First Edition Sep 7, 2005

# **LCD Module Technical Specification**

Final Revision

# Type No. DMF-50426NYJ-SLY-AEE-AFN

Approved by (Quality Assurance Division)

2 <u> A</u>AUUTO

Checked by (ACI Engineering Division)

# T.Yuchi

Prepared by (ACI Engineering Division)

# **Table of Contents**

| 1. General Specifications                 | 2  |
|-------------------------------------------|----|
| 2. Electrical Specifications              | 3  |
| 3. Optical Specifications                 | 8  |
| 4. I/O Terminal                           | 10 |
| 5. Test                                   | 12 |
| 6. Appearance Standards                   | 13 |
| 7. Code System of Production Lot          | 16 |
| 8. Type Number                            | 16 |
| 9. Applying Precautions                   | 16 |
| 10. Precautions Relating Product Handling | 17 |
| 11. Warranty                              | 18 |

# **Revision History**

| Rev.   | Date                  | Page           | Comr | nent               |           |
|--------|-----------------------|----------------|------|--------------------|-----------|
|        |                       |                |      |                    |           |
|        |                       |                |      |                    |           |
|        |                       |                |      |                    |           |
|        |                       |                |      |                    |           |
|        |                       |                |      |                    |           |
|        |                       |                |      |                    |           |
|        |                       |                |      |                    |           |
|        |                       |                |      |                    |           |
|        |                       |                |      |                    |           |
|        |                       |                |      |                    |           |
|        |                       |                |      |                    |           |
|        |                       |                |      |                    |           |
|        |                       |                |      |                    |           |
| DMF-50 | )426NYJ-SLY-AEE-AFN ( | (AF) No. 2005- | 0298 | OPTREX CORPORATION | Page 1/18 |

# 1.General Specifications

| Operating Temp.    | : | min20°C ~max. 70°C                                                                                                                                                                             |
|--------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Storage Temp.      | : | min20°C ~max. 70°C                                                                                                                                                                             |
| Dot Pixels         | : | 128 (W) × 32 (H) dots                                                                                                                                                                          |
| Dot Size           | : | 0.40 (W) × 0.48 (H) mm                                                                                                                                                                         |
| Dot Pitch          | : | 0.43 (W) × 0.51 (H) mm                                                                                                                                                                         |
| Viewing Area       | : | 60.0 (W) × 21.3 (H) mm                                                                                                                                                                         |
| Outline Dimensions | : | 75.0 (W) × 41.5 (H) × 8.5 max. (D) mm                                                                                                                                                          |
| Weight             | : | 30g max.                                                                                                                                                                                       |
| LCD Type           | : | NSD-13050<br>( STN / Yellow-mode / Transflective )                                                                                                                                             |
| Viewing Angle      | : | 6:00                                                                                                                                                                                           |
| Data Transfer      | : | 8-bit parallel data transfer                                                                                                                                                                   |
| Backlight          | : | LED Backlight / Yellow-green                                                                                                                                                                   |
| Drawings           | : | Dimensional Outline UE-35371B                                                                                                                                                                  |
| RoHS regulation    | : | To our best knowledge, this product satisfies material<br>requirement of RoHS regulation.<br>Our company is doing the best efforts to obtain<br>the equivalent certificate from our suppliers. |
|                    |   |                                                                                                                                                                                                |

## 2.Electrical Specifications

2.1. Absolute Maximum Ratings

|                |         | -          |      |         | Vss=0V |
|----------------|---------|------------|------|---------|--------|
| Parameter      | Symbol  | Conditions | Min. | Max.    | Units  |
| Supply Voltage | Vdd-Vss | -          | -0.3 | 7.0     | V      |
| (Logic)        |         |            |      |         |        |
| Supply Voltage | Vdd-Vlc | -          | -0.3 | 17.0    | V      |
| (LCD Drive)    |         |            |      |         |        |
| Input Voltage  | Vi      | -          | -0.3 | Vdd+0.3 | V      |
|                |         |            |      |         |        |

#### 2.2. DC Characteristics

Ta=25°C, Vss=0V Parameter Symbol Conditions Min. Max. Units Тур. Supply Voltage Vdd-Vss 5.5 V -4.5 -(Logic) Vdd-Vlc Shown in 3.1 V Supply Voltage (LCD Drive) VIH1 VDD=5.0V±10% 0.7×Vdd Vdd V -High Level Note 1 Input Voltage VIH2 VDD=5.0V±10% 2.0 -Vdd V Note 2 VDD=5.0V±10% 0 0.3×Vdd V VIL1 \_ Low Level Note 1 VDD=5.0V±10% ٧ Input Voltage VIL2 0 0.8 -Note 2 юн=-0.205mA High Level Vон 2.4 -V -Output Voltage Low Level Vol loL=1.2mA 0.4 V \_ -Output Voltage DD VDD-Vss=5.0V 2.0 5.0 mΑ -Supply Current VDD-VLC=13.1V LC 1.8 4.0 mΑ \_

Note 1 : Apply to RST

Note 2 : Apply to DB0~DB7, CS1, CS2, R/W, D/I, E

#### 2.3.AC Characteristics

#### 2.3.1. Timing Characteristics

Vdd=5.0V±10%

| Parameter             | Symbol                  | Conditions | Min. | Max. | Units |
|-----------------------|-------------------------|------------|------|------|-------|
| Enable Cycle Time     | <b>t</b> cyc            | Fig.1, 2   | 1000 | -    | ns    |
| Enable Pulse Width    | PWEH, PWEL              | Fig.1, 2   | 450  | -    | ns    |
| Enable Rise/Fall Time | tr, t <del>r</del>      | Fig.1, 2   | -    | 25   | ns    |
| Address Setup Time    | t <sub>AS</sub>         | Fig.1, 2   | 140  | -    | ns    |
| Address Hold Time     | <b>t</b> <sub>AH</sub>  | Fig.1, 2   | 10   | -    | ns    |
| Write Data Setup Time | <b>t</b> <sub>DSW</sub> | Fig.1      | 200  | -    | ns    |
| Write Data Hold Time  | <b>t</b> ₀н₩            | Fig.1      | 10   | -    | ns    |
| Read Data Delay Time  | <b>t</b> <sub>DDR</sub> | Fig.2      | -    | 320  | ns    |
| Read Data Hold Time   | <b>t</b> <sub>DHR</sub> | Fig.2      | 20   | -    | ns    |



#### Fig.1 Write Operation Timing



# 2.3.2. Power Supply Initial Conditions

| Parameter            | Symbol           | Min. | Max. | Units |
|----------------------|------------------|------|------|-------|
| Reset Low Level Time | t <sub>rst</sub> | 1.0  | -    | ms    |





### 2.5. Lighting Specifications

#### 2.5.1. Absolute Maximum Ratings

|                       | -      |            |      |      |      | Ta=25°C |
|-----------------------|--------|------------|------|------|------|---------|
| Parameter             | Symbol | Conditions | Min. | Тур. | Max. | Units   |
| Foward Current        | lF     | Note 1     | -    | -    | 20   | mA      |
| Reverse Voltage       | Vr     | -          | -    | -    | 8    | V       |
| LED Power Dissipation | PD     | -          | -    | -    | 0.3  | W       |

Note 1 : Refer to the foward current derating curve.



