www.freescale.com/sensors

Sensor Device Data

Freescale Semiconductor Device Data

DL200 Rev. 6.1 07/2005

Table of Contents

Section One - General Information	MMA1260D
Quality and Reliability	MMA1270D
-	MMA2201D
Overview	MMA2202D
Abstract	MMA2204D
Reliability Statistics	MMA2260D
Industry Reliability Standards	MMA2300D
Established Sensor Testing	MMA2301D
Sensor Reliability Concerns	MMA3201D
Accelerated Life Testing	MMA3202D
Conclusion	MMA6260Q2-119
References	MMA7260Q2-132
Soldering Precautions	
Electrostatic Discharge Data	Application Notes 2-139
Statistical Process Contro1-13	AN15592-139
	AN16112-142
Process Capability1-13	AN16122-154
SPC Implementation and Use	AN1635 2-161
Summary	AN16402-173
Sensor Media Compatibility: Issues and Answers . 1-18	AN19252-176
Abstract	AN19862-179
Introduction	AN19882-185
Definitions and Underlying Causes 1-19	AN31072-189
Failure Mechanisms	AN31092-194
Pressure Sensor Solutions	AN41112-197
Media Test Methods	AN31122-200
Lifetime Modeling	Package Dimensions 2-205
Industry Standardization	Accelerometer Glossary of Terms 2-207
Conclusion1-28	
Acknowledgements	Section Three - Pressure Sensor Products
Reference	Mini Selector Guide
Section Two - Acceleration Sensor Products	Device Numbering System for Pressure Sensors 3-4
Mini Selector Guide	What Are the Pressure Packaging Options? 3-5
Sensor Applications	Orderable Part Numbers
Acceleration Sensor FAQ's2-4	General Product Information 3-7
Data Sheets	Freescale Semiconductor Pressure Sensors 3-8
MMA1200D	Integration
MMA1210D	Sensor Applications
MMA1211D	Pressure Sensor FAQ's 3-14
MMA1212D	
MMA1213D	Data Sheets
MMA1220D	MP3H6115A
MMA1250D 2-47	MPX10 3-21

MPX123-26	AN1235
MPX533-31	AN1326 3-348
MPX20103-36	AN1516
MPX20533-41	AN15173-362
MPX21023-46	AN1518
MPX22003-51	AN1525
MPX2202	AN1571
MPX2300DT1	AN1573
MPX4080D	AN1586
MPX4100	AN1636
MPX4100A	AN1646
MPX4101A	AN1660
MPX4105A	AN1668
MXP4200A	AN1950
MPX4250A	AN1979
MPX4250D	AN1979
MXP50103-104	AN3108
MPX5050	
MPX5100	AN4010
MPX5500	Package Dimensions 3-471
MPX5700	Reference Tables 3-488
MPX5999D	Mounting and Handling Suggestions for the Unibody
MPXA6115A	
MPXAZ4100A	Pressure Sensor Package 3-490
MPXAZ6115A	Standard Warranty Clause
	Glossary of Terms
MPXH6250A	
MPXH6300A	Symbols, Terms and Definitions 3-495
MPXH6400A	Section Four - Safety and Alarm Integrated
MPXM2010	Circuits Products
MPXM2053	Mini Selector Guide 4-2
MPXM2053 3-175 MPXM2102 3-179	
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183	Mini Selector Guide 4-2 Data Sheets 4-3
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9 MC14578 4-15
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9 MC14578 4-15 MC14600 4-19
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV615VC6U 3-206	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9 MC14578 4-15 MC14600 4-19 MC145010 4-24
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV615VC6U 3-206 MPXV7007G 3-211	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468. 4-9 MC14578. 4-15 MC14600. 4-19 MC145010. 4-24 MC145011. 4-34
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV615VC6U 3-206 MPXV7007G 3-211 MPXV7025G 3-216	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468. 4-9 MC14578. 4-15 MC14600. 4-19 MC145010. 4-24 MC145011. 4-34 MC145012. 4-44
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV615VC6U 3-206 MPXV7007G 3-211 MPXV7025G 3-216 MPXY8000 3-221	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468. 4-9 MC14578. 4-15 MC14600. 4-19 MC145010. 4-24 MC145011. 4-34 MC145012. 4-44 MC145017. 4-54
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV615VC6U 3-206 MPXV7007G 3-211 MPXV7025G 3-216 MPXY8000 3-221 MPXY8021A 3-234	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9 MC14578 4-15 MC14600 4-19 MC145010 4-24 MC145011 4-34 MC145012 4-44 MC145017 4-54 MC145018 4-60
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV615VC6U 3-206 MPXV7007G 3-211 MPXV7025G 3-216 MPXY8000 3-221	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468. 4-9 MC14578. 4-15 MC14600. 4-19 MC145010. 4-24 MC145011. 4-34 MC145012. 4-44 MC145017. 4-54 MC145018. 4-60 Application Notes 4-66
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV615VC6U 3-206 MPXV7007G 3-211 MPXV7025G 3-216 MPXY8000 3-221 MPXY8021A 3-234	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9 MC14578 4-15 MC14600 4-19 MC145010 4-24 MC145011 4-34 MC145012 4-44 MC145018 4-60 Application Notes 4-66 AN1690 4-66
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV5004G 3-191 MPXV50050VC6T1 3-201 MPXV7007G 3-211 MPXV7025G 3-216 MPXY8000 3-221 MPXY8021A 3-234 Application Notes 3-245	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468. 4-9 MC14578. 4-15 MC14600. 4-19 MC145010. 4-24 MC145011. 4-34 MC145012. 4-44 MC145017. 4-54 MC145018. 4-60 Application Notes 4-66
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV5004G 3-191 MPXV5050VC6T1 3-201 MPXV615VC6U 3-206 MPXV7007G 3-211 MPXV7025G 3-216 MPXY8000 3-221 MPXY8021A 3-234 Application Notes 3-245 AN935 3-245	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9 MC14578 4-15 MC14600 4-19 MC145010 4-24 MC145011 4-34 MC145012 4-44 MC145018 4-60 Application Notes 4-66 AN1690 4-66
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV615VC6U 3-206 MPXV7007G 3-211 MPXV7025G 3-216 MPXY8000 3-221 MPXY8021A 3-234 Application Notes 3-245 AN935 3-245 AN936 3-252	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9 MC14578 4-15 MC14600 4-19 MC145010 4-24 MC145011 4-34 MC145012 4-44 MC145017 4-54 MC145018 4-60 Application Notes 4-66 AN1690 4-66 AN4009 4-70 Package Dimensions 4-72
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV7007G 3-211 MPXV7025G 3-216 MPXY8000 3-221 MPXY8021A 3-234 Application Notes 3-245 AN935 3-245 AN936 3-252 AN1082 3-257	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9 MC14578 4-15 MC14600 4-19 MC145010 4-24 MC145011 4-34 MC145012 4-44 MC145018 4-60 Application Notes 4-66 AN1690 4-66 AN4009 4-70
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV615VC6U 3-206 MPXV7007G 3-211 MPXV8000 3-221 MPXY8021A 3-234 Application Notes 3-245 AN935 3-245 AN936 3-252 AN1082 3-257 AN1097 3-260 AN1100 3-266 AN1303 3-269	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9 MC14578 4-15 MC14600 4-19 MC145010 4-24 MC145011 4-34 MC145012 4-44 MC145017 4-54 MC145018 4-60 Application Notes 4-66 AN1690 4-66 AN4009 4-70 Package Dimensions 4-72
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV7007G 3-211 MPXV70025G 3-216 MPXY8000 3-221 MPXY8021A 3-234 Application Notes 3-245 AN935 3-245 AN936 3-252 AN1082 3-257 AN1097 3-260 AN1100 3-266 AN1303 3-269 AN1304 3-272	Mini Selector Guide. 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468. 4-9 MC14578. 4-15 MC14600. 4-19 MC145010. 4-24 MC145011. 4-34 MC145012. 4-44 MC145017. 4-54 MC145018. 4-60 Application Notes 4-66 AN1690. 4-66 AN4009. 4-70 Package Dimensions 4-72 Section Five - Electric Field Sensor Products
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV615VC6U 3-206 MPXV7007G 3-211 MPXY8000 3-221 MPXY8021A 3-234 Application Notes 3-245 AN935 3-245 AN936 3-252 AN1082 3-257 AN1097 3-260 AN1100 3-266 AN1303 3-269 AN1304 3-272 AN1305 3-277	Mini Selector Guide. 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468. 4-9 MC14578. 4-15 MC14600. 4-19 MC145010. 4-24 MC145011. 4-34 MC145012. 4-44 MC145018. 4-60 Application Notes 4-66 AN1690. 4-66 AN4009. 4-70 Package Dimensions 4-72 Section Five - Electric Field Sensor Products Mini Selector Guide. 5-2 MC33794. 5-3
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV615VC6U 3-206 MPXV7007G 3-211 MPXV78000 3-221 MPXY8021A 3-234 Application Notes 3-245 AN935 3-245 AN936 3-252 AN1082 3-257 AN1097 3-260 AN1100 3-266 AN1303 3-269 AN1304 3-272 AN1305 3-277 AN1309 3-293	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9 MC14578 4-15 MC14600 4-19 MC145010 4-24 MC145011 4-34 MC145012 4-44 MC145018 4-60 Application Notes 4-66 AN1690 4-66 AN4009 4-70 Package Dimensions 4-72 Section Five - Electric Field Sensor Products Mini Selector Guide 5-2 MC33794 5-3 AN1985 5-20
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV7007G 3-211 MPXV70025G 3-216 MPXY8000 3-221 MPXY8021A 3-234 Application Notes 3-245 AN935 3-245 AN936 3-252 AN1082 3-257 AN1097 3-260 AN1100 3-266 AN1303 3-269 AN1304 3-272 AN1305 3-277 AN1309 3-293 AN1315 3-300	Mini Selector Guide. 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468. 4-9 MC14578. 4-15 MC14600. 4-19 MC145010. 4-24 MC145011. 4-34 MC145012. 4-44 MC145018. 4-60 Application Notes 4-66 AN1690. 4-66 AN4009. 4-70 Package Dimensions 4-72 Section Five - Electric Field Sensor Products Mini Selector Guide. 5-2 MC33794. 5-3
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV7007G 3-211 MPXV7025G 3-216 MPXY8000 3-221 MPXY8021A 3-234 Application Notes 3-245 AN935 3-245 AN936 3-252 AN1082 3-257 AN1097 3-260 AN1100 3-266 AN1303 3-269 AN1304 3-272 AN1305 3-277 AN1309 3-293 AN1316 3-300 AN1316 3-323	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9 MC14578 4-15 MC14600 4-19 MC145010 4-24 MC145011 4-34 MC145012 4-44 MC145018 4-60 Application Notes 4-66 AN1690 4-66 AN4009 4-70 Package Dimensions 4-72 Section Five - Electric Field Sensor Products Mini Selector Guide 5-2 MC33794 5-3 AN1985 5-20
MPXM2053 3-175 MPXM2102 3-179 MPXM2202 3-183 MPXV4006G 3-187 MPXV4115V 3-191 MPXV5004G 3-197 MPXV5050VC6T1 3-201 MPXV7007G 3-211 MPXV70025G 3-216 MPXY8000 3-221 MPXY8021A 3-234 Application Notes 3-245 AN935 3-245 AN936 3-252 AN1082 3-257 AN1097 3-260 AN1100 3-266 AN1303 3-269 AN1304 3-272 AN1305 3-277 AN1309 3-293 AN1315 3-300	Mini Selector Guide 4-2 Data Sheets 4-3 MC14467-1 4-3 MC14468 4-9 MC14578 4-15 MC14600 4-19 MC145010 4-24 MC145011 4-34 MC145012 4-44 MC145018 4-60 Application Notes 4-66 AN1690 4-66 AN4009 4-70 Package Dimensions 4-72 Section Five - Electric Field Sensor Products Mini Selector Guide 5-2 MC33794 5-3 AN1985 5-20

1-1

Section One

Introduction

This version of the Sensor Products Device Data Handbook is organized to provide easy reference to sensor device information. We have organized the book based upon your recommendations with our goal to make designing in pressure, acceleration, safety and alarm ICs, and electric field sensing easy. If you do have a question, you will have access to the technical support you need.

The handbook is organized by product line, acceleration, pressure, safety and alarm ICs and electric field sensing. Once in a section, you will find a glossary of terms, a list of frequently asked questions, or other relevant data. If you have recommendations for improvement, please email us at support@freescale.com, as there will not be a comment card, especially electronically, and the hot line number is no longer valid.

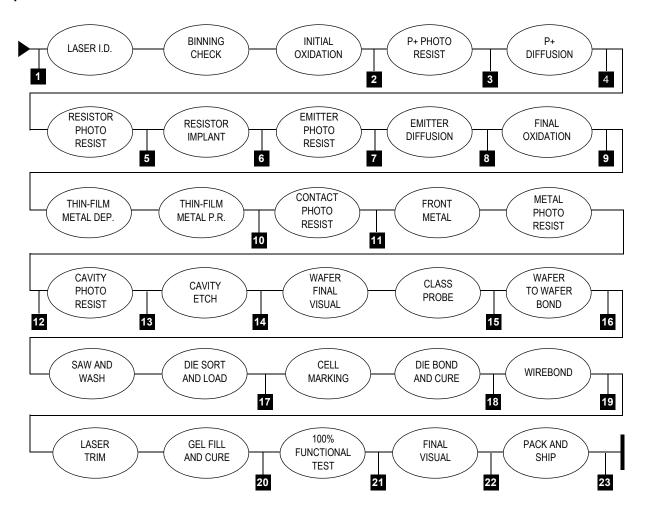
General Information

Q	Quality and Reliability	150
	Overview	1-3
	Abstract	1-4
	Reliability Definition	1-4
	Reliability Statistics	1-4
	Industry Reliability Standards	1-6
	Established Sensor Testing	1-6
	Sensor Reliability Concerns	1-8
	Accelerated Life Testing	1-8
	Conclusion	1-9
	References	1-9
	Soldering Precautions	. 1-10
	Electrostatic Discharge Data	. 1-11
	Statistical Process Control	1,13
S	itatistical Process Control	. 1-15
S	Process Capability	
S		. 1-13
S	Process Capability	. 1-13 . 1-14
	Process Capability	. 1-13 . 1-14 . 1-16
	Process Capability	. 1-13 . 1-14 . 1-16
	Process Capability SPC Implementation and Use. Summary. Sensor Media Compatibility: Issues and Answers . Abstract.	. 1-13 . 1-14 . 1-16 . 1-18
	Process Capability SPC Implementation and Use. Summary. Sensor Media Compatibility: Issues and Answers . Abstract. Introduction.	. 1-13 . 1-14 . 1-16 . 1-18 . 1-18
	Process Capability SPC Implementation and Use. Summary. Sensor Media Compatibility: Issues and Answers . Abstract.	. 1-13 . 1-14 . 1-16 . 1-18 . 1-18 . 1-18
	Process Capability SPC Implementation and Use. Summary. Sensor Media Compatibility: Issues and Answers . Abstract. Introduction. Definitions and Underlying Causes.	. 1-13 . 1-14 . 1-16 . 1-18 . 1-18 . 1-19 . 1-20
	Process Capability SPC Implementation and Use. Summary. Sensor Media Compatibility: Issues and Answers . Abstract. Introduction. Definitions and Underlying Causes. Failure Mechanisms	. 1-13 . 1-14 . 1-16 . 1-18 . 1-18 . 1-19 . 1-20
	Process Capability SPC Implementation and Use. Summary. Sensor Media Compatibility: Issues and Answers Abstract. Introduction Definitions and Underlying Causes. Failure Mechanisms Pressure Sensor Solutions	. 1-13 . 1-14 . 1-16 . 1-18 . 1-18 . 1-19 . 1-20 . 1-24
	Process Capability SPC Implementation and Use. Summary. Sensor Media Compatibility: Issues and Answers . Abstract. Introduction. Definitions and Underlying Causes. Failure Mechanisms Pressure Sensor Solutions Media Test Methods	. 1-13 . 1-14 . 1-16 . 1-18 . 1-18 . 1-19 . 1-24 . 1-24 . 1-25
	Process Capability SPC Implementation and Use. Summary. Sensor Media Compatibility: Issues and Answers . Abstract. Introduction Definitions and Underlying Causes. Failure Mechanisms Pressure Sensor Solutions Media Test Methods Lifetime Modeling	. 1-13 . 1-14 . 1-16 . 1-18 . 1-18 . 1-19 . 1-20 . 1-24 . 1-25 . 1-26
	Process Capability SPC Implementation and Use. Summary. Sensor Media Compatibility: Issues and Answers . Abstract. Introduction. Definitions and Underlying Causes. Failure Mechanisms Pressure Sensor Solutions Media Test Methods Lifetime Modeling Industry Standardization	. 1-13 . 1-14 . 1-16 . 1-18 . 1-18 . 1-19 . 1-24 . 1-25 . 1-26 . 1-28
	Process Capability SPC Implementation and Use. Summary. Sensor Media Compatibility: Issues and Answers . Abstract. Introduction Definitions and Underlying Causes. Failure Mechanisms Pressure Sensor Solutions Media Test Methods Lifetime Modeling Industry Standardization Conclusion	. 1-13 . 1-14 . 1-16 . 1-18 . 1-18 . 1-19 . 1-20 . 1-24 . 1-25 . 1-26 . 1-28

NOTES

Quality and Reliability

OVERVIEW


A Major Objective of the Production Cycle

From rigid incoming inspection of piece parts and materials, to stringent outgoing quality verification, the Freescale Semiconductor assembly and process flow is encompassed by an elaborate system of test and inspection stations; stations to ensure a step-by-step adherence to prescribed procedure. This produces the high level of quality for which Freescale Semiconductor is known from start to finish.

As illustrated in the process flow overview, every major manufacturing step is followed by an appropriate in-process

quality inspection to insure product conformance to specification. In addition, Statistical Process Control (S.P.C.) techniques are utilized on all critical processes to insure processing equipment is capable of producing the product to the target specification while minimizing the variability. Quality control in wafer processing, assembly, and final test impart Freescale Semiconductor sensor products with a level of reliability that easily exceeds almost all industrial, consumer, and military requirements.

Compensated Sensor Flow Chart

RELIABILITY ISSUES FOR SILICON PRESSURE SENSORS

by: Theresa Maudie and Bob Tucker Sensor Products Division Revised June 9, 1997

ABSTRACT

Reliability testing for silicon pressure sensors is of greater importance than ever before with the dramatic increase in sensor usage. This growth is seen in applications replacing mechanical systems, as well as new designs. Across all market segments, the expectation for the highest reliability exists. While sensor demand has grown across all of these segments, the substantial increase of sensing applications in the automotive arena is driving the need for improved reliability and test capability. The purpose of this paper is to take a closer look at these reliability issues for silicon pressure sensors.

INTRODUCTION

Discussing reliability as it pertains to semiconductor electronics is certainly not a new subject. However, when developing new technologies like sensors how reliability testing will be performed is not always obvious. Pressure sensors are an intriguing dilemma. Since they are electromechanical devices, different types of stresses should be considered to insure the different elements are exercised as they would be in an actual application. In addition, the very different package outlines relative to other standard semiconductor packages require special fixtures and test setups. However, as the sensor marketplace continues to grow, reliability testing becomes more important than ever to insure that products being used across all market segments will meet reliability lifetime expectations.

RELIABILITY DEFINITION

Reliability is [1] the probability of a product performing its intended function over its intended lifetime and under the operating conditions encountered. The four key elements of the definition are probability, performance, lifetime, and operating conditions. Probability implies that the reliability lifetime estimates will be made based on statistical techniques where samples are tested to predict the lifetime of the manufactured products. Performance is a key in that the sample predicts the performance of the product at a given point in time but the variability in manufacturing must be controlled so that all devices perform to the same functional level. Lifetime is the period of time over which the product is intended to perform. This lifetime could be as small as one week in the case of a disposable blood pressure transducer or as long as 15 years for automotive applications. Environment is the area that also plays a key role since the operating conditions of the product can greatly influence the reliability of the product.

Environmental factors that can be seen during the lifetime of any semiconductor product include temperature, humidity, electric field, magnetic field, current density, pressure differential, vibration, and/or a chemical interaction. Reliability testing is generally formulated to take into account all of these

potential factors either individually or in multiple combinations. Once the testing has been completed predictions can be made for the intended product customer base.

If a failure would be detected during reliability testing, the cause of the failure can be categorized into one of the following: design, manufacturing, materials, or user. The possible impact on the improvements that may need to be made for a product is influenced by the stage of product development. If a product undergoes reliability testing early in its development phase, the corrective action process can generally occur in an expedient manner and at minimum cost. This would be true whether the cause of failure was attributed to the design, manufacturing, or materials. If a reliability failure is detected once the product is in full production, changes can be very difficult to make and generally are very costly. This scenario would sometimes result in a total redesign.

The potential cause for a reliability failure can also be user induced. This is generally the area that the least information is known, especially for a commodity type manufacturer that achieves sales through a global distribution network. It is the task of the reliability engineer to best anticipate the multitudes of environments that a particular product might see, and determine the robustness of the product by measuring the reliability lifetime parameters. The areas of design, manufacturing, and materials are generally well understood by the reliability engineer, but without the correct environmental usage, customer satisfaction can suffer from lack of optimization.

RELIABILITY STATISTICS

Without standardization of the semiconductor sensor standards, the end customer is placed in a situation of possible jeopardy. If non-standard reliability data is generated and published by manufacturers, the information can be perplexing to disseminate and compare. Reliability lifetime statistics can be confusing for the novice user of the information, "let the buyer beware."

The reporting of reliability statistics is generally in terms of failure rate, measured in FITs, or failure rate for one billion device hours. In most cases, the underlying assumption used in reporting either the failure rate or the MTBF is that the failures occurring during the reliability test follow an exponential life distribution. The inverse of the failure rate is the MTBF, or mean time between failure. The details on the various life distributions will not be explored here but the key concern about the exponential distribution is that the failure rate over time is constant. Other life distributions, such as the lognormal or Weibull can take on different failure rates over time, in particular, both distributions can represent a wear out or increasing failure rate that might be seen on a product reaching the limitations on its lifetime or for certain types of failure mechanisms.

The time duration use for the prediction of most reliability statistics is of relatively short duration with respect to the product's lifetime ability and failures are usually not observed. When a test is terminated after a set number of hours is achieved, or time censored, and no failures are observed, the

failure rate can be estimated by use of the chi-square distribution which relates observed and expected frequencies of an event to established confidence intervals. The relationship between failure rate and the chi-square distribution is as follows:

$$\lambda_{L1} = \frac{\chi^2 (\alpha, d.f.)}{2t}$$

Where:

 λ = failure rate

L1 = lower one side confidence limit

 χ^2 = chi-square function

 α = risk, (1-confidence level)

d.f. = degrees of freedom = 2(r + 1)

r = number of failures

t = device hours

Chi-square values for 60% and 90% confidence intervals for up to 12 failures is shown in Table 1.

As indicated by the table, when no failures occur, an estimate for the chi-square distribution interval is obtainable. This interval estimate can then be used to solve for the failure rate, as shown in the equation above. If no failures occur, the failure rate estimate is solely a function of the accumulated device hours. This estimate can vary dramatically as additional device hours are accumulated.

As a means of showing the influence of device hours with no failures on the failure rate value, a graphical representation of cumulative device hours versus the failure rate measured in FITs is shown in Figure 1.

A descriptive example between two potential vendors best serves to demonstrate the point. If vendor A is introducing a new product and they have put a total of 1,000 parts on a high temperature storage test for 500 hours each, their corresponding cumulative device hours would be 500,000 device hours. Vendor B has been in the business for several years on the same product and has tested a total of 500,000 parts for 10 hours each to the same conditions as part of an in-line burn-in test for a total of 5,000,000 device hours. The corresponding failure rate for a 60% confidence level for vendor A would be 1,833 FITs, vendor B would have a FIT rate of 183 FITs.

Table 1. Chi-Square Table

Chi-Square Distribution Function			
60% Confid	dence Level	90% Confidence Level	
No. Fails	χ ² Quantity	No. Fails	χ ² Quantity
0	1.833	0	4.605
1	4.045	1	7.779
2	6.211	2	10.645
3	8.351	3	13.362
4	10.473	4	15.987
5	12.584	5	18.549
6	14.685	6	21.064
7	16.780	7	23.542
8	18.868	8	25.989
9	20.951	9	28.412
10	23.031	10	30.813
11	25.106	11	33.196
12	27.179	12	35.563

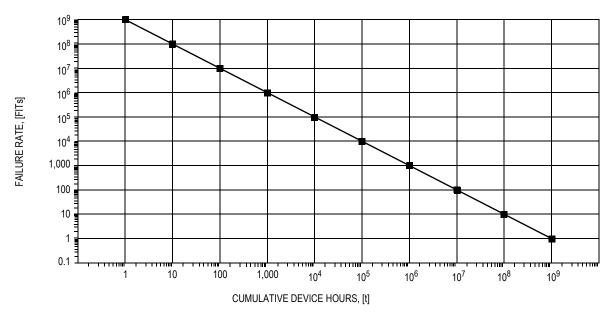


Figure 1. Depiction of the influence on the cumulative device hours with no failures and the Failure Rate as measured in FITs.

One could thus imply that the reliability performance indicates that vendor B has an order of magnitude improvement in performance over vendor A with neither one seeing an occurrence of failure during their performance.

The incorrect assumption of a constant failure rate over time can potentially result in a less reliable device being designed into an application. The reliability testing assumptions and test methodology between the various vendors needs to be critiqued to insure a full understanding of the product performance over the intended lifetime, especially in the case of a new product. Testing to failure and determination of the lifetime statistics is beyond the scope of this paper and presented elsewhere [2].

INDUSTRY RELIABILITY STANDARDS

Reliability standards for large market segments are often developed by "cross-corporation" committees that evaluate the requirements for the particular application of interest. It is the role of these committees to generate documents intended as guides for technical personnel of the end users and suppliers, to assist with the following functions: specifying, developing, demonstrating, calibrating, and testing the performance characteristics for the specific application.

One such committee which has developed a standard for a particular application is the Blood Pressure Monitoring Committee of the Association for the Advancement of Medical Instrumentation (AAMI) [3]. Their document, the "American National Standard for Interchangeability and Performance of Resistive Bridge Type Blood Pressure Transducers", has an objective to provide performance requirements, test methodology, and terminology that will help insure that safe, accurate blood pressure transducers are supplied to the marketplace.

In the automotive arena, the Society of Automotive Engineers (SAE) develops standards for various pressure sensor applications such as SAE document J1346, "Guide to Manifold Absolute Pressure Transducer Representative Test Method" [4].

While these two very distinct groups have successfully developed the requirements for their solid-state silicon pressure sensor needs, no real standard has been set for the general industrial marketplace to insure products being offered have been tested to insure reliability under industrial conditions. Freescale Semiconductor has utilized MIL-STD-750 as a reference document in establishing reliability testing practices for the silicon pressure sensor, but the differences in the technology between a discrete semiconductor and a silicon pressure sensor varies dramatically. The additional tests that are utilized in semiconductor sensor reliability testing are based on the worst case operational conditions that the device might encounter in actual usage.

ESTABLISHED SENSOR TESTING

Freescale Semiconductor has established semiconductor sensor reliability testing based on exercising to detect failures by the presence of the environmental stress. Potential failure modes and causes are developed by allowing tests to run beyond the normal test times, thus stressing to destruction.

The typical reliability test matrix used to insure conformance to customers end usage is as follows [5]:

Pulsed Pressure Temperature Cycling with Bias (PPTCB)

This test is an environmental stress test combined with cyclic pressure loading in which the devices are alternately subjected to a low and high temperature while operating under bias under a cyclical pressure load. This test simulates the extremes in the operational life of a pressure sensor. PPTCB evaluates the sensor's overall performance as well as evaluating the die, die bond, wire bond and package integrity.

Typical Test Conditions: Temperature per specified operating limits (i.e., Ta = -40 to 125° C for an automotive application). Dwell time ≥ 15 minutes, transfer time ≤ 5 minutes, bias = 100% rated voltage. Pressure = 0 to full scale, pressure frequency = 0.05 Hz, test time = up to 1000 hours.

Potential Failure Modes: Open, short, parametric shift. Potential Failure Mechanisms: Die defects, wire bond fatigue, die bond fatigue, port adhesive failure, volumetric gel changes resulting in excessive package stress. Mechanical creep of packaging material.

High Humidity, High Temperature with Bias (H³TB)

A combined environmental/electrical stress test in which devices are subjected to an elevated ambient temperature and humidity while under bias. The test is useful for evaluating package integrity as well as detecting surface contamination and processing flaws.

Typical Test Conditions: Temperature between 60 and 85°C, relative humidity between 85 and 90%, rated voltage, test time = up to 1000 hours.

Potential Failure Modes: Open, short, parametric shift. **Potential Failure Mechanisms:** Shift from ionic affect, parametric instability, moisture ingress resulting in excessive package stress, corrosion.

High Temperature with Bias (HTB)

This operational test exposes the pressure sensor to a high temperature ambient environment in which the device is biased to the rated voltage. The test is useful for evaluating the integrity of the interfaces on the die and thin film stability.

Typical Test Conditions: Temperature per specified operational maximum, bias = 100% rated voltage, test time = up to 1000 hours.

Potential Failure Modes: Parametric shift in offset and/or sensitivity.

Potential Failure Mechanisms: Bulk die or diffusion defects, film stability and ionic contamination.

High and Low Temperature Storage Life (HTSL, LTSL)

High and low temperature storage life testing is performed to simulate the potential shipping and storage conditions that the pressure sensor might encounter in actual usage. The test

also evaluates the devices thermal integrity at worst case temperatures.

Typical Test Conditions: Temperature per specified storage maximum and minimum, no bias, test time = up to 1000 hours.

Potential Failure Modes: Parametric shift in offset and/or sensitivity.

Potential Failure Mechanisms: Bulk die or diffusion defects, mechanical creep in packaging components due to thermal mismatch.

Temperature Cycling (TC)

This is an environmental test in which the pressure sensor is alternatively subjected to hot and cold temperature extremes with a short stabilization time at each temperature in an air medium. The test will stress the devices by generating thermal mismatches between materials.

Typical Test Conditions: Temperature per specified storage maximum and minimum (i.e., -40 to +125°C for automotive applications). Dwell time \geq 15 minutes, transfer time \leq 5 minutes, no bias. Test time up to 1000 cycles.

Potential Failure Modes: Open, parametric shift in offset and/or sensitivity.

Potential Failure Mechanisms: Wire bond fatigue, die bond fatigue, port adhesive failure, volumetric gel changes resulting in excessive package stress. Mechanical creep of packaging material.

Mechanical Shock

This is an environmental test where the sensor device is evaluated to determine its ability to withstand a sudden change in mechanical stress due to an abrupt change in motion. This test simulates motion that may be seen in handling, shipping or actual use. MIL STD 750, Method 2016 Reference.

Typical Test Conditions: Acceleration = 1500 g's, orientation = X, Y, Z planes, time = 0.5 milliseconds, 5 blows.

Potential Failure Modes: Open, parametric shift in offset and/or sensitivity.

Potential Failure Mechanisms: Diaphragm fracture, mechanical failure of wire bonds or package.

Variable Frequency Vibration

A test to examine the ability of the pressure sensor device to withstand deterioration due to mechanical resonance. MIL STD 750, Method 2056 Reference.

Typical Test Conditions: Frequency - 10 Hz to 2 kHz, 6.0 G's max, orientation = X, Y, Z planes, 8 cycles each axis, 2 hrs. per cycle.

Potential Failure Modes: Open, parametric shift in offset and/or sensitivity.

Potential Failure Mechanisms: Diaphragm fracture, mechanical failure of wire bonds or package.

Solderability

In this reliability test, the lead/terminals are evaluated for their ability to solder after an extended time period of storage (shelf life). MIL STD 750, Method 2026 Reference.

Typical Test Conditions: Steam aging = 8 hours, Flux= R, Solder = Sn63, Pb37.

Potential Failure Modes: Pin holes, non-wetting, dewetting.

Potential Failure Mechanisms: Poor plating, contamination.

Over Pressure

This test is performed to measure the ability of the pressure sensor to withstand excessive pressures that may be encountered in the application. The test is performed from either the front or back side depending on the application.

Typical Test Conditions: Pressure increase to failure, record value.

Potential Failure Modes: Open.

Potential Failure Mechanisms: Diaphragm fracture, adhesive or cohesive failure of die attach.

A pressure sensor may be placed in an application where it will be exposed to various media that may chemically attack the active circuitry, silicon, interconnections and/or packaging material. The focus of media compatibility is to understand the chemical impact with the other environmental factors such as temperature and bias and determine the impact on the device lifetime. The primary driving mechanism to consider is permeation which quantifies the time for a chemical to permeate across a membrane or encapsulant corrosion can result.

Media related product testing is generally very specific to the application since the factors that relate to the product lifetime are very numerous and varied. An example is solution pH where the further from neutral will drive the chemical reaction, generally to a power rule relationship. The pH alone does not always drive the reaction either, the non-desired products in the media such as strong acids in fuels as a result of acid rain can directly influence the lifetime. It is recommended the customer and/or vendor perform application specific testing that best represents the environment. This testing should be performed utilizing in situ monitoring of the critical device parameter to insure the device survives while exposed to the chemical. The Sensor Products Division within Freescale Semiconductor has a wide range of media specific test capabilities and under certain circumstances will perform application specific media testing.

A sufficient sample size manufactured over a pre-defined time interval to maximize process and time variability is tested based on the guidelines of the matrix shown above. This test methodology is employed on all new product introductions and process changes on current products.

A silicon pressure sensor has a typical usage environment of pressure, temperature, and voltage. Unlike the typical bipolar transistor life tests which incorporate current density and temperature to accelerate failures, a silicon pressure sensor's acceleration of its lifetime performance is primarily based on the pressure and temperature interaction with a presence of bias. This rationale was incorporated into the development of the Pulsed Pressure Temperature Cycling

with Bias (PPTCB) test where the major acceleration factor is the pressure and temperature component. It is also why PPTCB is considered the standard sensor operational life test.

