/		Diamatan				
	Size Limitation F	1, L	, vv	; or	Diameter				
4.	DYNAMIC								
	What is the approximate	vibration amplitude level to b	be measured?	g peak,	m/s² pe	ak			
	What is the maximum vil	pration amplitude expected to	b be present?	g peak, _	m/s² pea	ak			
	What is the desired reso	lution? g pea	k or rms						
	What is the maximum fre	equency of interest?	Hz or	CPM					
	What is the minimum fre	quency of interest?	Hz or	CPM					
5.	MECHANICAL AND ENVIRONMENTAL								
	Continuous operating ter	nperature range (min. to max	x.): to	٥ ٥	C, to °F				
	Will the temperature be	cycling? If ye	s, at what cycling pro	ofile?					
	What is the storage temp	perature? °C,	°F						
	Are high amplitude mech	nanical signals present?							
	What is the highest share		nt0	naal					

What is the highest shock level expected to be present? ______ g peak

Describe in detail, operating environment

Vibration Application Inquiry Form

6. CABLING AND MOUNTING

Electrical Connection Location: 🗆 Axial (Top) Exit 🕒 Radial (Side) Exit				
Connector Type: Military Style 10-32 5-44 Integral Cable Four-Pin Other				
Cable Type: Coaxial Cable Two-Conductor Shielded Twisted Pair Other				
Other Cable Requirements				
Mounting Type: Removable Stud Integral Stud Captive Bolt Adhesive Magnetic Base	❑ Other			
Thread Size:				

7. ELECTRICAL

What is the readout device?	A to D	Scope	Other (specified)	fy)		
What is the input impedance of the readout device (if applicable)?						
Can the readout device supply 24 to 27 VDC and 2 to 20 mA excitation to sensor?						
What kind of signal condition	er would you lik	e? Single	channel	Multiple channel	How many?	
What cable lengths will be dri	ven? Cable le	ength	_ ft, m Ca	able Capacitance	pF/ft, pF/m	
Will the cable be near electromagnetic interference sources (i.e., AC power lines, radio equipment, motors, and generators)?						
Describe:						
Is the sensor or cable located near areas prone to electrostatic discharges?						
Should the sensor be: 🛛 G	round-Isolated	🗅 Case-	Isolated			

8. OTHER SPECIFIC REQUESTS OR REQUIREMENTS

For Shock Applications, Please complete the following:

9. SHOCK ACCELEROMETERS APPLICATION SPECIFICS

What is the pulse duration	ו?				
What is the pulse shape?	🗆 Hal	f sine	Square	Other (specify)	
Is the event repetitive?	🗆 Yes	🗅 No			
If yes, time between events					
Is the shock caused by	🗅 Pyro	□ Me	tal to metal	Other (specify)	

PCB Piezotronics, Inc. Vibration Division • Shock and Vibration Sensors for Precision Testing Applications Toll Free: 888-684-0013 • Fax: 716-685-3886 • E-mail: vibration@pcb.com • Web site: www.pcb.com

Sensors that measure up!sm

PCB® Piezotronics, Inc. is uniquely positioned in the sensor industry to satisfy a wide range of research, test, measurement, monitoring, and control applications.

Each focused product division provides attention to specific measurement requirements by maintaining a knowledgeable staff of applications engineers, customer service representatives, and product specialists.

With considerable manufacturing capabilities, PCB is equipped to produce products in-house and deliver them on time. An experienced engineering staff and a willingness to meet customer expectations enables PCB to develop custom products that satisfy special applications not covered by standard models.

PCB Piezotronics, Inc. (www.pcb.com) is a member of the PCB Group of companies, which includes the following measurement technology affiliates:

Larson Davis, Inc. (888-258-3222, www.larsondavis.com) specializes in sound and vibration analyzers, sound level meters, environmental noise monitoring systems, personal noise dosimeters, human vibration meters, microphones, preamplifiers, signal conditioners, and acoustic calibrators.

The Modal Shop, Inc. (800-860-4867, www.modalshop.com) specializes in calibration systems, test equipment rental, and application engineering services.