### 2.5.2. Operating Characteristics

Ta=25°C

| Parameter         | Symbol | Conditions | Min. | Тур. | Max. | Units             |
|-------------------|--------|------------|------|------|------|-------------------|
| Foward Voltage    | Vf     | l⊧=30mA    | 3.65 | 4.10 | 4.45 | V                 |
| Luminance of      | L      | l⊧=30mA    | 6.5  | -    | -    | cd/m <sup>2</sup> |
| Backlight Surface |        |            |      |      |      |                   |

## 3. Optical Specifications

3.1.LCD Driving Voltage

| Parameter           | Symbol  | Conditions | Min. | Тур. | Max. | Units |
|---------------------|---------|------------|------|------|------|-------|
| Recommended         |         | Ta= -20°C  | -    | -    | 15.2 | V     |
| LCD Driving Voltage | Vdd-Vlc | Ta=25°C    | 12.2 | 13.1 | 14.0 | V     |
| Note 1              |         | Ta=70°C    | 10.5 | -    | -    | V     |

Note 1 : Voltage (Applied actual waveform to LCD Module) for the best contrast. The range of minimum and maximum shows tolerance of the operating voltage. The specified contrast ratio and response time are not guaranteed over the entire range.

3.2. Optical Characteristics

Ta=25°C, 1/64 Duty, 1/9 Bias, VD=13.1V (Note 4), θ= 0°, φ= - °

| Parameter   |              | Symbol | Conditions    | Min. | Тур. | Max. | Units |
|-------------|--------------|--------|---------------|------|------|------|-------|
| Contrast Ra | atio Note 1  | CR     | θ= 0°, φ= - ° | -    | 6    | -    |       |
| Viewing An  | gle          |        | Shown in 3.3  |      |      |      |       |
| Response    | Rise Note 2  | Том    | -             | -    | 75   | 150  | ms    |
| Time        | Decay Note 3 | Toff   | -             | -    | 125  | 200  | ms    |

Note 1 :Contrast ratio is definded as follows.

CR = LOFF / LON

LON : Luminance of the ON segments

LOFF: Luminance of the OFF segments

- Note 2 :The time that the luminance level reaches 90% of the saturation level from 0% when ON signal is applied.
- Note 3 :The time that the luminance level reaches 10% of the saturation level from 100% when OFF signal is applied.
- Note 4 :Definition of Driving Voltage VD

Assuming that the typical driving waveforms shown below are applied to the LCD Panel at 1/A Duty - 1/B Bias (A : Duty Number, B : Bias Number). Driving voltage V<sub>b</sub> is defined as follows.

 $V_D = (Vth1+Vth2) / 2$ 

- Vth1 : The voltage Vo-P that should provide 50% of the saturation level in the luminance at the segment which the ON signal is applied to.
- Vth2 : The voltage Vo-P that should provide 50% of the saturation level in the luminance at the segment which the OFF signal is applied to.





### 4.I/O Terminal

4.1. Pin Assignment

<u>CN1</u>

| No. | Symbol | Level | Function                            |
|-----|--------|-------|-------------------------------------|
| 1   | Vdd    | -     | Power Supply for Logic              |
| 2   | Vss    | -     | Power Supply (0V, GND)              |
| 3   | VLC    | -     | Power Supply for LCD Drive          |
| 4   | DB0    | H/L   | Data Bus Line                       |
| 5   | DB1    | H/L   | Data Bus Line                       |
| 6   | DB2    | H/L   | Data Bus Line                       |
| 7   | DB3    | H/L   | Data Bus Line                       |
| 8   | DB4    | H/L   | Data Bus Line                       |
| 9   | DB5    | H/L   | Data Bus Line                       |
| 10  | DB6    | H/L   | Data Bus Line                       |
| 11  | DB7    | H/L   | Data Bus Line                       |
| 12  | CS1    | H/L   | Chip Select Signal                  |
| 13  | RST    | H/L   | Reset Signal L : Reset              |
| 14  | R/W    | H/L   | Write Signal L : Active             |
| 15  | D/I    | H/L   | Data / Instruction Signal           |
| 16  | E      | H,H→L | Enable Signal (No pull-up Resister) |
| 17  | F GND  | -     | Frame Ground                        |
| 18  | NC     | -     | Non-connection                      |
| 1   | LED A  | -     | LED Anode Terminal                  |
| 2   | I ED K | _     | LED Cathode Terminal                |

4.2. Example of Power Supply

It is recommended to apply a potentiometer for the contrast adjust due to the tolerance of the driving voltage and its temperature dependence.





### <u>5.Test</u>

No change on display and in operation under the following test condition.

Conditions: Unless otherwise specified, tests will be conducted under the following condition. Temperature: 20±5°C Humidity : 65±5%RH tests will be not conducted under functioning state.

| No. | Parameter                  | Conditions                                                                                                                                  | Notes |
|-----|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1   | High Temperature Operating | 70°C±2°C, 96hrs (operation state)                                                                                                           |       |
| 2   | Low Temperature Operating  | -20°C±2°C, 96hrs (operation state)                                                                                                          | 1     |
| 3   | High Temperature Storage   | 70°C±2°C, 96hrs                                                                                                                             | 2     |
| 4   | Low Temperature Storage    | -20°C±2°C, 96hrs                                                                                                                            | 1,2   |
| 5   | Damp Proof Test            | 40°C±2°C,90~95%RH, 96hrs                                                                                                                    | 1,2   |
| 6   | Vibration Test             | Total fixed amplitude : 1.5mm<br>Vibration Frequency : 10~55Hz<br>One cycle 60 seconds to 3 directions of X, Y, Z for<br>each 15 minutes    | 3     |
| 7   | Shock Test                 | To be measured after dropping from 60cm high on<br>the concrete surface in packing state.<br>f<br>E<br>G<br>G<br>G<br>G<br>G<br>G<br>G<br>G |       |

Note 1 :No dew condensation to be observed.

Note 2 :The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after removed from the test chamber.

Note 3 :Vibration test will be conducted to the product itself without putting it in a container.

## 6.Appearance Standards

6.1. Inspection conditions

The LCD shall be inspected under 40W white fluorescent light.

The distance between the eyes and the sample shall be more than 30cm.

All directions for inspecting the sample should be within  $45^{\circ}$  against perpendicular line.



6.2. Definition of applicable Zones



A Zone : Active display area

B Zone : Area from outside of "A Zone" to validity viewing area

C Zone : Rest parts

A Zone + B Zone = Validity viewing area

#### 6.3. Standards

| No. | Parameter          |    |                |                | Criteria            |                   |     |  |  |  |
|-----|--------------------|----|----------------|----------------|---------------------|-------------------|-----|--|--|--|
| 1   | Black and          | (1 | ) Round Sha    | ре             |                     |                   |     |  |  |  |
|     | White Spots,       |    |                | Zone           | Acc                 | ceptable Num      | ber |  |  |  |
|     | Foreign Substances |    | Dimension (    | mm)            | А                   | В                 | С   |  |  |  |
|     |                    |    | D              | ≤0.1           | *                   | *                 | *   |  |  |  |
|     |                    |    | 0.1 < D        | ≤0.2           | 3                   | 5                 | *   |  |  |  |
|     |                    |    | 0.2 < D        | ≤0.25          | 2                   | 3                 | *   |  |  |  |
|     |                    |    | 0.25< D        | ≤0.3           | 0                   | 1                 | *   |  |  |  |
|     |                    |    | 0.3 < D        |                | 0                   | 0                 | *   |  |  |  |
|     |                    |    | D = ( Long     | + Short ) / 2  | * : Disregar        | d                 |     |  |  |  |
|     |                    | (2 | 2) Line Shape  |                |                     |                   |     |  |  |  |
|     |                    |    | $\searrow$     | Zone           | Aco                 | ceptable Num      | ber |  |  |  |
|     |                    |    | X (mm)         | ( (mm)         | А                   | В                 | С   |  |  |  |
|     |                    |    | -              | $0.03 \geq W$  | *                   | *                 | *   |  |  |  |
|     |                    |    | 2.0 ≥ L        | 0.05 ≥ W       | 3                   | 3                 | *   |  |  |  |
|     |                    |    | 1.0 ≥ L        | 0.1 ≥ W        | 3                   | 3                 | *   |  |  |  |
|     |                    |    | -              | 0.1 < W        | In the same way (1) |                   |     |  |  |  |
|     |                    |    | X : Length     | Y:Width *      | : Disregard         |                   |     |  |  |  |
|     |                    | Т  | otal defects s | hall not excee | ed 5.               |                   |     |  |  |  |
| 2   | Air Bubbles        |    |                |                |                     |                   |     |  |  |  |
|     | (between glass     |    |                | Zone           | Aco                 | Acceptable Number |     |  |  |  |
|     | & polarizer)       |    | Dimension (    | mm)            | А                   | В                 | С   |  |  |  |
|     |                    |    | D              | ≤0.3           | *                   | *                 | *   |  |  |  |
|     |                    |    | 0.3 < D        | ≤0.4           | 3                   | *                 | *   |  |  |  |
|     |                    |    | 0.4 < D        | ≤0.6           | 2                   | 3                 | *   |  |  |  |
|     |                    |    | 0.6 < D        |                | 0                   | 0                 | *   |  |  |  |
|     |                    |    | * : Disregar   | d              |                     |                   |     |  |  |  |
|     |                    | Т  | otal defects s | hall not excee | ed 3.               |                   |     |  |  |  |