To insure that silicon pressure sensors are designed and manufactured for reliability, an in-depth insight into what mechanisms cause particular failures is required. It is safe to say that unless a manufacturer has a clear understanding of everything that can go wrong with the device, it cannot design a device for the highest reliability. Figure 2 provides a look into

the sensor operating concerns for a variety of potential usage applications. This information is utilized when developing the Failure Mode and Effects Analysis (FMEA). The FMEA then serves as the documentation that demonstrates all design and process concerns have been addressed to offer the most reliable approach. By understanding how to design products, control processes, and eliminate the concerns raised, a reliable product is achieved.

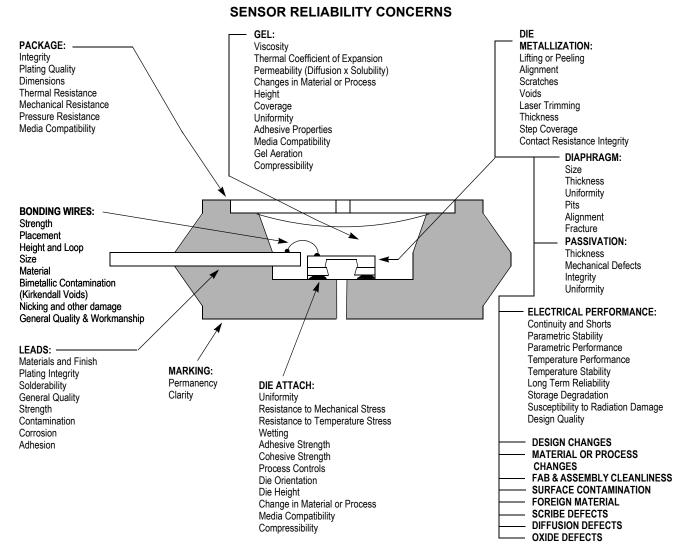


Figure 2. Process and Product Variability Concerns During Reliability Testing

ACCELERATED LIFE TESTING

It is very difficult to assess the reliability statistics for a product when very few or no failures occur. With cost as a predominant factor in any industrial setting and time of the utmost importance, the reliability test must be optimized. Optimization of reliability testing will allow the maximum amount of information on the product being tested to be gained in a minimum amount of time, this is accomplished by using accelerated life testing techniques.

A key underlying assumption in the usage of accelerated life testing to estimate the life of a product at a lower or nominal stress is that the failure mechanism encountered at the high stress is the same as that encountered at the nominal stress. The most frequently applied accelerated environmental stress for semiconductors is temperature, it will be briefly explained here for its utilization in determining the lifetime reliability statistics for silicon pressure sensors.

The temperature acceleration factor for a particular failure mechanism can be related by taking the ratio for the reaction

rate of the two different stress levels as expressed by the Arrhenius type of equation. The mathematical derivation of the first order chemical reaction rate computes to:

$$AF = \frac{(R_T)_{HS}}{(R_T)_{LS}} = \frac{t_{HS}}{t_{LS}}$$

$$AF = exp \left[\frac{Ea}{k} \left(\frac{1}{T_{LS}} - \frac{1}{T_{HS}} \right) \right]$$

Where:

AF = Acceleration Factor

 R_T = Reaction Rate

t = time

T = temperature [°K]

Ea = activation energy of expressed in electron-volts [eV]

 $k = Boltzman's constant, 8.6171 x 10^{-5} eV/°K$

LS = Low stress or nominal temperature

HS = High stress or test temperature

The activation energy is dependent on the failure mechanism and typically varies from 0.3 to 1.8 electron-volts. The activation energy is directly proportional to the degree of influence that temperature has on the chemical reaction rate. A listing of typical activation energies is included in reference [6] and [7].

An example using the Arrenhius equation will be demonstrated. A 32 device HTB test for 500 hours total and no failure was performed. The 125°C, 100% rated voltage test resulted in no failures. If a customer's actual usage conditions was 55°C at full rated voltage, an estimate of the lower one side confidence limit can be calculated. An assumption is made that the failure rate is constant thus implying the exponential distribution. The first step is to calculate the equivalent device hours for the customer's use conditions by solving for the acceleration factor.

From the acceleration factor above, if eA is assumed equal to 1,

AF = exp
$$\left[\frac{Ea}{k} \left(\frac{1}{T_{LS}} - \frac{1}{T_{HS}} \right) \right]$$

Where:

 $eA = 0.7 eV/^{\circ}K (assumed)$

 $T_{LS} = 55^{\circ}C + 273.16 = 328.16^{\circ}K$

 $T_{HS} = 125^{\circ}C + 273.16 = 398.16^{\circ}K$

then;

AF = 77.64

Therefore, the equivalent cumulative device hours at the customer's use condition is:

$$T_{LS} = AF \times T_{HS} = (32 \cdot 500) \cdot 77.64$$

or

 T_{LS} = 1,242,172 device hours

Computing the lower one sided failure rate with a 90% confidence level and no failures:

$$\lambda = \frac{\chi^2 (\alpha, d.f.)}{2t}$$

or

 $\lambda = 1.853E-06$ failures per hour

or

 $\lambda = 1.853 \text{ FITs}$

The inverse of the failure, λ , or the Mean Time To Failure (MTTF) is:

$$MTTF = \frac{1}{\lambda}$$

or

MTTF = 540,000 device hours

CONCLUSION

Reliability testing durations and acceptance numbers are used as a baseline for achieving adequate performance in the actual use condition that the silicon pressure sensor might encounter. The baseline for reliability testing can be related to the current record high jump bar height. Just as athletes in time achieve a higher level of performance by improvements in their level of physical and mental fitness, silicon pressure sensors must also incorporate improvements in the design, materials, and manufacturability to achieve the reliability growth demands the future market place will require. This philosophy of never ending improvement will promote consistent conformance to the customer's expectation and production of a best in class product.

REFERENCES

- Dr. Joseph E. Matar and Theresa Maudie, "Reliability Engineering and Accelerated Life Testing," Motorola Internal Training Text, 1989.
- [2] D.J. Monk, T. Maudie, D. Stanerson, J. Wertz, G. Bitko, J. Matkin, and S. Petrovic, "Media Compatible Packaging and Environmental Testing of Barrier Coating Encapsulated Silicon Pressure Sensors," 1996, Solid-State Sensors and Actuators Workshop. Hilton Head, SC, pp. 36-41, 1996.
- [3] "Guide to Manifold Absolute Pressure Transducer Representative Test Method," SAE Guideline J1346, Transducer Subcommittee, latest revision.
- [4] "Interchangeability and Performance of Resistive Bridge Type Blood Pressure Transducers," AAMI Guideline, Blood Pressure Monitoring Committee, latest revision.
- [5] "Motorola D.M.T.G. Reliability Audit Report," Q191.
- [6] Wayne Nelson, "Accelerated Testing: Statistical Models," Test Plans, and Data Analyses, John Wiley & Sons, Inc., New York, N.Y., 1990.
- [7] D.S. Peck and O.D. Trapp, (1978), "Accelerated Testi

SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

- · Always preheat the device.
- The delta temperature between the preheat and soldering should be 100°C or less.*
- For pressure sensor devices, a no-clean solder is recommended unless the silicone die coat is sealed and unexposed. Also, prolonged exposure to fumes can damage the silicone die coat of the device during the solder reflow process.
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference should be a maximum of 10°C.
- The soldering temperature and time should not exceed 260°C for more than 10 seconds.
- When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less.
- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes.
 Gradual cooling should be used since the use of forced cooling will increase the temperature gradient and will result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling.

*Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

Typical Solder Heating Profile

For any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones and a figure for belt speed. Taken together, these control settings make up a heating "profile" for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 3 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems, but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board. type of solder used, and the type of board or substrate material being used. This profile shows temperature versus time. The line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between 177-189°C. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints.

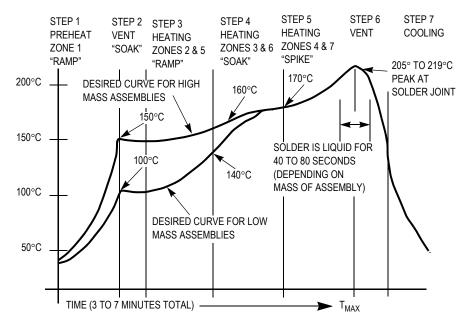


Figure 3. Typical Solder Heating Profile

ELECTROSTATIC DISCHARGE DATA

Electrostatic damage (ESD) to semiconductor devices has plaqued the industry for years. Special packaging and handling techniques have been developed to protect these sensitive devices. While many of Freescale Semiconductor's semiconductors devices are not susceptible to ESD, all products are revered as sensitive and handled accordingly.

The data in this section was developed using the humanbody model specified in MIL-STD-750C, Method 1020. The threshold values (Eth, kV) of ten devices was recorded, then the average value calculated. This data plus the device type, device source, package type, classification, polarity and general device description are supplied. Devices listed are mainly JEDEC registered 1N and 2N numbers. Military QPL devices and some customer specials are also in this database. The data in this report will be updated regularly, and the range will be added as new data becomes available.

The sensitivity classifications listed are as follows:

Class 1 . . . 1 to 1999 volts Class 2 . . . 2000 to 3999 volts Class 3 . . . 4000 to > 15500 volts

The code "N/S" signifies a non-sensitive device. "SEN" are considered sensitive and should be handled according to ESD procedures. Of the various products manufactured by the Communications, Power and Signal Technologies Group, the following examples list general device families by not sensitive to extremely sensitive.

Not sensitive FET current regulators

Least sensitive Zener diodes (on a square mil/mil-

lijoule basis)

Less sensitive Bipolar transistors

More sensitive Bipolar darlington transistors

Very sensitive Power TMOS® devices

Extremely sensitive . . . Hot carrier diodes and

MOSFET transistors without gate

protection

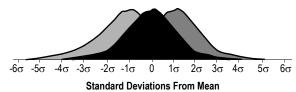
The data supplied herein, is listed in numerical or alphabetical order.

Device	Line	Case	Class	Product Description
MPX10D	XL0010V1	344-15	3-SEN	Uncompensated
MPX10DP	XL0010V1	344C-01	3-SEN	Uncompensated
MPX10GP	XL0010V1	344B-01	3-SEN	Uncompensated
MPX12D	XL0012V1	344-15	3-SEN	Uncompensated
MPX12DP	XL0012V1	344C-01	3-SEN	Uncompensated
MPX12GP	XL0012V1	344B-01	3-SEN	Uncompensated
MPX2010D	XL2010V5	344-15	1-SEN	Temperature Compensated/Calibrated
MPX2010DP	XL2010V5	344C-01	1-SEN	Temperature Compensated/Calibrated
MPX2010GP	XL2010V5	344B-01	1-SEN	Temperature Compensated/Calibrated
MPX2010GS	XL2010V5	344E-01	1-SEN	Temperature Compensated/Calibrated
MPX2010GSX	XL2010V5	344F-01	1-SEN	Temperature Compensated/Calibrated
MPX2300DT1	XL2300C1,01C1	423-05	1-SEN	Temperature Compensated/Calibrated
MPX4100A	XL4101S2	867-08	1-SEN	Signal-Conditioned
MPX4100AP	XL4101S2	867B-04	1-SEN	Signal-Conditioned
MPX4100AS	XL4101S2	867E-03	1-SEN	Signal-Conditioned
MPX4101A	XL4101S2	867-08	1-SEN	Signal-Conditioned
MPX4115A	XL4101S2	867-08	1-SEN	Signal-Conditioned
MPX4115AP	XL4101S2	867B-04	1-SEN	Signal-Conditioned
MPX4115AS	XL4101S2	867E-03	1-SEN	Signal-Conditioned
MPX4250A	XL4101S2	867-08	1-SEN	Signal-Conditioned
MPX4250AP	XL4101S2	867B-04	1-SEN	Signal-Conditioned
MPX5010D	XL4010S5	867-08	1-SEN	Signal-Conditioned
MPX5010DP	XL4010S5	867C-05	1-SEN	Signal-Conditioned
MPX5010GP	XL4010S5	867B-04	1-SEN	Signal-Conditioned
MPX5010GS	XL4010S5	867E-03	1-SEN	Signal-Conditioned
MPX5010GSX	XL4010S5	867F-03	1-SEN	Signal-Conditioned
MPX5050D	XL4051S1	867-08	1-SEN	Signal-Conditioned

Device	Line	Case	Class	Product Description
MPX5050DP	XL4051S1	867C-05	1-SEN	Signal-Conditioned
MPX5050GP	XL4051S1	867B-04	1-SEN	Signal-Conditioned
MPX5100D	XL4101S1	867-08	1-SEN	Signal-Conditioned
MPX5100DP	XL4101S1	867C-05	1-SEN	Signal-Conditioned
MPX5100GP	XL4101S1	867B-04	1-SEN	Signal-Conditioned
MPX5700D	XL4701S1	867-08	1-SEN	Signal-Conditioned
MPX5700DP	XL4701S1	867C-05	1-SEN	Signal-Conditioned
MPX5700GP	XL4701S1	867B-04	1-SEN	Signal-Conditioned
MPX5999D	XL4999S1	867-08	1-SEN	Signal-Conditioned

Statistical Process Control

Freescale's Semiconductor Products Sector is continually pursuing new ways to improve product quality. Initial design improvement is one method that can be used to produce a superior product. Equally important to outgoing product quality is the ability to produce product that consistently conforms to specification. Process variability is the basic enemy of semiconductor manufacturing since it leads to product variability. Used in all phases of Freescale Semiconductor's product manufacturing, STATISTICAL PROCESS CONTROL (SPC) replaces variability with predictability. The traditional philosophy in the semiconductor industry has been adherence to the data sheet specification. Using SPC methods assures the product will meet specific process requirements throughout the manufacturing cycle. The emphasis is on defect prevention, not detection. Predictability through SPC methods requires the manufacturing culture to focus on constant and permanent improvements. Usually these improvements cannot be bought with state-of-the-art equipment or automated factories. With quality in design. process and material selection, coupled with manufacturing predictability, Freescale Semiconductor produces world class products.


The immediate effect of SPC manufacturing is predictability through process controls. Product centered and distributed well within the product specification benefits Freescale Semiconductor with fewer rejects, improved yields and lower cost. The direct benefit to Freescale Semiconductor's customers includes better incoming quality levels, less inspection time and ship-to-stock capability. Circuit performance is often dependent on the cumulative effect of component variability. Tightly controlled component distributions give the customer greater circuit predictability. Many customers are also converting to just-in-time (JIT) delivery programs. These programs require improvements in cycle time and yield predictability achievable only through SPC techniques. The benefit derived from SPC helps the manufacturer meet the customer's expectations of higher quality and lower cost product.

Ultimately, Freescale Semiconductor will have Six Sigma capability on all products. This means parametric distributions will be centered within the specification limits with a product distribution of plus or minus Six Sigma about mean. Six Sigma capability, shown graphically in Figure 1, details the benefit in terms of yield and outgoing quality levels. This compares a centered distribution versus a 1.5 sigma worst case distribution shift.

New product development at Freescale Semiconductor requires more robust design features that make them less sensitive to minor variations in processing. These features make the implementation of SPC much easier.

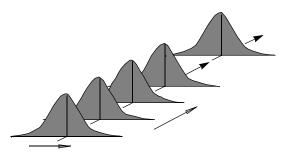
A complete commitment to SPC is present throughout Freescale Semiconductor. All managers, engineers, production operators, supervisors and maintenance personnel have received multiple training courses on SPC techniques. Manufacturing has identified 22 wafer processing and 8 assembly steps considered critical to the processing of semiconductor products. Processes, controlled by SPC

methods, that have shown significant improvement are in the diffusion, photolithography and metallization areas.

Distribution Centered Distribution Shifted ± 1.5 At $\pm 3\sigma$ 2700 ppm defective 66810 ppm defective 99.73% yield 93.32% yield At $\pm 4\sigma$ 63 ppm defective 6210 ppm defective 99.9937% yield 99.379% yield At $\pm 5\sigma$ 0.57 ppm defective 233 ppm defective 99.999943% yield 99.9767% yield At \pm 6 σ 0.002 ppm defective 3.4 ppm defective 99.9999998% yield 99.99966% yield

Figure 1. AOQL and Yield from a Normal Distribution of Product With 6σ Capability

To better understand SPC principles, brief explanations have been provided. These cover process capability, implementation and use.


PROCESS CAPABILITY

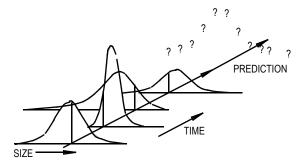
One goal of SPC is to ensure a process is capable. Process capability is the measurement of a process to produce products consistently to specification requirements. The purpose of a process capability study is to separate the inherent random variability from assignable causes. Once completed, steps are taken to identify and eliminate the most significant assignable causes. Random variability is generally present in the system and does not fluctuate. Sometimes, these are considered basic limitations associated with the machinery, materials, personnel skills or manufacturing methods. Assignable cause inconsistencies relate to time variations in yield, performance or reliability.

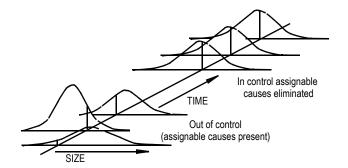
Traditionally, assignable causes appear to be random due to the lack of close examination or analysis. Figure 2 shows the impact on predictability that assignable cause can have. Figure 3 shows the difference between process control and process capability.

A process capability study involves taking periodic samples from the process under controlled conditions. The performance characteristics of these samples are charted against time. In time, assignable causes can be identified and engineered out. Careful documentation of the process is key to accurate diagnosis and successful removal of the assignable causes. Sometimes, the assignable causes will remain unclear requiring prolonged experimentation.

Elements which measure process variation control and capability are Cp and Cpk respectively. Cp is the specification width divided by the process width or Cp = (specification width) / 6σ . Cpk is the absolute value of the closest specification value to the mean, minus the mean, divided by half the process width or Cpk = | closest specification $-\overline{X}/3\sigma$.

Process "under control" - all assignable causes are removed and future distribution is predictable.




Figure 2. Impact of Assignable Causes on Process Predictable

At Freescale Semiconductor, for critical parameters, the process capability is acceptable with a Cpk = 1.33. The desired process capability is a Cpk = 2 and the ideal is a Cpk = 5. Cpk, by definition, shows where the current production process fits with relationship to the specification limits. Off center distributions or excessive process variability will result in less than optimum conditions

SPC IMPLEMENTATION AND USE

DMTG uses many parameters that show conformance to specification. Some parameters are sensitive to process variations while others remain constant for a given product line. Often, specific parameters are influenced when changes to other parameters occur. It is both impractical and unnecessary to monitor all parameters using SPC methods. Only critical parameters that are sensitive to process variability are chosen for SPC monitoring. The process steps affecting these critical parameters must be identified also. It is equally important to find a measurement in these process steps that correlates with product performance. This is called a critical process parameter.

Once the critical process parameters are selected, a sample plan must be determined. The samples used for measurement are organized into RATIONAL SUBGROUPS of approximately 2 to 5 pieces. The subgroup size should be such that variation among the samples within the subgroup remain small. All samples must come from the same source e.g., the same mold press operator, etc. Subgroup data should be collected at appropriate time intervals to detect variations in the process. As the process begins to show improved stability, the interval may be increased. The data collected must be carefully documented and maintained for later correlation. Examples of common

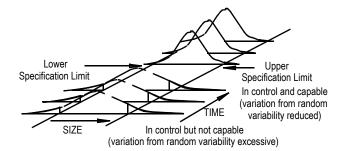


Figure 3. Difference Between Process Control and Process Capability

documentation entries would include operator, machine, time, settings, product type, etc.

Once the plan is established, data collection may begin. The data collected will generate \overline{X} and R values that are plotted with respect to time. \overline{X} refers to the mean of the values within a given subgroup, while R is the range or greatest value minus least value. When approximately 20 or more \overline{X} and R values have been generated, the average of these values is computed as follows:

$$\overline{\overline{X}} = (\overline{X} + \overline{X}2 + \overline{X}3 + \dots)/K$$

$$\overline{R} = (R1 + R2 + R3 + \dots)/K$$

where K = the number of subgroups measured.

The values of \overline{X} and \overline{R} are used to create the process control chart. Control charts are the primary SPC tool used to signal a problem. Shown in Figure 4, process control charts show \overline{X} and R values with respect to time and concerning reference to upper and lower control limit values. Control limits are computed as follows:

R upper control limit =
$$UCL_R = D4 \ \overline{R}$$

R lower control limit = $LCL_R = D3 \ \overline{R}$
 \overline{X} upper control limit = $UCL_{\overline{X}} = \overline{\overline{X}} + A2 \ \overline{R}$
 \overline{X} lower control limit = $LCL_{\overline{X}} = \overline{\overline{X}} - A2 \ \overline{R}$

Figure 4. Example of Process Control Chart Showing Oven Temperature Data

Where D4, D3 and A2 are constants varying by sample size, with values for sample sizes from 2 to 10 shown in the following partial table:

* For sample sizes below 7, the LCL_R would technically be a negative number; in those cases there is no lower control limit; this means that for a subgroup size 6, six "identical" measurements would not be unreasonable.

Control charts are used to monitor the variability of critical process parameters. The R chart shows basic problems with piece to piece variability related to the process. The X chart can often identify changes in people, machines, methods, etc. The source of the variability can be difficult to find and may require experimental design techniques to identify assignable causes.

Some general rules have been established to help determine when a process is OUT-OF-CONTROL. Figure 5 shows a control chart subdivided into zones A, B, and C corresponding to 3 sigma, 2 sigma, and 1 sigma limits respectively. In Figure 6 through Figure 9, four of the tests that can be used to identify excessive variability and the presence of assignable causes are shown. As familiarity with a given process increases, more subtle tests may be employed successfully.

Once the variability is identified, the cause of the variability must be determined. Normally, only a few factors have a significant impact on the total variability of the process. The importance of correctly identifying these factors is stressed in the following example. Suppose a process variability depends on the variance of five factors A, B, C, D and E. Each has a variance of 5, 3, 2, 1 and 0.4 respectively.

Since:

$$\sigma \cot = \sqrt{\sigma A^2 + \sigma B^2 + \sigma C^2 + \sigma D^2 + \sigma E^2}$$

$$\sigma \cot = \sqrt{5^2 + 3^2 + 2^2 + 1^2 + (0.4)^2} = 6.3$$

Now if only D is identified and eliminated then;

$$\sigma$$
 tot = $\sqrt{5^2 + 3^2 + 2^2 + (0.4)^2}$ = 6.2

This results in less than 2% total variability improvement. If B. C and D were eliminated, then;

$$\sigma$$
 tot = $\sqrt{5^2 + (0.4)^2}$ = 5.02

This gives a considerably better improvement of 23%. If only A is identified and reduced from 5 to 2, then;

$$\sigma$$
 tot = $\sqrt{2^2 + 3^2 + 2^2 + 1^2 + (0.4)^2}$ = 4.3

Identifying and improving the variability from 5 to 2 gives us a total variability improvement of nearly 40%.

Most techniques may be employed to identify the primary assignable cause(s). Out-of-control conditions may be correlated to documented process changes. The product may be analyzed in detail using best versus worst part comparisons or Product Analysis Lab equipment. Multivariance analysis can be used to determine the family of variation (positional, critical or temporal). Lastly, experiments may be run to test theoretical or factorial analysis. Whatever method is used, assignable causes must be identified and eliminated in the most expeditious manner possible.

After assignable causes have been eliminated, new control limits are calculated to provide a more challenging variability criteria for the process. As yields and variability improve, it may become more difficult to detect improvements because they become much smaller. When all assignable causes have been eliminated and the points remain within control limits for 25 groups, the process is said to be in a state of control.

Statistical Process Control

	UCL
ZONE A (+3 SIGMA)	
ZONE B (+2 SIGMA)	<u></u>
ZONE C (+1 SIGMA)	CENTERLINE
ZONE C (-1 SIGMA)	
ZONE B (-2 SIGMA)	
ZONE A (-3 SIGMA)	LCL

Figure 5. Control Chart Zones

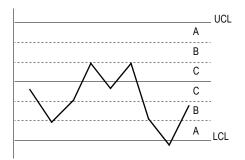


Figure 7. Two Out of Three Points in Zone A or Beyond Indicating Excessive Variability

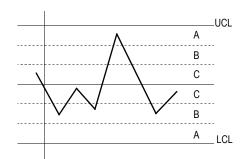


Figure 6. One Point Outside Control Limit Indicating Excessive Variability

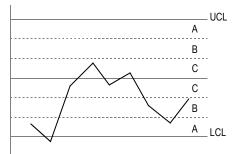


Figure 8. Four Out of Five Points in Zone B or Beyond Indicating Excessive Variability

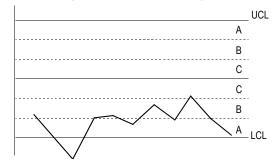


Figure 9. Seven Out of Eight Points in Zone C or Beyond Indicating Excessive Variability

SUMMARY

Freescale Semiconductor's commitment to statistical process controls has resulted in many significant improvements to processes. Continued dedication to the SPC

culture will allow Freescale Semiconductor to reach beyond Six Sigma and zero defect capability goals. SPC will further enhance the commitment to Total Customer satisfaction.

MICROMACHINED ACCELEROMETER RELIABILITY TESTING RESULTS

LIFE AND ENVIRONMENTAL TESTING RESULTS

STRESS TEST	CONDITIONS	RESULTS FAILED/PASS
High Temperature Bias	$T_A = 90$ °C, $V_{DD} = 5.0 \text{ V}$ t = 1000 hours, 12 minutes on, 8 seconds off	0/32
High Temperature/High Humidity Bias	T _A = 85°C, R _H = 85%, V _{DD} = 5.0 V, t = 2016	0/38
High Temperature Storage (Bake)	T _A = 105°C, t = 1000 hours	0/35
Temperature Cycle	 -40 to 105°C, Air to Air, 15 minutes at extremes, ≤ 5 minutes transfer, 1000 cycles 	0/23
Mechanical Shock	5 blows X1, X2, Y1, Y2, Z1, Z2 2.0 G's, 0.5 mS, T _A = -40°C, 25°C, 90°C	0/12
Vibration Variable Frequency with Temperature Cycle	10 - 1 Khz @ 50 G's max, 24 hours each axis, X1, X2, Y1, Y2, Z1, Z2, T _A = -40 to 90°C, Dwell = 1 Hour, transfer = 65 minutes	0/12
Autoclave	T _A = 121°C, R _H = 100% 15 P _{SIG} , t = 240 hours	0/71
Drop Test	10 Drops from 1.0 meters onto concrete, any orientation	0/12

PARAMETERS MONITORED

		LIMITS			
		INI ⁻	TIAL	END P	OINTS
PARAMETER	CONDITIONS	MIN	MAX	MIN	MAX
Offset	V _{DD} = 5.0 V, 25, -40 & 90°C	2.15 V	2.95 V	2.15 V	2.95 V
Self Test	V _{DD} = 5.0 V, 25, -40 & 90°C	20G	30 G	20 G	30 G
Sensitivity	V _{DD} = 5.0 V, 25, -40 & 90°C	45 mV/G	55 mV/G	45 mV/G	55 mV/G

MEDIA COMPATIBILITY DISCLAIMER

Freescale Semiconductor has tested media tolerant sensor devices in selected solutions or environments and test results are based on particular conditions and procedures selected by Freescale Semiconductor. Customers are advised that the

results may vary for actual services conditions. Customers are cautioned that they are responsible to determine the media compatibility of sensor devices in their applications and the foreseeable use and misuses of their applications.

SENSOR MEDIA COMPATIBILITY: ISSUES AND ANSWERS

by: T. Maudie, D. J. Monk, D. Zehrbach, and D. Stanerson Freescale Semiconductor Products Sector, Sensor Products Division 5005 E. McDowell Rd., Phoenix, AZ 85018

ABSTRACT

As sensors and actuators are embedded deeper into electronic systems, the issue of media compatibility as well as sensor and actuator performance and survivability becomes increasingly critical. With a large number of definitions and even more explanations of what media compatibility is, there is a ground swell of confusion not only within the industry, but among end users as well. The sensor industry must respond to create a clear definition of what media compatibility is, then strive to provide a comprehensive understanding and industry wide agreement on what is involved in assessing media tolerance and compatibility. Finally, the industry must create a standard set of engineering parameters to design, evaluate, test, and ultimately qualify sensor and actuators functioning in various media conditions. This paper defines media compatibility, identifies pertinent compatibility issues, and recommends a path to industry standardization.

INTRODUCTION

Microelectromechanical System (MEMS) reliability in various media is a subject that has not yet received much attention in the literature yet [1-3], but does bring up many potential issues. The effects of long term media exposure to the silicon MEMS device and material still need answers [4]. Testing can result in predictable silicon or package related failures, but due to the complexity of the mechanisms, deleterious failures can be observed. The sensor may be exposed to diverse media in markets such as automotive. industrial, and medical. This media may include polar or nonpolar organic liquids, acids, bases, or aqueous solutions. Integrated circuits (ICs) have long been exposed to temperature extremes, humid environments, and mechanical tests to demonstrate or predict the reliability of the device for the application. Unlike a typical IC, a sensor often must exist in direct contact with a harsh environment. The lack of harsh media simulation test standardization for these direct contact situations necessitates development of methods and hardware to perform reliability tests.

The applicability of media compatibility affects all sensors to some degree, but perhaps none more dramatically than a

piezoresistive pressure sensor. In order to provide an accurate, linear output with applied pressure, the media should come in direct contact with the silicon die. Any barrier provided between the die and the media, limits the device performance. A typical piezoresistive diaphragm pressure sensor manufactured using bulk micromachining techniques is shown in Figure 1. A definition for a media compatible pressure sensor will be proposed.

To ensure accurate media testing, the requirements and methods need to be understood, as well as what constitutes a failure. An understanding of the physics of failure can significantly reduce the development cycle time and produce a higher quality product [5,6]. The focus of the physics-of-failure approach includes the failure mechanism, accelerating environment, and failure mode. The requirement for a typical pressure sensor application involves long term exposure to a variety of media at an elevated temperature and may include additional acceleration components such as static or cyclic temperature and pressure.

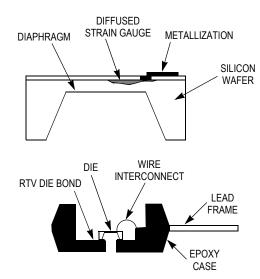


Figure 1. Typical Bulk Micromachined Silicon
Piezoresistive Pressure Sensor Device and Package
Configuration

^{1.} This paper was presented at Sensors Expo, Anaheim, CA, and is reprinted with permission, Sensors Magazine (174 Concord St., Peterborough, NH 03458) and Expocon Management Associates, Inc. (P.O. Box 915, Fairfield, CT 06430).

The failure mechanisms that may affect a sensor or actuator will be discussed along with the contributors and acceleration means. Failure mechanisms of interest during media testing of semiconductor MEMS devices are shown in Table 1. MEMS applications may involve disposable applications such as a blood pressure monitor whose lifetime is several days. General attributes to consider during testing include: lifetime expectations, cost target, quality level, size, form, and functionality.

Table 1. Typical Failure Mechanisms for Sensors and Actuators [6-10]

Uniform Corrosion
Localized Corrosion
Galvanic Corrosion
Silicon Etching
Polymer Swelling or Dissolution
Interfacial Permeability
Adhesive Strength
Fatigue Crack Initiation
Fatigue Crack Propagation
Environment Assisted Cracking
Creep

Methods for performing media compatibility testing to determine the potential for the various failure mechanisms will be presented. Attributes of the testing need to be well understood so that proper assessment of failure and lifetime approximation can be made. The lifetime modeling is key for determination of the ability of a sensor device to perform its intended function. Reliability modeling and determination of activation energies for the models will provide the customer with an understanding of the device performance. The definition of an electrical failure can range from catastrophic, to exceeding a predetermined limit, to just a small shift. The traditional pre to post electrical characterization (before and after the test interval) can be enhanced by in situ monitoring. In situ monitoring may expose a problem with a MEMS device during testing that might have gone undetected once the media or another environmental factor is removed. This is a common occurrence for a failure mechanism, such as swelling, that may result in a shift in the output voltage of the sensor. Response variables during environmental testing can include: electrical, visual, analytical, or physical characteristics such as swelling or weight change.

DEFINITIONS AND UNDERLYING CAUSES

The definition of a media compatible pressure sensor is as follows: the ability of a pressure sensor to perform its specified electromechanical function over an intended lifetime in the chemical, electrical, mechanical, and thermal environments encountered in a customer's application.

The key elements of the definition are perform, function, lifetime, environment, and application. All of these elements are critical to meet the media compatibility needs. The underlying causes of poor media compatibility is the hostile environment and permeability of the environment. The

environment may consist of media or moisture with ionics, organics, and/or aqueous solutions, extreme temperatures, voltage, and stress.

Permeability is the product of diffusivity and solubility. Contributors to permeability include materials (e.g. polymeric structures), geometry, processing, and whether or not the penetration is in the bulk or at an interface. The environment can also accelerate permeation if a concentration gradient, elevated temperature and/or pressure exist. An example of material dependence of permeation is shown in Figure 2. Organic materials such as silicone can permeate 50% of the relative moisture from the exterior within minutes where inorganic materials such as glass takes years for the same process to occur.

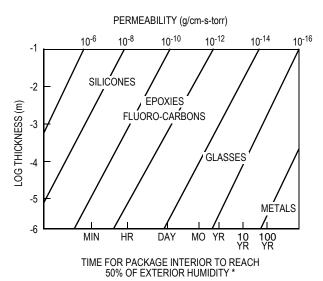


Figure 2. Permeation relationship for various materials.

