Plastic Fiber Optic Photodiode

APPLICATIONS

- ► High-Speed Digital Data Links
- ► Local Area Networks
- ► Motor Controller Triggering
- ► Video Links
- ► Medical Instruments
- ► Automotive Electronics
- ► Robotics Communications
- ► EMC/EMI Signal Isolation
- ► Fiber Optic Modems

DESCRIPTION

The IF-D91 is a high-speed photodiode detector housed in a "connector-less" style plastic fiber optic package. Optical response of the IF-D91 extends from 400 to 1100 nm, making it compatible with a wide range of visible and near-infrared LED and laser diode sources. This includes 650 nm visible red LEDs used for optimum transmission in PMMA plastic optic fiber. The detector package features an internal micro-lens and a precision-molded PBT housing to ensure efficient optical coupling with standard 1000 µm core plastic fiber cable.

Application Highlights

The fast response times of the IF-D91 make it suitable for high-speed digital data links. When used with an appropriate LED or laser diode source the IF-D91 is capable of 100 Mbps data rates. The IF-D91 also can be used in analog video links with bandwidths up to 70 MHz. The integrated design of the IF-D91 provides simple, cost-effective implementation in a variety of analog and digital applications.

FEATURES

- ◆ Fast Rise and Fall Times
- \blacklozenge Mates with Standard 1000 μm Core Jacketed Plastic Fiber Optic Cable
- No Optical Design Required
- ◆ Inexpensive Plastic Connector Housing
- Internal Micro-Lens for Efficient Optical Coupling
- ◆ Connector-Less Fiber Termination
- Light-Tight Housing provides Interference Free Transmission
- ◆ RoHS Compliant

MAXIMUM RATINGS

 $(T_{A} = 25^{\circ}C)$

Operating and Storage Temperature Range (T _{OP} , T _{STG})40° to 85°C
Junction Temperature (T _J)85°C
$\begin{array}{l} \text{Soldering Temperature} \\ (2 \text{ mm from case bottom}) \\ (T_{S}) \text{ t} \leq 5 \text{ s} \dots 240^{\circ} \text{C} \end{array}$
Power Dissipation $(P_{TOT}) T_A = 25^{\circ}C \dots 100 \text{ mW}$
De-rate Above 25°C1.33 mW/°C

CHARACTERISTICS (T_A=25°C)

Parameter	Symbol	Min	Тур	Max	Unit
Wavelength for Maximum Photosensitivity	λ_{PEAK}	-	880	-	nm
Spectral Bandwidth (S=10% of S_{MAX})	Δλ	400	-	1100	nm
Rise and Fall Times (10% to 90% and 90% to 10%) (RL=50 Ω , VR=20V, λ =850 nm)	t _r , t _f	_	5	_	ns
Total Capacitance (V _R =20 V, E _E =0, f=1.0MHz)	C _T	_	4	_	pF
Responsivity min. @ 880 nm @ 632 nm	R	-	.4 .2	-	μΑ/μW μΑ/μW
Reverse Dark Current (V_R =30 volts, E_E =0)	ID	_	_	60	nA
Reverse Breakdown Voltage	V _(BR) R	60	-	-	V
Forward Voltage	V _f	-	1.2	-	V

IF-D91

100 90 80 % 70 Normalized Response 60 50 40 30 20 10 0 500 600 700 800 900 1000 1100 λ - Wavelength - nm

FIGURE 1. Typical detector response versus wavelength.

FIBER TERMINATION INSTRUCTIONS

- 1. Cut off the ends of the optical fiber with a singleedge razor blade or sharp knife. Try to obtain a precise 90-degree angle (square).
- 2. Insert the fiber through the locking nut and into the connector until the core tip seats against the internal micro-lens.
- 3. Screw the connector locking nut down to a snug fit, locking the fiber in place.

FIGURE 4. Case outline.

Plastic Fiber Optic Photodiode