| No. | Parameter                                                  | Criteria                                                                                                                               |
|-----|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 3   | The Shape of Dot                                           | (1) Dot Shape (with Dent)<br>0.15 ≥ ←<br>As per the sketch of left hand.                                                               |
|     |                                                            | (2) Dot Shape (with Projection)                                                                                                        |
|     |                                                            | Should not be connected to next dot.                                                                                                   |
|     |                                                            | $(X+Y) / 2 \le 0.2 \text{mm}$ (Less than 0.1 mm is no counted.)                                                                        |
|     |                                                            | (4) Deformation<br>$(X+Y)/2 \le 0.2mm$                                                                                                 |
|     |                                                            | Total acceptable number : 1/dot, 5/cell                                                                                                |
|     |                                                            | (Defect number of (4) : 1pc.)                                                                                                          |
| 4   | Polarizer Scratches                                        | Not to be conspicuous defects.                                                                                                         |
| 5   | Polarizer Dirts                                            | If the stains are removed easily from LCDP surface, the module is no                                                                   |
| 6   | Complex Foreign                                            | detective.<br>Black spots, line shaped foreign substances or air bubbles between<br>glass & polarizer should be 5pcs maximum in total. |
| 7   | Distance between<br>Different Foreign<br>Substance Defects | $D \le 0.2$ : 20mm or more<br>0.2 < D : 40mm or more                                                                                   |

OPTREX CORPORATION

Page 15/18

DMF-50426NYJ-SLY-AEE-AFN (AF) No. 2005-0298



### 10.Precautions Relating Product Handling

The Following precautions will guide you in handling our product correctly.

- 1) Liquid crystal display devices
- 1. The liquid crystal display device panel used in the liquid crystal display module is made of plate glass. Avoid any strong mechanical shock. Should the glass break handle it with care.
- 2. The polarizer adhering to the surface of the LCD is made of a soft material. Guard against scratching it.
- 2) Care of the liquid crystal display module against static electricity discharge.
  - 1. When working with the module, be sure to ground your body and any electrical equipment you may be using. We strongly recommend the use of anti static mats (made of rubber), to protect work tables against the hazards of electrical shock.
  - 2. Avoid the use of work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers.
  - 3. Slowly and carefully remove the protective film from the LCD module, since this operation can generate static electricity.
- 3) When the LCD module alone must be stored for long periods of time:
  - 1. Protect the modules from high temperature and humidity.
- 2. Keep the modules out of direct sunlight or direct exposure to ultraviolet rays.
- 3. Protect the modules from excessive external forces.
- 4) Use the module with a power supply that is equipped with an overcurrent protector circuit, since the module is not provided with this protective feature.
- 5) Do not ingest the LCD fluid itself should it leak out of a damaged LCD module. Should hands or clothing come in contact with LCD fluid, wash immediately with soap.
- 6) Conductivity is not guaranteed for models that use metal holders where solder connections between the metal holder and the PCB are not used. Please contact us to discuss appropriate ways to assure conductivity.
- 7) For models which use CFL:
- 1. High voltage of 1000V or greater is applied to the CFL cable connector area. Care should be taken not to touch connection areas to avoid burns.
- 2. Protect CFL cables from rubbing against the unit and thus causing the wire jacket to become worn.
- 3. The use of CFLs for extended periods of time at low temperatures will significantly shorten their service life.
- 8) For models which use touch panels:
- 1. Do not stack up modules since they can be damaged by components on neighboring modules.
- 2. Do not place heavy objects on top of the product. This could cause glass breakage.
- 9) For models which use COG,TAB,or COF:
- 1. The mechanical strength of the product is low since the IC chip faces out unprotected from the rear. Be sure to protect the rear of the IC chip from external forces.
- 2. Given the fact that the rear of the IC chip is left exposed, in order to protect the unit from electrical damage, avoid installation configurations in which the rear of the IC chip runs the risk of making any electrical contact.

10)Models which use flexible cable, heat seal, or TAB:

- 1. In order to maintain reliability, do not touch or hold by the connector area.
- 2. Avoid any bending, pulling, or other excessive force, which can result in broken connections.
- 11)In case of buffer material such as cushion / gasket is assembled into LCD module, it may have an adverse effect on connecting parts (LCD panel-TCP / HEAT SEAL / FPC / etc., PCB-TCP / HEAT SEAL / FPC etc., TCP-HEAT SEAL, TCP-FPC, HEAT SEAL-FPC, etc.,) depending on its materials.

Please check and evaluate these materials carefully before use.

12) In case of acrylic plate is attached to front side of LCD panel, cloudiness (very small cracks) can occur on acrylic plate, being influenced by some components generated from polarizer film..

Please check and evaluate those acrylic materials carefully before use.

#### 11.Warranty

This product has been manufactured to your company's specifications as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery specifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in medical devices, nuclear power control equipment, aerospace equipment, fire and security systems, or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required. If the product is to be used in any of the above applications, we will need to enter into a separate product liability agreement.

- 1. We cannot accept responsibility for any defect, which may arise from additional manufacturing of the product (including disassembly and reassembly), after product delivery.
- 2. We cannot accept responsibility for any defect, which may arise after the application of strong external force to the product.
- 3. We cannot accept responsibility for any defect, which may arise due to the application of static electricity after the product has passed your company's acceptance inspection procedures.
- 4. When the product is in CFL models, CFL service life and brightness will vary According to the performance of the inverter used, leaks, etc. We cannot accept responsibility for product performance, reliability, or defect, which may arise.
- 5. We cannot accept responsibility for intellectual property of a third party, which may arise through the application of our product to your assembly with exception to those issues relating directly to the structure or method of manufacturing of our product.
- 6. Optrex will not be held responsible for any quality guarantee issue for defect products judged as Optrex-origin longer than 2 (two) years from Optrex production or 1(one) year from Optrex, Optrex America, Optrex Europe delivery which ever comes later.



DMF-50426NJ series DIMENSIONAL OUTLINE DESIGNED NOV. 18 93\_ DRAWING NO. K. Shimazu UE-35371B



# (Dot Matrix Liquid Crystal GraphicDisplay Column Driver)

# HITACHI

ADE-207-273(Z) '99.9 Rev. 0.0

### Description

HD61202U is a column (segment) driver for dot matrix liquid crystal graphic display systems. It stores the display data transferred from a 8-bit micro controller in the internal display RAM and generates dot matrix liquid crystal driving signals.

Each bit data of display RAM corresponds to on/off state of a dot of a liquid crystal display to provide more flexible than character display.

As it is internally equipped with 64 output drivers for display, it is available for liquid crystal graphic displays with many dots.

The HD61202U, which is produced in the CMOS process, can complete portable battery drive equipment in combination with a CMOS micro-controller, utilizing the liquid crystal display's low power dissipation.