* Richard K. Traeger, "Nonhermiticity of Polymeric Lid Sealants, IEEE Transactions on Parts, Hybrids, and Packaging, Vol. PHP-13, No. 2, June 1977.

Gasoline and aqueous alkaline solutions represent two relatively diverse applications that are intended for use with a micromachined pressure sensor. The typical automotive temperature range is from -40° to 150°C. This not only makes material selection more difficult but also complicates the associated hardware to perform the media related testing [11]. A typical aqueous alkaline solution application would be found in the appliance industry. This industry typically has a narrower temperature extreme then the automotive market, but the solutions and the level of ions provide a particular challenge to MEMS device reliability.

Gasoline contains additives such as: antiknock, antipreignition agents, dyes, antioxidants, metal deactivators, corrosion inhibitors, anti-icers, injector or carburetor detergents, and intake valve deposit control additives [12]. To develop a common test scheme for the liquid, a mixture table was developed for material testing in gasoline/methanol mixtures. The gasoline/methanol mixtures developed were intended for accelerated material testing with a gasoline surrogate of ASTM Fuel Reference "C" (50% toluene and 50% iso-octane) [13]. Material testing is performed with samples either immersed in the liquid or exposed to the vapor over the

liquid. The highly aromatic Fuel "C" is intended to swell polymeric materials. Contaminants in actual gasoline can result in corrosion or material degradation, so chloride ions or formic acid with distilled water are added to create an aggressive fuel media. Gasoline can decompose by a process called auto-oxidation that will form aggressive substances that

can dissolve polymers or corrode metal. Copper is added as a trace metal to accelerate the formation of free radicals from the hydroperoxides. Table 2 details the various gasoline/methanol mixtures with additives recommended by the task force from Chrysler, Ford, and General Motors.

Table 2. Fuel Testing Methods

	Elastomer	Polymer	Metal
Alcohol/Fuel Blends	СМО	СМО	
	CM15	CM15	CM15
	CM30	CM30	
	CM50	CM50	
	CM85	CM85	CM85
Aggressive Fuel, Add		Chloride ion	Distilled water
		Formic Acid	Chloride ion
		Sodium Chloride	Formic Acid
Auto Oxidized Fuels, Add		t-Butyl Hydroperoxide	t-Butyl Hydroperoxide
		Cu ⁺	

Recommended gasoline/methanol mixtures for material testing. The recommended testing for metals should include immersion in the liquid as well as exposure to the vapor. The coding for the alcohol/fuel blends, CMxx is: C for Fuel C; M for methanol; and xx indicating the percentage of methanol in the mixture.

The general question for the appliance industry compatibility issues is not whether the media will contain ions (as it most assuredly will) but at what concentration. Tap water with no alkali additives contains ions capable of contributing to a corrosive reaction [14]. A typical application of a pressure sensor in the appliance industry is sensing the water level in a washing machine. The primary ingredients of detergent used in a washing machine are: surfactants, builders, whitening agents and enzymes [15]. The surfactants dissolve dirt and emulsify oil, grease and dirt. They can be anionic or cationic. Cationic surfactants are present in detergent-softener combinations. Builders or alkaline water conditioning agents are added to the detergent to soften the water, thus increasing the efficiency of the surfactant. These builders maintain alkalinity that results in improved cleaning. Alkaline solutions at temperatures indicated by the appliance industry range can etch bare silicon similar to the bulk micromachining process. Thus bare silicon could be adversely affected by exposure to these liquids [16].

FAILURE MECHANISMS

The failure mechanisms that can affect sensors and actuators are similar to that for electronic devices. These failure mechanisms provide a means of categorizing the various effects caused by chemical, mechanical, electrical, and thermal environments encountered. An understanding of the potential failure mechanisms should be determined before media testing begins. The typical industry scenario has been to follow a set boiler plate of tests and then determine reliability. This may have been acceptable for typical electronic devices, but the applications for sensors are more demanding of a thorough understanding before testing begins. The sensitivity of the device to its physical environment is heightened for a pressure sensor. Any change in the material

1-20

properties results in a change of the sensor performance. Failure mechanisms for pressure sensors in harsh media application are listed below. The pressure sensor allows a format for discussion, though the mechanisms discussed are applicable in some degree to all sensor and actuator devices.

Corrosion

Corrosion has been defined as any destructive result of a chemical reaction between a metal or metal alloy and its environment [17]. Several metal surfaces exist within a pressure sensor package: metallic lines on the die, trimmable resistors, bonding pads, wires, leadframes, etc. Much of the die-level metal is protected by an overlying inorganic passivation material (e.g., PECVD silicon nitride); however, unless some package-level encapsulant is used, bondpads, wires, and leadframes are exposed to the harsh media and are potential corrosion sites. Furthermore, an energized pressure sensor has a voltage difference between these exposed metallic surfaces, which compounds the corrosion problem. Generally, corrosion problems are organized into the following categories: uniform corrosion; galvanic corrosion, and localized corrosion (including, crevice corrosion, pitting corrosion, etc.) [17]. The factors that contribute to corrosion are: the substrate (metallic) material and its surface structure and composition; the influence of a barrier coating, its processing conditions and/or adhesion promotion; the cleanliness of the surface, adhesion between a coating and the surface, solution concentration, solution components (especially impurities and/or oxidizers); localized geometry and applied potential. In addition, galvanic corrosion is influenced by specific metal-to-metal connections.

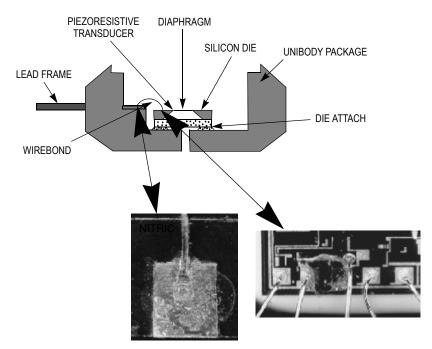


Figure 3. Examples of uniform corrosion of a gold leadframe in nitric acid at 5 Vdc and galvanic corrosion on an unbiased device at the gold wire/aluminum bondpad interface in commercial detergent

Part of Figure 3 shows an example of what we have described as electrolytic corrosion (i.e., corrosion of similar metallic surfaces in an electrolytic solution caused by a sufficient difference in potential between the two surfaces). This appears to be uniform corrosion of the gold leadframe surface. It should be noted that this type of failure is observed even on 'noble' metals like gold. Applied potential is the driving force for the reaction. All metals can corrode in this fashion depending on the solution concentration (pH) and the applied potential. Pourbaix diagrams describe these thermodynamic relationships [18].

Figure 3 shows an example of galvanic corrosion. The figure illustrates that corrosion can also occur because of dissimilar metals that are connected electrically and are immersed in an electrolytic solutions. A difference in the corrosion potential between the two metals is the driving force for the reaction. Localized corrosion examples are prevalent as well. Often they may be the precursor to what appears on a macro scale to be uniform or galvanic corrosion. *In situ* monitoring of devices in electrolytic media will allow better diagnosis of this failure mechanism. Typical *ex situ* or interval reliability testing may not allow diagnosis of the root cause to the failure, thus limiting the predictive power of any resulting reliability models.

Silicon Etching

Figure 4 shows the result of an accelerated test of a pressure sensor die to a high temperature detergent solution. The detergent used was a major consumer brand and resulted in dramatic etching of the silicon. Alkaline solutions that undergo a hydrolysis reaction may result in etching of the silicon similar to a bulk micromaching operation. This failure mechanism can cause a permanent change in the sensitivity

of the device because the sensitivity is proportional to the inverse square of the silicon thickness. Moreover, it can lead to loss in bond integrity between wafers (Fig. 4). Silicon etching [19-20], like corrosion reactions, is a chemical reaction, so the contributing factors include the silicon material, its crystal orientation and its doping level, the solution type, concentration and pH, and the applied potential. Temperature, concentration (i.e., pH), and voltage all act to accelerate this process. Figure 5 shows an example of modeling results that illustrates two of these variables.

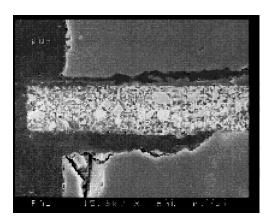


Figure 4. Photograph of silicon etching after exposure to an aqueous detergent solution at elevated temperature for an extended time. A frit layer, horizontally in the middle, adheres to silicon on either side. The amount of etching is evident by referencing the glass frit edge on the far left. These two silicon edges were aligned to the frit edge when the die was sawn.

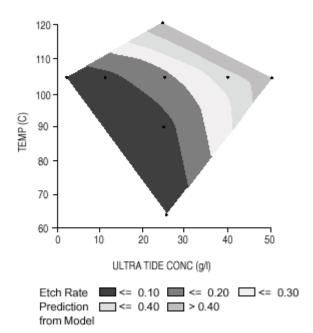


Figure 5. Experimental results for the etching of (100) silicon with approximately 5x10⁻⁵ cm⁻³ boron doping density in a commercially available detergent as a function of temperature and detergent concentration (which is proportional to pH).

Polymer Swelling or Dissolution

Swelling or dissolution affects those polymers typically employed to package the micromachined structure and depending on the nature of the media, may have a degrading effect on device performance. These two related phenomena are caused by solvent diffusing into the material and occupying free volume within the polymer. The solubility parameter gives a quantitative measure of the potential for swelling [21]: i.e., it provides a quantitative measure of "like dissolves like" (Figure 6). Both the polymer and the solution contribute to this failure mechanism, while the media (specifically, the solubility parameter), the temperature, and the pressure can be used as acceleration factors.

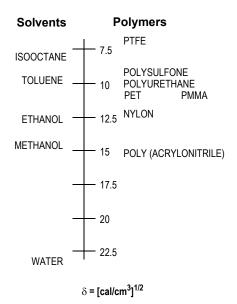


Figure 6. Typical values of solubility parameter $(\delta [cal/cm^3]^{1/2})$ for solvents and polymers.

Figure 7 shows a photograph of a device after exposure to a harsh fuel containing corrosive water solution. This corrosion and evidence of swelling of the gel demonstrates the vital importance the package has on the reliability of the pressure sensor device. Also, it has been observed that corrosion occurs more readily following swelling of a polymeric encapsulant.

Figure 7. Photograph of a pressure sensor device after extended exposure to harsh fuel containing corrosive water, followed by exposure to a strong acid. Evidence of the gel swelling during the test, and corresponding shrinkage after removal from the test media can be seen by the gel retracting away from the sidewall of the package.

Interfacial Permeability

Lead leakage is a specific example of interfacial permeability. It is pressure leakage through the polymer housing material/metallic leadframe material interface from the inside of the pressure sensor package to the outside of the pressure sensor package or vice versa [22]. In addition, other material interfaces can result in leakage. We describe another specific example of this in the next section. Lead leakage is like polymer swelling in that it may allow another failure

mechanism, like corrosion, to occur more readily. It also causes a systematic pressure measurement error. Figure 8 shows the result of lead leakage measurements as a function of temperature cycling. The polymer housing material (and its CTE as a function of temperature), the leadframe material (and its CTE), surface preparation and contamination, the polymer matrix composition, and polymer processing all contribute to this effect. It is accelerated by media, temperature cycling, and applied pressure.

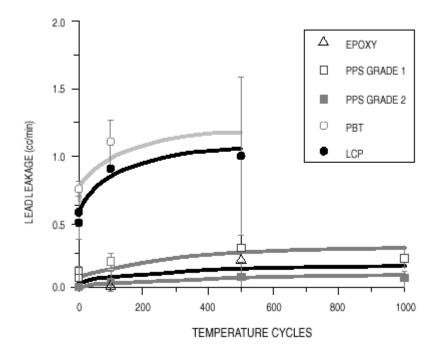


Figure 8. Pressure leakage measurements through the metallic leadframe/polymeric housing material interface on a pressure sensor as a function of temperature cycles between -40 and 125°C.

Adhesive Strength

Packaging of the sensor relies on adhesive material to maintain a seal but not impart stress on the piezoresistive element. Polymeric materials are the primary adhesive materials which can range from low modulus material such as silicone to epoxy with a high modulus. An example of a typical joint is shown in Figure 9. The joint has three possible failure locations with the preferred break being cohesive. Contributors to a break include whether the joint is in tension or compression, residual stresses, the adhesive material, surface preparation, and contamination. An adhesive failure is accelerated by media contact, cyclic or static temperature, and cyclic or static stress (e.g. pressure).

Strength Components

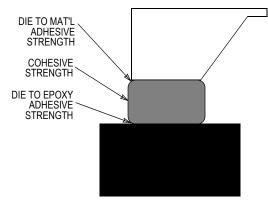


Figure 9. Failure locations for an adhesive bond of dissimilar materials.

Mechanical Failures

The occurrence of mechanical failures include components of fatigue, environment assisted cracking, and creep. Packaging materials, process, and residual stresses are all contributors to mechanical failure. A summary of acceleration stresses is shown in Table 3. Contact with harsh media is an accelerating stress for all of the mechanical failure mechanisms.

Table 3. Mechanical Failure Mechanisms

Failure Mechanism	Acceleration Stresses
Fatigue crack initiation	Mechanical stress/strain range Cyclic temperature range Frequency Media
Fatigue crack propagation	Mechanical stress range Cyclic temperature range Frequency Media
Environment assisted cracking	Mechanical stress Temperature Media
Creep	Mechanical stress Temperature Media

PRESSURE SENSOR SOLUTIONS

The range of solutions for pressure sensors to media compatibility is very diverse. Mechanical pressure sensors still occupy a number of applications due to this media compatibility concern. These devices typically operate on a variable inductance method and are typically not as linear as a piezoresistive element. Figure 10 shows a comparison between a mechanical pressure sensor and a piezoresistive element for a washing machine level sensing application. The graph shows a nonlinear response for the mechanical sensor and a corresponding straight line for the piezoresistive element.

A common method of obtaining media compatibility is to place a barrier coating over the die and wire interconnection. This organic encapsulant provides a physical barrier between the harsh environment and the circuitry. The barrier coating can range from silicone to parylene or other dense films that are typically applied as a very thin layer. This technique offers limited protection to some environments due to swelling and/or dissolution of the encapsulant material when in contact with media with a similar solubility. When a polymeric material has a solubility parameter of the same value as the corresponding media, swelling or dissolution will occur.

Stainless steel diaphragms backfilled with silicone oil provide a rugged barrier to most media environments, but

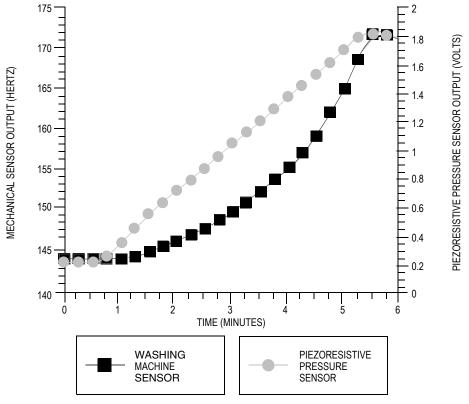


Figure 10. Graphical comparison of the output from a mechanical pressure sensor compared to a piezoresistive sensor during a washing machine fill cycle.

MEDIA TEST METHODS

Figure 11 and Figure 12 show a test apparatus specifically intended for use with solvents and Figure 13 an apparatus for aqueous solutions. This test system has resulted in a realistic test environment that provides electrical bias, *in situ* measurements, consistent stoichiometry, and temperature

control all within a safe environment. The safety aspects of the testing were obtained by creating an environment free of oxygen to eliminate the possibility of a fire. Results from the testing have included swelling of silicone materials, corrosion, and adhesive failures.

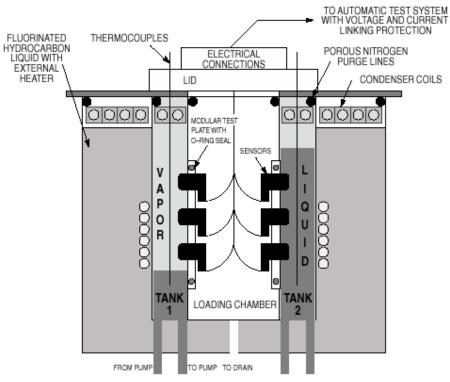


Figure 11. Graphical depiction of the sensor media tester used for liquid or vapor exposure of the device to the harsh media to accelerate the failure mechanisms or demonstrate compatibility.

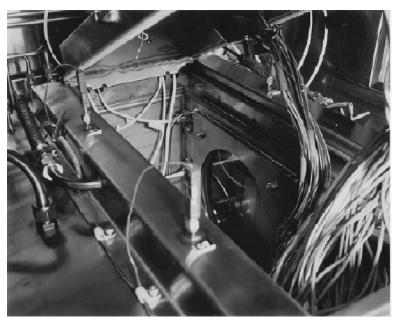


Figure 12. Photograph of the load chamber area of the Media Test System allowing for fuel or solvent testing at temperature with in situ monitoring of the devices under test (DUT's) output.

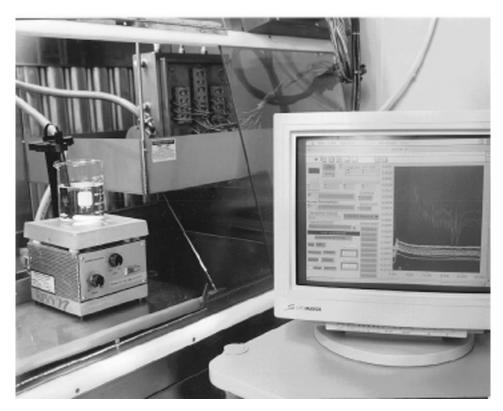


Figure 13. Photograph of the aqueous alkaline solution test system and the data acquisition system for *in situ* monitoring of the MEMS devices.

LIFETIME MODELING

Reliability techniques provide a means to analyze media test results and equate the performance to a lifetime [23-24]. The primary reliability techniques involve an understanding of the failure rate, life distributions, and acceleration modeling. The failure rate for a product's lifetime follows the bathtub curve. This curve, as shown in Figure 14, has an early life

period with a decreasing failure rate. Manufacturing defects would be an example of failures during this portion of the curve. The second portion of the curve, often described as the useful life region has a constant failure rate. The last section has an increasing failure rate and is referred to as the wearout region. This wearout region would include failure mechanisms such as corrosion or fatigue.

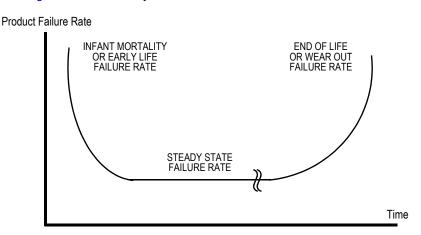


Figure 14. Bathtub curve showing various failure rate regions.

Lifetime distributions provide a theoretical model to describe device lifetimes. Common lifetime distributions include the exponential, Weibull, lognormal, and extreme value. The exponential distribution models a lifetime with a constant failure

rate An example of the exponential distribution is a glass which has an equal probability of failing the moment after it is manufactured, or when its ten years old. The Weibull and lognormal distribution are all right, or positively skewed

distributions. A right skewed distribution will be a good model for data in a histogram with an extended right tail. The Weibull distribution is sometimes referred to as a distribution of minima. An example of a Weibull distribution is the strength to break a chain where the weakest link describes the strength of the chain. The extreme value distribution is a distribution of maxima. It is the least utilized of the four life distributions.

For means of example, the Weibull distribution will be used. The Weibull lifetime distribution as the form:

$$F(t, \theta, \beta) = 1 - e^{-\left(\frac{t}{\theta}\right)^{\beta}}$$
 (1)

The two parameters for the Weibull distribution are q and b. Theta is the scale parameter, or characteristic life. It represents the 63.2 percentile of the life distribution. Beta is the shape parameter. In order to determine the parameters for the Weibull distribution, testing must be performed produce failure on the devices. The failure data can be used to calculate the maximum likelihood estimates or determined graphically. It has not always been customary to perform reliability demonstration testing until failures occur. In regards to media testing, this seems to be the only method to derive lifetime estimates that reflect a true understanding of the device capability.

$$AF = e^{\left[\frac{Ea}{k}\left(\frac{1}{T_{low}} - \frac{1}{T_{high}}\right)\right]} \bullet \left(\frac{RH_{high}}{RH_{low}}\right)^{n}$$
(2)

A media test typically needs to take results received in weeks or months to predict lifetime in years. Acceleration models are used to determine the relationship between the accelerated test and the normal lifetime. Literature has reported numerous models to equate testing to lifetime including the Peck model for temperature and humidity [25]. The acceleration equation based on Peck's model is where Ea is 0.9 eV and n is -3.0. The value K is Boltzmann's constant which is equal to 8.6171x10⁻⁵ eV/K. The relative humidity is entered as a whole number, i.e. 85 for 85%. Using this sample model. test results from humidity testing can be related to the lifetime. The methods to equate test time to lifetime first involves fitting the failure data to a lifetime distribution. For an example, humidity data at 60°C. 90% relative humidity and bias was tested to failure. The failure data fit a Weibull distribution with a characteristic life of 40,000 hours. By applying the acceleration factor equation shown above, quantification of the lifetime in the use conditions can be calculated. Figure 15 shows the cumulative failure distribution for the test and use conditions for a 15 year lifetime. This technique is key for media testing since the range of use conditions is very broad. The consumer can determine the attributes for the sensor to use for the application. The attributes might include cost, performance. and possibility for replacement.

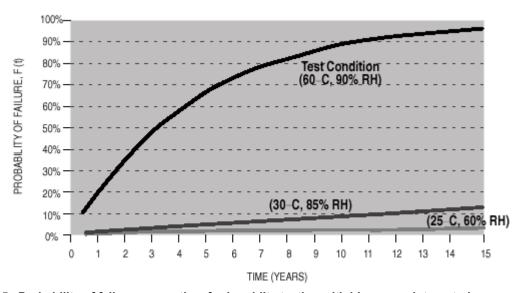


Figure 15. Probability of failure versus time for humidity testing with bias on an integrated sensor device.

The failure distribution example shown typically represents one failure mechanism. The failure mechanism that typifies humidity testing is mobile ions. An elevated test temperature, humidity and bias contributes to the mobility of the ions and the ability to create a surface charge. By lowering the temperature, humidity or switching the bias, an improvement in the lifetime can be obtained. If a device manufacturer would test to failure and report the lifetimes, the customer could

select the appropriate product for their application. Following a template of reliability tests that have not been verified and do not coincide with the applicable failure mechanism may put the application at risk for surviving.

Humidity testing was used as an example above, but a similar case could be made of other attributes involved with media testing. Other attributes of the media test may include the bias level and duty cycle, the pH or conductivity of the

solution, and any stress such as a pressure differential. By modeling these attributes against the various solutions, models for media compatibility can be developed.

INDUSTRY STANDARDIZATION

Why an industry standard? The increasing use of electronic sensors in everyday life has designers wrestling with the complexity of defining the compatibility of a sensor with the media they are measuring. A designer may decide to solve the question of media compatibility by choosing to isolate the sensor from the media via a stainless steel diaphragm. While this solution provides very good media isolation, it is not without some drawbacks such as cost, size of packaging, decreased sensitivity and long term drift. Without a recognized standard for defining media compatibility, the designer is left to a series of ad hoc test methods and conflicting specifications.

An industry media compatibility standard will provide the designer with a method of evaluating sensor performance. The designer could match an application's requirements, for media compatibility, with the available sensor products thus taking price and performance into account. This will enable the designer to minimize the total cost of an application. A standard will also enable suppliers to provide products warranted to defined criteria. Once a standard is adopted, the suppliers may rationalize their test efforts and pass the savings on to their customers.

A standard should provide a designer with a simple, coherent, complete definition of a media's effects on a sensor. The standard should included an accepted test methodology, test equipment guidelines, life time model, acceleration factors model, and a definition of failures. A proposed list of criteria to include in a model are shown in Table 4.

Table 4. Suggested Criteria for Media Compatibility

Media Contact - Front or Back	Supply Voltage	Solubility Parameter	
Pressure Range	Supply Voltage Duty Cycle	Conductivity of Media	
Temperature Range	Voltage Potential within Media	рН	
Recipe of Media and Contaminants	Frequency Output is Measured	Lifetime Expectancy	
Sensor to Media Interconnection	Relative Motion of Media (e.g., Flow)		

These criteria must be included not only for the media, but also for the contaminants in the media. An example is a washing machine level sensor which must be compatible with water vapor (the media) and detergent and chlorine (the contaminant). To create a standard, a series of tests which benchmark the criteria must be designed and performed. The results would form the basis of the life time and acceleration factor models.

There are several ways to create a standard, each of which have their own associated pros and cons. Three possible ways to create a standard are: an industry association committee, a panel of industry representatives, or a de facto standard set by one or more industry suppliers. To define a standard for media compatibility may require more than one of these methods. An industry leader may define a standard form to which they deliver product. This may stimulate the formation of a committee which defines a broader standard for the industry. As this standard becomes more accepted by the industry, the committee may work with an industry association to "legitimize" the de facto standard. No matter how the standard is formulated, receiving broad industry acceptance will require meeting the customers' needs.

CONCLUSION

Investigation of media compatibility for pressure sensors has been presented from a physics-of-failure approach. We

have developed a set of internal standard test and reliability lifetime analysis procedures to simulate our customers' requirements. These activities have incorporated information from several fields beyond sensors and/or electronics, including: electrochemistry and corrosion, polymers, safety and environmental, automotive and appliance industry standards, and reliability. The next critical step to elevating the awareness of this problem, in our opinion, is to develop an industry-wide set of standards, driven by customer applications, that include media testing experimental procedures, reliability lifetime analysis, and media compatibility reporting to allow easier customer interpretation of results.

ACKNOWLEDGEMENTS

Many individuals have contributed to the media compatibility initiative and are deserving of an acknowledgment. The individuals include Debi Beall, Gordon Bitko, Jerry Cripe, Bob Gailey, Jim Kasarskis, John Keller, Betty Leung, Jeanene Matkin, Mike Menchio, Adan Ramirez, Chuck Reed, Laura Rivers, Scott Savage, Mahesh Shah, Mario Velez, John Wertz, MEMS1, MKL, Reliability Lab, Characterization Lab, and the Prototype Lab.

REFERENCE

- (1) Theresa Maudie, Testing Requirements and Reliability Issues Encountered with Micromachined Structures, Proceedings of the Second International Symposium on Microstructures and Microfabricated Systems, Eds. D. Denton, P.J. Hesketh and H. Hughes, ECS, vol. 95-27 (1995) pp. 223-230.
- (2) Arne Nakladal et al., Influences of Humidity and Moisture on the Long-Term Stability of Piezoresistive Pressure Sensors, Measurement, vol. 16 (1995) pp. 21-29.
- (3) Marin Nese and Anders Hanneborg, Anodic Bonding of Silicon to Silicon Wafers Coated with Aluminum, Silicon Oxide, Polysilicon or Silicon Nitride, Sensors and Actuators A, vol. 37-38 (1993) pp. 61-67.
- (4) Janusz Bryzek, Micromachines on the March, IEEE Spectrum, May 1994.
- (5) J. M. Hu, Physics-of-Failure-Based Reliability Qualification of Automotive Electronics, Communications in RMS, vol. 1, no. 2 (1994) pp. 21-33.
- (6) Michael Pecht et.al., Quality Conformance and Qualification of Microelectronics Packages and Interconnects, John Wiley & Sons, Inc., 1994.
- (7) William M. Alvino, Plastics for Electronics, McGraw-Hill, 1995
- (8) Eugene R. Hnatek, Integrated Circuit Quality and Reliability, Marcel Dekker, Inc., 1987.
- (9) Charles A. Harper, Handbook of Plastics, Elastomers, and Composites, McGraw-Hill, 1992.
- (10) Richard W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, John Wiley & Sons. Inc., 1983.
- (11) Joseph M. Giachino, Automotive Sensors: Driving Toward Optimized Vehicle Performance, 7th Int'l Conference on Solid State Sensor and Actuators, June 1993.
- (12) Perry Poiss, What Additives do for Gasoline, Hydrocarbon Processing, Feb. 1973.

- (13) Gasoline/Methanol Mixtures for Material Testing, SAE Cooperative Research Report CRP-001, Sep. 1990.
- (14) Private communication to Andrew McNeil from City of Phoenix, Water and Wastewater Department, Water Quality Division, Jan. 1994.
- (15) Laundry Detergents, Consumer Reports, Feb. 1991, pp. 100-106.
- (16) Silicon as a Mechanical Material, Kurt E. Petersen, Proc. IEEE, vol. 70, no. 5, pp. 420-457, May 1982.
- (17) Principles and Prevention of Corrosion, Denny A. Jones, (Prentice Hall: Englewood Cliffs, NJ, 1992).
- (18) Atlas of Electrochemical Equilibria in Aqueous Solutions, M. Pourbaix, (Pergamon Press: Oxford, England, 1966)
- (19) Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, Part I. Orientation Dependence and Behavior of Passivation Layers, H. Seidel et al., J. Electrochem. Soc., vol. 137, no. 11 (1990) pp. 3612-3625.
- (20) Anisotropic Etching of Crystalline Silicon in Alkaline Solutions, Part II. Influence of Dopants, H. Seidel et al., J. Electrochem. Soc., vol. 137, no. 11 (1990) pp. 3612-3625.
- (21) Principles of Polymer Systems, 2nd ed., F. Rodriguez, (Hemisphere Publishing Corporation: Washington, D.C., 1982.
- (22) D. J. Monk, Pressure Leakage through Material Interfaces in Pressure Sensor Packages, Sensors in Electronic Packaging, Eds. Charles Ume and Chao Pin-Yeh, MED-Vol. 3/EEP-Vol.14 (1995) pp. 87-93.
- (23) Paul A. Tobias and David C. Trindade, *Applied Reliability*, Van Nostrand Reinhold, 1995.
- (24) Wayne Nelson, Accelerated Testing, John Wiley & Sons, Inc., 1990.
- (25) O. Hallberg and D. S. Peck, "Recent Humidity Accelerations, A Base for Testing Standards," Quality and Reliability Engr. International, Vol. 7, pp 169-180, 1991.

NOTES

Section Two

Accelerometer Overview

Freescale's series of acceleration sensors incorporate a surface micromachined structure. The force of acceleration moves the seismic mass, thereby changing the g-cell's capacitance. Coupled with the g-cell is a control chip to provide the accelerometer with signal amplification, signal conditioning, low pass filter, and temperature compensation. With Zero-g offset, sensitivity and filter roll-off that is factory set, the device requires only a few external passives. In fact, this acceleration sensor device offers a calibrated self-test feature that mechanically displaces the seismic mass with the application of a digital self-test signal. The g-cell is hermetically sealed at the die level, creating a particle-free environment with features such as built in damping and overrange stops to protect it from mechanical shock. These acceleration sensors are rugged, highly accurate and feature X, XY, XYZ, and Z axis of sensitivity.

Freescale's acceleration sensors are economical, accurate, and highly reproducible for the ideal sensing solution in automotive, industrial, commercial, and consumer applications.

Acceleration Sensor Products

Mini Selector Guide	. 2-2
Sensor Applications	. 2-3
Acceleration Sensor FAQ's	. 2-4
Data Sheets	. 2-5
Application Notes	2-139
Package Dimensions	2-205
Accelerometer Glossary of Terms	2-207

Mini Selector Guide

Accelerometer Sensor

Device	Acceleration (g)	Sensing Axis	Sensitivity (mV/g)	Rolloff Frequency (Hz)	VDD Supply Voltage (Typ) (V)
MMA7260Q	1.5/2/4/6	XYZ	800/600/300/200	350/150	3.3
MMA6260Q	1.5/1.5	X-Y	800/800	50	3.3
MMA2260D	1.5	X	1200	50	5.0
MMA1260D	1.5	Z	1200	50	5.0
MMA1270D	2.5	Z	750	50	5.0
MMA1250D	5.0	Z	400	50	5.0
MMA1220D	8.0	Z	250	250	5.0
MMA6231Q	10/10	X-Y	120/120	300	3.3
MMA3201D	40/40	X-Y	50/50	400	5.0
MMA2201D	40	X	50	400	5.0
MMA2202D	50	X	40	400	5.0
MMA3202D	100/50	X-Y	50/100	400	5.0
MMA2204D	100	X	20	400	5.0
MMA1213D	50	Z	40	400	5.0
MMA1210D	100	Z	20	400	5.0
MMA1211D	150	Z	13	400	5.0
MMA2301D	200	X	10	400	5.0
MMA1212D	200	Z	10	400	5.0
MMA2300D	250	X	8.0	400	5.0
MMA1200D	250	Z	8.0	400	5.0

Sensor Applications

AUTOMOTIVE APPLICATIONS

- Airbags
- · Rollover detection
- · Fuel shut-off valve
- Crash detection
- Suspension control
- Vehicle dynamic control
- Braking systems
- · Occupant safety

HEALTHCARE / FITNESS APPLICATIONS

- · Physical therapy
- · Rehabilitation equipment
- · Range of body motion measurement
- Pedometers
- Ergonomics tools
- · Sports medicine equipment
- · Sports diagnostic systems

INDUSTRIAL / CONSUMER APPLICATIONS

- · Fall detection
- Fall log
- · HDD protection
- MP3 players
- Portable electronics
- · Warranty purpose recording
- E-compass
- Ergonomic tools
- Gaming
- · Image stability
- Physical therapy
- · Text scrolling
- 3-D motion dialing
- Pedometer
- Robotics
- Virtual reality input devices
- · Anti-theft devices
- · Car/personal navigation
- · Dead reckoning for GPS
- · Black boxes/event recorders
- · Shipping/handling monitor
- · Tap to mute
- Acoustics
- · Appliance balance/monitoring
- Bearing wear monitoring
- · Seismic monitoring
- Smart motor maintenance

Freescale Semiconductor 2-3

Acceleration Sensor FAQ's

We have discovered that many of our customers have similar questions about certain aspects of our accelerometer's technology and operation. Here are the most frequently asked questions and answers that have been explained in relatively non-technical terms.

