July 2003

Photologic ${ }^{\oplus}$. Slotted Optical Switches Types OPB480, OPB490 Series

Features

- Choice of mounting configuration
- Choice of aperture
- Choice of output configuration
- Choice of opaque or IR transmissive shell material
- Data rates to 250 kiBaud
- 24" min 26AWG wire leads
- Low power consumption

Description

The OPB480 and OPB490 series of Photologic ${ }^{\text {a }}$ Photo Integrated Circuit Switches provide optimum flexibility for the design engineer. Building from a standard housing with a $0.125^{\prime \prime}$ (3.18 mm) wide slot, the user can specify (1) type and polarity of Til output, (2) discrete shell material, (3) aperture width, and (4) choice of mounting configuration. These devices exhibit stable performance over supply voltages ranging from 4.5 V to 16.0 V and may be specified as butfered or inverted with 10 kW pull-up or open collector outpui. All are TTVLSTTL compatible and can drive up to 10 TTL loads.

Replaces/Upgrades

OPB980, OPB990 series

Absolute Maximum Ratings ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Supply Voltage, Vcc (Not to exceed 3 sec.)
Storage Temperature Range . $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$

Input Diode Power Dissipatiọn . $100 \mathrm{~mW} \mathbf{W}^{(1)}$
Oưput Photologic ${ }^{6}$ Power Dissipation. 90 mW ${ }^{(2)}$
Total Device Power Dissipation . 190 mwis ${ }^{(3)}$
Voltage at Oulput Lead (Open Collector Output) . 35 V
Diode Forward D.C. Current. 40 mA
Diode Reverse D.C. Voltage . 2 V

Notes:

(1) Derate linearly $1.82 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(2) Derate linearly $1.64 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(3) Derate linearty $3.45 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
(4) The OPB980/OFB990 series of switches are terminated with 24 inches of 7 strand 26 AWG. UL 1429 insulated wire on each terminal. Insulation colors and functions are:

WHITE - Vce
BLUE - Output
GREEN - Ground
Other wire lengths andior colors in addition to customer selected connectors are available. Contact your local representative or call the factory.
(5) Normal appication would be with light source blocked, simulated by $\mathrm{l}_{\mathrm{F}}=0 \mathrm{~mA}$.
(6) All parameiers tested using pulse techniques.

Housing

All housings are an opaque grade of injection-molded plastic to minimize the assembly's sensitivity to ambient radiation, both visible and near-infrared. Discrete shells (exposed on the parallel faces inside the device throat) are either IR transmissive plastic for applications where aperture contamination may occur or opaque plastic for maximum protection against ambient light.

Electrical Characteristics $\left(T_{A}=-40^{\circ} \mathrm{C}\right.$ to $+80^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER	MiN	TYP	MAX	UNITS	TEST CONDITIONS
Input Diode						
V_{F}	Forward Voltage			1.7	V	$I_{F}=20 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}$
1 m	Reverse Current			100	$\mu \mathrm{A}$	$V_{\text {A }}=2 V_{\text {, }} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Output Photologic ${ }^{\text {a }}$ Sensor :						
Vec	Operating D.C. Supply Voftage	4.5		16.0	V	
lcal	Low Level Supply Current Butfered with 10 k pull-up Buffered Open-Coltector Output			7.5	mA	$\mathrm{Vcc}=16 \mathrm{~V}, \mathrm{iF}=0 \mathrm{~mA}^{(5)}$
	Inverted with 10 k pult-up Inverted Open-Collector Output			7.5	mA	$V_{C C}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}$
lech	High Level Supply Current: Buffered with 10 k pull-up Buffered Open-Collector Output			7.5	mA	$V_{C C}=16 \mathrm{~V}, \mathrm{IF}=12 \mathrm{~mA}$
	Inverted with 10 k pull-up Inverted Open-Collector Output			7.5	mA	$V_{C C}=16 \mathrm{~V}, \mathrm{IF}^{\prime}=0 \mathrm{~mA}^{(S)}$
VoL	Low Level Output Voltage: Buffered with $10 \mathrm{kpull}-\mathrm{up}$ Buffered Open-Collector Output			0.4	v	$\left\{\begin{array}{l} V_{C C}=4.5 \mathrm{~V}, 1 \mathrm{OL}=16 \mathrm{~mA} \\ \mathrm{IF}=0 \mathrm{~mA} \mathrm{~A}^{(5)} \end{array}\right.$
	Inverted with 10 k pull-up Inverted Open-Collector Oupul			0.4	\checkmark	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V}, \mathrm{lol}=16 \mathrm{~mA} \\ & \mathrm{IF}_{\mathrm{F}}=12 \mathrm{~mA} \end{aligned}$
Vor	High Level Output Votiage: Buffered with 10 k pull-up	Vcc-1.5			V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 1.6 \mathrm{~V}, \mathrm{loH}_{\mathrm{H}}=-800 \mu \mathrm{~A} \\ & \mathrm{FF}=12 \mathrm{~mA} \end{aligned}$
	Inverted with 10 kpult -up	$v_{c c-1} .5$			v	$\begin{aligned} & V_{C C}=4.5 \mathrm{~V} \text { to } 16 \mathrm{~V}, I_{O H}=-800 \mu \mathrm{~A} \\ & I_{F}=0 \mathrm{~mA}^{(5)} \end{aligned}$
1 OH	High Level Output Current: Buffered Open-Colfector Output			10	HA	$\begin{aligned} & V_{C C}=16 \mathrm{~V}, \mathrm{VOH}_{\mathrm{OH}}=30 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=12 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C} \end{aligned}$
	Inverted Open-Collector Output			10	$\mu \mathrm{A}$	$\begin{aligned} & V_{C C}=16 \mathrm{~V}, V_{O H}=30 \mathrm{~V}, \\ & \mathrm{IF}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$
IF $(+)$	LED Positive-Going Threshold Current			12	mA	$V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
$\mathrm{IF}_{\mathrm{F}(+) \mathrm{I}_{\mathrm{F}}(\underline{)} \text {) }}$	Hysteresis		1.2			$V_{C c}=5 \mathrm{~V}$
4514	Outut Rise Time, Ouput FaE Time		50		ns	$\begin{aligned} & V_{G C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & I_{F=0}=0 \mathrm{Or} 12 \mathrm{~mA} \end{aligned}$
tPLT, tPML	Propagation Delay Low-High \& High-Low		3.0		$\mu \mathrm{s}$	$\begin{aligned} & R_{L}=300 \Omega \text { to } 5 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$

Types OPB480, OPB490 Series

Types OPB480, OPB490 Series

PART NUMBER GUIDE

OPB $4 \times \times \times X X$

Schematic