Moreover it can facilitate dot matrix liquid crystal graphic display system configuration in combination with the row (common) driver HD61203U.

### Features

- Dot matrix liquid crystal graphic display column driver incorporating display RAM
- RAM data direct display by internal display RAM
  - RAM bit data 1: On
  - RAM bit data 0: Off
- Display RAM capacity: 512 bytes (4096 bits)
- 8-bit parallel interface
- Internal liquid crystal display driver circuit: 64
- Display duty cycle Drives liquid crystal panels with 1/32–1/64 duty cycle multiplexing

- Wide range of instruction function Display data read/write, display on/off, set address, set display start line, read status
- Power supply: V<sub>CC</sub>: 2.7V~5.5V
- Liquid crystal display driving voltage: 8V to 16V

# **Ordering Information**

| Туре No.   | Package                             |
|------------|-------------------------------------|
| HD61202UFS | 100-pin plastic QFP (FP-100A)       |
| HD61202UTE | 100-pin thin plastic QFP (TFP-100B) |
| HCD61202U  | Chip                                |

### **Pin Arrangement**





### HCD61202U PAD Arrangement



### HCD61202U Pad Location Coordinates

| PAE<br>No. | ) PAD<br>Name | <u>Coord</u><br>X | linate<br>Y | PAE<br>No. | PAD<br>Name | <u>Cooi</u><br>X | rdinate<br>Y | PAD<br>No. | PAD<br>Name      | Coor<br>X | dinate<br>Y | PAE<br>No. | PAD<br>Name | Coor<br>X | dinate<br>Y |
|------------|---------------|-------------------|-------------|------------|-------------|------------------|--------------|------------|------------------|-----------|-------------|------------|-------------|-----------|-------------|
| 1          | ADC           | -1493             | 1756        | 26         | Y47         | -1789            | -1508        | 51         | Y22              | 1452      | -1789       | 76         | V3L         | 1789      | 1442        |
| 2          | М             | -1649             | 1756        | 27         | Y46         | -1789            | -1653        | 52         | Y21              | 1604      | -1789       | 77         | V4L         | 1789      | 1590        |
| 3          | $V_{CC}$      | -1789             | 1689        | 28         | Y45         | -1764            | -1789        | 53         | Y20              | 1764      | -1789       | 78         | GND         | 1789      | 1756        |
| 4          | V4R           | -1789             | 1445        | 29         | Y44         | -1604            | -1789        | 54         | Y19              | 1789      | -1654       | 79         | DB0         | 1495      | 1756        |
| 5          | V3R           | -1789             | 1293        | 30         | Y43         | -1452            | -1789        | 55         | Y18              | 1789      | -1507       | 80         | DB1         | 1335      | 1756        |
| 6          | V2R           | -1789             | 1148        | 31         | Y42         | -1312            | -1789        | 56         | Y17              | 1789      | -1369       | 81         | DB2         | 1176      | 1756        |
| 7          | V1R           | -1789             | 1011        | 32         | Y41         | -1171            | -1789        | 57         | Y16              | 1789      | -1230       | 82         | DB3         | 1016      | 1756        |
| 8          | $V_{EE2}$     | -1789             | 869         | 33         | Y40         | -976             | -1789        | 58         | Y15              | 1789      | -1100       | 83         | DB4         | 854       | 1756        |
| 9          | Y64           | -1789             | 721         | 34         | Y39         | -846             | -1789        | 59         | Y14              | 1789      | -970        | 84         | DB5         | 694       | 1756        |
| 10         | Y63           | -1789             | 591         | 35         | Y38         | -716             | -1789        | 60         | Y13              | 1789      | -840        | 85         | DB6         | 535       | 1756        |
| 11         | Y62           | -1789             | 461         | 36         | Y37         | -586             | -1789        | 61         | Y12              | 1789      | -710        | 86         | DB7         | 375       | 1756        |
| _12        | Y61           | -1789             | 331         | 37         | Y36         | -456             | -1789        | 62         | Y11              | 1789      | -580        | 87         | NC          |           |             |
| 13         | Y60           | -1789             | 201         | 38         | Y35         | -326             | -1789        | 63         | Y10              | 1789      | -450        | 88         | NC          |           |             |
| 14         | Y59           | -1789             | 71          | 39         | Y34         | -196             | -1789        | 64         | Y9               | 1789      | -320        | 89         | NC          |           |             |
| _15        | Y58           | -1789             | -60         | 40         | Y33         | -65              | -1789        | 65         | Y8               | 1789      | -190        | 90         | CS3         | 218       | 1756        |
| 16         | Y57           | -1789             | -190        | 41         | Y32         | 65               | -1789        | 66         | Y7               | 1789      | -60         | 91         | CS2         | 62        | 1756        |
| 17         | Y56           | -1789             | -320        | 42         | Y31         | 195              | -1789        | 67         | Y6               | 1789      | 71          | 92         | CS1         | -94       | 1756        |
| 18         | Y55           | -1789             | -450        | 43         | Y30         | 325              | -1789        | 68         | Y5               | 1789      | 201         | 93         | RST         | -249      | 1756        |
| 19         | Y54           | -1789             | -580        | 44         | Y29         | 455              | -1789        | 69         | Y4               | 1789      | 331         | 94         | R/W         | -405      | 1756        |
| 20         | Y53           | -1789             | -710        | 45         | Y28         | 585              | -1789        | 70         | Y3               | 1789      | 461         | 95         | D/I         | -560      | 1756        |
| 21         | Y52           | -1789             | -840        | 46         | Y27         | 715              | -1789        | 71         | Y2               | 1789      | 591         | 96         | CL          | -716      | 1756        |
| 22         | Y51           | -1789             | -970        | 47         | Y26         | 845              | -1789        | 72         | Y1               | 1789      | 721         | 97         | ø2          | -871      | 1756        |
| 23         | Y50           | -1789             | -1100       | 48         | Y25         | 975              | -1789        | 73         | $V_{\text{EE1}}$ | 1789      | 1024        | 98         | ø1          | -1027     | 1756        |
| 24         | Y49           | -1789             | -1230       | 49         | Y24         | 1170             | -1789        | 74         | V1L              | 1789      | 1153        | 99         | E           | -1182     | 1756        |
| 25         | Y48           | -1789             | -1369       | 50         | Y23         | 1311             | -1789        | 75         | V2L              | 1789      | 1293        | 100        | FRM         | -1338     | 1756        |