Q. What is the g-cell?

A. The g-cell is the acceleration transducer within the accelerometer device. It is hermetically sealed at the wafer level to ensure a contaminant free environment, resulting in superior reliability performance.

Q. What does the output typically interface with?

A. The accelerometer device is designed to interface with an analog to digital converter available on most microcontrollers. The output has a 2.5 V DC offset, therefore positive and negative acceleration is measurable. For unique customer applications, the output voltage can be scaled and shifted to meet requirements using external circuitry.

Q. What is the resonant frequency of the g-cell?

A. The resonant frequency of the g-cell is much higher than the cut-off frequency of the internal filter. Therefore, the resonant frequency of the g-cell does not play a role in the accelerometer response.

Q. What is ratiometricity?

A. Ratiometricity simply means that the output offset voltage and sensitivity scales linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter. Ratiometricity allows for system level cancellation of supply induced errors in the analog to digital conversion process. Refer to the Special Features section under the Principle of Operation for more information.

Q. Is the accelerometer device sensitive to electro static discharge (ESD)?

A. Yes. The accelerometer should be handled like other CMOS technology devices.

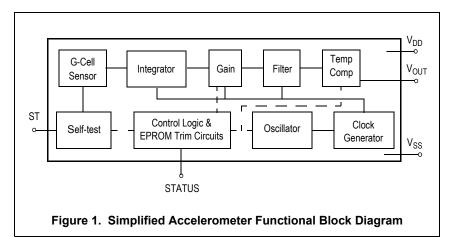
Q. Can the g-cell part "latch"?

A. No, overrange stops have been designed into the g-cell to prevent latching. (Latching is when the middle plate of the g-cell sticks to the top or bottom plate.)

Technical Data

Surface Mount Micromachined Accelerometer

The MMA series of silicon capacitive, micromachined accelerometers features signal conditioning, a 4-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

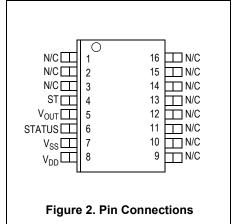

Features

- Integral Signal Conditioning
- Linear Output
- · Ratiometric Performance
- · 4th Order Bessel Filter Preserves Pulse Shape Integrity
- Calibrated Self-test
- · Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- Robust Design, High Shocks Survivability

Typical Applications

- Vibration Monitoring and Recording
- Impact Monitoring

ORDERING INFORMATION					
Device Name	Temperature Range	Case No.	Package		
MMA1200D	00D - 40 to +125°C		SOIC-16		
MMA1200DR2	– 40 to +125°C	475-01	SOIC-16, Tape & Reel		



MMA1200D

MMA1200D: Z AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±250g

16-LEAD SOIC CASE 475-01

MMA1200D

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V_{DD}	-0.3 to +7.0	V
Drop Test ⁽¹⁾	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2 kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le T_A \le +105^{\circ}\text{C}$, $4.75 \le V_{DD} \le 5.25$, Acceleration = 0g, Loaded output⁽¹⁾)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾ Supply Voltage ⁽³⁾ Supply Current Operating Temperature Range Acceleration Range	V _{DD} I _{DD} T _A 9 _{FS}	4.75 3.0 –40 —	5.00 — — 281	5.25 6.0 +125 —	V mA C g
Output Signal Zero g (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁴⁾ Zero g Sensitivity (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁵⁾ Sensitivity Bandwidth Response Nonlinearity	V _{OFF} V _{OFF,V} S S _V f _{-3dB} NL _{OUT}	2.35 0.47 V _{DD} 7.6 1.49 360 –2.0	2.5 0.50 V _{DD} 8.0 1.6 400	2.65 0.53 V _{DD} 8.4 1.71 440 2.0	V V mV/g mV/g/V Hz % FSO
Noise RMS (0.1-1 kHz) Power Spectral Density Clock Noise (without RC load on output) ⁽⁶⁾	n _{RMS} n _{PSD} n _{CLK}	_ _ _ _	 110 2.0	2.8 — —	mVrms μV/(Hz ^{1/2}) mVpk
Self-Test Output Response Input Low Input High Input Loading ⁽⁷⁾ Response Time ⁽⁸⁾	9st V _{IL} V _{IH} I _{IN} t _{ST}	55 V _{SS} 0.7 × V _{DD} -30	75 — — —100 2.0	95 0.3 × V _{DD} V _{DD} -260 10	g V V μA ms
Status ^{(9),(10)} Output Low (I_{load} = 100 μ A) Output High (I_{load} = 100 μ A)	V _{OL} V _{OH}	 V _{DD} -0.8	_ _	0.4 —	V V
Minimum Supply Voltage (LVD Trip)	V _{LVD}	2.7	3.25	4.0	V
Clock Monitor Fail Detection Frequency	f _{min}	50	1	260	kHz
Output Stage Performance Electrical Saturation Recovery Time ⁽¹¹⁾ Full Scale Output Range (I_{OUT} = 200 μ A) Capacitive Load Drive ⁽¹²⁾ Output Impedance	t _{DELAY} V _{FSO} C _L Z _O	— 0.25 — —	0.2 — — 300	— V _{DD} –0.25 100 —	ms > pF Ω
Mechanical Characteristics Transverse Sensitivity ⁽¹³⁾ Package Resonance	V _{XZ,YZ} f _{PKG}		<u> </u>	5.0 —	% FSO kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 kΩ resistor and a 0.01 μF capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 volts, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- 4. The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above $V_{DD}/2$ and for negative acceleration the output will decrease below $V_{DD}/2$.
- 5. The device is calibrated at 35g.
- 6. At clock frequency ≈ 70 kHz.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA1200D

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as two stationary plates with a moveable plate in-between. The center plate can be deflected from its rest position by subjecting the system to an acceleration (Figure 3).

When the center plate deflects, the distance from it to one fixed plate will increase by the same amount that the distance to the other plate decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the plates changes and each capacitor's value will change, (C = $A\epsilon/D$). Where A is the area of the plate, ϵ is the dielectric constant, and D is the distance between the plates.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

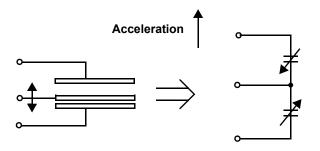


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

The Freescale accelerometers contain an onboard 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

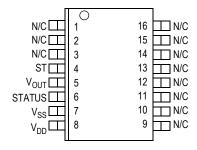
Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV²/d²) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:

- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a rising edge on the self-test input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	_	Leave unconnected.
4	ST	Logic input pin used to initiate self-test.
5	V _{OUT}	Output voltage of the accelerometer.
6	STATUS	Logic output pin to indicate fault.
7	V_{SS}	The power supply ground.
8	V_{DD}	The power supply input.
9 thru 13	Trim pins	Used for factory trim. Leave unconnected.
14 thru 16	_	No internal connection. Leave unconnected.

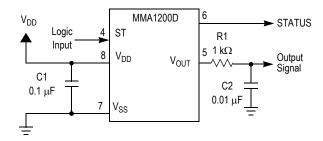


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

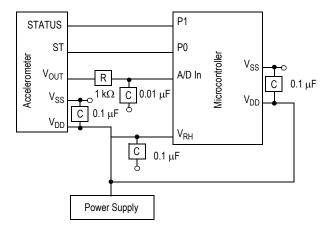


Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller

NOTES:

- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- PCB layout of power and ground should not couple power supply noise.
- 6. Accelerometer and microcontroller should not be a high current path.
- A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

Dynamic Acceleration Sensing Direction

Acceleration of the package in the +Z direction (center plate moves in the -Z direction) will result in an increase in the output.

Activation of Self test moves the center plate in the -Z direction, resulting in an increase in the output.

Side View

Static Acceleration Sensing Direction

Direction of Earth's gravity field⁽¹⁾

Side View

1. When positioned as shown, the Earth's gravity will result in a positive 1g output

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

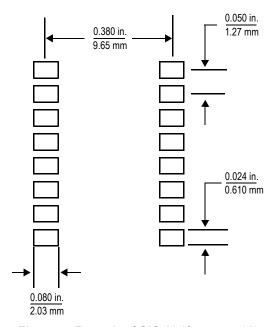


Figure 7. Footprint SOIC-16 (Case 475-01)

Technical Data

Surface Mount Micromachined Accelerometer

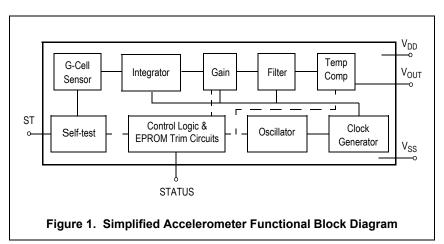
The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 4-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

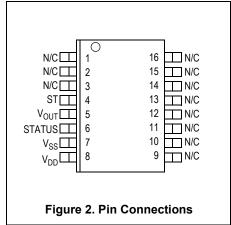
Features

- Integral Signal Conditioning
- · Linear Output
- Ratiometric Performance
- 4th Order Bessel Filter Preserves Pulse Shape Integrity
- Calibrated Self-test
- · Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shocks Survivability

Typical Applications

- · Vibration Monitoring and Recording
- · Impact Monitoring


ORDERING INFORMATION					
Device Name Temperature Range		Case No.	Package		
MMA1210D	–40° to 125°C	475-01	SOIC-16		
MMA1210DR2	-40° to 125°C	475-01	SOIC16, Tape & Reel		


MMA1210D

MMA1210D: Z AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±100g

D SUFFIX 16-LEAD SOIC CASE 475-01

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V _{DD}	-0.3 to +7.0	V
Drop Test (1)	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾ Supply Voltage ⁽³⁾ Supply Current Operating Temperature Range Acceleration Range	V _{DD} I _{DD} T _A 9FS	4.75 3.0 -40 	5.00 — — — 112.5	5.25 6.0 +125 —	V mA C g
Output Signal Zero g (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁴⁾ Zero g Sensitivity (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁵⁾ Sensitivity Bandwidth Response Nonlinearity	V _{OFF} ,V S S _V f _{_3dB} NL _{OUT}	2.35 0.46 V _{DD} 19 3.72 360 -1.0	2.5 0.50 V _{DD} 20.0 4.0 400	2.65 0.54 V _{DD} 21 4.28 440 1.0	V V mV/g mV/g/V Hz % FSO
Noise RMS (0.1–1 kHz) Power Spectral Density Clock Noise (without RC load on output) ⁽⁶⁾	n _{RMS} n _{PSD} n _{CLK}	_ _ _	— 110 2.0	2.8 — —	mVrms μV/(Hz ^{1/2}) mVpk
Self-Test Output Response Input Low Input High Input Loading ⁽⁷⁾ Response Time ⁽⁸⁾	9st V _{IL} V _{IH} I _{IN} t _{ST}	55 V _{SS} 0.7 × V _{DD} -30	75 — — —100 2.0	95 0.3 × V _{DD} V _{DD} -260 10	g V V μA ms
Status ^{(9), (10)} Output Low (I_{load} = 100 μ A) Output High (I_{load} = 100 μ A)	V _{OL} V _{OH}	— V _{DD} –.8	_ _	0.4 —	V V
Minimum Supply Voltage (LVD Trip)	V _{LVD}	2.7	3.25	4.0	V
Clock Monitor Fail Detection Frequency	f _{min}	50	_	260	kHz
Output Stage Performance Electrical Saturation Recovery Time ⁽¹¹⁾ Full Scale Output Range (I_{OUT} = 200 μ A) Capacitive Load Drive ⁽¹²⁾ Output Impedance	t _{DELAY} V _{FSO} C _L Z _O	— 0.25 — —	0.2 — — 300	— V _{DD} –0.25 100 —	ms V pF W
Mechanical Characteristics Transverse Sensitivity ⁽¹³⁾ Package Resonance	V _{XZ,YZ} f _{PKG}		<u> </u>	5.0 —	% FSO kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 $k\Omega$ resistor and a 0.01 μ F capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 volts, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above V_{DD}/2 and for negative acceleration the output will decrease below V_{DD}/2.
- 5. The device is calibrated at 35g.
- 6. At clock frequency ≅70 kHz.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA1210D

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as two stationary plates with a moveable plate in-between. The center plate can be deflected from its rest position by subjecting the system to an acceleration (Figure 3).

When the center plate deflects, the distance from it to one fixed plate will increase by the same amount that the distance to the other plate decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the plates changes and each capacitor's value will change, (C = $A\epsilon/D$). Where A is the area of the plate, ϵ is the dielectric constant, and D is the distance between the plates.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

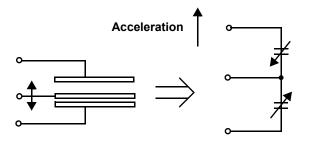


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

The Freescale accelerometers contain an onboard 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

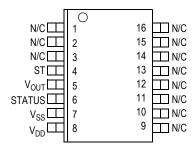
Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV²/d²) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:

- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a rising edge on the self-test input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	_	Leave unconnected.
4	ST	Logic input pin used to initiate self-test.
5	V _{OUT}	Output voltage of the accelerometer.
6	STATUS	Logic output pin to indicate fault.
7	V_{SS}	The power supply ground.
8	V_{DD}	The power supply input.
9 thru 13	Trim pins	Used for factory trim. Leave unconnected.
14 thru 16	_	No internal connection. Leave unconnected.

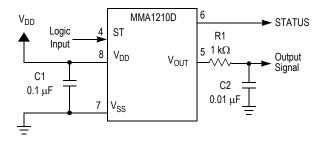


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

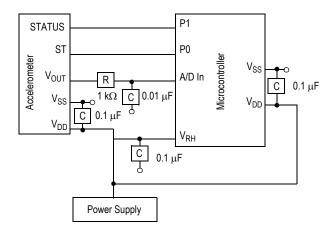
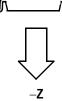


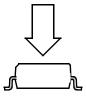
Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller


NOTES:

- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- 2. Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 5. PCB layout of power and ground should not couple power supply noise.
- 6. Accelerometer and microcontroller should not be a high current path.
- A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

Dynamic Acceleration Sensing Direction

Acceleration of the package in the +Z direction (center plate moves in the -Z direction) will result in an increase in the output.



Activation of Self test moves the center plate in the -Z direction, resulting in an increase in the output.

Side View

Static Acceleration Sensing Direction

Direction of Earth's gravity field⁽¹⁾

Side View

1. When positioned as shown, the Earth's gravity will result in a positive 1g output.

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

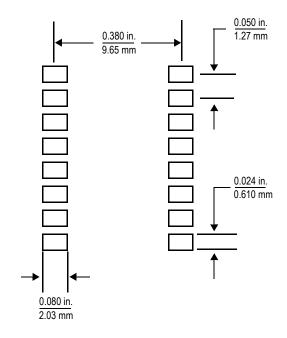


Figure 7. Footprint SOIC-16 (Case 475-01)

Technical Data

Surface Mount Micromachined Accelerometer

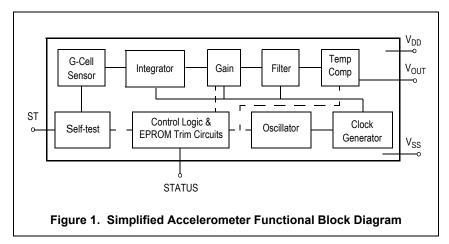
The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 4-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

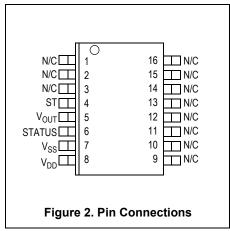
Features

- Integral Signal Conditioning
- Linear Output
- Ratiometric Performance
- 4th Order Bessel Filter Preserves Pulse Shape Integrity
- · Calibrated Self-test
- Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- · Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shocks Survivability

Typical Applications

- Vibration Monitoring and Recording
- · Impact Monitoring


ORDERING INFORMATION				
Device Name	Temperature Range	Case No.	Package	
MMA1211D	-40° to 125°C	475-01	SOIC-16	
MMA1211DR2	−40° to 125°C	475-01	SOIC16, Tape & Reel	


MMA1211D

MMA1211D: Z AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±150g

D SUFFIX 16-LEAD SOIC CASE 475-01

MMA1211D

2-19

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V_{DD}	-0.3 to +7.0	V
Drop Test (1)	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range (2)					
Supply Voltage ⁽³⁾	V_{DD}	4.75	5.00	5.25	V
Supply Current	I _{DD}	3.0	_	6.0	mA
Operating Temperature Range	T _A	-40	_	+125	°C
Acceleration Range	9 _{FS}	_	169	_	g
Output Signal					
Zero g (T _A = 25°C, V _{DD} = 5.0 V) ⁽⁴⁾	V _{OFF}	2.35	2.5	2.65	V
Zero g	$V_{OFF,V}$	0.46 V _{DD}	0.50 V _{DD}	0.54 V _{DD}	V
Sensitivity ($T_A = 25^{\circ}C, V_{DD} = 5.0 V$) ⁽⁵⁾	S	12.66	13.33	14.00	mV/g
Sensitivity	S _V	2.480	2.667	2.853	mV/g/V
Bandwidth Response	f_3dB	360	400	440	Hz
Nonlinearity	NL _{OUT}	-2.0	_	2.0	% FSO
Noise					
RMS (0.1-1 kHz)	n _{RMS}	_	_	2.8	mVrms
Power Spectral Density	n _{PSD}	_	110	_	μV/(Hz ^{1/2})
Clock Noise (without RC load on output) ⁽⁶⁾	n_{CLK}	_	2.0	_	mVpk
Self-Test					
Output Response	9 _{ST}	55	75	95	g
Input Low	V_{IL}	V_{SS}	_	$0.3 \times V_{DD}$	V
Input High	V_{IH}	$0.7 \times V_{DD}$	_	V_{DD}	V
Input Loading ⁽⁷⁾	I _{IN}	-30	-100	-260	μΑ
Response Time ⁽⁸⁾	t _{ST}	_	2.0	10	ms
Status ^{(9), (10)}					
Output Low (I _{load} = 100 μA)	V _{OL}	_	_	0.4	V
Output High (I _{load} = 100 μA)	V_{OH}	V _{DD} -0.8	_	_	V
Minimum Supply Voltage (LVD Trip)	V_{LVD}	2.7	3.25	4.0	V
Clock Monitor Fail Detection Frequency	f _{min}	50	_	260	kHz
Output Stage Performance					
Electrical Saturation Recovery Time ⁽¹¹⁾	t _{DELAY}	_	0.2	_	ms
Full Scale Output Range (I _{OUT} = 200 μA)	V_{FSO}	0.25	-	V _{DD} -0.25	V
Capacitive Load Drive ⁽¹²⁾	C _L	_	_	100	pF
Output Impedance	Z _O	_	300	_	W
Mechanical Characteristics					
Transverse Sensitivity ⁽¹³⁾	$V_{XZ,YZ}$	-	-	5.0	% FSO
Package Resonance	f _{PKG}	-	10	_	kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 k Ω resistor and a 0.01 μ F capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 V, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- The device can measure both + and acceleration. With no input acceleration the output is at mid supply. For positive acceleration the output will increase above V_{DD}/2 and for negative acceleration the output will decrease below V_{DD}/2.
- 5. The device is calibrated at 35g.
- 6. At clock frequency ≅70 kHz.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA1211D

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (poly silicon) using semiconductor processes (masking and etching). It can be modeled as two stationary plates with a moveable plate in-between. The center plate can be deflected from its rest position by subjecting the system to an acceleration (Figure 3).

When the center plate deflects, the distance from it to one fixed plate will increase by the same amount that the distance to the other plate decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the plates changes and each capacitor's value will change, (C = A ϵ /D). Where A is the area of the plate, ϵ is the dielectric constant, and D is the distance between the plates.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

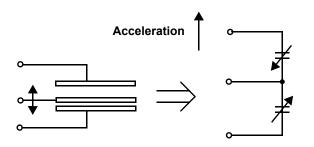


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

The Freescale accelerometers contain an on board 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

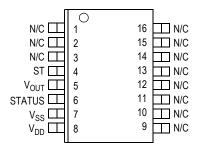
Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive air bag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV^{2} /d²) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:

- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a rising edge on the self-test input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	_	Leave unconnected
4	ST	Logic input pin used to initiate self-test
5	V _{OUT}	Output voltage of the accelerometer
6	STATUS	Logic output pin to indicate fault
7	V_{SS}	The power supply ground
8	V_{DD}	The power supply input
9 thru 13	Trim pins	Used for factory trim. Leave unconnected
14 thru 16	_	No internal connection. Leave unconnected

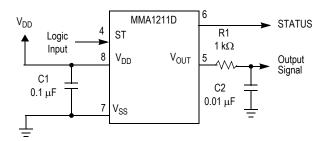


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

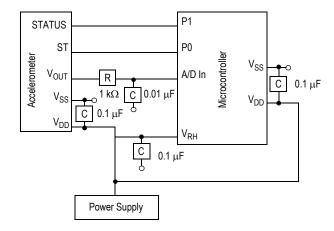


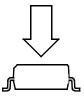
Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller

NOTES:

- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 5. PCB layout of power and ground should not couple power supply noise.
- 6. Accelerometer and microcontroller should not be a high current path.
- 7. A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

Dynamic Acceleration Sensing Direction

Acceleration of the package in the +Z direction (center plate moves in the -Z direction) will result in an increase in the output.



Activation of Self test moves the center plate in the -Z direction, resulting in an increase in the output.

Side View

Static Acceleration Sensing Direction

Direction of Earth's gravity field⁽¹⁾

Side View

1. When positioned as shown, the Earth's gravity will result in a positive 1g output.

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

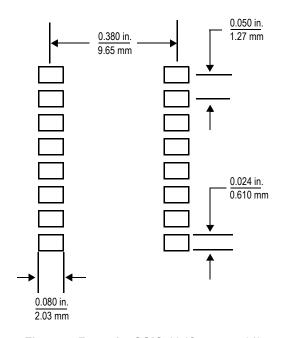


Figure 7. Footprint SOIC-16 (Case 475-01)

Technical Data

Surface Mount Micromachined Accelerometer

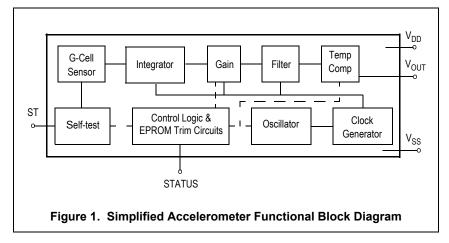
The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 4-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

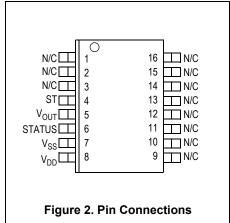
Features

- Integral Signal Conditioning
- Linear Output
- Ratiometric Performance
- 4th Order Bessel Filter Preserves Pulse Shape Integrity
- · Calibrated Self-test
- · Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- Robust Design, High Shocks Survivability

Functional Description

- Vibration Monitoring and Recording
- · Impact Monitoring


ORDERING INFORMATION				
Device Name	Temperature Range	Case No.	Package	
MMA1212D	−40° to 125°C	475-01	SOIC-16	
MMA1212DR2	−40° to 125°C	475-01	SOIC16, Tape & Reel	


MMA1212D

MMA1212D: Z AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±200g

D SUFFIX 16-LEAD SOIC CASE 475-01

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V_{DD}	-0.3 to +7.0	V
Drop Test (1)	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾ Supply Voltage ⁽³⁾ Supply Current Operating Temperature Range Acceleration Range	V _{DD} I _{DD} T _A 9FS	4.75 3.0 –40 —	5.00 — — — 225	5.25 6.0 +125 —	V mA C g
Output Signal Zero g (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁴⁾ Zero g Sensitivity (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁵⁾ Sensitivity Bandwidth Response Nonlinearity	V _{OFF,V} S S _V f _{_3dB} NL _{OUT}	2.35 0.47V _{DD} 9.5 1.86 360 –2.0	2.5 0.50 V _{DD} 10 2 400	2.65 0.53 V _{DD} 10.5 2.14 440 2.0	V V mV/g mV/g/V Hz % FSO
Noise RMS (0.1-1 kHz) Power Spectral Density Clock Noise (without RC load on output) ⁽⁶⁾	n _{RMS} n _{PSD} n _{CLK}	_ _ _	 110 2.0	2.8 — —	mVrms μV/(Hz ^{1/2}) mVpk
Self-Test Output Response Input Low Input High Input Loading ⁽⁷⁾ Response Time ⁽⁸⁾	9st V _{IL} V _{IH} I _{IN} t _{ST}	55 V _{SS} 0.7 × V _{DD} -30 —	75 — — — —100 2.0	95 0.3 × V _{DD} V _{DD} -260 10	g V V μA ms
Status ^{(9), (10)} Output Low (I_{load} = 100 μ A) Output High (I_{load} = 100 μ A)	V _{OL} V _{OH}	 V _{DD} 8	_ _	0.4 —	V V
Minimum Supply Voltage (LVD Trip)	V_{LVD}	2.7	3.25	4.0	V
Clock Monitor Fail Detection Frequency	f _{MIN}	50	_	260	kHz
Output Stage Performance Electrical Saturation Recovery Time ⁽¹¹⁾ Full Scale Output Range (I _{OUT} = 200 μA) Capacitive Load Drive ⁽¹²⁾ Output Impedance	t _{DELAY} V _{FSO} C _L Z _O	— 0.25 — —	0.2 — — 300	— V _{DD} –0.25 100 —	ms V pF W
Mechanical Characteristics Transverse Sensitivity ⁽¹³⁾ Package Resonance	V _{XZ,YZ} f _{PKG}	_ _	<u> </u>	5.0 —	% FSO kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 kΩ resistor and a 0.01 μF capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 V, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- The device can measure both + and acceleration. With no input acceleration the output is at mid supply. For positive acceleration the output will increase above V_{DD}/2 and for negative acceleration the output will decrease below V_{DD}/2.
- 5. The device is calibrated at 35g.
- 6. At clock frequency ${\cong}70~\text{kHz}.$
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (poly silicon) using semiconductor processes (masking and etching). It can be modeled as two stationary plates with a moveable plate in-between. The center plate can be deflected from its rest position by subjecting the system to an acceleration (Figure 3).

When the center plate deflects, the distance from it to one fixed plate will increase by the same amount that the distance to the other plate decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the plates changes and each capacitor's value will change, (C = $A\epsilon/D$). Where A is the area of the plate, ϵ is the dielectric constant, and D is the distance between the plates.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

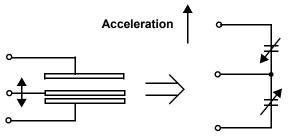


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

The Freescale accelerometers contain an on board 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

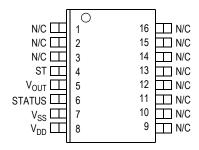
Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive air bag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV 2 /d 2) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:

- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a falling edge on the selftest input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	_	Leave unconnected
4	ST	Logic input pin used to initiate self-test
5	V _{OUT}	Output voltage of the accelerometer
6	STATUS	Logic output pin to indicate fault
7	V _{SS}	The power supply ground
8	V_{DD}	The power supply input
9 thru 13	Trim pins	Used for factory trim. Leave unconnected
14 thru 16	_	No internal connection. Leave unconnected

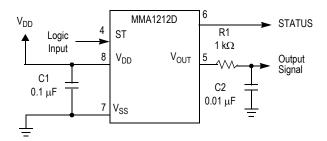


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

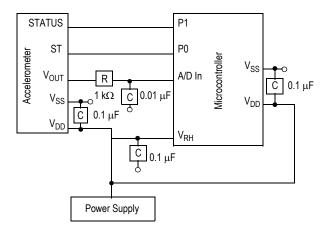
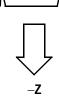


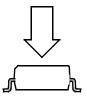
Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller


NOTES:

- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 5. PCB layout of power and ground should not couple power supply noise.
- 6. Accelerometer and microcontroller should not be a high current path.
- A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

Dynamic Acceleration Sensing Direction

Acceleration of the package in the +Z direction (center plate moves in the -Z direction) will result in an increase in the output.



Activation of Self test moves the center plate in the -Z direction, resulting in an increase in the output.

Side View

Static Acceleration Sensing Direction

Direction of Earth's gravity field⁽¹⁾

Side View

1. When positioned as shown, the Earth's gravity will result in a positive 1g output.

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

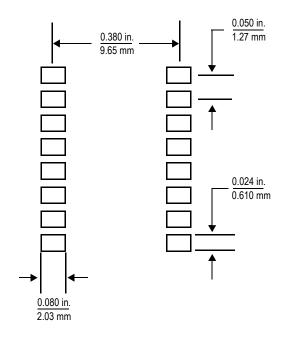


Figure 7. Footprint SOIC-16 (Case 475-01)

Technical Data

Surface Mount Micromachined Accelerometer

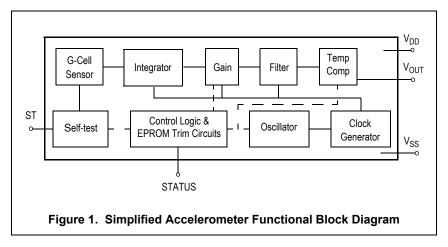
The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 4-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

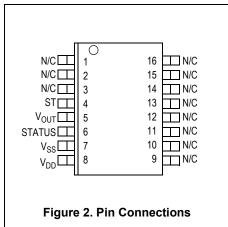
Features

- Integral Signal Conditioning
- Linear Output
- Ratiometric Performance
- · 4th Order Bessel Filter Preserves Pulse Shape Integrity
- · Calibrated Self-test
- Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- · Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shocks Survivability

Typical Applications

- Vibration Monitoring and Recording
- · Impact Monitoring


ORDERING INFORMATION				
Device Name	Temperature Range	Case No.	Package	
MMA1213D	-40° to 125°C	475-01	SOIC-16	
MMA1213DR2	−40° to 125°C	475-01	SOIC16, Tape & Reel	


MMA1213D

MMA1213D: Z AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±50g

D SUFFIX 16-LEAD SOIC CASE 475-01

MMA1213D

2-33

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V_{DD}	-0.3 to +7.0	V
Drop Test (1)	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range (2)					
Supply Voltage ⁽³⁾	V_{DD}	4.75	5.00	5.25	V
Supply Current	I _{DD}	3.0	_	6.0	mA
Operating Temperature Range	T _A	-40	_	+125	С
Acceleration Range	9 _{FS}	_	56.3	_	g
Output Signal					
Zero g ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁴⁾	V_{OFF}	2.35	2.5	2.65	V
Zero g	$V_{OFF,V}$	0.46 V _{DD}	0.50 V _{DD}	0.54 V _{DD}	V
Sensitivity ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁵⁾	S	38	40	42	mV/g
Sensitivity	S _V	7.44	8	8.56	mV/g/V
Bandwidth Response	f_3dB	360	400	440	Hz
Nonlinearity	NL _{OUT}	-1.0	_	1.0	% FSO
Noise					
RMS (0.1-1 kHz)	n _{RMS}	_	_	2.8	mVrms
Power Spectral Density	n _{PSD}	_	110	_	μV/(Hz ^{1/2})
Clock Noise (without RC load on output) ⁽⁶⁾	n _{CLK}	_	2.0	_	mVpk
Self-Test					
Output Response	9 _{ST}	24	30	36	g
Input Low	V_{IL}	V_{SS}	_	$0.3 \times V_{DD}$	V
Input High	V_{IH}	$0.7 \times V_{DD}$	_	V_{DD}	V
Input Loading ⁽⁷⁾	I _{IN}	-30	-100	-260	μА
Response Time ⁽⁸⁾	t _{ST}	_	2.0	10	ms
Status ^{(9), (10)}					
Output Low (I _{load} = 100 μA)	V _{OL}	_	_	0.4	V
Output High (I _{load} = 100 μA)	V _{OH}	V _{DD} –.8	_	_	V
Minimum Supply Voltage (LVD Trip)	V _{LVD}	2.7	3.25	4.0	V
Clock Monitor Fail Detection Frequency	f _{MIN}	50	_	260	kHz
Output Stage Performance					
Electrical Saturation Recovery Time ⁽¹¹⁾	t _{DELAY}	_	0.2	_	ms
Full Scale Output Range (I _{OUT} = 200 μA)	V_{FSO}	-0.25	_	V _{DD} -0.25	V
Capacitive Load Drive ⁽¹²⁾	C_L	_	_	100	pF
Output Impedance	Z _O	_	300	_	W
Mechanical Characteristics					
Transverse Sensitivity ⁽¹³⁾	$V_{XZ,YZ}$	_	_	5.0	% FSO
Package Resonance	f _{PKG}	_	10	_	kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 kΩ resistor and a 0.01 μF capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 V, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- 4. The device can measure both + and acceleration. With no input acceleration the output is at mid supply. For positive acceleration the output will increase above $V_{DD}/2$ and for negative acceleration the output will decrease below $V_{DD}/2$.
- 5. The device is calibrated at 20g.
- 6. At clock frequency ${\cong}70$ kHz.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μ s, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA1213D

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (poly silicon) using semiconductor processes (masking and etching). It can be modeled as two stationary plates with a moveable plate in-between. The center plate can be deflected from its rest position by subjecting the system to an acceleration (Figure 3).

