
Plastic Fiber Optic IR LEDS

ev 10/21/04

APPLICATIONS

- Low-Cost Analog and Digital Data Links
- ► Digitized Audio
- Optical Sensors
- Medical Instruments
- ► Robotics Communications
- ► Motor Controller Triggering
- ► EMC/EMI Signal Isolation
- ► Electronic Games
- Intra-System Links: Board-to-Board, Rack-to-Rack

MAXIMUM RATINGS

 $(T_A = 25^{\circ}C)$

(IA 20 0)
Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 85°C
Junction Temperature (T_J) 85°C
$\begin{array}{l} \mbox{Soldering Temperature} \\ (2\mbox{ mm from case bottom}) \\ (T_S)\ t {\leq} 5\mbox{s} \ 240^\circ C \end{array}$
Reverse Voltage (V_R)3 V
Power Dissipation (P_{TOT}) T_A=25^\circC100 mW
De-rate Above 25°C1.33 mW/°C
Forward Current, DC (I _F) IF-E91A50 mA
Surge Current (I _{FSM}) t \leq 10 µsec IF-E91A 2 A

DESCRIPTION

The IF-E91A is a high-output medium-speed infrared LED in a "connector-less" style plastic fiber optic package. The output spectrum peaks at 950 nm for the IF-E91A. The device package features an internal micro-lens, and a precision-molded PBT housing ensures efficient optical coupling with standard 1000 μm plastic fiber cable.

APPLICATION HIGHLIGHTS

The high output and fast transition times of the IF-E91A is suitable for low-cost analog and digital data links. Used with an IF-D96 photologic detector, the IF-E91A can achieve data rates of 500 kbps at link distances up to 7 m. The drive circuit design is simpler than required for laser diodes, making the IF-E91A an excellent low-cost alternative in a variety of analog and digital applications.

FEATURES

- Excellent Linearity
- ◆ No Optical Design Required
- ◆ Mates with Standard 1000 µm Core Jacketed Plastic Fiber Cable
- ◆ Internal Micro-Lens for Efficient Coupling
- ◆ Inexpensive Plastic Connector Housing
- ◆ Connector-Less Fiber Termination and Connection
- ◆ Interference-Free Transmission from Light-Tight Housing

CHARACTERISTICS (T_A=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Peak Wavelength	λ_{PEAK}		950		nm
Spectral Bandwidth (50% of I_{MAX})	Δλ	-	±20	-	nm
Output Power Coupled into Plastic Fiber (1 mm core diameter). Distance Lens to Fiber≤0.1 mm, 1 m SH4001 fiber, $I_F=20$ mA	$\Phi_{ ext{min}}$	50 -13	70 -11.6	95 -10.2	μW dBm
Switching Times (10% to 90% and 90% to 10%)(RL=47 $\Omega,~$ IF=10 mA)	t _r , t _f	_	1.0	_	μs
Capacitance (f=1 MHz)	С _О	-	25	-	pF
Forward Voltage	V_{f} (I _F =20 mA)	-	1.2	1.5	V
	V_{f} (I _F =20 mA) (I _F =50mA)		1.24	1.5	

IF-E91A

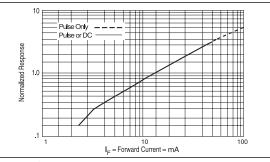


FIGURE 1. Normalized power launched versus forward current.

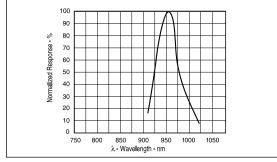
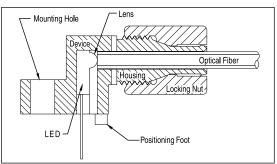
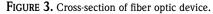




FIGURE 2. Typical spectral output vs. wavelength.

Plastic Fiber Optic IR LEDS

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

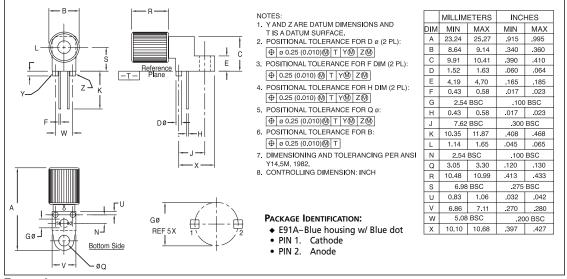


FIGURE 4. Case outline.

rev 10/21/04