### **Block Diagram**



| Terminal<br>Name     | Number of<br>Terminals | I/O | Connected to | Functions                                                                                                                                                                                         |
|----------------------|------------------------|-----|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>cc</sub>      | 2                      |     | Power supply | Power supply for internal logic.                                                                                                                                                                  |
| GND                  |                        |     |              | Recommended voltage is:                                                                                                                                                                           |
|                      |                        |     |              | GND = 0V<br>$V_{cc} = 2.7$ to 5.5V                                                                                                                                                                |
| $V_{\text{EE1}}$     | 2                      |     | Power supply | Power supply for liquid crystal display drive circuit.                                                                                                                                            |
| V <sub>EE2</sub>     |                        |     |              | Recommended power supply voltage is $V_{cc}-V_{EE} = 8$ to<br>16V. Connect the same power supply to $V_{EE1}$ and $V_{EE2}$ .<br>$V_{EE1}$ and $V_{EE2}$ are not connected each other in the LSI. |
| V1L, V1R             | 8                      |     | Power supply | Power supply for liquid crystal display drive.                                                                                                                                                    |
| V2L, V2R<br>V3L, V3R |                        |     |              | Apply the voltage specified depending on liquid crystals within the limit of $V_{\text{EE}}$ through $V_{\text{cc}}.$                                                                             |
| V4L, V4R             |                        |     |              | V1L (V1R), V2L (V2R): Selection level<br>V3L (V3R), V4L (V4R): Non-selection level                                                                                                                |
|                      |                        |     |              | Power supplies connected with V1L and V1R (V2L & V2R, V3L & V3R, V4L & V4R) should have the same voltages.                                                                                        |
| CS1                  | 3                      | I   | MPU          | Chip selection.                                                                                                                                                                                   |
| CS2<br>CS3           |                        |     |              | Data can be input or output when the terminals are in the following conditions:                                                                                                                   |
|                      |                        |     |              | Terminal name CS1 CS2 CS3                                                                                                                                                                         |
|                      |                        |     |              | Condition L L H                                                                                                                                                                                   |
| E                    | 1                      | I   | MPU          | Enable.                                                                                                                                                                                           |
|                      |                        |     |              | At write (R/W = low): Data of DB0 to DB7 is latched at the fall of E.                                                                                                                             |
|                      |                        |     |              | At read (R/W = high): Data appears at DB0 to DB7 while<br>E is at high level.                                                                                                                     |
| R/W                  | 1                      | I   | MPU          | Read/write.                                                                                                                                                                                       |
|                      |                        |     |              | R/W = High: Data appears at DB0 to DB7 and can be<br>read by the MPU.<br>When E = high, $\overline{CS1}$ , $\overline{CS2}$ = low and<br>CS3 = high.                                              |
|                      |                        |     |              | $R/W = Low: DB0 to DB7 can accept at fall of E when  \overline{CS1}, \overline{CS2} = low and CS3 = high.$                                                                                        |
| D/I                  | 1                      | I   | MPU          | Data/instruction.                                                                                                                                                                                 |
|                      |                        |     |              | D/I = High: Indicates that the data of DB0 to DB7 is display data.                                                                                                                                |
|                      |                        |     |              | D/I = Low: Indicates that the data of DB0 to DB7 is<br>display control data.                                                                                                                      |

# **Terminal Functions**

| Terminal<br>Name | Number of<br>Terminals | I/O | Connected to          | Functions                                                                                                                                            |
|------------------|------------------------|-----|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADC              | 1                      | Ι   | V <sub>cc</sub> /GND  | Address control signal to determine the relation between<br>Y address of display RAM and terminals from which the<br>data is output.                 |
|                  |                        |     |                       | ADC = High: Y1: H'0, Y64: H'63<br>ACD = Low: Y64: H'0, Y1: H'63                                                                                      |
| DB0–DB7          | 8                      | I/O | MPU                   | Data bus, three-state I/O common terminal.                                                                                                           |
| Μ                | 1                      | Ι   | HD61203U              | Switch signal to convert liquid crystal drive waveform into AC.                                                                                      |
| FRM              | 1                      | I   | HD61203U              | Display synchronous signal (frame signal).                                                                                                           |
|                  |                        |     |                       | Presets the 6-bit display line counter and synchronizes<br>the common signal with the frame timing when the FRM<br>signal becomes high.              |
| CL               | 1                      | I   | HD61203U              | Synchronous signal to latch display data. The rising CL signal increments the display output address counter and latches the display data.           |
| ø1, ø2           | 2                      | I   | HD61203U              | 2-phase clock signal for internal operation.                                                                                                         |
|                  |                        |     |                       | The ø1 and ø2 clocks are used to perform operations (I/O of display data and execution of instructions) other than display.                          |
| Y1–Y64           | 64                     | 0   | Liquid crystal        | Liquid crystal display column (segment) drive output.                                                                                                |
|                  |                        |     | display               | The outputs at these pins are at the light-on level when<br>the display RAM data is 1, and at the light-off level when<br>the display RAM data is 0. |
|                  |                        |     |                       | Relation among output level, M, and display data (D) is as follows:                                                                                  |
|                  |                        |     |                       | M 1 0                                                                                                                                                |
|                  |                        |     |                       | D 1 0 1 0                                                                                                                                            |
|                  |                        |     |                       | Output<br>level V1 V3 V2 V4                                                                                                                          |
| RST              | 1                      | I   | MPU or<br>external CR | The following registers can be initialized by setting the $\overline{\text{RST}}$ signal to low level.                                               |
|                  |                        |     |                       | 1. On/off register 0 set (display off)                                                                                                               |
|                  |                        |     |                       | <ol> <li>Display start line register line 0 set (displays from line 0)</li> </ol>                                                                    |
|                  |                        |     |                       | After releasing reset, this condition can be changed only by instruction.                                                                            |
| NC               | 3                      |     | Open                  | Unused terminals. Don't connect any lines to these terminals.                                                                                        |

Note: 1 corresponds to high level in positive logic.

### **Function of Each Block**

#### **Interface Control**

I/O Buffer: Data is transferred through 8 data bus lines (DB0–DB7).

DB7: MSB (most significant bit) DB0: LSB (least significant bit)

Data can neither be input nor output unless  $\overline{CS1}$  to CS3 are in the active mode. Therefore, when  $\overline{CS1}$  to CS3 are not in active mode it is useless to switch the signals of input terminals except  $\overline{RST}$  and ADC; that is namely, the internal state is maintained and no instruction excutes. Besides, pay attention to  $\overline{RST}$  and ADC which operate irrespectively of  $\overline{CS1}$  to CS3.

**Register:** Both input register and output register are provided to interface to an MPU whose speed is different from that of internal operation. The selection of these registers depend on the combination of R/W and D/I signals (Table 1).

1. Input register

The input register is used to store data temporarily before writing it into display data RAM.

The data from MPU is written into input register, then into display data RAM automatically by internal operation. When  $\overline{CS1}$  to CS3 are in the active mode and D/I and R/W select the input register as shown in Table 1, data is latched at the fall of the E signal.

2. Output register

The output register is used to store data temporarily that is read from display data RAM. To read out the data from the output register,  $\overline{CS1}$  to CS3 should be in the active mode and both D/I and R/W should be 1. With the read display data instruction, data stored in the output register is output while E is high level. Then, at the fall of E, the display data at the indicated address is latched into the output register and the address is increased by 1.

The contents in the output register are rewritten by the read display data instruction, but are held by address set instruction, etc.

Therefore, the data of the specified address cannot be output with the read display data instruction right after the address is set, but can be output at the second read of data. That is to say, one dummy read is necessary. Figure 1 shows the MPU read timing.

| D/I | R/W | Operation                                                                                                |
|-----|-----|----------------------------------------------------------------------------------------------------------|
| 1   | 1   | Reads data out of output register as internal operation (display data RAM $\rightarrow$ output register) |
| 1   | 0   | Writes data into input register as internal operation (input register $\rightarrow$ display data RAM)    |
| 0   | 1   | Busy check. Read of status data.                                                                         |
| 0   | 0   | Instruction                                                                                              |

#### Table 1 Register Selection

#### **Busy Flag**

Busy flag = 1 indicates that HD61202U is operating and no instructions except status read instruction can be accepted. The value of the busy flag is read out on DB7 by the status read instruction. Make sure that the busy flag is reset (0) before issuing instructions.



Figure 1 MPU Read Timing



Figure 2 Busy Flag

#### **Display On/Off Flip/Flop**

The display on/off flip/flop selects one of two states, on state and off state of segments Y1 to Y64. In on state, the display data corresponding to that in RAM is output to the segments. On the other hand, the display data at all segments disappear in off state independent of the data in RAM. It is controlled by display on/off instruction.  $\overline{RST}$  signal = 0 sets the segments in off state. The status of the flip/flop is output to DB5 by status read instruction. Display on/off instruction does not influence data in RAM. To control display data latch by this flip/flop, CL signal (display synchronous signal) should be input correctly.

#### **Display Start Line Register**

The display start line register specifies the line in RAM which corresponds to the top line of LCD panel, when displaying contents in display data RAM on the LCD panel. It is used for scrolling of the screen.

6-bit display start line information is written into this register by the display start line set instruction. When high level of the FRM signal starts the display, the information in this register is transferred to the Z address counter, which controls the display address, presetting the Z address counter.