When the center plate deflects, the distance from it to one fixed plate will increase by the same amount that the distance to the other plate decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the plates changes and each capacitor's value will change, (C = $A\epsilon/D$). Where A is the area of the plate, ϵ is the dielectric constant, and D is the distance between the plates.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

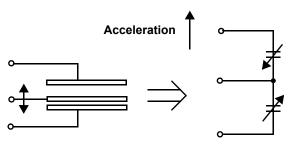


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

The Freescale accelerometers contain an on board 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

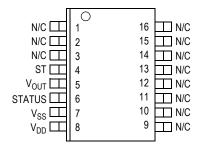
Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive air bag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV 2 /d 2) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:

- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a rising edge on the self-test input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	_	Leave unconnected
4	ST	Logic input pin used to initiate self-test
5	V _{OUT}	Output voltage of the accelerometer
6	STATUS	Logic output pin to indicate fault
7	V_{SS}	The power supply ground
8	V_{DD}	The power supply input
9 thru 13	Trim pins	Used for factory trim. Leave unconnected
14 thru 16	_	No internal connection. Leave unconnected

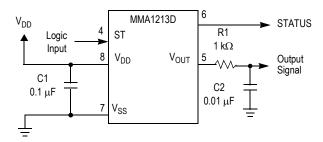


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

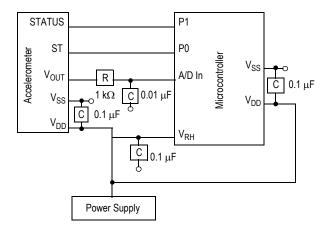
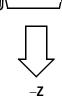


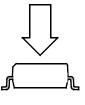
Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller


NOTES

- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- 2. Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 5. PCB layout of power and ground should not couple power supply noise.
- 6. Accelerometer and microcontroller should not be a high current path.
- 7. A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

Dynamic Acceleration Sensing Direction

Acceleration of the package in the +Z direction (center plate moves in the -Z direction) will result in an increase in the output.



Side View

Activation of Self test moves the center plate in the -Z direction, resulting in an increase in the output.

Static Acceleration Sensing Direction

Direction of Earth's gravity field⁽¹⁾

Side View

1. When positioned as shown, the Earth's gravity will result in a positive 1g output.

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

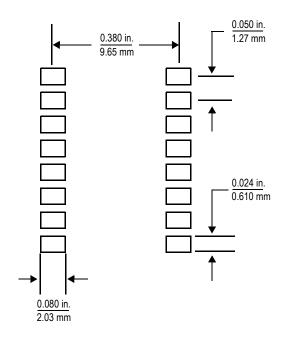
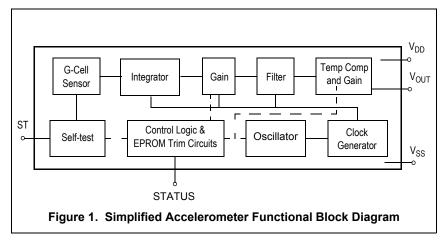


Figure 7. Footprint SOIC-16 (Case 475-01)

Low G Micromachined Accelerometer

The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 4-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

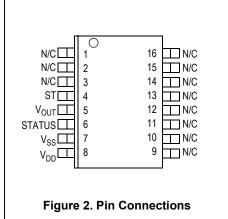

Features

- Integral Signal Conditioning
- Linear Output
- · Ratiometric Performance
- 4th Order Bessel Filter Preserves Pulse Shape Integrity
- · Calibrated Self-test
- Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- · Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shocks Survivability

Typical Applications

- · Vibration Monitoring and Recording
- Appliance Control
- Mechanical Bearing Monitoring
- Computer Hard Drive Protection
- Computer Mouse and Joysticks
- Virtual Reality Input Devices
- · Sport Diagnostic Devices and Systems

ORDERING INFORMATION					
Device Name	Temperature Range	Case No.	Package		
MMA1220D	−40° to 125°C	475-01	SOIC-16		
MMA1220DR2	−40° to 125°C	475-01	SOIC16, Tape & Reel		



MMA1220D

MMA1220D: Z AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±8g

D SUFFIX 16-LEAD SOIC CASE 475-01

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V_{DD}	-0.3 to +7.0	V
Drop Test (1)	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾					
Supply Voltage ⁽³⁾	V_{DD}	4.75	5.00	5.25	V
Supply Current	I _{DD}	3.0	5.0	6.0	mA
Operating Temperature Range	TA	-40	_	+125	°C
Acceleration Range	9 _{FS}	_	11.0	_	g
Output Signal					
Zero g ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁴⁾	V_{OFF}	2.25	2.5	2.75	V
Zero g	V _{OFF,V}	0.45 V _{DD}	0.50 V _{DD}	0.55 V _{DD}	V
Sensitivity ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁵⁾	S	237.5	250	262.5	mV/g
Sensitivity	S _V	46.5	50	53.5	mV/g/V
Bandwidth Response	f _{-3dB}	150	250	350	Hz
Nonlinearity	NL _{OUT}	-1.0	_	+3.0	% FSO
Noise					
RMS (10 Hz – 1 kHz)	n _{RMS}	_	_	6.0	mVrms
Clock Noise (without RC load on output) ⁽⁶⁾	n _{CLK}	_	2.0	_	mVpk
Self-Test					
Output Response	ΔV_{ST}	0.2 V _{DD}	_	0.3 V _{DD}	V
Input Low	V_{IL}	V_{SS}	_	0.3 V _{DD}	V
Input High	VIH	0.7 V _{DD}	_	V_{DD}	V
Input Loading ⁽⁷⁾	I _{IN}	-50	-100	-200	μΑ
Response Time ⁽⁸⁾	t _{ST}	_	2.0	10	ms
Status ^{(9), (10)}					
Output Low (I _{load} = 100 μA)	V_{OL}	_	_	0.4	V
Output High (I _{load} = 100 μA)	V _{OH}	$V_{DD} - 0.8$	_	_	V
Output Stage Performance					
Electrical Saturation Recovery Time ⁽¹¹⁾	t _{DELAY}	_	0.2	_	ms
Full Scale Output Range (I _{OUT} = 200 μA)	V_{FSO}	$V_{SS} + 0.25$	_	V _{DD} – 0.25	V
Capacitive Load Drive ⁽¹²⁾	C_L	_	_	100	pF
Output Impedance	Z _O	_	300	_	W
Mechanical Characteristics					
Transverse Sensitivity ⁽¹³⁾	$V_{XZ,YZ}$	_	_	5.0	% FSO
Package Resonance	f _{PKG}	_	10	_	kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 $k\Omega$ resistor and a 0.01 μ F capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 volts, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above V_{DD}/2 and for negative acceleration the output will decrease below V_{DD}/2.
- 5. The device is calibrated at 5g.
- 6. At clock frequency ≅70 kHz.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as two stationary plates with a moveable plate in-between. The center plate can be deflected from its rest position by subjecting the system to an acceleration (Figure 3).

When the center plate deflects, the distance from it to one fixed plate will increase by the same amount that the distance to the other plate decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the plates changes and each capacitor's value will change, (C = A ϵ /D). Where A is the area of the plate, ϵ is the dielectric constant, and D is the distance between the plates.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

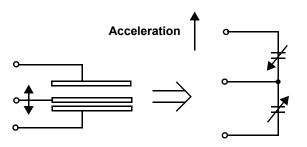


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

The Freescale accelerometers contain an onboard 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

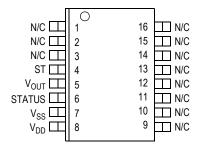
Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV²/d²) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:

- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a falling edge on the selftest input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	_	Redundant V _{SS} . Leave unconnected.
4	ST	Logic input pin used to initiate self-test.
5	V _{OUT}	Output voltage of the accelerometer.
6	STATUS	Logic output pin to indicate fault.
7	V_{SS}	The power supply ground.
8	V_{DD}	The power supply input.
9 thru 13	Trim pins	Used for factory trim. Leave unconnected.
14 thru 16	_	No internal connection. Leave unconnected.

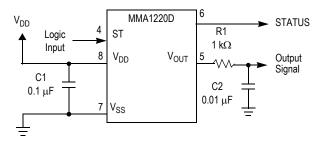


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

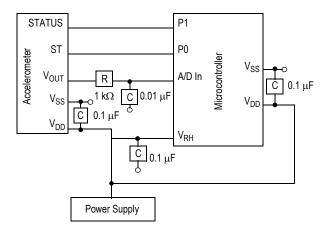


Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller

NOTES:

- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- 2. Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 5. PCB layout of power and ground should not couple power supply noise.
- Accelerometer and microcontroller should not be a high current path.
- 7. A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

DYNAMIC ACCELERATION SENSING DIRECTION 16 Ⅲ N/C Acceleration of the package in the +Z direction (center plate moves in the -Z direction) will result in an 15 N/C +**Z** N/C 14 N/C ST 13 N/C increase in the output. 12 N/C V_{OUT} 11 N/C STATUS 10 N/C 9 N/C Activation of Self test moves the center plate in the -Z **-Z** direction, resulting in an increase in the output. STATIC ACCELERATION SENSING DIRECTION Direction of Earth's gravity field⁽¹⁾ +1g V_{out} = 2.75V 0g 0g V_{out} = 2.50V V_{out} = 2.50V -1g $V_{out} = 2.25V$

1. When positioned as shown, the Earth's gravity will result in a positive 1g output.

Freescale Semiconductor

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

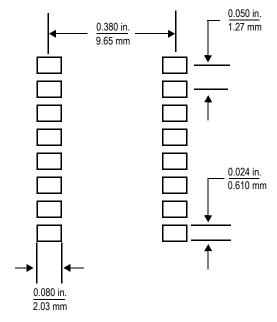


Figure 7. Footprint SOIC-16 (Case 475-01)

Technical Data

Low G Micromachined Accelerometer

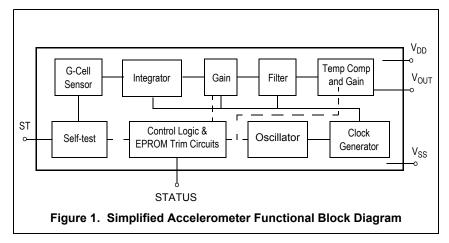
The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 2-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

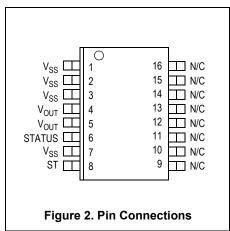
Features

- Integral Signal Conditioning
- Linear Output
- 2nd Order Bessel Filter
- Calibrated Self-test
- EPROM Parity Check Status
- · Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shock Survivability

Typical Applications

- Vibration Monitoring and Recording
- Appliance Control
- Mechanical Bearing Monitoring
- Computer Hard Drive Protection
- Computer Mouse and Joysticks
- Virtual Reality Input Devices
- Sports Diagnostic Devices and Systems


ORDERING INFORMATION				
Device Name	Temperature Range	Case No.	Package	
MMA1250D	–40° to 125°C	475-01	SOIC-16	



MMA1250D: Z AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±5g

D SUFFIX 16-LEAD SOIC CASE 475-01

MMA1250D

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V_{DD}	-0.3 to +7.0	V
Drop Test (1)	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾ Supply Voltage ⁽³⁾ Supply Current Operating Temperature Range	V _{DD} I _{DD} T _A	4.75 3.0 –40	5.00 2.1 —	5.25 3.0 +105	V mA °C
Acceleration Range	9 _{FS}	_	5	_	g
Output Signal Zero g (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁴⁾ Zero g (V_{DD} = 5.0 V) Sensitivity (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁵⁾ Sensitivity (V_{DD} = 5.0 V) Bandwidth Response Nonlinearity	Voff Voff S S f _{-3dB} NL _{OUT}	2.25 2.0 380 370 42.5 -1.0	2.5 2.5 400 400 50	2.75 3.0 420 430.1 57.5 +1.0	V V mV/g mV/g/V Hz % FSO
Noise RMS (0.1 Hz – 1.0 kHz) Spectral Density (RMS, 0.1 Hz – 1.0 KHz) ⁽⁶⁾	n _{RMS} n _{SD}	_ _	2.0 700	4.0 —	mVrms μg/√Hz
Self-Test Output Response (V _{DD} = 5.0 V) Input Low Input High Input Loading ⁽⁷⁾ Response Time ⁽⁸⁾	ΔV _{ST} V _{IL} V _{IH} I _{IN} t _{ST}	1.0 V _{SS} 0.7 V _{DD} -50	1.25 — — — —125 2.0	1.5 0.3 V _{DD} V _{DD} -300 25	V V V μA ms
Status ^{(9), (10)} Output Low (I_{load} = 100 μ A) Output High (I_{load} = 100 μ A)	V _{OL} V _{OH}	— V _{DD} –0.8	_ _	0.4	V
Output Stage Performance Electrical Saturation Recovery Time ⁽¹¹⁾ Full Scale Output Range (I _{OUT} = 200 μA) Capacitive Load Drive ⁽¹²⁾ Output Impedance	t _{DELAY} V _{FSO} C _L Z _O	 V _{SS} + 0.25 	— — — 50	2.0 V _{DD} – 0.25 100 —	ms V pF W
Mechanical Characteristics Transverse Sensitivity ⁽¹³⁾	$V_{XZ,YZ}$	_	_	5.0	% FSO

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 kΩ resistor and a 0.01 μF capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 volts, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above V_{DD}/2 and for negative acceleration the output will decrease below V_{DD}/2.
- 5. The device is calibrated at 5g.
- 6. At clock frequency ≅70 kHz.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA1250D

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as two stationary plates with a moveable plate in-between. The center plate can be deflected from its rest position by subjecting the system to an acceleration (Figure 3).

When the center plate deflects, the distance from it to one fixed plate will increase by the same amount that the distance to the other plate decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the plates changes and each capacitor's value will change, (C = $A\epsilon/D$). Where A is the area of the plate, ϵ is the dielectric constant, and D is the distance between the plates.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

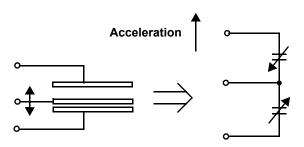


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

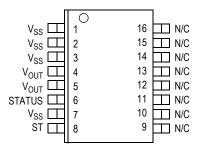
Filtering

The Freescale accelerometers contain an onboard 2-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV²/d²) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever the following event occurs:

Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a rising edge on the self-test input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	V _{SS}	Redundant connections to the internal V _{SS} and may be left unconnected.
4	V _{OUT}	Output voltage of the accelerometer.
5	STATUS	Logic output pin to indicate fault.
6	V_{DD}	The power supply input.
7	V_{SS}	The power supply ground.
8	ST	Logic input pin used to initiate self-test.
9 thru 13	Trim pins	Used for factory trim. Leave unconnected.
14 thru 16	_	No internal connection. Leave unconnected.

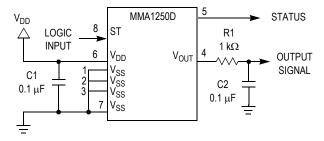
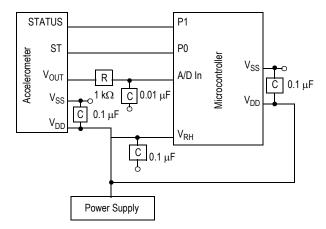
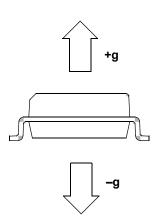
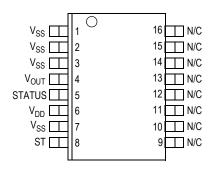


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

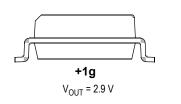


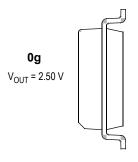

Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller


NOTES

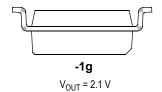
- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 5. PCB layout of power and ground should not couple power supply noise.
- 6. Accelerometer and microcontroller should not be a high current path.
- A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

ACCELERATION SENSING DIRECTIONS


DYNAMIC ACCELERATION



16-Pin SOIC Package N/C pins are recommended to be left FLOATING

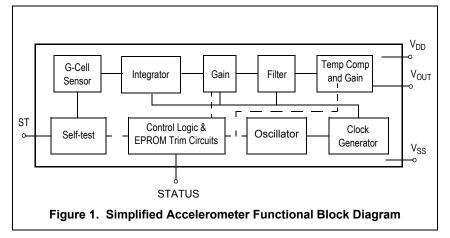

STATIC ACCELERATION

Direction of Earth's gravity field⁽¹⁾

1. When positioned as shown, the Earth's gravity will result in a positive 1g output

Low G Micromachined Accelerometer

The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 2-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.


Features

- Integral Signal Conditioning
- Linear Output
- · 2nd Order Bessel Filter
- Calibrated Self-test
- · EPROM Parity Check Status
- · Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shock Survivability

Typical Applications

- Vibration Monitoring and Recording
- Appliance Control
- Mechanical Bearing Monitoring
- Computer Hard Drive Protection
- Computer Mouse and Joysticks
- Virtual Reality Input Devices
- · Sports Diagnostic Devices and Systems

ORDERING INFORMATION				
Device Name Temperature Range Case No. Packag				
MMA1260D	–40° to 105°C	475-01	SOIC-16	

MMA1260D

MMA1260D: Z AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±1.5g

CASE 475-01

MMA1260D

2-53

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V_{DD}	-0.3 to +7.0	V
Drop Test (1)	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾					
Supply Voltage ⁽³⁾	V_{DD}	4.75	5.00	5.25	V
Supply Current	I _{DD}	1.1	2.2	3.2	mA
Operating Temperature Range	T _A	-40	_	+105	°C
Acceleration Range	9 _{FS}	_	1.55	_	g
Output Signal					
Zero g ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁴⁾	V_{OFF}	2.25	2.5	2.75	V
Zero g (V _{DD} = 5.0 V)	V _{OFF}	2.2	2.5	2.8	V
Sensitivity ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁵⁾	S	1140	1200	1260	mV/g
Sensitivity (V _{DD} = 5.0 V)	S	1110	1200	1290	mV/g/V
Bandwidth Response	f_3dB	40	50	60	Hz
Nonlinearity	NL _{OUT}	-1.0	_	+1.0	% FSO
Noise					
RMS (0.1 Hz – 1.0 kHz)	n _{RMS}	_	5.0	9.0	mVrms
Spectral Density (RMS, 0.1 Hz – 1.0 KHz) ⁽⁶⁾	n _{SD}	_	500	_	μg/√Hz
Self-Test					
Output Response (V _{DD} = 5.0 V)	ΔV_{ST}	0.3	0.6	0.9	V
Input Low	V_{IL}	V_{SS}	_	0.3 V _{DD}	V
Input High	V_{IH}	0.7 V _{DD}	_	V_{DD}	V
Input Loading ⁽⁷⁾	I _{IN}	-50	-25	-300	μΑ
Response Time ⁽⁸⁾	t _{ST}	_	10	25	ms
Status ^{(9), (10)}					
Output Low (I _{load} = 100 μA)	V_{OL}	_	_	0.4	V
Output High (I _{load} = 100 μA)	V _{OH}	$V_{DD} - 0.8$	_	_	V
Output Stage Performance					
Electrical Saturation Recovery Time ⁽¹¹⁾	t _{DELAY}	_	_	2.0	ms
Full Scale Output Range (I _{OUT} = 200 μA)	V_{FSO}	$V_{SS} + 0.25$	_	$V_{DD} - 0.25$	V
Capacitive Load Drive ⁽¹²⁾	C_L	_	_	100	pF
Output Impedance	Z _O	_	50	_	W
Mechanical Characteristics					
Transverse Sensitivity ⁽¹³⁾	$V_{XZ,YZ}$	_	_	5.0	% FSO

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 kΩ resistor and a 0.01 μF capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 volts, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above V_{DD}/2 and for negative acceleration the output will decrease below V_{DD}/2.
- 5. The device is calibrated at 5g.
- 6. At clock frequency ≅70 kHz.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA1260D

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as two stationary plates with a moveable plate in-between. The center plate can be deflected from its rest position by subjecting the system to an acceleration (Figure 3).

When the center plate deflects, the distance from it to one fixed plate will increase by the same amount that the distance to the other plate decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the plates changes and each capacitor's value will change, (C = $A\epsilon/D$). Where A is the area of the plate, ϵ is the dielectric constant, and D is the distance between the plates.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

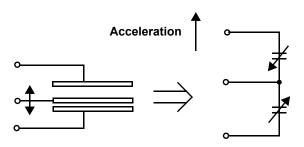


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

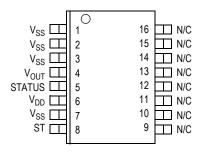
Filtering

The Freescale accelerometers contain an onboard 2-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = $^{1}/_{2}$ AV $^{2}/_{0}$) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever the following event occurs:

Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a rising edge on the self-test input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	V_{SS}	Redundant connections to the internal V _{SS} and may be left unconnected.
4	V _{OUT}	Output voltage of the accelerometer.
5	STATUS	Logic output pin to indicate fault.
6	V_{DD}	The power supply input.
7	V_{SS}	The power supply ground.
8	ST	Logic input pin used to initiate self-test.
9 thru 13	Trim pins	Used for factory trim. Leave unconnected.
14 thru 16	_	No internal connection. Leave unconnected.

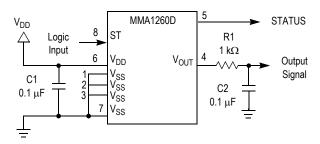
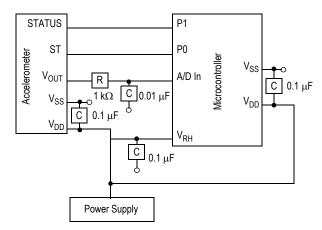
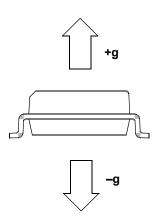
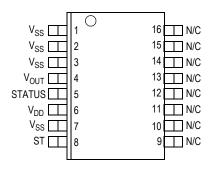


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

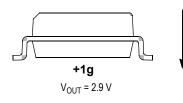


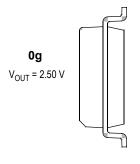

Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller


NOTES:

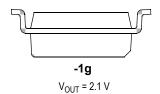
- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- 2. Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 5. PCB layout of power and ground should not couple power supply noise.
- 6. Accelerometer and microcontroller should not be a high current path.
- 7. A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

ACCELERATION SENSING DIRECTIONS


DYNAMIC ACCELERATION



16-Pin SOIC Package N/C pins are recommended to be left FLOATING

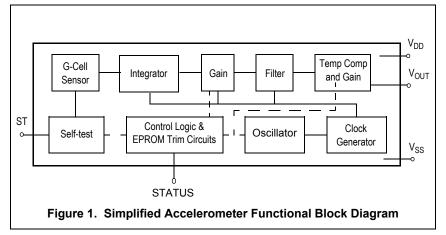

STATIC ACCELERATION

Direction of Earth's gravity field⁽¹⁾

1. When positioned as shown, the Earth's gravity will result in a positive 1g output

Low G Micromachined Accelerometer

The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 2-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

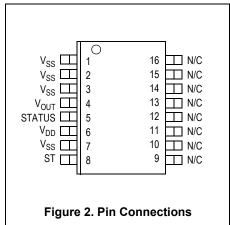

Features

- Integral Signal Conditioning
- Linear Output
- · 2nd Order Bessel Filter
- Calibrated Self-test
- · EPROM Parity Check Status
- · Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shock Survivability

Typical Applications

- Vibration Monitoring and Recording
- Appliance Control
- Mechanical Bearing Monitoring
- Computer Hard Drive Protection
- Computer Mouse and Joysticks
- Virtual Reality Input Devices
- Sports Diagnostic Devices and Systems

ORDERING INFORMATION				
Device Name Temperature Range Case No. Package				
MMA1270D	–40° to 105°C	475-01	SOIC-16	



MMA1270D

MMA1270D: Z AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±2.5g

CASE 475-01

MMA1270D

2-59

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V_{DD}	-0.3 to +7.0	V
Drop Test (1)	H _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾					
Supply Voltage ⁽³⁾	V_{DD}	4.75	5.00	5.25	V
Supply Current	I _{DD}	1.1	2.1	3.0	mA
Operating Temperature Range	T _A	-40	_	+105	°C
Acceleration Range	9 _{FS}	_	2.5	_	g
Output Signal					
Zero g ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁴⁾	V_{OFF}	2.25	2.5	2.75	V
Zero g (V _{DD} = 5.0 V)	V_{OFF}	2.2	2.5	2.8	V
Sensitivity ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁵⁾	S	712.5	750	787.5	mV/g
Sensitivity (V _{DD} = 5.0 V)	S	693.8	750	806.3	mV/g
Bandwidth Response	f _{-3dB}	40	50	60	Hz
Nonlinearity	NL _{OUT}	-1.0	_	+1.0	% FSO
Noise					
RMS (0.1 Hz – 1.0 kHz)	n _{RMS}	_	3.5	6.5	mVrms
Spectral Density (RMS, 0.1 Hz – 1.0 KHz) ⁽⁶⁾	n_{SD}	_	700	_	μg/√Hz
Self-Test					
Output Response (V _{DD} = 5.0 V)	ΔV_{ST}	0.9	1.25	1.6	V
Input Low	V_{IL}	V_{SS}	_	0.3 V _{DD}	V
Input High	V_{IH}	0.7 V _{DD}	_	V_{DD}	V
Input Loading ⁽⁷⁾	I _{IN}	-50	– 125	-300	μΑ
Response Time ⁽⁸⁾	t _{ST}	_	10	25	ms
Status ^{(9), (10)}					
Output Low (I _{load} = 100 μA)	V _{OL}	_	_	0.4	V
Output High (I_{load} = 100 μ A)	V _{OH}	$V_{DD} - 0.8$	_	_	V
Output Stage Performance					
Electrical Saturation Recovery Time ⁽¹¹⁾	t _{DELAY}	_	_	2.0	ms
Full Scale Output Range (I _{OUT} = 200 μA)	V_{FSO}	V _{SS} +0.25	_	$V_{DD} - 0.25$	V
Capacitive Load Drive ⁽¹²⁾	CL	_	_	100	pF
Output Impedance	Z _O	_	50	_	Ω
Mechanical Characteristics					
Transverse Sensitivity ⁽¹³⁾	$V_{XZ,YZ}$			5.0	% FSO

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 kΩ resistor and a 0.01 μF capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 volts, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- 4. The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above V_{DD}/2 and for negative acceleration the output will decrease below V_{DD}/2.
- 5. Sensitivity limits apply to 0 Hz acceleration.
- 6. At clock frequency \cong 35 kHz.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high.
- 10. The Status pin output latches high if the EPROM parity changes to odd. The Status pin can be reset by rising edge on self-test, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA1270D

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as two stationary plates with a moveable plate in-between. The center plate can be deflected from its rest position by subjecting the system to an acceleration (Figure 3).

When the center plate deflects, the distance from it to one fixed plate will increase by the same amount that the distance to the other plate decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the plates changes and each capacitor's value will change, (C = $A\epsilon/D$). Where A is the area of the plate, ϵ is the dielectric constant, and D is the distance between the plates.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

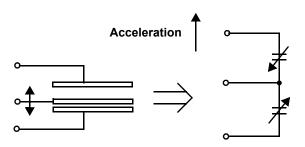


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

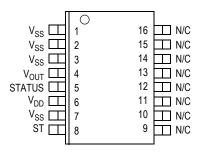
SPECIAL FEATURES

Filtering

The Freescale accelerometers contain an onboard 2-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV²/d²) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.


Status

Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever the following event occurs:

- Parity of the EPROM bits becomes odd in number.
- The fault latch can be reset by a rising edge on the selftest input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	V_{SS}	Redundant connections to the internal V _{SS} and may be left unconnected.
4	V _{OUT}	Output voltage of the accelerometer.
5	STATUS	Logic output pin used to indicate fault.
6	V_{DD}	The power supply input.
7	V_{SS}	The power supply ground.
8	ST	Logic input pin used to initiate self-test.
9 thru 13	Trim pins	Used for factory trim. Leave unconnected.
14 thru 16	_	No internal connection. Leave unconnected.

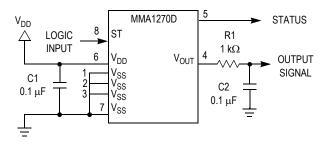
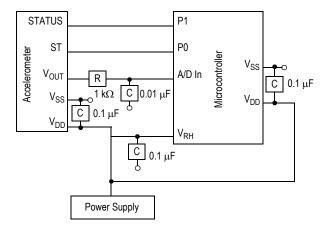
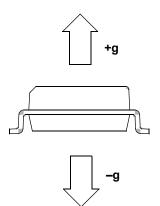
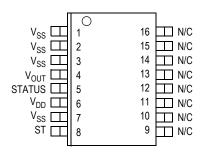


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

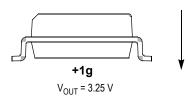


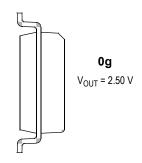

Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller

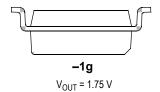

NOTES

- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 5. PCB layout of power and ground should not couple power supply noise.
- 6. Accelerometer and microcontroller should not be a high current path.
- A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

ACCELERATION SENSING DIRECTIONS


DYNAMIC ACCELERATION


16-Pin SOIC Package N/C pins are recommended to be left FLOATING

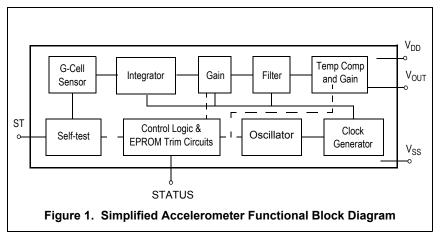

STATIC ACCELERATION

Direction of Earth's gravity field⁽¹⁾

1. When positioned as shown, the Earth's gravity will result in a positive 1g output

Low G Micromachined Accelerometer

The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 4-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

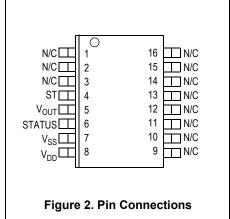

Features

- Integral Signal Conditioning
- · Linear Output
- · Ratiometric Performance
- 4th Order Bessel Filter Preserves Pulse Shape Integrity
- Calibrated Self-test
- Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- · Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shocks Survivability

Typical Applications

- Vibration Monitoring and Recording
- · Appliance Control
- Mechanical Bearing Monitoring
- Computer Hard Drive Protection
- Computer Mouse and Joysticks
- Virtual Reality Input Devices
- Sport Diagnostic Devices and Systems

ORDERING INFORMATION					
Device Name	Temperature Range	Case No.	Package		
MMA2201D	–40° to 105°C	475-01	SOIC-16		
MMA2201DR2	–40° to 105°C	475-01	SOIC16, Tape & Reel		



MMA2201D

MMA2201D: X AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±40g

D SUFFIX 16-LEAD SOIC CASE 475-01

MMA2201D

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V _{DD}	-0.3 to +7.0	V
Drop Test (1)	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾					
Supply Voltage ⁽³⁾	V_{DD}	4.75	5.00	5.25	V
Supply Current	I _{DD}	4.0	5.0	6.0	mA
Operating Temperature Range	T _A	-40	_	+125	°C
Acceleration Range	9 _{FS}	_	45	_	g
Output Signal					
Zero g ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁴⁾	V_{OFF}	2.35	2.5	2.65	V
Zero g	$V_{OFF,V}$	0.46 V _{DD}	0.50 V _{DD}	0.54 V _{DD}	V
Sensitivity ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁵⁾	S	47.5	50	52.5	mV/g
Sensitivity	S _V	9.3	10	10.7	mV/g/V
Bandwidth Response	f_3dB	360	400	440	Hz
Nonlinearity	NL _{OUT}	-1.0	_	+1.0	% FSO
Noise					
RMS (10 Hz – 1 kHz)	n _{RMS}	_	_	2.8	mVrms
Power Spectral Density	n _{PSD}	_	110	_	μV/(Hz ^{1/2})
Clock Noise (without RC load on output) ⁽⁶⁾	n _{CLK}	_	2.0	_	mVpk
Self-Test					
Output Response	9sт	10	12	14	g
Input Low	V_{IL}	V_{SS}	_	$0.3 \times V_{DD}$	V
Input High	V _{IH}	$0.7 \times V_{DD}$	_	V_{DD}	V
Input Loading ⁽⁷⁾	I _{IN}	-30	-100	-300	μΑ
Response Time ⁽⁸⁾	t _{ST}	_	2.0	10	ms
Status ^{(9), (10)}					
Output Low (I _{load} = 100 μA)	V_{OL}	_	_	0.4	V
Output High (I _{load} = 100 μA)	V _{OH}	V _{DD} -0.8	_	_	V
Minimum Supply Voltage (LVD Trip)	V_{LVD}	2.7	3.25	4.0	V
Clock Monitor Fail Detection Frequency	f _{min}	150	_	400	kHz
Output Stage Performance					
Electrical Saturation Recovery Time ⁽¹¹⁾	t _{DELAY}	_	0.2	_	ms
Full Scale Output Range (I _{OUT} = 200 μA)	V _{FSO}	0.25	_	V _{DD} -0.25	V
Capacitive Load Drive ⁽¹²⁾	C_L	_	_	100	pF
Output Impedance	Z _O	_	300	_	Ω
Mechanical Characteristics					
Transverse Sensitivity ⁽¹³⁾	$V_{XZ,YZ}$	_	_	5.0	% FSO
Package Resonance	f _{PKG}	_	10	_	kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 kΩ resistor and a 0.01 μF capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 volts, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- 4. The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above $V_{DD}/2$ and for negative acceleration the output will decrease below $V_{DD}/2$.
- 5. The device is calibrated at 20g.
- 6. At clock frequency ≅70 kHz.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA2201D

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of beams attached to a movable central mass that moves between fixed beams. The movable beams can be deflected from their rest position by subjecting the system to an acceleration (Figure 3).

When the beams attached to the center mass move, the distance from them to the fixed beams on one side will increase by the same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of acceleration.

The g-cell beams form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the beams change and each capacitor's value will change, (C = NA ϵ /D). Where A is the area of the facing side of the beam, ϵ is the dielectric constant, and D is the distance between the beams, and N is the number of beams.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

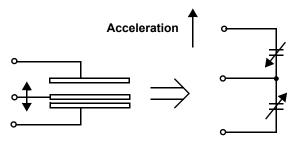


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

The Freescale accelerometers contain an onboard 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

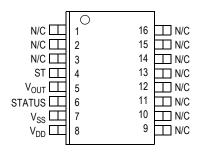
Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV^{2} /d 2) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:

- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a falling edge on the selftest input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	-	Leave unconnected.
4	ST	Logic input pin used to initiate self-test.
5	V _{OUT}	Output voltage of the accelerometer.
6	STATUS	Logic output pin to indicate fault.
7	V_{SS}	The power supply ground.
8	V_{DD}	The power supply input.
9 thru 13	Trim pins	Used for factory trim. Leave unconnected.
14 thru 16	_	No internal connection. Leave unconnected.