Oceana Sensor Technologies (757-426-3678, www.oceanasensor.com) specializes in automated assembly of piezoelectric sensors for high volume, low-cost, OEM applications.

STI Technologies, Inc. (585-424-2010, www.sti-tech.com) specializes in engineering consulting to ensure high performance and reliability for turbomachinery and rotating machine systems.

The Vibration Division of PCB Piezotronics, Inc. specializes in the development, application,

and support of shock and vibration sensors, microphones, impact hammers, piezoelectric actuators, and dynamic strain sensors for acceleration measurements, acoustic testing, and structural testing requirements.

Environmental stress screening Floor and foundation vibrations **Geological exploration & mapping** Modal analysis Structural testing NVH / noise vibration and harshness Package testing Pile driver monitoring

Shock and pyroshock measurements **Ride quality monitoring** Squeak and rattle detection Vibration control Sound level measurements Array measurements Low-level acoustics Sound Quality

Fax 716-685-3886 E-mail vibration@pcb.com

The IMI Sensors Division of PCB Piezotronics, Inc. specializes in the development, application, and support of

Vibration Division toll free 888-684-0013

industrial vibration sensors, transmitters, meters, and accessories for machinery condition monitoring and predictive maintenance requirements.

IMI Sensors Division toll free 800-959-4464

Balancing **Bearing analysis Diagnostics of rotating machinery** Gearbox analysis Hull vibration monitoring Machinery condition monitoring

Machinery mount monitoring Machinery vibration monitoring Predictive maintenance Shaft alignment Slurry pulsation monitoring

Fax 716-684-3823 E-mail imi@nch com

The Force / Torque Division of PCB Piezotronics, Inc. specializes in the development, application,

and support of piezoelectric and strain gage force sensors, load cells, and torque sensors for a wide range of research, test, measurement, monitoring, and control requirements.

Automotive ride simulator measurements	Electric motor testing
Biomechanics	Engine dynamometers
Brake torque measurements	Force press monitoring
Cold forming operations monitoring	Impact measurements
Composites testing and evaluation	Materials testing
Compression force measurement	Stamping operations monitoring
Crash testing	Torque measurements
Crimping	Weighing
Drop testing	

Force/Torque Division toll free 888-684-0004

Fax 716-684-8877 E-mail force@pcb.com

♥PCB PIEZOTRONICS PRESSURE DIVISION

The Pressure Division of PCB Piezotronics, Inc.

specializes in the development. application, and support of piezoelectric and piezoresistive pressure sensors, transducers, and transmitters for dynamic and static pressure test, measurement, monitoring, and control requirements.

Acoustics Ballistics Blast & explosion Combustion measurement and monitoring Exhaust noise & pulsation studies **Explosive studies** Fluid horne noise

High intensity sound measurements Hydraulic pressure studies Level measurements Liquid depth measurements Pneumatic pressure studies Process monitoring & control Shock wave measurements

Pressure Division toll free 888-684-0011

Fax 716-686-9129 E-mail pressure@pcb.com

The Electronics Division of PCB Piezotronics, Inc. specializes in the development, application, and support of signal **☞PCB** PIEZOTRONICS conditioners, cables, and accessories for a wide variety of sensor interfacing requirements. ECTRONICS DIVISION

Piezoelectric, capacitive, strain gage, and resistive sensors for acceleration, acoustics, actuation, force, load, pressure, shock, strain, torque and vibration

You are invited to visit our modern manufacturing and technology center whenever you are in the Buffalo-Niagara region. PCB is located convenient to the Buffalo Niagara International Airport and near Niagara Falls.

Total Customer Satisfaction Guaranteed

3425 Walden Avenue, Depew, NY 14043-2495 USA Vibration Division toll free 888-684-0013 24-hour SensorLine[™] 716-684-0001 Fax 716-685-3886 E-mail vibration@pcb.com Web site www.pcb.com

ISO 9001:2000 CERTIFIED A2LA ACCREDITED to ISO 17025

© 2004 PCB Group, Inc. In the interest of constant product improvement, specifications are subject to change without notice. PCB, IMI with associated logo, ICP, and Modally Tuned are registered trademarks of PCB Group, Inc.