#### X, Y Address Counter

A 9-bit counter which designates addresses of the internal display data RAM. X address counter (upper 3 bits) and Y address counter (lower 6 bits) should be set to each address by the respective instructions.

1. X address counter

Ordinary register with no count functions. An address is set by instruction.

2. Y address counter

An Address is set by instruction and is increased by 1 automatically by R/W operations of display data. The Y address counter loops the values of 0 to 63 to count.

#### **Display Data RAM**

Stores dot data for display. 1-bit data of this RAM corresponds to light on (data = 1) and light off (data = 0) of 1 dot in the display panel. The correspondence between Y addresses of RAM and segment pins can be reversed by ADC signal.

As the ADC signal controls the Y address counter, reversing of the signal during the operation causes malfunction and destruction of the contents of register and data of RAM. Therefore, never fail to connect ADC pin to  $V_{CC}$  or GND when using.

Figure 3 shows the relations between Y address of RAM and segment pins in the cases of ADC = 1 and ADC = 0 (display start line = 0, 1/64 duty cycle).



Figure 3 Relation between RAM Data and Display



Figure 3 Relation between RAM Data and Display (cont)

#### Z Address Counter

The Z address counter generates addresses for outputting the display data synchronized with the common signal. This counter consists of 6 bits and counts up at the fall of the CL signal. At the high level of FRM, the contents of the display start line register is present at the Z counter.

#### **Display Data Latch**

The display data latch stores the display data temporarily that is output from display data RAM to the liquid crystal driving circuit. Data is latched at the rise of the CL signal. The display on/off instruction controls the data in this latch and does not influence data in dicsplay data RAM.

#### Liquid Crystal Display Driver Circuit

The combination of latched display data and M signal causes one of the 4 liquid crystal driver levels, V1, V2, V3, and V4 to be output.

#### Reset

The system can be initialized by setting  $\overline{RST}$  terminal at low level when turning power on.

- 1. Display off
- 2. Set display start line register line 0.

While  $\overline{\text{RST}}$  is low level, no instruction except status read can be accepted. Therefore, execute other instructions after making sure that DB4 = 0 (clear RESET) and DB7 = 0 (ready) by status read instruction.

### **Display Control Instructions**

#### Outline

Table 2 shows the instructions. Read/write (R/W) signal, data/instruction (D/I) signal, and data bus signals (DB0 to DB7) are also called instructions because the internal operation depends on the signals from the MPU.

These explanations are detailed in the following pages. Generally, there are following three kinds of instructions:

- 1. Instruction to set addresses in the internal RAM
- 2. Instruction to transfer data from/to the internal RAM
- 3. Other instructions

In general use, the second type of instruction is used most frequently. Since Y address of the internal RAM is increased by 1 automatically after writing (reading) data, the program can be shortened. During the execution of an instruction, the system cannot accept instructions other than status read instruction. Send instructions from MPU after making sure that the busy flag is 0, which is proof that an instruction is not being executed.

|                                                                     |                                   |         |              |         | ပိ     | de       |             |             |             |     |                                                                                                                          |                                     |
|---------------------------------------------------------------------|-----------------------------------|---------|--------------|---------|--------|----------|-------------|-------------|-------------|-----|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Instructions                                                        | R/W                               | D/I     | DB7          | DB6     | DB5    | DB4      | DB3         | DB2         | DB1         | DB0 | Functions                                                                                                                |                                     |
| Display on/off                                                      | 0                                 | 0       | 0            | 0       | -      | -        | <del></del> | <del></del> | <del></del> | 1/0 | Controls display on/off. RAM data and inte status are not affected. 1: on, 0: off.                                       | ernal                               |
| Display start line                                                  | 0                                 | 0       | ~            | +       | Displa | y start  | line (0-    | -63)        |             |     | Specifies the RAM line displayed at the tol screen.                                                                      | p of the                            |
| Set page (X address)                                                | 0                                 | 0       | <del>.</del> | 0       | -      | -        | -           | Page        | (0-7)       |     | Sets the page (X address) of RAM at the p<br>(X address) register.                                                       | page                                |
| Set Y address                                                       | 0                                 | 0       | 0            | 1       | Y add  | ress (0- | -63)        |             |             |     | Sets the Y address in the Y address count                                                                                | iter.                               |
| Status read                                                         | -                                 | 0       | Busy         | 0       | /NO    | Reset    | 0           | 0           | 0           | 0   | Reads the status.                                                                                                        |                                     |
|                                                                     |                                   |         |              |         | OFF    |          |             |             |             |     | RESET 1: Reset<br>0: Normal                                                                                              |                                     |
|                                                                     |                                   |         |              |         |        |          |             |             |             |     | ON/OFF 1: Display off<br>0: Display on                                                                                   |                                     |
|                                                                     |                                   |         |              |         |        |          |             |             |             |     | Busy 1: Internal operation<br>0: Ready                                                                                   |                                     |
| Write display data                                                  | 0                                 | -       | Write o      | data    |        |          |             |             |             |     | Writes data DB0 (LSB) Has access to<br>to DB7 (MSB) on the address of the<br>data bus into display RAM specified<br>RAM. | o the<br>e display<br>d in<br>r the |
| Read display data                                                   | <del></del>                       | -       | Read         | data    |        |          |             |             |             |     | Reads data DB0 (LSB) access, Y add to DB7 (MSB) from the increased by 1 display RAM to the data bus.                     | dress is<br>1.                      |
| Note: Busy time varie:<br>(1/f <sub>CLK</sub> ≤ T <sub>BUSY</sub> . | s with th<br>≤ 3/f <sub>CLK</sub> | e frequ | lency (f     | cLK) of | ø1, an | d ø2.    |             |             |             |     |                                                                                                                          |                                     |

Instructions

Table 2

#### **Detailed Explanation**

#### **Display On/Off**



The display data appears when D is 1 and disappears when D is 0. Though the data is not on the screen with D = 0, it remains in the display data RAM. Therefore, you can make it appear by changing D = 0 into D = 1.

#### **Display Start Line**

|      | R/W | D/I | DB7 | •••• | • • • • • • | • • • • • | •••• | • • • • • • | • • • • • | DB0 |
|------|-----|-----|-----|------|-------------|-----------|------|-------------|-----------|-----|
| Code | 0   | 0   | 1   | 1    | А           | А         | А    | А           | А         | А   |
|      |     |     | MSB |      |             |           |      |             |           | LSB |

Z address AAAAAA (binary) of the display data RAM is set in the display start line register and displayed at the top of the screen. Figure 4 shows examples of display (1/64 duty cycle) when the start line = 0-3. When the display duty cycle is 1/64 or more (ex. 1/32, 1/24 etc.), the data of total line number of LCD screen, from the line specified by display start line instruction, is displayed.

#### Set Page (X Address)



X address AAA (binary) of the display data RAM is set in the X address register. After that, writing or reading to or from MPU is executed in this specified page until the next page is set. See Figure 5.

#### Set Y Address



Y address AAAAAA (binary) of the display data RAM is set in the Y address counter. After that, Y address counter is increased by 1 every time the data is written or read to or from MPU.

#### Status Read



#### • Busy

When busy is 1, the LSI is executing internal operations. No instructions are accepted while busy is 1, so you should make sure that busy is 0 before writing the next instruction.

• ON/OFF

Shows the liquid crystal display conditions: on condition or off condition.

When on/off is 1, the display is in off condition.

When on/off is 0, the display is in on condition.

RESET

RESET = 1 shows that the system is being initialized. In this condition, no instructions except status read can be accepted.

RESET = 0 shows that initializing has finished and the system is in the usual operation condition.



Figure 4 Relation between Start Line and Display

#### Write Display Data



Writes 8-bit data DDDDDDDD (binary) into the display data RAM. Then Y address is increased by 1 automatically.