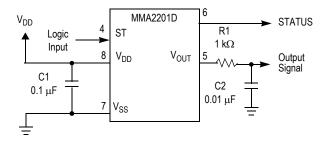


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

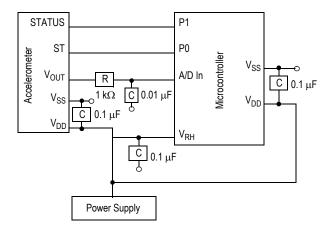
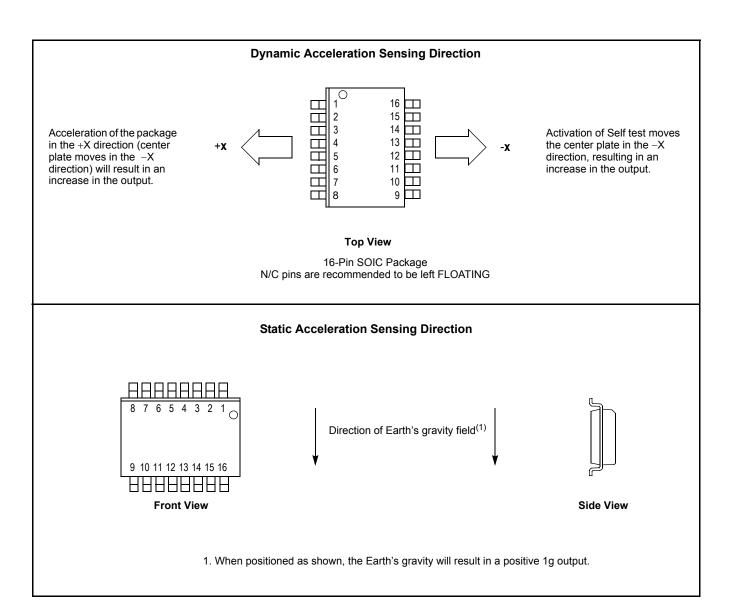



Figure 6. Recommended PCB Layout for Interfacing
Accelerometer to Microcontroller

NOTES:

- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- 2. Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 5. PCB layout of power and ground should not couple power supply noise.
- 6. Accelerometer and microcontroller should not be a high current path.
- 7. A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

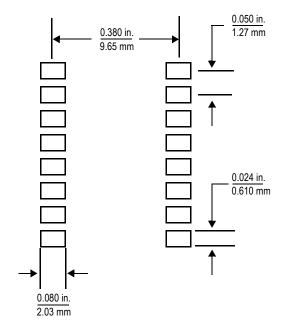
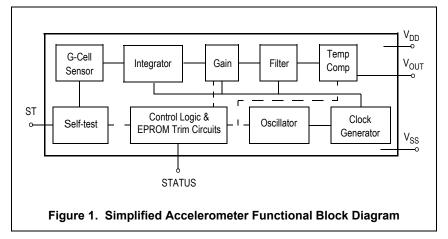


Figure 7. Footprint SOIC-16 (Case 475-01)

Technical Data

Surface Mount Micromachined Accelerometer

The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 4-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

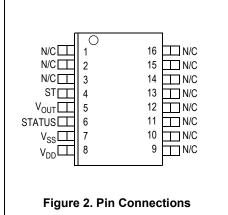

Features

- · Integral Signal Conditioning
- Linear Output
- Ratiometric Performance
- 4th Order Bessel Filter Preserves Pulse Shape Integrity
- Calibrated Self-test
- Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shocks Survivability

Typical Applications

- Vibration Monitoring and Recording
- Appliance Control
- Mechanical Bearing Monitoring
- Computer Hard Drive Protection
- Computer Mouse and Joysticks
- Virtual Reality Input Devices
- · Sport Diagnostic Devices and Systems

ORDERING INFORMATION					
Device Name	Temperature Range	Case No.	Package		
MMA2202D	-40° to 125°C	475-01	SOIC-16		
MMA2202DR2	–40° to 125°C	475-01	SOIC16, Tape & Reel		



MMA2202D

MMA2202D: X AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±50g

D SUFFIX 16-LEAD SOIC CASE 475-01

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V _{DD}	-0.3 to +7.0	V
Drop Test (1)	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾ Supply Voltage ⁽³⁾ Supply Current Operating Temperature Range Acceleration Range	V _{DD} I _{DD} T _A 9fs	4.75 4.0 –40 —	5.00 5.0 — 56.3	5.25 6.0 +125 —	V mA C g
Output Signal Zero g (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁴⁾ Zero g Sensitivity (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁵⁾ Sensitivity Bandwidth Response Nonlinearity	V _{OFF,V} S S _V f _{_3dB} NL _{OUT}	2.35 0.46V _D 38 7.44 360 –1.0	2.5 0.50 V _{DD} 40 8 400	2.65 0.54 V _{DD} 42 8.56 440 +1.0	V V mV/g mV/g/V Hz % FSO
Noise RMS (10 Hz – 1 kHz) Power Spectral Density Clock Noise (without RC load on output) ⁽⁶⁾	n _{RMS} n _{PSD} n _{CLK}	_ _ _	 110 2.0	2.8 — —	mVrms μV/(Hz ^{1/2}) mVpk
Self-Test Output Response Input Low Input High Input Loading ⁽⁷⁾ Response Time ⁽⁸⁾	9st V _{IL} VIH I _{IN} t _{ST}	10 V _{SS} 0.7 x V _{DD} -30	12 — — —100 2.0	14 0.3 x V _{DD} V _{DD} -300 10	g V V μA ms
Status ^{(9), (10)} Output Low (I_{load} = 100 μ A) Output High (I_{load} = 100 μ A)	V _{OL} V _{OH}	 V _{DD} -0.8	1 1	0.4 —	V V
Minimum Supply Voltage (LVD Trip)	V_{LVD}	2.7	3.25	4.0	V
Clock Monitor Fail Detection Frequency	f _{min}	150	_	400	kHz
Output Stage Performance Electrical Saturation Recovery Time ⁽¹¹⁾ Full Scale Output Range (I _{OUT} = 200 μA) Capacitive Load Drive ⁽¹²⁾ Output Impedance	t _{DELAY} V _{FSO} C _L Z _O	 0.25 	0.2 — — 300		ms V pF W
Mechanical Characteristics Transverse Sensitivity ⁽¹³⁾ Package Resonance	V _{XZ,YZ} f _{PKG}	_ _	<u> </u>	5.0 —	% FSO kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 kΩ resistor and a 0.01 μF capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 V and 5.25 V, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- 4. The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above $V_{DD}/2$ and for negative acceleration the output will decrease below $V_{DD}/2$.
- 5. The device is calibrated at 20g.
- 6. At clock frequency $\cong 70 \text{ kHz}.$
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist. For a loaded output the measurements are observed after an RC filter consisting of a 1 kΩ resistor and a 0.01 μF capacitor to ground.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA2202D

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of beams attached to a movable central mass that moves between fixed beams. The movable beams can be deflected from their rest position by subjecting the system to an acceleration (Figure 3).

When the beams attached to the center mass move, the distance from them to the fixed beams on one side will increase by the same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of acceleration.

The g-cell beams form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the beams change and each capacitor's value will change, (C = NA ϵ /D). Where A is the area of the facing side of the beam, ϵ is the dielectric constant, and D is the distance between the beams, and N is the number of beams.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

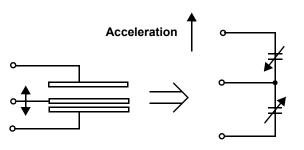


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

The Freescale accelerometers contain an onboard 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

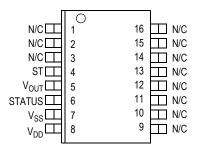
Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV 2 /d 2) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:

- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a falling edge on the selftest input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	_	No internal connection. Leave unconnected.
4	ST	Logic input pin used to initiate self-test.
5	V _{OUT}	Output voltage of the accelerometer.
6	STATUS	Logic output pin to indicate fault.
7	V_{SS}	The power supply ground.
8	V_{DD}	The power supply input.
9 thru 13	Trim pins	Used for factory trim. Leave unconnected.
14 thru 16	_	No internal connection. Leave unconnected.

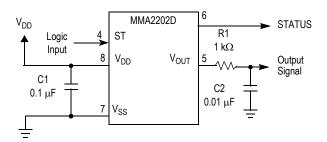


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

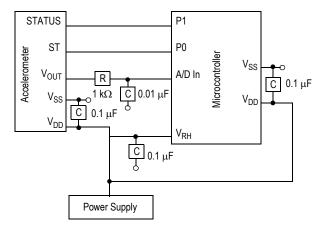
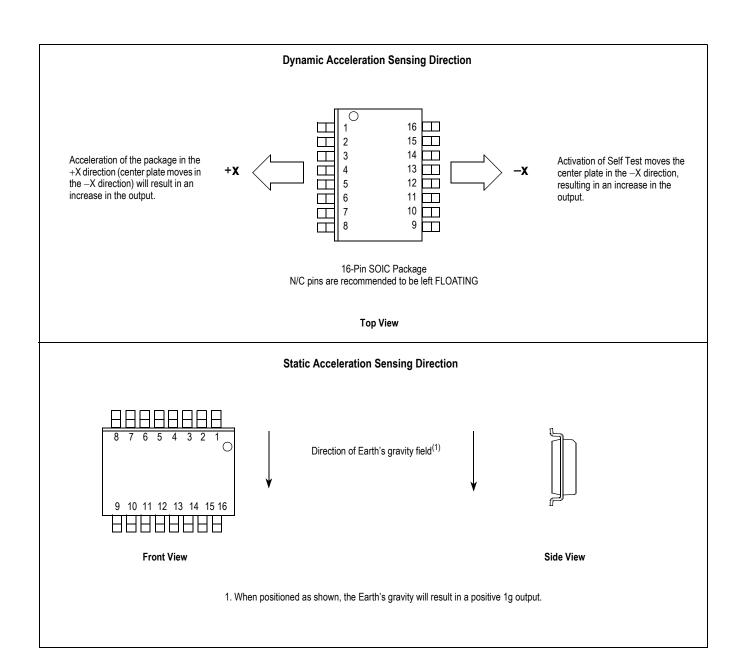



Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller

NOTES:

- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- PCB layout of power and ground should not couple power supply noise.
- Accelerometer and microcontroller should not be a high current path.
- 7. A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

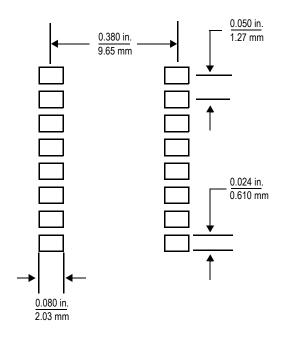
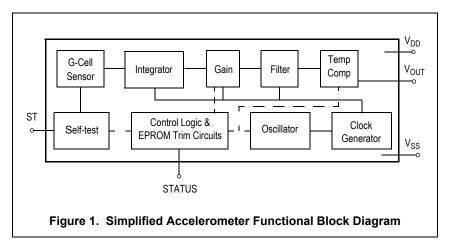


Figure 7. Footprint SOIC-16 (Case 475-01)

Technical Data

Surface Mount Micromachined Accelerometer

The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 4-pole low pass filter and temperature compensation. Zerog offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

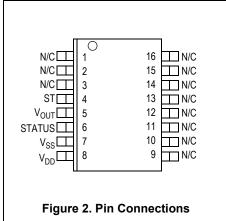

Features

- Integral Signal Conditioning
- Linear Output
- Ratiometric Performance
- · 4th Order Bessel Filter Preserves Pulse Shape Integrity
- · Calibrated Self-test
- Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- · Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shocks Survivability

Typical Applications

- Vibration Monitoring and Recording
- Appliance Control
- Mechanical Bearing Monitoring
- Computer Hard Drive Protection
- Computer Mouse and Joysticks
- Virtual Reality Input Devices
- Sport Diagnostic Devices and Systems

ORDERING INFORMATION					
Device Name	Temperature Range	Case No.	Package		
MMA2204D	−40° to 125°C	475-01	SOIC-16		
MMA2204DR2	–40° to 125°C	475-01	SOIC16, Tape & Reel		



MMA2204D

MMA2204D: X AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±100g

D SUFFIX 16-LEAD SOIC CASE 475-01

MMA2204D

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V _{DD}	-0.3 to +7.0	V
Drop Test (1)	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾					
Supply Voltage ⁽³⁾	V_{DD}	4.75	5.00	5.25	V
Supply Current	I _{DD}	4.0	5.0	6.0	mA
Operating Temperature Range	TA	-40	_	+125	°C
Acceleration Range	9 _{FS}	_	112.5	_	g
Output Signal					
Zero g ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁴⁾	V_{OFF}	2.35	2.5	2.65	V
Zero g	$V_{OFF,V}$	0.46 V _{DD}	0.50 V _{DD}	0.54 V _{DD}	V
Sensitivity ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁵⁾	S	19	20	21	mV/g
Sensitivity	S_V	3.72	4	4.28	mV/g/V
Bandwidth Response	f_3dB	360	400	440	Hz
Nonlinearity	NL _{OUT}	-1.0	_	+1.0	% FSO
Noise					
RMS (.01 Hz – 1 kHz)	n _{RMS}	_	_	2.8	mVrms
Power Spectral Density	n _{PSD}	_	110	_	μV/(Hz ^{1/2})
Clock Noise (without RC load on output) ⁽⁶⁾	n_{CLK}	_	2.0	_	mVpk
Self-Test					
Output Response	9st	10	12	14	g
Input Low	V_{IL}	V_{SS}	_	$0.3 \times V_{DD}$	V
Input High	V_{IH}	$0.7 \times V_{DD}$	_	V_{DD}	V
Input Loading ⁽⁷⁾	I _{IN}	-30	-110	-300	μА
Response Time ⁽⁸⁾	t _{ST}	_	2.0	10	ms
Status ^{(9), (10)}					
Output Low (I _{load} = 100 μA)	V_{OL}	_	_	0.4	V
Output High (I _{load} = 100 μA)	V _{OH}	V _{DD} -0.8	_	_	V
Minimum Supply Voltage (LVD Trip)	V_{LVD}	2.7	3.25	4.0	V
Clock Monitor Fail Detection Frequency	f _{min}	150	_	400	kHz
Output Stage Performance					
Electrical Saturation Recovery Time ⁽¹¹⁾	t _{DELAY}	_	0.2	_	ms
Full Scale Output Range (I _{OUT} = 200 μA)	V_{FSO}	0.25	_	$V_{DD} - 0.25$	V
Capacitive Load Drive ⁽¹²⁾	C_L	_	_	100	pF
Output Impedance	Z _O	_	300		W
Mechanical Characteristics					
Transverse Sensitivity ⁽¹³⁾	$V_{XZ,YZ}$	_	_	5.0	% FSO
Package Resonance	f _{PKG}	_	10	_	kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 kΩ resistor and a 0.01 μF capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 V, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- 4. The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above V_{DD}/2 and for negative acceleration the output will decrease below V_{DD}/2.
- 5. The device is calibrated at 20g.
- 6. At clock frequency $\cong 70 \text{ kHz}.$
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA2204D

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of beams attached to a movable central mass that moves between fixed beams. The movable beams can be deflected from their rest position by subjecting the system to an acceleration (Figure 3).

When the beams attached to the center mass move, the distance from them to the fixed beams on one side will increase by the same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of acceleration.

The g-cell beams form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the beams change and each capacitor's value will change, (C = NA ϵ /D). Where A is the area of the facing side of the beam, ϵ is the dielectric constant, and D is the distance between the beams, and N is the number of beams.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

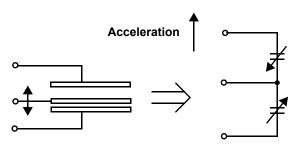


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

The Freescale accelerometers contain an onboard 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

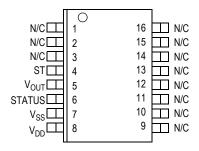
Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV^{2} /d 2) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:

- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a falling edge on the selftest input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	_	No internal connection. Leave unconnected.
4	ST	Logic input pin used to initiate self-test.
5	V _{OUT}	Output voltage of the accelerometer.
6	STATUS	Logic output pin to indicate fault.
7	V _{SS}	The power supply ground.
8	V_{DD}	The power supply input.
9 thru 13	Trim pins	Used for factory trim. Leave unconnected.
14 thru 16	_	No internal connection. Leave unconnected.

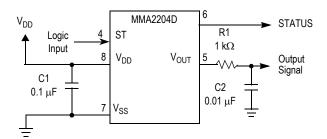


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

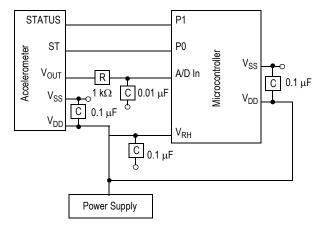
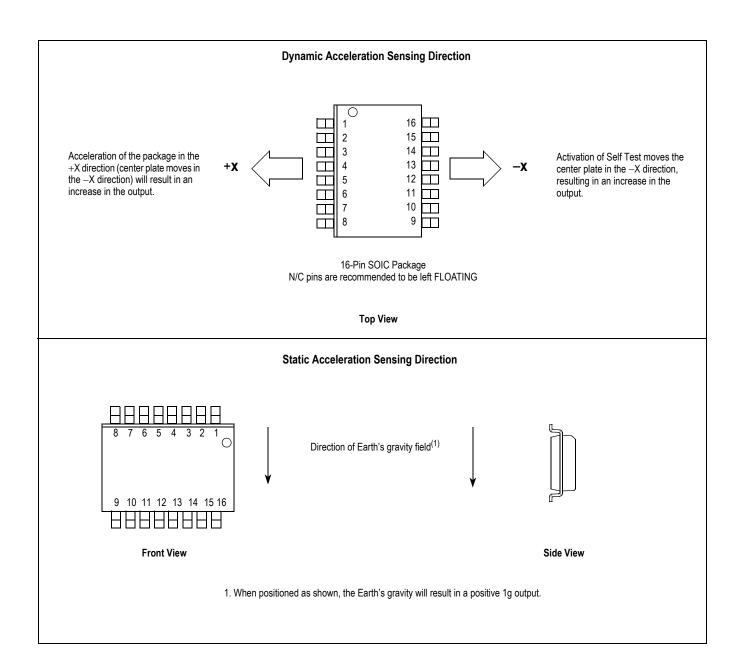



Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller

NOTES:

- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 5. PCB layout of power and ground should not couple power supply noise.
- Accelerometer and microcontroller should not be a high current path.
- A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

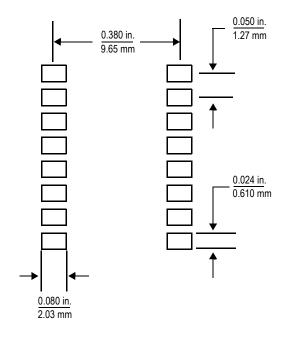
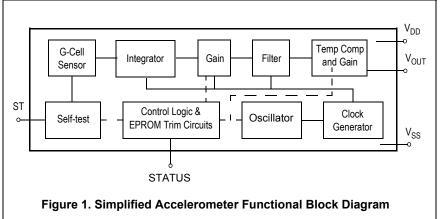


Figure 7. Footprint SOIC-16 (Case 475-01)

Technical Data

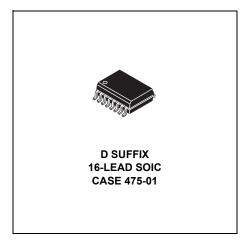
±1.5g X-Axis Micromachined Accelerometer

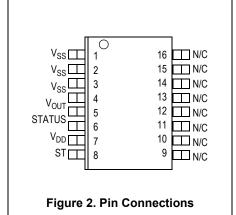
The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 2-pole low pass filter and temperature compensation. Zerog offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.


Features

- Integral Signal Conditioning
- High Sensitivity
- Linear Output
- 2nd Order Bessel Filter
- · Calibrated Self-test
- · EPROM Parity Check Status
- Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shock Survivability

Typical Applications


- Tilt Monitoring
- Inclinometers
- Appliance Control
- Mechanical Bearing Monitoring
- · Vibration Monitoring and Recording
- Sports Diagnostic Devices and Systems
- · Trailer Brake Controls
- · Automotive Aftermarket


ORDERING INFORMATION					
Device	Temperature Range	Case No.	Package		
MMA2260D	–40 to +105°C	475-01	SOIC-16		
MMA2260DR2	-40 to +105°C	475-01	SOIC-16, Tape & Reel		

MMA2260D

MMA2260D: X AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±1.5g

Table 1. Maximum Ratings⁽¹⁾

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Unpowered Acceleration (all axes)	9 _{upd}	2000	g
Supply Voltage	V_{DD}	-0.3 to +7.0	V
Drop Test ⁽¹⁾	H _{drop}	1.2	m
Storage Temperature Range	T_{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le T_{A} \le +105^{\circ}\text{C}$, $4.75 \le V_{DD} \le 5.25$, Acceleration = 0g, Loaded output⁽¹⁾)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾					
Supply Voltage ⁽³⁾	V_{DD}	4.75	5.00	5.25	V
Supply Current	I _{DD}	1.1	2.2	3.2	mA
Operating Temperature Range	T _A	-40	_	+105	°C
Acceleration Range	9 _{FS}	_	1.5	_	g
Output Signal					
Zero g $(V_{DD} = 5.0 \text{ V})^{(4)}$	V_{OFF}	2.3	2.5	2.7	V
Sensitivity ($T_A = 25^{\circ}C, V_{DD} = 5.0 \text{ V}$) ⁽⁵⁾	S	1140	1200	1260	mV/g
Sensitivity $(V_{DD} = 5.0 \text{ V})^{(5)}$	S	1110	1200	1290	mV/g
Bandwidth Response	f_3dB	40	50	60	Hz
Nonlinearity	NL _{OUT}	-1.0	-	+1.0	% FSO
Noise					
RMS (0.1 Hz – 1.0 kHz)	n _{RMS}	_	3.5	_	mVrms
Spectral Density (RMS, 0.1 Hz – 1.0 kHz) ⁽⁶⁾	n _{SD}	_	350	_	μg/√ Hz
Self-Test					
Output Response (V _{DD} = 5.0 V)	ΔV_{ST}	0.3	0.4	0.5	V
Input Low	V_{IL}	V_{SS}	_	0.3 V _{DD}	V
Input High	V_{IH}	0.7 V _{DD}	_	V_{DD}	V
Input Loading ⁽⁷⁾	I _{IN}	-50	-125	-300	μΑ
Response Time ⁽⁸⁾	t _{ST}	_	20	25	ms
Status ⁽⁹⁾⁽¹⁰⁾					
Output Low ($I_{load} = 100 \mu A$)	V_{OL}	_	_	0.4	V
Output High ($I_{load} = -100 \mu A$)	V _{OH}	V _{DD} -0.8	_	_	V
Output Stage Performance					
Electrical Saturation Recovery Time ⁽¹¹⁾	t _{DELAY}	_	_	2.0	ms
Full Scale Output Range (I _{OUT} = –200 μA)	V _{FSO}	V _{SS} +0.25	_	V _{DD} -0.25	V
Capacitive Load Drive ⁽¹²⁾	C_L	_	_	100	pF
Output Impedance	Z _O	-	50	_	Ω
Mechanical Characteristics					
Transverse Sensitivity ⁽¹³⁾	$V_{YX,ZX}$	-	_	5.0	% FSO

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 k Ω resistor and a 0.1 μ F capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 volts, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above V_{DD}/2 and for negative acceleration the output will decrease below V_{DD}/2.
- 5. Sensitivity limits apply to 0 Hz acceleration.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high.
- 10. The Status pin output latches high if the EPROM parity changes to odd. The Status pin can be reset by a rising edge on self-test, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of beams attached to a movable central mass that moves between fixed beams. The movable beams can be deflected from their rest position by subjecting the system to an acceleration (Figure 3).

As the beams attached to the central mass move, the distance from them to the fixed beams on one side will increase by the same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of acceleration.

The g-cell beams form two back-to-back capacitors (). As the central mass moves with acceleration, the distance between the beams change and each capacitor's value will change, (C = NA ϵ /D). Where A is the area of the facing side of the beam, e is the dielectric constant, D is the distance between the beams, and N is the number of beams.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

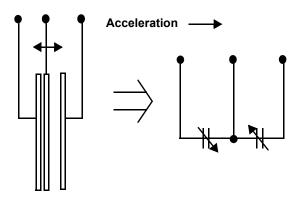


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

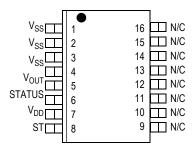
Filtering

Freescale accelerometers contain an onboard 2-pole switched capacitor filter. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = $^{1}/_{2}$ AV $^{2}/d^{2}$) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever the following event occurs:

· Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a rising edge on the self-test input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Description

Pin No.	Pin Name	Description
1 thru 3	V _{SS}	Redundant connections to the internal V _{SS} and may be left unconnected.
4	V _{OUT}	Output voltage of the accelerometer.
5	STATUS	Logic output pin to indicate fault.
6	V_{DD}	The power supply ground.
7	V_{SS}	The power supply input.
8	ST	Logic input pin used to initiate self-test.
9 thru 13	Trim pins	Used for factory trim. Leave unconnected.
14 thru 16	_	No internal connection. Leave unconnected.

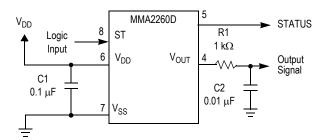


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

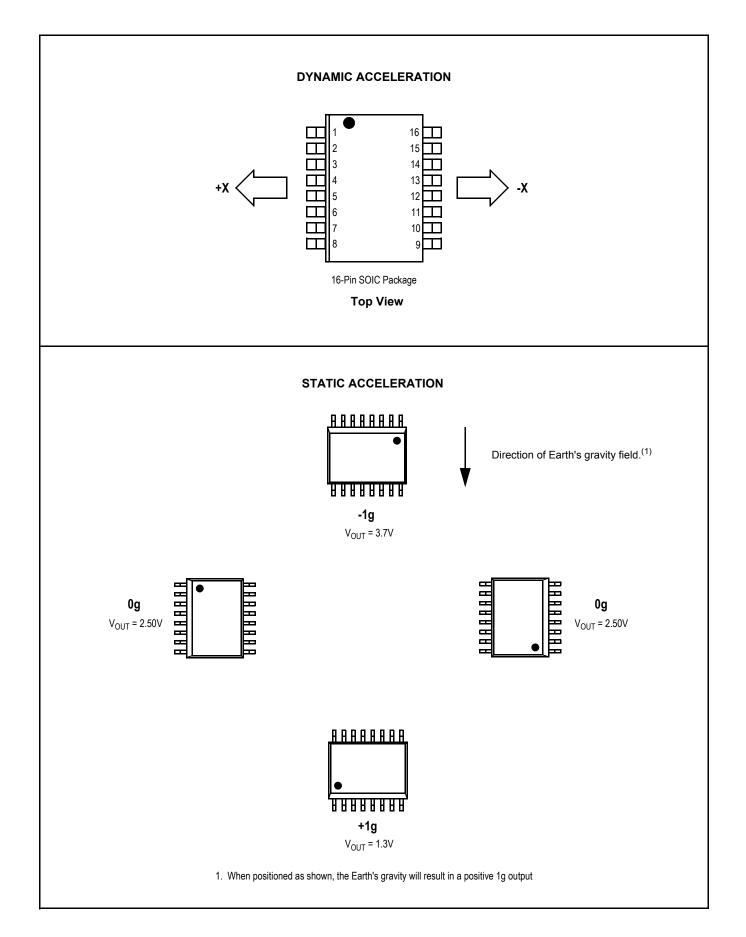



Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller

NOTES:

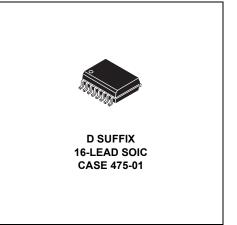
- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 5. PCB layout of power and ground should not couple power supply noise.
- Accelerometer and microcontroller should not be a high current path.
- 7. A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

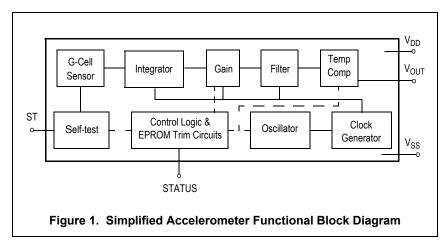
Surface Mount Micromachined Accelerometer

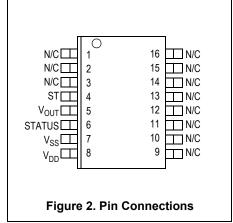
The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 4-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

Features

- Integral Signal Conditioning
- Linear Output
- · Ratiometric Performance
- 4th Order Bessel Filter Preserves Pulse Shape Integrity
- · Calibrated Self-test
- · Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- · Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shocks Survivability


Typical Applications


- Vibration Monitoring and Recording
- · Impact Monitoring


ORDERING INFORMATION					
Device Name	Package				
MMA2300D	−40° to 125°C	475-01	SOIC-16		
MMA2300DR2	−40° to 125°C	475-01	SOIC16, Tape & Reel		

MMA2300D

MMA2300D: X AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±250g

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V_{DD}	-0.3 to +7.0	V
Drop Test (1)	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾ Supply Voltage ⁽³⁾ Supply Current Operating Temperature Range Acceleration Range	V _{DD} I _{DD} T _A 9fs	4.75 3.0 –40 —	5.00 — — — 281	5.25 6.0 +125 —	V mA C g
Output Signal Zero g (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁴⁾ Zero g Sensitivity (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁵⁾ Sensitivity Bandwidth Response Nonlinearity	V _{OFF} ,V S S _V f _{_3dB} NL _{OUT}	2.4 0.47 V _{DD} 7.6 1.488 360 -1.0	2.5 0.50 V _{DD} 8.0 1.6 400	2.6 0.53 V _{DD} 8.4 1.712 440 1.0	V V mV/g mV/g/V Hz % FSO
Noise RMS (10 Hz – 1 kHz) Power Spectral Density Clock Noise (without RC load on output) ⁽⁶⁾	n _{RMS} n _{PSD} n _{CLK}	_ _ _	 110 2.0	2.8 — —	mVrms μV/(Hz ^{1/2}) mVpk
Self-Test Output Response Input Low Input High Input Loading ⁽⁷⁾ Response Time ⁽⁸⁾	9st V _{IL} VIH I _{IN} t _{ST}	24 V _{SS} 0.7 x V _{DD} -30 —	30 — — — —100 2.0	36 0.3 x V _{DD} V _{DD} -260 10	g V V μA ms
Status ^{(9), (10)} Output Low (I_{load} = 100 μ A) Output High (I_{load} = 100 μ A)	V _{OL} V _{OH}	 V _{DD} -0.8	_ _	0.4 —	V V
Minimum Supply Voltage (LVD Trip)	V_{LVD}	2.7	3.25	4.0	V
Clock Monitor Fail Detection Frequency	f _{min}	50	_	260	kHz
Output Stage Performance Electrical Saturation Recovery Time ⁽¹¹⁾ Full Scale Output Range (I _{OUT} = 200 μA) Capacitive Load Drive ⁽¹²⁾ Output Impedance	t _{DELAY} V _{FSO} C _L Z _O	— 0.25 — —	0.2 — — 300	— V _{DD} –0.25 100 —	ms V pF W
Mechanical Characteristics Transverse Sensitivity ⁽¹³⁾ Package Resonance	V _{XZ,YZ} f _{PKG}	_ _	<u> </u>	5.0 —	% FSO kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 kΩ resistor and a 0.01 μF capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 V, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- 4. The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above $V_{DD}/2$ and for negative acceleration the output will decrease below $V_{DD}/2$.
- 5. The device is calibrated at 35g.
- 6. At clock frequency $\cong 70 \text{ kHz}.$
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causes them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of beams attached to a movable central mass that moves between fixed beams. The movable beams can be deflected from their rest position by subjecting the system to an acceleration (Figure 3).

As the beams attached to the central mass move, the distance from them to the fixed beams on one side will increase by the same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 4). As the central mass moves with acceleration, the distance between the beams change and each capacitor's value will change, (C = NA ϵ /D). Where A is the area of the facing side of the beam, ϵ is the dielectric constant, D is the distance between the beams, and N is the number of beams.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

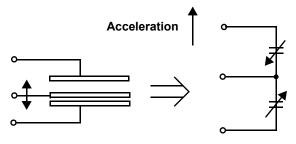


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

The Freescale accelerometers contain an onboard 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

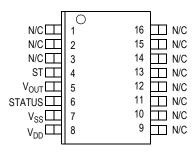
Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV 2 /d 2) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:

- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a falling edge on the selftest input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	_	Leave unconnected.
4	ST	Logic input pin used to initiate self-test.
5	V _{OUT}	Output voltage of the accelerometer.
6	STATUS	Logic output pin to indicate fault.
7	V_{SS}	The power supply ground.
8	V_{DD}	The power supply input.
9 thru 13	Trim pins	Used for factory trim. Leave unconnected.
14 thru 16	_	No internal connection. Leave unconnected.