#### **Read Display Data**

|      | R/W | D/I | DB7 |   |   | • • • • • • | ••••• | ••••• | • • • • • | DB0 |  |
|------|-----|-----|-----|---|---|-------------|-------|-------|-----------|-----|--|
| Code | 1   | 1   | D   | D | D | D           | D     | D     | D         | D   |  |
|      |     |     | MSB |   |   |             |       |       |           | LSB |  |

Reads out 8-bit data DDDDDDDD (binary) from the display data RAM. Then Y address is increased by 1 automatically.

One dummy read is necessary right after the address setting. For details, refer to the explanation of output register in "Function of Each Block".



Figure 5 Address Configuration of Display Data RAM

### Use of HD61202U

#### Interface with HD61203 (1/64 Duty Cycle)





Figure 6 LCD Driver Timing Chart (1/64 Duty Cycle)

# Interface with CPU

#### 1. Example of Connection with H8/536S



Figure 7 Example of Connection with H8/536S

#### **Example of Application**

In this example, two HD61203s output the equivalent waveforms. So, stand-alone operation is possible. In this case, connect COM1 and COM65 to X1, COM2 and COM66 to X2, ..., and COM64 and COM128 to X64. However, for the large screen display, it is better to drive in 2 rows as in this example to guarantee the display quality.



Figure 8 Application Example

### **Absolute Maximum Ratings**

| Item                  | Symbol                            | Value                                                                  | Unit | Note |
|-----------------------|-----------------------------------|------------------------------------------------------------------------|------|------|
| Supply voltage        | V <sub>cc</sub>                   | -0.3 to +7.0                                                           | V    | 2    |
|                       | $V_{\text{EE1}}$ $V_{\text{EE2}}$ | $V_{cc}$ – 17.0 to $V_{cc}$ + 0.3                                      | V    | 3    |
| Terminal voltage (1)  | VT1                               | $V_{\scriptscriptstyle EE}$ – 0.3 to $V_{\scriptscriptstyle CC}$ + 0.3 | V    | 4    |
| Terminal voltage (2)  | VT2                               | -0.3 to V <sub>cc</sub> + 0.3                                          | V    | 2, 5 |
| Operating temperature | T <sub>opr</sub>                  | -30 to +75                                                             | °C   |      |
| Storage temperature   | T <sub>stg</sub>                  | -55 to +125                                                            | °C   |      |

Notes: 1. LSIs may be destroyed if they are used beyond the absolute maximum ratings. In ordinary operation, it is desirable to use them within the recommended operation conditions. Useing them beyond these conditions may cause malfunction and poor reliability.

2. All voltage values are referenced to GND = 0V.

3. Apply the same supply voltage to  $V_{\mbox{\scriptsize EE1}}$  and  $V_{\mbox{\scriptsize EE2}}.$ 

4. Applies to V1L, V2L, V3L, V4L, V1R, V2R, V3R, and V4R.

Maintain

 $V_{\text{CC}} \geq V1L = V1R \geq V3L = V3R \geq V4L = V4R \geq V2L = V2R \geq V_{\text{EE}}$ 

5. Applies to M, FRM, CL, RST, ADC, ø1, ø2, CS1, CS2, CS3, E, R/W, D/I, and DB0–DB7.

Electrical Characteristics (GND = 0V,  $V_{CC} = 2.7 \sim 5.5V$ ,  $V_{CC} - V_{EE} = 8.0$  to 16.0V, Ta =  $-30 \sim +75^{\circ}C$ )<sup>\*8</sup>

|                                       |                     |              | Limi | t               |      |                                                                     |       |
|---------------------------------------|---------------------|--------------|------|-----------------|------|---------------------------------------------------------------------|-------|
| Item                                  | Symbol              | Min          | Тур  | Max             | Unit | Test Condition                                                      | Notes |
| Input high voltage                    | VIHC                | $0.7 V_{cc}$ | _    | V <sub>cc</sub> | V    | $V_{cc} = 2.7V \sim 5.5V$                                           | 1     |
|                                       | VIHT                | $0.7 V_{cc}$ | _    | V <sub>cc</sub> | V    | $V_{cc} = 2.7V \sim 4.5V$                                           | 2     |
|                                       |                     | 2.0          | —    | V <sub>cc</sub> | V    | $V_{cc} = 4.5V \sim 5.5V$                                           | 2     |
| Input low voltage                     | VILC                | 0.0          |      | $0.3V_{cc}$     | V    | $V_{cc} = 2.7V \sim 5.5V$                                           | 1     |
|                                       | VILT                | 0.0          | —    | 0.5             | V    | $V_{cc} = 2.7V \sim 4.5V$                                           | 2     |
|                                       |                     | 0.0          |      | 0.8             | V    | $V_{cc} = 4.5V \sim 5.5V$                                           | 2     |
| Output high voltage                   | VOH                 | $0.75V_{cc}$ | —    | —               | V    | I <sub>OH</sub> = -100 μA,<br>V <sub>CC</sub> = 2.7V~4.5V           | 3     |
|                                       |                     | 2.4          | _    | —               | V    | I <sub>OH</sub> = -205 μA<br>V <sub>CC</sub> = 4.5V~5.5V            | 3     |
| Output low voltage                    | VOL                 | —            |      | $0.2V_{cc}$     | V    | I <sub>OL</sub> = 100 uA,<br>V <sub>CC</sub> = 2.7V~4.5V            | 3     |
|                                       |                     | _            | —    | 0.4             | V    | I <sub>OL</sub> = 1.2mA,<br>V <sub>CC</sub> = 4.5V~5.5V             | 3     |
| Input leakage current                 | I <sub>IL</sub>     | -1           | —    | 1               | μA   | $Vin = GND \sim V_{cc}$                                             | 4     |
| Three-state (off)<br>input current    | I <sub>TSL</sub>    | -5           | _    | 5               | μA   | $Vin = GND \sim V_{cc}$                                             | 5     |
| Liquid crystal supply leakage current | I <sub>LSL</sub>    | -2           | —    | 2               | μA   | $Vin = V_{EE} - V_{CC}$                                             | 6     |
| Driver on resistance                  | R <sub>on</sub>     | —            | —    | 7.5             | kΩ   | $\pm I_{LOAD} = 0.1 \text{ mA},$<br>$V_{CC} - V_{EE} = 15 \text{V}$ | 8     |
| Dissipation current                   | I <sub>cc</sub> (1) | _            | _    | 100             | μA   | During display                                                      | 7     |
|                                       | I <sub>cc</sub> (2) | _            | _    | 500             | μΑ   | During access,<br>Cycle = 1MHz                                      | 7     |

Notes: 1. Applies to M, FRM, CL, RST, ø1, and ø2.

2. Applies to CS1, CS2, CS3, E, R/W, D/I, and DB0-DB7.

- 3. Applies to DB0–DB7.
- 4. Applies to terminals except for DB0-DB7.
- 5. Applies to DB0–DB7 at high impedance.
- 6. Applies to V1L–V4L and V1R–V4R.

7. Specified when LCD is in 1/64 duty cycle mode.

Operation frequency: f<sub>CLK</sub> = 250 kHz (ø1 and ø2 frequency)

Frame frequency:  $f_{M} = 70 \text{ Hz}$  (FRM frequency)

Specified in the state of

Output terminal: Not loaded

Input level:  $VIH = V_{cc} (V)$ 

VIL = GND(V)

Measured at  $V_{\rm cc}$  terminal

8. Specified at +75°C for die products.

 Resistance between terminal Y and terminal V (one of V1L, V1R, V2L, V2R, V3L, V3R, V4L, and V4R) when load current flows through one of the terminals Y1 to Y64. This value is specified under the following condition:



The following is a description of the range of power supply voltage for liquid crystal display drive. Apply positive voltage to V1L = V1R and V3L = V3R and negative voltage to V2L = V2R and V4L = V4R within the  $\Delta V$  range. This range allows stable impedance on driver output (RON). Notice that  $\Delta V$  depends on power supply voltage V<sub>CC</sub>-V<sub>FE</sub>.