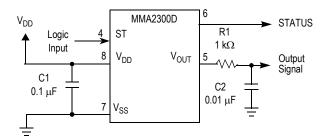


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

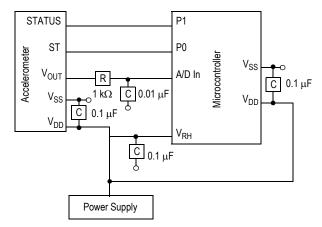
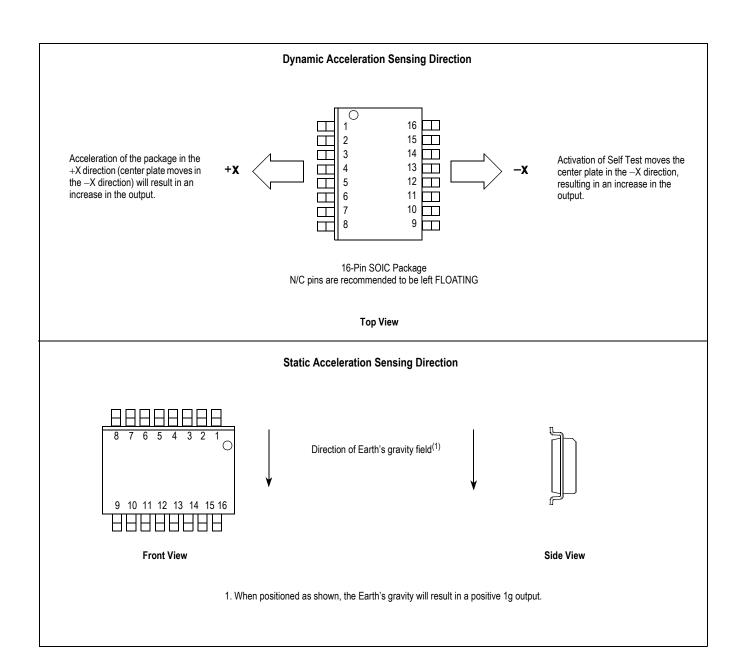



Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller

NOTES:

- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- PCB layout of power and ground should not couple power supply noise.
- Accelerometer and microcontroller should not be a high current path.
- 7. A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

Freescale Semiconductor

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

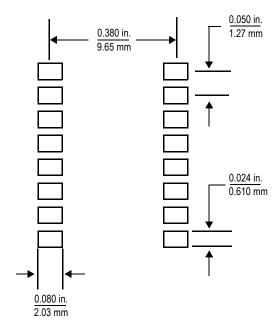


Figure 7. Footprint SOIC-16 (Case 475-01)

Technical Data

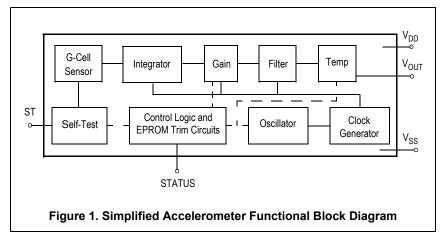
Surface Mount Micromachined Accelerometer

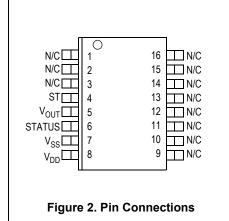
The MMA series of silicon capacitive, micromachined accelerometers feature signal conditioning, a 4-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

Features

- · Integral Signal Conditioning
- Linear Output
- · Ratiometric Performance
- · 4th Order Bessel Filter Preserves Pulse Shape Integrity
- Calibrated Self-test
- · Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- · Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shocks Survivability

Typical Applications


- · Vibration Monitoring and Recording
- · Impact Monitoring


ORDERING INFORMATION				
Device Name Temperature Range		Case No.	Package	
MMA2301D	-40° to 125°C	475-01	SOIC-16	
MMA2301DR2	–40° to 125°C	475-01	SOIC16, Tape & Reel	

MMA2301D

MMA2301D: X-AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±200G

MMA2301D

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V _{DD}	-0.3 to +7.0	V
Drop Test ⁽¹⁾	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the accelerometers contain internal 2 kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. OPERATING CHARACTERISTICS

(Unless otherwise noted: $-40^{\circ}C \le T_A \le +105^{\circ}C$, $4.75 \le VDD \le 5.25$, Acceleration = 0g, Loaded output)⁽¹⁾

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾ Supply Voltage ⁽³⁾ Supply Current Operating Temperature Range Acceleration Range	V _{DD} I _{DD} T _A 9fs	4.75 3.0 -40 —	5.0 — — 225	5.25 6.0 +125 —	V mA °C g
Output Signal Zero g $(T_A = 25^{\circ}C, V_{DD} = 5.0 \text{ V})^{(4)}$ Zero g Sensitivity $(T_A = 25^{\circ}C, V_{DD} = 5.0 \text{ V})^{(5)}$ Sensitivity Bandwidth Response Nonlinearity	V _{OFF} ,V S S _V f _{-3dB} NL _{OUT}	2.4 0.46 V _{DD} 9.5 1.86 360 -1.0	2.5 0.50 V _{DD} 10.0 2.0 400	2.6 0.54 V _{DD} 10.5 2.14 440 1.0	V V mV/g mV/g/V Hz % FSO
Noise RMS (.01-1 kHz) Power Spectral Density Clock Noise (without RC load on output) ⁽⁶⁾	n _{RMS} n _{PSD} n _{CLK}	_ _ _	 110 2.0	2.8 — —	mVrms μV/(Hz ^{1/2}) mVpk
Self-Test Output Response Input Low Input High Input Loading ⁽⁷⁾ Response Time ⁽⁸⁾	9st V _{IL} V _{IH} I _{IN} t _{ST}	24 V _{SS} 0.7 x V _{DD} -30 —	30 — — -100 2.0	36 0.3 x V _{DD} V _{DD} -260 10	g V V μA ms
Status ⁽⁹⁾ (10) Output Low (I_{load} = 100 μ A) Output High (I_{load} = 100 μ A)	V _{OL} V _{OH}	— V _{DD} -0.8		0.4	V V
Minimum Supply Voltage (LVD Trip)	V_{LVD}	2.7	3.25	4.0	V
Clock Monitor Fail Detection Frequency	f _{min}	50	_	260	kHz
Output Stage Performance Electrical Saturation Recovery Time ⁽¹¹⁾ Full Scale Output Range (I_{OUT} = 200 μ A) Capacitive Load Drive ⁽¹²⁾ Output Impedance	t _{DELAY} V _{FSO} C _L Z _O	 0.25 	0.2 — — 300	— V _{DD} -0.25 100 —	ms V pF Ω
Mechanical Characteristics Transverse Sensitivity ⁽¹³⁾ Package Resonance	V _{XZ,YZ}	_ _	<u> </u>	5.0 —	% FSO kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 k Ω resistor and a 0.01 μ F capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 volts, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above V_{DD}/2 and for negative acceleration the output will decrease below V_{DD}/2.
- 5. The device is calibrated at 35g.
- 6. At clock frequency \cong 70 kHz.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 us, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causing them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

PRINCIPLE OF OPERATION

The Freescale Semiconductor, Inc. accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined *cap* wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of beams attached to a movable central mass that move between fixed beams. The movable beams can be deflected from their rest position by subjecting the system to an acceleration(Figure 3).

As the beams attached to the central mass move, the distance from them to the fixed beams on one side will increase by the same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 3). As the central mass moves with acceleration, the distance between the beams change and each capacitor's value will change, ($C = NA\varepsilon/D$). Where A is the area of the

facing side of the beam, ε is the dielectric constant, D is the distance between the beams, and N is the number of beams.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

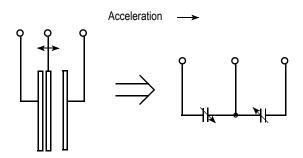


Figure 3. Simplified Transducer Physical Model versus
Transducer Physical Model

SPECIAL FEATURES

Filtering

The accelerometers contain an onboard 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

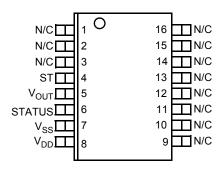
Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth *plate* is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 /₂ AV²/d²) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:

- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- · Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a rising edge on the self-test input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

PINOUT DESCRIPTION

Table 3. Pin Descriptions

Pin No.	Pin Name	Description
1 thru 3	N/C	Leave unconnected.
4	ST	Logic input pin used to initiate self-test.
5	V _{OUT}	Output voltage of the accelerometer.
6	STATUS	Logic output pin to indicate fault.
7	V _{SS}	The power supply ground.
8	V_{DD}	The power supply input.
9 thru 13	Trim pins	Used for factory trim. Leave unconnected.
14 thru 16	_	No internal connection. Leave unconnected.

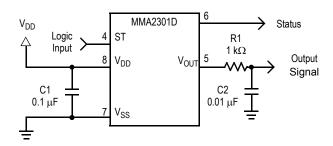
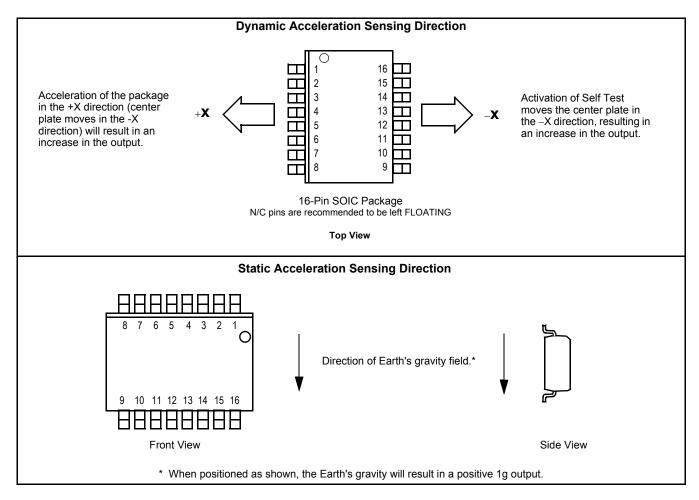


Figure 4. SOIC Accelerometer with Recommended Connection Diagram




Figure 5. Recommend PCB Layout for Interfacing Accelerometer to Microcontroller

NOTES:

- Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 5
- Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- PCB layout of power and ground should not couple power supply noise.
- Accelerometer and microcontroller should not be a high current path.

A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

MMA2301D

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the

correct footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

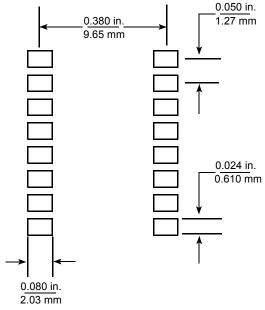
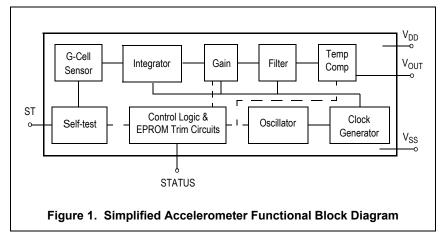


Figure 6. Footprint SOIC-16 (Case 475-01)

Surface Mount Micromachined Accelerometer

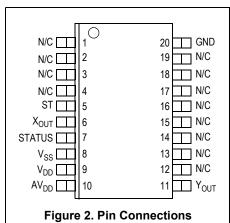
The MMA3200 series of dual axis (X and Y) silicon capacitive, micromachined accelerometers features signal conditioning, a 4-pole low pass filter and temperature compensation, and separate outputs for the two axes. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.


Features

- · Sensitivity in two separate axes: 40g X-axis and 40g Y-axis
- · Integral Signal Conditioning
- · Linear Output
- · Ratiometric Performance
- 4th Order Bessel Filter Preserves Pulse Shape Integrity
- Calibrated Self-test
- Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- Robust Design, High Shocks Survivability

Typical Applications


- · Vibration Monitoring and Recording
- Impact Monitoring
- Appliance Control
- Mechanical Bearing Monitoring
- Computer Hard Drive Protection
- Computer Mouse and Joysticks
- Virtual Reality Input Devices
- · Sports Diagnostic Devices and Systems


ORDERING INFORMATION				
Device Name	Temperature Range	Case No,	Package	
MMA3201D	–40 to +125°C	475A-01	SOIC-20	
MMA3201DR2	–40 to +125°C	475A-01	SOIC-20, Tape & Reel	

MMA3201D

MMA3201D: X-Y AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±40g

MMA3201D

2-105

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V_{DD}	-0.3 to +7.0	V
Drop Test ⁽¹⁾	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2 kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le T_A \le +105^{\circ}\text{C}$, $4.75 \le V_{DD} \le 5.25$, X and Y Channels, Acceleration = 0g, Loaded output. (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾					
Supply Voltage ⁽³⁾	V_{DD}	4.75	5.00	5.25	V
Supply Current	I _{DD}	6	8	10	mA
Operating Temperature Range	T _A	-40	_	+125	°C
Acceleration Range	9 _{FS}	_	45	_	g
Output Signal					
Zero g ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁴⁾	V _{OFF}	2.35	2.5	2.65	V
Zero g	$V_{OFF,V}$	0.46 V _{DD}	0.50 V _{DD}	0.54 V _{DD}	V
Sensitivity ($T_A = 25^{\circ}C$, $V_{DD} = 5.0 \text{ V}$) ⁽⁵⁾	S	45	50	55	mV/g
Sensitivity	S _V	9.3	10	10.7	mV/g/V
Bandwidth Response	f_3dB	360	400	440	Hz
Nonlinearity	NL _{OUT}	-1.0	_	+1.0	% FSO
Noise					
RMS (.01 Hz – 1 kHz)	n _{RMS}	_	_	2.8	mVrms
Power Spectral Density	n _{PSD}	_	110	_	μV/(Hz ^{1/2})
Clock Noise (without RC load on output) ⁽⁶⁾	n _{CLK}	_	2.0	_	mVpk
Self-Test					
Output Response	9 _{ST}	9.6	12	14.4	g
Input Low	V_{IL}	V_{SS}	_	$0.3 \times V_{DD}$	V
Input High	V_{IH}	$0.7 \times V_{DD}$	_	V_{DD}	V
Input Loading ⁽⁷⁾	I _{IN}	-30	-110	-300	μΑ
Response Time ⁽⁸⁾	t _{ST}	_	2.0	_	ms
Status ^{(9), (10)}					
Output Low (I _{load} = 100 μA)	V_{OL}	_	_	0.4	V
Output High (I _{load} = 100 μA)	V _{OH}	V _{DD} 8	_	_	V
Minimum Supply Voltage (LVD Trip)	V _{LVD}	2.7	3.25	4.0	V
Clock Monitor Fail Detection Frequency	f _{min}	50	_	260	kHz
Output Stage Performance					
Electrical Saturation Recovery Time ⁽¹¹⁾	t _{DELAY}	_	0.2	_	ms
Full Scale Output Range (I _{OUT} = 200 μA)	V_{FSO}	0.25	_	V _{DD} -0.25	V
Capacitive Load Drive ⁽¹²⁾	C_L	_	_	100	pF
Output Impedance	Z _O	_	300	_	W
Mechanical Characteristics					
Transverse Sensitivity ⁽¹³⁾	$V_{XZ,YZ}$	_	_	5.0	% FSO
Package Resonance	f _{PKG}	_	10	_	kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 k Ω resistor and a 0.01 μ F capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 volts, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- 4. The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above $V_{DD}/2$ and for negative acceleration the output will decrease below $V_{DD}/2$.
- 5. The device is calibrated at 20g.
- 6. At clock frequency ≅70 kHz.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causing them to saturate.
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA3201D

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of beams attached to a movable central mass that move between fixed beams. The movable beams can be deflected from their rest position by subjecting the system to an acceleration (Figure 3).

As the beams attached to the central mass move, the distance from them to the fixed beams on one side will increase by the same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of acceleration.

The g-cell beams form two back-to-back capacitors (Figure 4). As the central mass moves with acceleration, the distance between the beams change and each capacitor's value will change, (C = NA ϵ /D). Where A is the area of the facing side of the beam, ϵ is the dielectric constant, D is the distance between the beams, and N is the number of beams. The X-Y device contains two structures at right angles to each other.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

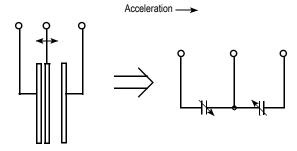


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

The Freescale accelerometers contain an on board 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

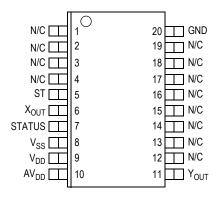
Self-Test

The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = $^{1}/_{2}$ AV $^{2}/_{0}$) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status


Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:

- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a rising edge on the self-test input pin, unless one (or more) of the fault conditions continues to exist.

BASIC CONNECTIONS

Pinout Description

Pin No.	Pin Name	Description
1 thru 3	_	Leave unconnected.
4	_	No internal connection. Leave unconnected.
5	ST	Logic input pin used to initiate self-test.
6	X _{OUT}	Output voltage of the accelerometer. X Direction.
7	STATUS	Logic output pin to indicate fault.
8	V _{SS}	The power supply ground.
9	V_{DD}	The power supply input.
10	AV_{DD}	Power supply input (Analog).
11	Y _{OUT}	Output voltage of the accelerometer. Y Direction.
12 thru 16	_	Used for factory trim. Leave unconnected.
17 thru 19	_	No internal connection. Leave unconnected.
20	GND	Ground.

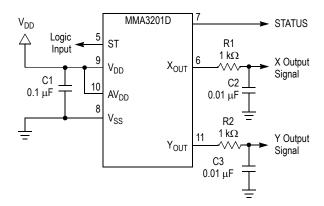


Figure 5. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

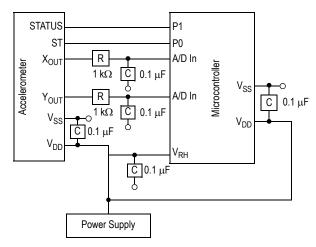
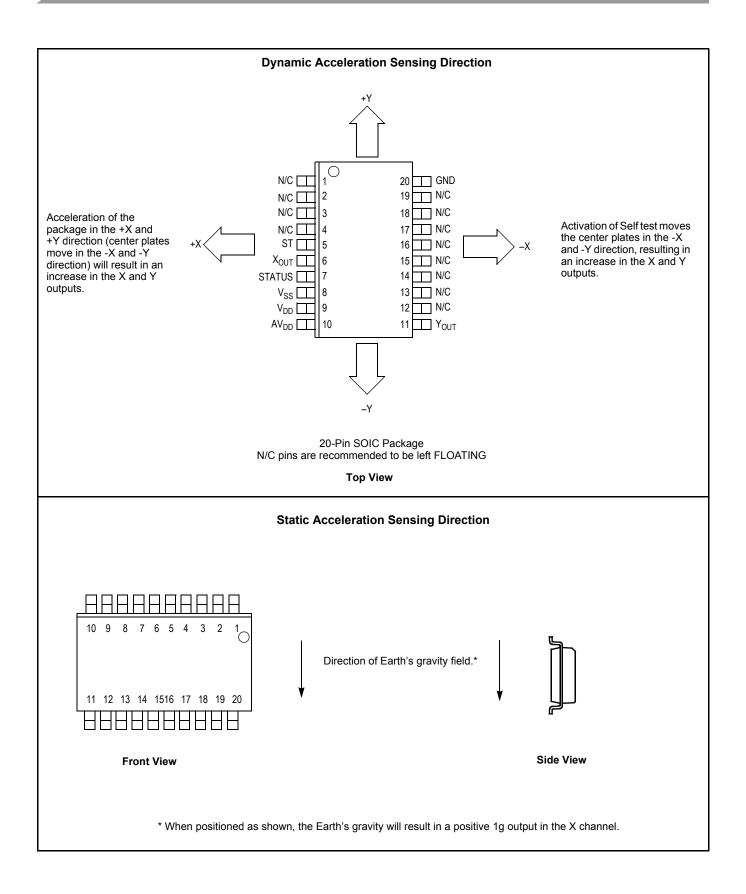



Figure 6. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller

NOTES:

- 1. Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 4. Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 5. PCB layout of power and ground should not couple power supply noise.
- 6. Accelerometer and microcontroller should not be a high current path.
- 7. A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

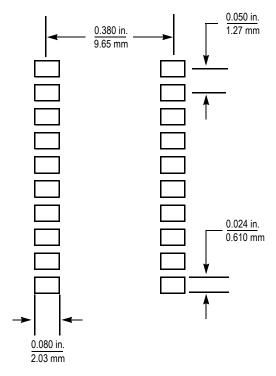
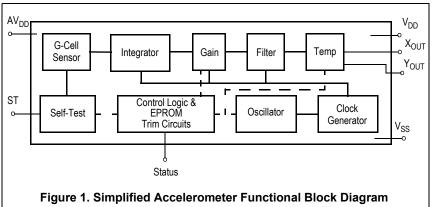


Figure 7. Footprint SOIC-20 (Case 475A-01)

Surface Mount Micromachined Accelerometer

The MMA3202 series of dual axis (X and Y) silicon capacitive, micromachined accelerometers features signal conditioning, a 4-pole low pass filter and temperature compensation and separate outputs for the two axes. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.


Features

- Sensitivity in two separate axes: 100g X-axis and 50g Y-axis
- · Integral Signal Conditioning
- Linear Output
- · Ratiometric Performance
- 4th Order Bessel Filter Preserves Pulse Shape Integrity
- · Calibrated Self-test
- · Low Voltage Detect, Clock Monitor, and EPROM Parity Check Status
- · Transducer Hermetically Sealed at Wafer Level for Superior Reliability
- · Robust Design, High Shocks Survivability

Typical Applications

- Vibration Monitoring and Recording
- Impact Monitoring
- Appliance Control
- Mechanical Bearing Monitoring
- Computer Hard Drive Protection
- · Computer Mouse and Joysticks
- Virtual Reality Input Devices
- · Sports Diagnostic Devices and Systems

ORDERING INFORMATION					
Device	Temperature Range	Case No.	Package		
MMA3202D	– 40 to +125°C	475A-01	SOIC-20		
MMA3202DR2	– 40 to +125°C	475A-01	SOIC-20, Tape & Reel		



MMA3202D

MMA3202D: X-Y AXIS SENSITIVITY
MICROMACHINED
ACCELEROMETER
±100/50g

D SUFFIX 20-LEAD SOIC CASE 475A-01

MMA3202D

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Powered Acceleration (all axes)	G _{pd}	1500	g
Unpowered Acceleration (all axes)	G _{upd}	2000	g
Supply Voltage	V _{DD}	-0.3 to +7.0	V
Drop Test (1)	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the accelerometers contain internal 2 kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

(Unless otherwise noted: $-40^{\circ}\text{C} \le \text{T}_{A} \le +105^{\circ}\text{C}$, $4.75 \le \text{V}_{DD} \le 5.25$, Acceleration = 0g, Loaded output.)⁽¹⁾

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾ Supply Voltage ⁽³⁾ Supply Current Operating Temperature Range Acceleration Range X-axis Acceleration Range Y-axis	V _{DD} I _{DD} T _A 9FS 9FS	4.75 6 -40 	5.00 8 — 112.5 56.3	5.25 10 +125 —	V mA °C g
Output Signal Zero g (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁴⁾ Zero g Sensitivity X-axis (T_A = 25°C, V_{DD} = 5.0 V) ⁽⁵⁾ Sensitivity Y-axis (T_A = 25°C, V_{DD} = 5.0 V) Sensitivity X-axis Sensitivity Y-axis Bandwidth Response Nonlinearity	Voff V _{OFF,V} S S S _V S _V f _{-3dB} NL _{OUT}	2.35 0.46 V _{DD} 19 38 3.72 7.44 360 -1.0	2.5 0.50 V _{DD} 20 40 4 8 400	2.65 0.54 V _{DD} 21 42 4.28 8.56 440 +1.0	V V mV/g mV/g mV/g/V mV/g/V Hz % FSO
Noise RMS (.01 Hz – 1 kHz) Power Spectral Density Clock Noise (without RC load on output) ⁽⁶⁾	n _{RMS} n _{PSD} n _{CLK}	_ _ _	 110 2.0	2.8 — —	mVrms μV/(Hz ^{1/2}) mVpk
Self-Test Output Response Input Low Input High Input Loading ⁽⁷⁾ Response Time ⁽⁸⁾	9st V _{IL} V _{IH} I _{IN} t _{ST}	9.6 V _{SS} 0.7 × V _{DD} -30 —	12 — — —100 2.0	14.4 0.3 × V _{DD} V _{DD} -300	g V V μΑ ms
Status ⁽⁹⁾ (10) Output Low (I_{load} = 100 μ A) Output High (I_{load} = 100 μ A)	V _{OL} V _{OH}	— V _{DD} – 0.8		0.4	V
Minimum Supply Voltage (LVD Trip)	V _{LVD}	2.7	3.25	4.0	V
Clock Monitor Fail Detection Frequency	f _{min}	50	_	260	kHz
Output Stage Performance Electrical Saturation Recovery Time ⁽¹¹⁾ Full Scale Output Range (I _{OUT} = 200 μA) Capacitive Load Drive ⁽¹²⁾ Output Impedence	t _{DELAY} V _{FSO} C _L Z _O	 0.25 	0.2 — — 300	 V _{DD} -0.25 100 	ms V pF W
Mechanical Characteristics Transverse Sensitivity ⁽¹³⁾ Package Resonance	V _{XZ,YZ} f _{PKG}	_ _	<u> </u>	5.0 —	% FSO kHz

- 1. For a loaded output the measurements are observed after an RC filter consisting of a 1 k Ω resistor and a 0.01 μ F capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 4.75 and 5.25 volts, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- 4. The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above V_{DD}/2 and for negative acceleration the output will decrease below V_{DD}/2.
- 5. The device is calibrated at 20g.
- 6. At clock frequency ≅70 kHz.
- 7. The digital input pin has an internal pull-down current source to prevent inadvertent self test initiation due to external board level leakages.
- 8. Time for the output to reach 90% of its final value after a self-test is initiated.
- 9. The Status pin output is not valid following power-up until at least one rising edge has been applied to the self-test pin. The Status pin is high whenever the self-test input is high, as a means to check the connectivity of the self-test and Status pins in the application.
- 10. The Status pin output latches high if a Low Voltage Detection or Clock Frequency failure occurs, or the EPROM parity changes to odd. The Status pin can be reset low if the self-test pin is pulsed with a high input for at least 100 μs, unless a fault condition continues to exist.
- 11. Time for amplifiers to recover after an acceleration signal causing them to saturate
- 12. Preserves phase margin (60°) to guarantee output amplifier stability.
- 13. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA3202D

PRINCIPLE OF OPERATION

The Freescale Semiconductor, Inc. accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a CMOS signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined "cap" wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of beams attached to a movable central mass that move between fixed beams. The movable beams can be deflected from their rest position by subjecting the system to an acceleration (Figure 3).

As the beams attached to the central mass move, the distance from them to the fixed beams on one side will increase by the same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of acceleration.

The g-cell beams form two back-to-back capacitors (Figure 3). As the central mass moves with acceleration, the distance between the beams change and each capacitor's value will change, (C = NA ϵ /D). Where A is the area of the facing side of the beam, ϵ is the dielectric constant, D is the

distance between the beams, and N is the number of beams. The X-Y device contains two structures at right angles to each other.

The CMOS ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

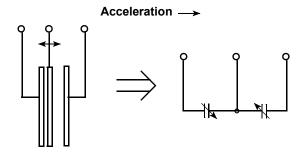


Figure 3. Simplified Transducer Physical Model

SPECIAL FEATURES

Filtering

The Freescale Semiconductor, Inc. accelerometers contain an onboard 4-pole switched capacitor filter. A Bessel implementation is used because it provides a maximally flat delay response (linear phase) thus preserving pulse shape integrity. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cutoff frequency.

Self-Test

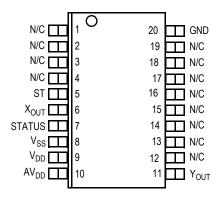
The sensor provides a self-test feature that allows the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. This feature is critical in applications such as automotive airbag systems where system integrity must be ensured over the life of the vehicle. A fourth "plate" is used in the g-cell as a self-test plate. When the user applies a logic high input to the self-test pin, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = 1 / $_{2}$ AV 2 /d 2) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's control ASIC and a proportional output voltage results. This procedure assures that both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Ratiometricity

Ratiometricity simply means that the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as you increase supply voltage the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

Status

Freescale accelerometers include fault detection circuitry and a fault latch. The Status pin is an output from the fault latch, OR'd with self-test, and is set high whenever one (or more) of the following events occur:


- Supply voltage falls below the Low Voltage Detect (LVD) voltage threshold
- Clock oscillator falls below the clock monitor minimum frequency
- Parity of the EPROM bits becomes odd in number.

The fault latch can be reset by a rising edge on the self-test input pin, unless one (or more) of the fault conditions continues to exist.

MMA3202D

BASIC CONNECTIONS

PINOUT DESCRIPTION

Table 3. Pin Descriptions

	_	
Pin No.	Pin Name	Description
1 thru 3	_	Leave unconnected.
4		No internal connection. Leave unconnected.
5	ST	Logic input pin used to initiate self-test.
6	X _{OUT}	Output voltage of the accelerometer. X Direction.
7	STATUS	Logic output pin to indicate fault.
8	V _{SS}	The power supply ground.
9	V_{DD}	The power supply input.
10	AV_DD	Power supply input (Analog).
11	Y _{OUT}	Output voltage of the accelerometer. Y Direction.
12 thru 16	_	Used for factory trim. Leave unconnected.
17 thru 19	_	No internal connection. Leave unconnected.
20	GND	Ground.

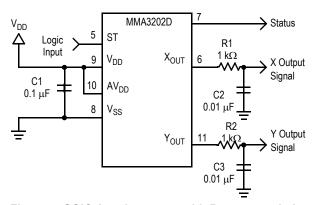


Figure 4. SOIC Accelerometer with Recommended Connection Diagram

PCB Layout

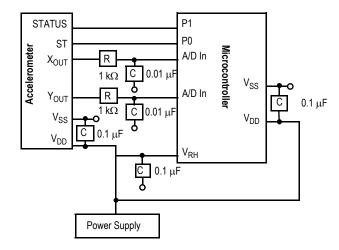
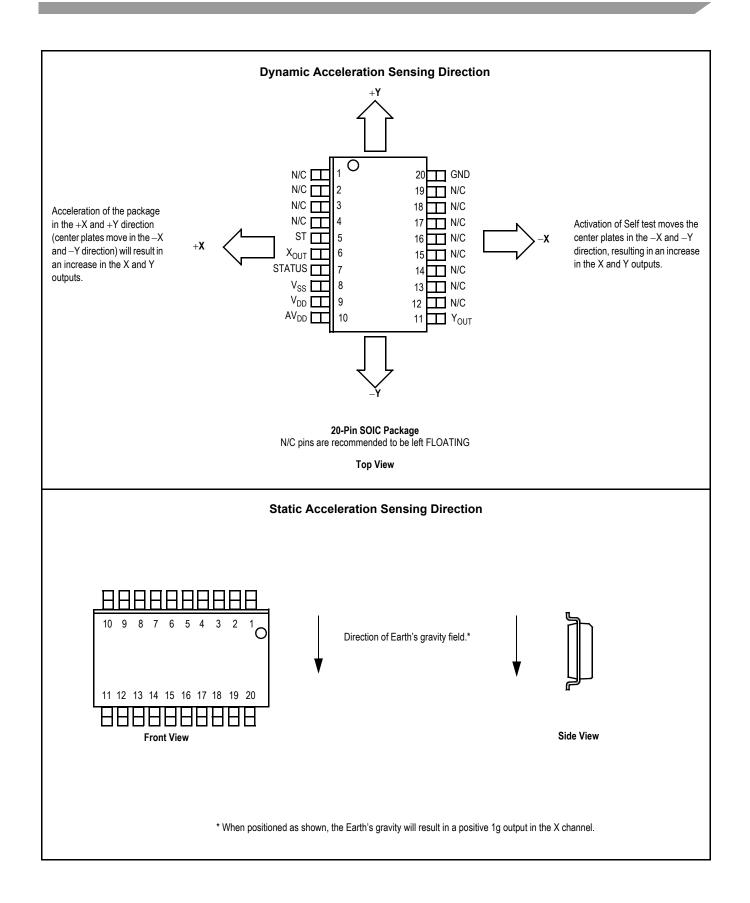



Figure 5. Recommended PCB Layout for Interfacing Accelerometer to Microcontroller

NOTE:

- Use a 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 5.
- Use an RC filter of 1 k Ω and 0.01 μ F on the output of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- PCB layout of power and ground should not couple power supply noise.
- Accelerometer and microcontroller should not be a high current path.
- A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency. This will prevent aliasing errors.