Correlation between driver output waveform and power supply voltages for liquid crystal display drive Correlation between power supply voltage V\_{CC}–V\_{EE} and  $\Delta V$ 

### **Terminal Configuration**



#### **Interface AC Characteristics**

| Item                   | Symbol           | Min  | Тур | Max | Unit | Note             |
|------------------------|------------------|------|-----|-----|------|------------------|
| E cycle time           | t <sub>cyc</sub> | 1000 | _   | _   | ns   | Fig. 10, Fig. 11 |
| E high level width     | P <sub>WEH</sub> | 450  | —   | —   | ns   | _                |
| E low level width      | P <sub>WEL</sub> | 450  | —   | _   | ns   | -                |
| E rise time            | t,               | _    | —   | 25  | ns   | -                |
| E fall time            | t <sub>f</sub>   | _    | —   | 25  | ns   | -                |
| Address setup time     | t <sub>AS</sub>  | 140  | —   | —   | ns   | -                |
| Address hold time      | t <sub>AH</sub>  | 10   | —   | —   | ns   | -                |
| Data setup time        | t <sub>DSW</sub> | 200  | —   | _   | ns   | Fig. 10          |
| Data delay time        | t <sub>DDR</sub> | —    | —   | 320 | ns   | Fig. 11, Fig. 12 |
| Data hold time (write) | t <sub>DHW</sub> | 10   | —   | —   | ns   | Fig. 10          |
| Data hold time (read)  | t <sub>DHR</sub> | 20   |     |     | ns   | Fig. 11          |

### MPU Interface (GND = 0V, $V_{CC}$ = 2.7 to 5.5V, Ta = -30 to +75°C)<sup>\*</sup>

Note: Specified at +75°C for die products.



Figure 9 MPU Write Timing



Figure 10 MPU Read Timing



Figure 11 DB0–DB7: Load Circuit

### Clock Timing (GND = 0V, $V_{CC}$ = 2.7 to 5.5V, Ta = -30 to +75°C)\*

|                        |                         | Limit |     |     |      |                       |
|------------------------|-------------------------|-------|-----|-----|------|-----------------------|
| Item                   | Symbol                  | Min   | Тур | Max | Unit | <b>Test Condition</b> |
| ø1, ø2 cycle time      | t <sub>cyc</sub>        | 2.5   | _   | 20  | μs   | Fig. 13               |
| ø1 low level width     | $t_{_{WL arnothing 1}}$ | 625   | —   | —   | ns   |                       |
| ø2 low level width     | t <sub>WLø2</sub>       | 625   | —   | —   | ns   |                       |
| ø1 high level width    | t <sub>wHø1</sub>       | 1875  | —   | —   | ns   |                       |
| ø2 high level width    | $t_{_{WH 	extsf{w}2}}$  | 1875  | —   | —   | ns   |                       |
| ø1–ø2 phase difference | t <sub>D12</sub>        | 625   | —   | —   | ns   |                       |
| ø2–ø1 phase difference | t <sub>D21</sub>        | 625   | —   | —   | ns   |                       |
| ø1, ø2 rise time       | t,                      | —     | —   | 150 | ns   |                       |
| ø1, ø2 fall time       | t <sub>f</sub>          | _     | _   | 150 | ns   |                       |

Note: Specified at +75°C for die products.



Figure 12 External Clock Waveform

#### Display Control Timing (GND = 0V, $V_{CC}$ = 2.7 to 5.5V, Ta = -30 to +75°C)<sup>\*</sup>

|                     |                   | Limit |     |     |      |                |
|---------------------|-------------------|-------|-----|-----|------|----------------|
| Item                | Symbol            | Min   | Тур | Max | Unit | Test Condition |
| FRM delay time      | t <sub>DFRM</sub> | -2    | _   | +2  | μs   | Fig. 14        |
| M delay time        | t <sub>DM</sub>   | -2    | —   | +2  | μs   |                |
| CL low level width  | t <sub>wLCL</sub> | 35    | _   | _   | μs   |                |
| CL high level width | t <sub>whcl</sub> | 35    | —   | _   | μs   |                |

Note: Specified at +75°C for die products.



Figure 13 Display Control Signal Waveform

Reset Timing (GND = 0V,  $V_{CC}$  = 2.7 to 5.5V, Ta = -30 to +75°C)\*

| Item                                       | Symbol                               | Min          | Тур                 | Max               | Unit                        |
|--------------------------------------------|--------------------------------------|--------------|---------------------|-------------------|-----------------------------|
| Reset time                                 | t <sub>rst</sub>                     | 1.0          | _                   | —                 | μs                          |
| Do not fail to set t<br>except on/off regi | the system again<br>ster and in RAM. | because RESE | ET during operation | n may destroy the | e data in all the registers |
|                                            |                                      |              | t <sub>RST</sub>    |                   |                             |



Figure 14 Reset Timing

### Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

# ITACHI

| Semiconductor & Integrate<br>Nippon Bldg., 2-6-2, Ohte-<br>Tel: Tokyo (03) 3270-2111                                                         | d Circuits.<br>machi, Chiyoda-ku, Tokyo 100-0004,<br>Fax: (03) 3270-5109                                                                                                                                                                                                                                                                                                            | , Japan                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| URL NorthAmerica<br>Europe<br>Asia (Singap<br>Asia (Taiwan<br>Asia (HongKo<br>Japan                                                          | a : http:semiconductor.hita<br>: http://www.hitachi-eu.c<br>ore) : http://www.has.hitachi.<br>) : http://www.hitachi.com.<br>ong) : http://www.hitachi.com.<br>: http://www.hitachi.co.jp                                                                                                                                                                                           | achi.com/<br>om/hel/ecg<br>com.sg/grp3/sicd/index.htm<br>.tw/E/Product/SICD_Frame.htr<br>.hk/eng/bo/grp3/index.htm<br>o/Sicd/indx.htm                                                                                                                                                              | n                                                                                                                                                                                                                                                              |
| For further information                                                                                                                      | on write to:                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                |
| Hitachi Semiconductor<br>(America) Inc.<br>179 East Tasman Drive,<br>San Jose, CA 95134<br>Tel: <1> (408) 433-1990<br>Fax: <1>(408) 433-0223 | Hitachi Europe GmbH<br>Electronic components Group<br>Dornacher Straße 3<br>D-85622 Feldkirchen, Munich<br>Germany<br>Tel: <49> (89) 9 9180-0<br>Fax: <49> (89) 9 29 30 00<br>Hitachi Europe Ltd.<br>Electronic Components Group.<br>Whitebrook Park<br>Lower Cookham Road<br>Maidenhead<br>Berkshire SL6 8YA, United Kingdom<br>Tel: <44> (1628) S85000<br>Fax: <44> (1628) 778322 | Hitachi Asia Pte. Ltd.<br>16 Collyer Quay #20-00<br>Hitachi Tower<br>Singapore 049318<br>Tel: 535-2100<br>Fax: 535-1533<br>Hitachi Asia Ltd.<br>Taipei Branch Office<br>3F, Hung Kuo Building. No.167,<br>Tun-Hwa North Road, Taipei (105)<br>Tel: <886> (2) 2718-3666<br>Fax: <886> (2) 2718-8180 | Hitachi Asia (Hong Kong) Ltd.<br>Group III (Electronic Components)<br>7/F., North Tower, World Finance Centre,<br>Harbour City, Canton Road, Tsim Sha Tsi<br>Kowloon, Hong Kong<br>Tel: <852> (2) 735 9218<br>Fax: <852> (2) 730 0281<br>Telex: 40815 HITEC HX |

Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.

Sha Tsui.