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

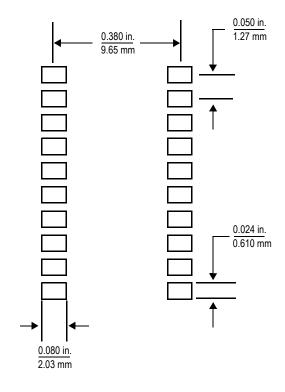


Figure 6. Footprint SOIC-20 (Case 475A-01)

MMA6231Q Rev 1, 05/2005

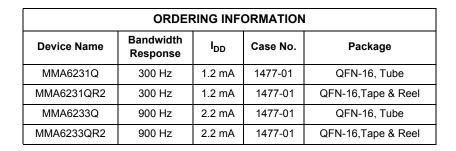
±10g Dual Axis Micromachined Accelerometer

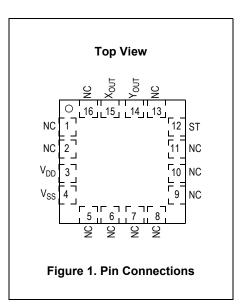
The MMA6200 series of low cost capacitive micromachined accelerometers feature signal conditioning, a 1-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

Features

- Low Noise
- Low Cost
- Low Power
- 2.7 V to 3.6 V Operation
- 6mm x 6mm x 1.98 mm QFN
- Integral Signal Conditioning with Low Pass Filter
- Linear Output
- Ratiometric Performance
- Self-Test
- · Robust Design, High Shocks Survivability

Typical Applications


- Pedometer
- · Appliance Control
- Impact Monitoring
- Vibration Monitoring and Recording
- Position & Motion Sensing
- · Freefall Detection
- · Smart Portable Electronics


INIINI	23 I Q
MMA6	233Q

MMAG2310

 $\begin{array}{c} \text{MMA6230Q Series: X-Y AXIS} \\ \text{SENSITIVITY MICROMACHINED} \\ \text{ACCELEROMETER} \\ \pm 10 \text{ g} \end{array}$

MMA6231Q

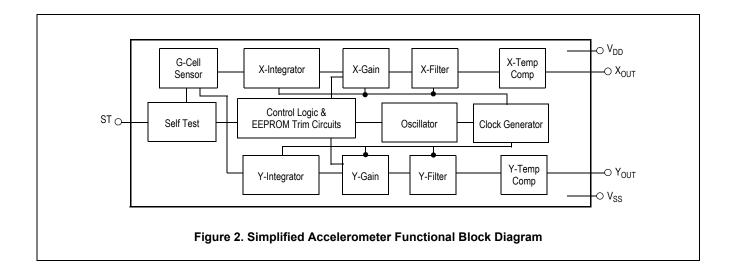


Table 1. Maximum Ratings (Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Maximum Acceleration (all axis)	9 _{max}	±2000	g
Supply Voltage	V_{DD}	-0.3 to +3.6	V
Drop Test ⁽¹⁾	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2 kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

Unless otherwise noted: $-20^{\circ}\text{C} \le T_A \le 85^{\circ}\text{C}$, $3.0 \text{ V} \le V_{DD} \le 3.6 \text{ V}$, Acceleration = 0g, Loaded output (1)

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾					
Supply Voltage ⁽³⁾	V_{DD}	2.7	3.3	3.6	V
Supply Current					
MMA6231Q	I _{DD}	_	1.2	1.5	mA
MMA6233Q	I _{DD}	_	2.2	3.0	mA
Operating Temperature Range	T _A	-20	_	+85	°C
Acceleration Range	9 _{FS}	_	10	_	g
Output Signal					
Zero g ($T_A = 25^{\circ}C$, $V_{DD} = 3.3 \text{ V}$) ⁽⁴⁾	V_{OFF}	1.485	1.65	1.815	V
Zero g	V_{OFF}, T_A	_	2.0	_	mg/°C
Sensitivity (T _A = 25°C, V _{DD} = 3.3 V)	S	111	120	129	mV/g
Sensitivity	S, T _A	_	0.015	_	%/°C
Bandwidth Response					
MMA6231Q	f _{3dB}	_	300	_	Hz
MMA6233Q	f _{3dB}	_	900	_	Hz
Nonlinearity	NL _{OUT}	-1.0	_	+1.0	% FSO
Noise					
MMA6231Q RMS (0.1 Hz – 1 kHz)	n _{RMS}	_	0.7	_	mVrms
MMA6233Q RMS (0.1 Hz – 1 kHz)	n _{RMS}	_	0.6	_	
Power Spectral Density RMS (0.1 Hz – 1 kHz)					
MMA6231Q	n _{PSD}	_	50	_	ug/√ Hz
MMA6233Q	n _{PSD}	_	30	_	
Self-Test					
Output Response	9 _{ST}	2.0	_	_	g
Input Low	V_{IL}	_	_	0.3 V _{DD}	V
Input High	V_{IH}	0.7 V _{DD}	_	V_{DD}	V
Pull-Down Resistance ⁽⁵⁾	R _{PO}	43	57	71	kΩ
Response Time ⁽⁶⁾	t _{ST}	_	2.0	_	ms
Output Stage Performance	-				
Full-Scale Output Range (I _{OUT} = 200 μA)	V_{FSO}	V _{SS} +0.25	_	V _{DD} -0.25	V
Capacitive Load Drive ⁽⁷⁾	C_L	_	_	100	pF
Output Impedance	Z _O	_	50	300	Ω
Power-Up Response Time					
MMA6231Q	t _{RESPONSE}	-	2.0	_	ms
MMA6233Q	t _{RESPONSE}	-	0.7	_	ms
Mechanical Characteristics					
1					

- 1. For a loaded output, the measurements are observed after an RC filter consisting of a 1.0 k Ω resistor and a 0.1 μ F capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 2.7 and 3.6 V, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- 4. The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above $V_{DD}/2$. For negative acceleration, the output will decrease below $V_{DD}/2$.
- 5. The digital input pin has an internal pull-down resistance to prevent inadvertent self-test initiation due to external board level leakages.
- 6. Time for the output to reach 90% of its final value after a self-test is initiated.
- 7. Preserves phase margin (60°) to guarantee output amplifier stability.
- 8. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA6231Q

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined *cap* wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of beams attached to a movable central mass that moves between fixed beams. The movable beams can be deflected from their rest position by subjecting the system to an acceleration (Figure 3).

As the beams attached to the central mass move, the distance from them to the fixed beams on one side will increase by the same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the plates changes and each capacitor's value will change, (C = $A\epsilon/D$). Where A is the area of the plate, ϵ is the dielectric constant, and D is the distance between the plates.

The ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

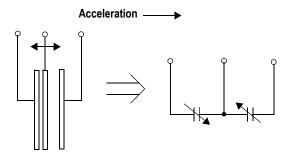


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

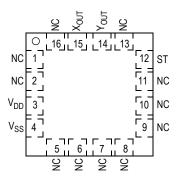
These Freescale accelerometers contain an onboard single-pole switched capacitor filter. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

Self-Test

The sensor provides a self-test feature allowing the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. A fourth plate is used in the g-cell as a self-test plate. When a logic high input to the self-test pin is applied, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = $^{1}/_{2}$ AV $^{2}/d^{2}$) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's ASIC and a proportional output voltage results. This procedure assures both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Freescale accelerometers include fault detection circuitry and a fault latch. Parity of the EEPROM bits becomes odd in number.

Self-test is disabled when EEPROM parity error occurs.


Ratiometricity

Ratiometricity simply means the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as supply voltage is increased, the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

BASIC CONNECTIONS

Pinout Description

Top View

Pin No.	Pin Name	Description
1, 5–7, 13, 16	N/C	No internal connection. Leave unconnected.
14	Y _{OUT}	Output voltage of the accelerometer. Y Direction.
15	X _{OUT}	Output voltage of the accelerometer. X Direction.
3	V_{DD}	Power supply input.
4	V _{SS}	The power supply ground.
2, 8–11	N/C	Used for factory trim. Leave unconnected.
12	ST	Logic input pin used to initiate self-test.

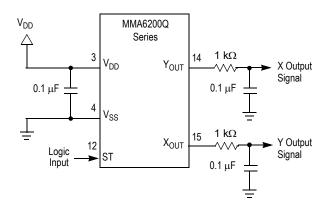


Figure 5. Accelerometer with Recommended Connection Diagram

PCB Layout

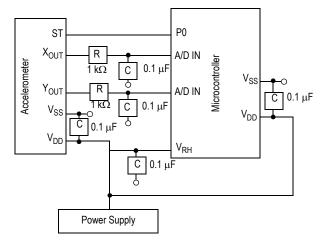
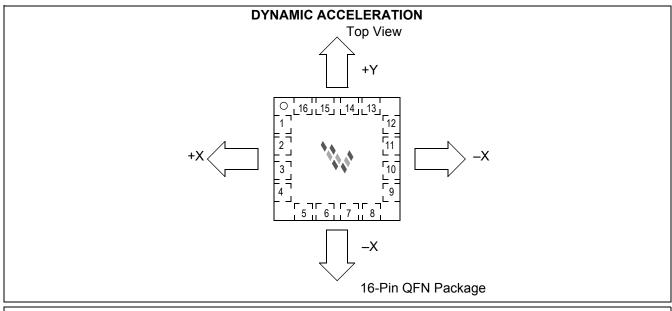
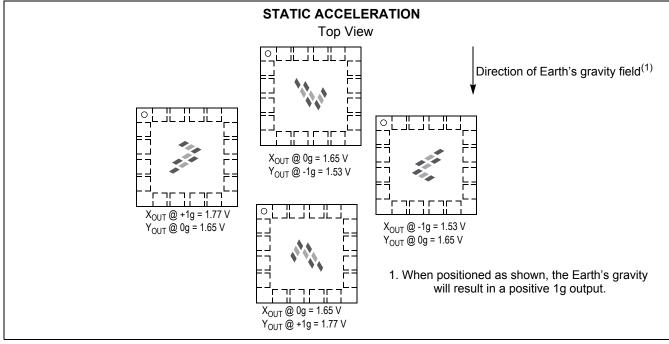
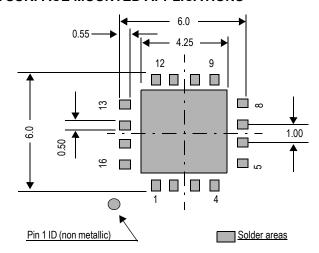




Figure 6. Recommend PCB Layout for Interfacing Accelerometer to Microcontroller

NOTES:

- 1. Use 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Flag underneath package is connected to ground.
- 4. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 5. Use an RC filter with 1.0 k Ω and 0.1 μ F on the outputs of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 6. PCB layout of power and ground should not couple power supply noise.
- 7. Accelerometer and microcontroller should not be a high current path.
- 8. A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency (16 kHz for Low I_{DD} and 52 kHz for Standard I_{DD} for the sampling frequency). This will prevent aliasing errors.



MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package.

With the correct footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

±1.5g Dual Axis Micromachined Accelerometer

The MMA6200 series of low cost capacitive micromachined accelerometers feature signal conditioning, a 1-pole low pass filter and temperature compensation. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. A full system self-test capability verifies system functionality.

Features

- · High Sensitivity
- · Low Noise
- Low Power
- 2.7 V to 3.6 V Operation
- 6mm x 6mm x 1.98 mm QFN
- · Integral Signal Conditioning with Low Pass Filter
- Linear Output
- Ratiometric Performance
- Self-Test
- Robust Design, High Shocks Survivability

Typical Applications

- Tilt Monitoring
- Position & Motion Sensing
- · Freefall Detection
- · Impact Monitoring
- · Appliance Control
- · Vibration Monitoring and Recording
- · Smart Portable Electronics

ORDERING INFORMATION					
Device Name	Bandwidth Response	I _{DD}	Case No.	Package	
MMA6260Q	50 Hz	1.2 mA	1477-01	QFN-16, Tube	
MMA6260QR2	50 Hz	1.2 mA	1477-01	QFN-16,Tape & Reel	
MMA6261Q	300 Hz	1.2 mA	1477-01	QFN-16, Tube	
MMA6261QR2	300 Hz	1.2 mA	1477-01	QFN-16,Tape & Reel	
MMA6262Q	150 Hz	2.2 mA	1477-01	QFN-16,Tube	
MMA6262QR2	150 Hz	2.2 mA	1477-01	QFN-16,Tape & Reel	
MMA6263Q	900 Hz	2.2 mA	1477-01	QFN-16, Tube	
MMA6263QR2	900 Hz	2.2 mA	1477-01	QFN-16,Tape & Reel	

MMA6260Q MMA6261Q MMA6262Q MMA6263Q

MMA6260Q Series: X-Y AXIS SENSITIVITY MICROMACHINED ACCELEROMETER $\pm 1.5~\mathrm{g}$

16-LEAD QFN CASE 1477-01

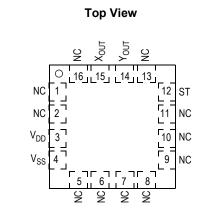


Figure 1. Pin Connections

MMA6260Q

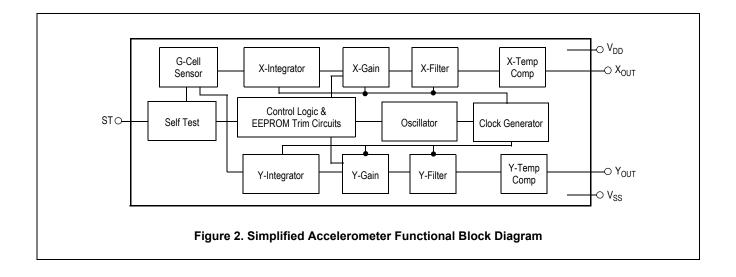


Table 1. Maximum Ratings
(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Maximum Acceleration (all axis)	9 _{max}	±2000	g
Supply Voltage	V _{DD}	-0.3 to +3.6	V
Drop Test ⁽¹⁾	D _{drop}	1.2	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometers contain internal 2 kV ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the

performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

Unless otherwise noted: $-20^{\circ}\text{C} \le T_A \le 85^{\circ}\text{C}$, 3.0 V \le V_{DD} \le 3.6 V, Acceleration = 0g, Loaded output ⁽¹⁾

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾					
Supply Voltage ⁽³⁾	V_{DD}	2.7	3.3	3.6	V
Supply Current					
MMA6260Q, MMA6261Q	I _{DD}	_	1.2	1.5	mA
MMA6262Q, MMA6263Q	I _{DD}	_	2.2	3.0	mA
Operating Temperature Range	T _A	-20	_	+85	°C
Acceleration Range	9 _{FS}	_	1.5	_	g
Output Signal	0				
Zero g ($T_A = 25$ °C, $V_{DD} = 3.3 \text{ V}$) ⁽⁴⁾	V _{OFF}	1.485	1.65	1.815	V
Zero g	V _{OFF} , T _A	_	2.0	_	mg/°C
Sensitivity (T _A = 25°C, V _{DD} = 3.3 V)	S	740	800	860	mV/g
Sensitivity	S, T _A	_	0.015	_	%/°C
Bandwidth Response					
MMA6260Q	f_3dB	_	50	_	Hz
MMA6261Q	f_3dB	_	300	_	Hz
MMA6262Q	f_3dB	_	150	_	Hz
MMA6263Q	f_3dB	_	900	_	Hz
Nonlinearity	NL _{OUT}	-1.0	_	+1.0	% FSO
Noise	001	_		_	
MMA6260Q RMS (0.1 Hz – 1 kHz)	n _{RMS}	_	1.8	_	mVrms
MMA6261Q RMS (0.1 Hz – 1 kHz)	n _{RMS}	_	3.5	_	
MMA6262Q RMS (0.1 Hz – 1 kHz)	n _{RMS}	_	1.3	_	
MMA6263Q RMS (0.1 Hz – 1 kHz)	n _{RMS}	_	2.5	_	
Power Spectral Density RMS (0.1 Hz – 1 kHz)	RIVIS				
MMA6260Q, MMA6261Q	n _{PSD}	_	300	_	ug/√Hz
MMA6262Q, MMA6263Q	n _{PSD}	_	200	_	3
Self-Test					
Output Response	V _{ST}	0.9 V _{DD}	_	V_{DD}	V
Input Low	V _{IL}	_	_	0.3 V _{DD}	V
Input High	V _{IH}	0.7 V _{DD}	_	V _{DD}	V
Pull-Down Resistance ⁽⁵⁾	R _{PO}	43	57	71	kΩ
Response Time ⁽⁶⁾	t _{ST}	_	2.0	_	ms
Output Stage Performance	- 31				
Full-Scale Output Range (I _{OUT} = 200 μA)	V_{FSO}	V _{SS} +0.25	_	V _{DD} -0.25	V
Capacitive Load Drive ⁽⁷⁾	C _L	_	_	100	pF
Output Impedance	Z _O	_	50	300	W
Power-Up Response Time	_0				
MMA6260Q	t _{RESPONSE}	_	14	_	ms
MMA6261Q	t _{RESPONSE}	_	2.0	_	ms
MMA6262Q	t _{RESPONSE}	_	4.0	_	ms
MMA6263Q	t _{RESPONSE}	_	0.7	_	ms
Mechanical Characteristics	KESPUNSE		.		0
Transverse Sensitivity ⁽⁸⁾	V _{ZX} , _{YX} , _{ZY}	-5.0	_	+5.0	% FSO
a	*	0.0		10.0	,,,,,

- 1. For a loaded output, the measurements are observed after an RC filter consisting of a 1.0 k Ω resistor and a 0.1 μ F capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 2.7 and 3.6 V, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above V_{DD}/2. For negative acceleration, the output will decrease below V_{DD}/2.
- 5. The digital input pin has an internal pull-down resistance to prevent inadvertent self-test initiation due to external board level leakages.
- 6. Time for the output to reach 90% of its final value after a self-test is initiated.
- 7. Preserves phase margin (60°) to guarantee output amplifier stability.
- 8. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

MMA6260Q

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of a surface micromachined capacitive sensing cell (g-cell) and a signal conditioning ASIC contained in a single integrated circuit package. The sensing element is sealed hermetically at the wafer level using a bulk micromachined *cap* wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of beams attached to a movable central mass that moves between fixed beams. The movable beams can be deflected from their rest position by subjecting the system to an acceleration (Figure 3).

As the beams attached to the central mass move, the distance from them to the fixed beams on one side will increase by the same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of acceleration.

The g-cell plates form two back-to-back capacitors (Figure 4). As the center plate moves with acceleration, the distance between the plates changes and each capacitor's value will change, (C = $A\epsilon/D$). Where A is the area of the plate, ϵ is the dielectric constant, and D is the distance between the plates.

The ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

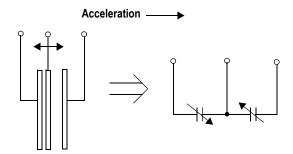


Figure 3. Transducer Physical Model

Figure 4. Equivalent Circuit Model

SPECIAL FEATURES

Filtering

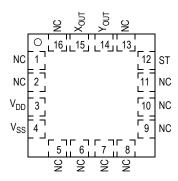
These Freescale accelerometers contain an onboard single-pole switched capacitor filter. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

Self-Test

The sensor provides a self-test feature allowing the verification of the mechanical and electrical integrity of the accelerometer at any time before or after installation. A fourth plate is used in the g-cell as a self-test plate. When a logic high input to the self-test pin is applied, a calibrated potential is applied across the self-test plate and the moveable plate. The resulting electrostatic force (Fe = $^{1}/_{2}$ AV $^{2}/d^{2}$) causes the center plate to deflect. The resultant deflection is measured by the accelerometer's ASIC and a proportional output voltage results. This procedure assures both the mechanical (g-cell) and electronic sections of the accelerometer are functioning.

Freescale accelerometers include fault detection circuitry and a fault latch. Parity of the EEPROM bits becomes odd in number.

Self-test is disabled when EEPROM parity error occurs.


Ratiometricity

Ratiometricity simply means the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as supply voltage is increased, the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

BASIC CONNECTIONS

Pinout Description

Top View

Pin No.	Pin Name	Description
1, 5 – 7, 13, 16	N/C	No internal connection. Leave unconnected.
14	Y _{OUT}	Output voltage of the accelerometer. Y Direction.
15	X _{OUT}	Output voltage of the accelerometer. X Direction.
3	V_{DD}	Power supply input.
4	V _{SS}	The power supply ground.
2, 8 – 11	N/C	Used for factory trim. Leave unconnected.
12	ST	Logic input pin used to initiate self-test.

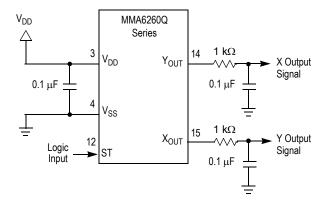


Figure 5. Accelerometer with Recommended Connection Diagram

PCB Layout

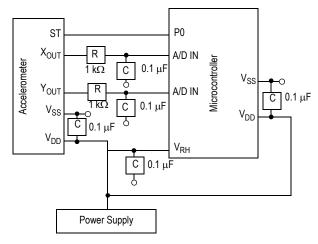
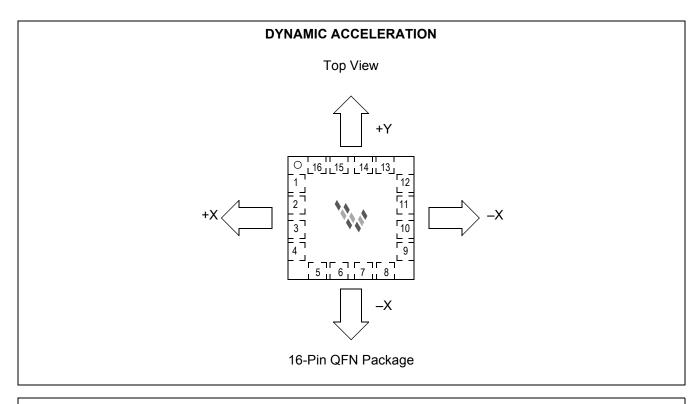
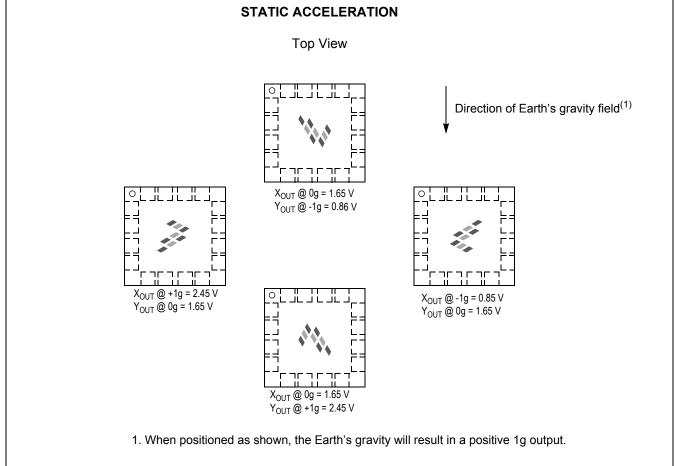
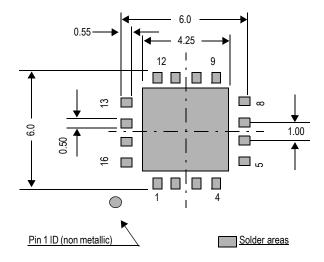




Figure 6. Recommend PCB Layout for Interfacing Accelerometer to Microcontroller

NOTES:

- 1. Use 0.1 μF capacitor on V_{DD} to decouple the power source.
- Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Flag underneath package is connected to ground.
- 4. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 5. Use an RC filter with 1.0 k Ω and 0.1 μ F on the outputs of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 6. PCB layout of power and ground should not couple power supply noise.
- 7. Accelerometer and microcontroller should not be a high current path.
- 8. A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency (16 kHz for Low I_{DD} and 52 kHz for Standard I_{DD} for the sampling frequency). This will prevent aliasing errors.



MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package.

With the correct footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

±1.5g - 6g Three Axis Low-g Micromachined Accelerometer

The MMA7260Q low cost capacitive micromachined accelerometer features signal conditioning, a 1-pole low pass filter, temperature compensation and g-Select which allows for the selection among 4 sensitivities. Zero-g offset full scale span and filter cut-off are factory set and require no external devices. Includes a Sleep Mode that makes it ideal for handheld battery powered electronics.

Features

- Selectable Sensitivity (1.5g/2g/4g/6g)
- Low Current Consumption: 500 μA
- Sleep Mode: 3 μA
- Low Voltage Operation: 2.2 V 3.6 V
- 6mm x 6mm x 1.45mm QFN
- High Sensitivity (800 mV/g @1.5 g)
- · Fast Turn On Time
- High Sensitivity (1.5 g)
- · Integral Signal Conditioning with Low Pass Filter
- · Robust Design, High Shocks Survivability
- · Pb-Free Terminations
- · Environmentally Preferred Package
- · Low Cost

Typical Applications

- HDD MP3 Player : Freefall Detection
 Laptop PC : Freefall Detection, Anti-Theft
- Cell Phone: Image Stability, Text Scroll, Motion Dialing, E-Compass
- Pedometer: Motion Sensing
- PDA: Text Scroll
- Navigation and Dead Reckoning: E-Compass Tilt Compensation
- · Gaming: Tilt and Motion Sensing, Event Recorder
- · Robotics : Motion Sensing

ORDERING INFORMATION				
Device Name	e Name Temperture Range		Package	
MMA7260Q	– 20 to +85°C	1622-01	QFN-16, Tube	
MMA7260QR2	MMA7260QR2 – 20 to +85°C		QFN-16,Tape & Reel	

MMA7260Q

MMA7260Q: XYZ AXIS ACCELEROMETER ±1.5g/2g/4g/6g

Bottom View

16 LEAD QFN CASE 1622-01

Top View

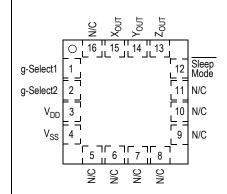


Figure 1. Pin Connections

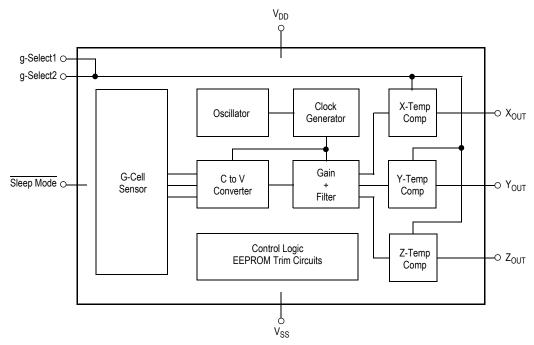


Figure 2. Simplified Accelerometer Functional Block Diagram

Table 1. Maximum Ratings

(Maximum ratings are the limits to which the device can be exposed without causing permanent damage.)

Rating	Symbol	Value	Unit
Maximum Acceleration (all axis)	9 _{max}	±2000	g
Supply Voltage	V_{DD}	-0.3 to +3.6	V
Drop Test ⁽¹⁾	D _{drop}	1.8	m
Storage Temperature Range	T _{stg}	-40 to +125	°C

^{1.} Dropped onto concrete surface from any axis.

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Although the Freescale accelerometer contains internal 2000 V ESD protection circuitry, extra precaution must be taken by the user to protect the chip from ESD. A charge of over 2000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can

alter the performance or cause failure of the chip. When handling the accelerometer, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

Table 2. Operating Characteristics

Unless otherwise noted: $-20^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$, 2.2 V \le V_{DD} \le 3.6 V, Acceleration = 0g, Loaded output⁽¹⁾

Characteristic	Symbol	Min	Тур	Max	Unit
Operating Range ⁽²⁾					
Supply Voltage ⁽³⁾	V_{DD}	2.2	3.3	3.6	V
Supply Current	I _{DD}	_	500	800	μА
Supply Current at Sleep Mode ⁽⁴⁾	I _{DD}	_	3	10	μА
Operating Temperature Range	T _A	-20	_	+85	°C
Acceleration Range, X-Axis, Y-Axis, Z-Axis					
g-Select1 & 2: 00	9 _{FS}	_	±1.5	_	g
g-Select1 & 2: 10	9 _{FS}	_	±2.0	_	g
g-Select1 & 2: 01	9 _{FS}	_	±4.0	_	g
g-Select1 & 2: 11	9 _{FS}	_	±6.0	_	g
Output Signal					
Zero g ($T_A = 25^{\circ}C$, $V_{DD} = 3.3 V$) ⁽⁵⁾	V_{OFF}	1.485	1.65	1.815	V
Zero g	V_{OFF} , T_A	_	±2	_	mg/°C
Sensitivity (T _A = 25°C, V _{DD} = 3.3 V)					
1.5g	S _{1.5g}	740	800	860	mV/g
2g	S _{2g}	555	600	645	mV/g
4g	S _{4g}	277.5	300	322.5	mV/g
6g	S _{6g}	185	200	215	mV/g
Sensitivity	S,T _A	_	±3	_	%/°C
Bandwidth Response					
XY	f _{-3dB}	_	350	_	Hz
Z	f _{-3dB}	_	150	_	Hz
Noise					
RMS (0.1 Hz – 1 kHz) ⁽⁴⁾	n _{RMS}	_	4.7	_	mVrms
Power Spectral Density RMS (0.1 Hz – 1 kHz) ⁽⁴⁾	n _{PSD}	_	350	_	μg/√Hz
Control Timing					
Power-Up Response Time ⁽⁶⁾	t _{RESPONSE}	_	1.0	2.0	ms
Enable Response Time ⁽⁷⁾	t _{ENABLE}	_	0.5	2.0	ms
Sensing Element Resonant Frequency					
XY	f _{GCELL}	_	6.0	_	kHz
Z	f _{GCELL}	_	3.4	_	kHz
Internal Sampling Frequency	f _{CLK}	_	11	_	kHz
Output Stage Performance					
Full-Scale Output Range (I _{OUT} = 30 μA)	V_{FSO}	V _{SS} +0.25	_	V _{DD} -0.25	V
Nonlinearity, X _{OUT} , Y _{OUT} , Z _{OUT}	NL _{OUT}	-1.0	_	+1.0	%FSO
Cross-Axis Sensitivity ⁽⁸⁾	V _{XY, XZ, YZ}	_	_	5.0	%

- 1. For a loaded output, the measurements are observed after an RC filter consisting of a 1.0 kΩ resistor and a 0.1 μF capacitor to ground.
- 2. These limits define the range of operation for which the part will meet specification.
- 3. Within the supply range of 2.2 and 3.6 V, the device operates as a fully calibrated linear accelerometer. Beyond these supply limits the device may operate as a linear device but is not guaranteed to be in calibration.
- 4. This value is measured with g-Select in 1.5g mode.
- 5. The device can measure both + and acceleration. With no input acceleration the output is at midsupply. For positive acceleration the output will increase above $V_{DD}/2$. For negative acceleration, the output will decrease below $V_{DD}/2$.
- 6. The response time between 10% of full scale Vdd input voltage and 90% of the final operating output voltage.
- 7. The response time between 10% of full scale Sleep Mode input voltage and 90% of the final operating output voltage.
- 8. A measure of the device's ability to reject an acceleration applied 90° from the true axis of sensitivity.

PRINCIPLE OF OPERATION

The Freescale accelerometer is a surface-micromachined integrated-circuit accelerometer.

The device consists of two surface micromachined capacitive sensing cells (g-cell) and a signal conditioning ASIC contained in a single integrated circuit package. The sensing elements are sealed hermetically at the wafer level using a bulk micromachined cap wafer.

The g-cell is a mechanical structure formed from semiconductor materials (polysilicon) using semiconductor processes (masking and etching). It can be modeled as a set of beams attached to a movable central mass that move between fixed beams. The movable beams can be deflected from their rest position by subjecting the system to an acceleration (Figure 3) .

As the beams attached to the central mass move, the distance from them to the fixed beams on one side will increase by the same amount that the distance to the fixed beams on the other side decreases. The change in distance is a measure of acceleration.

The g-cell beams form two back-to-back capacitors (Figure 3). As the center beam moves with acceleration, the distance between the beams changes and each capacitor's value will change, (C = $A\epsilon/D$). Where A is the area of the beam, ϵ is the dielectric constant, and D is the distance between the beams.

The ASIC uses switched capacitor techniques to measure the g-cell capacitors and extract the acceleration data from the difference between the two capacitors. The ASIC also signal conditions and filters (switched capacitor) the signal, providing a high level output voltage that is ratiometric and proportional to acceleration.

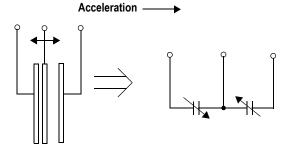


Figure 3. Simplified Transducer Physical Model

SPECIAL FEATURES

g-Select

The g-Select feature allows for the selection among 4 sensitivities present in the device. Depending on the logic input placed on pins 1 and 2, the device internal gain will be changed allowing it to function with a 1.5g, 2g, 4g, or 6g sensitivity (Table 3). This feature is ideal when a product has applications requiring different sensitivities for optimum performance. The sensitivity can be changed at anytime during the operation of the product. The g-Select1 and g-Select2 pins can be left unconnected for applications requiring only a 1.5g sensitivity as the device has an internal pulldown to keep it at that sensitivity (800mV/g).

Table 3. g-Select pin Descriptions

g-Select2	g-Select1	g-Range	Sensitivity
0	0	1.5g	800mV/g
0	1	2g	600mV/g
1	0	4g	300mV/g
1	1	6g	200mV/g

Sleep Mode

The 3 axis accelerometer provides a Sleep Mode that is ideal for battery operated products. When Sleep Mode is active, the device outputs are turned off, providing significant reduction of operating current. A low input signal on pin 12 (Sleep Mode) will place the device in this mode and reduce the current to 3uA typ. For lower power consumption, it is recommended to set g-Select1 and g-Select2 to 1.5g mode. By placing a high input signal on pin 12, the device will resume to normal mode of operation.

Filtering

The 3 axis accelerometer contains onboard single-pole switched capacitor filters. Because the filter is realized using switched capacitor techniques, there is no requirement for external passive components (resistors and capacitors) to set the cut-off frequency.

Ratiometricity

Ratiometricity simply means the output offset voltage and sensitivity will scale linearly with applied supply voltage. That is, as supply voltage is increased, the sensitivity and offset increase linearly; as supply voltage decreases, offset and sensitivity decrease linearly. This is a key feature when interfacing to a microcontroller or an A/D converter because it provides system level cancellation of supply induced errors in the analog to digital conversion process.

BASIC CONNECTIONS

Pin Descriptions

g-Select1 1 12 Sleep Mode g-Select2 2 11 NC V_{DD} 3 7 7 8 9 NC

Figure 4. Pinout Description

Table 4. Pin Descriptions

Pin No.	Pin Name	Description
1	g-Select1	Logic input pin to select g level.
2	g-Select2	Logic input pin to select g level.
3	V_{DD}	Power Supply Input
4	V _{SS}	Power Supply Ground
5 - 7	N/C	No internal connection. Leave unconnected.
8 - 11	N/C	Unused for factory trim. Leave unconnected.
12	Sleep Mode	Logic input pin to enable product or Sleep Mode.
13	Z _{OUT}	Z direction output voltage.
14	Y _{OUT}	Y direction output voltage.
15	X _{OUT}	X direction output voltage.
16	N/C	No internal connection. Leave unconnected.

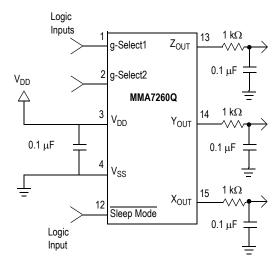


Figure 5. Accelerometer with Recommended Connection Diagram

PCB Layout

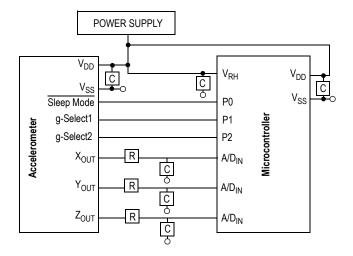
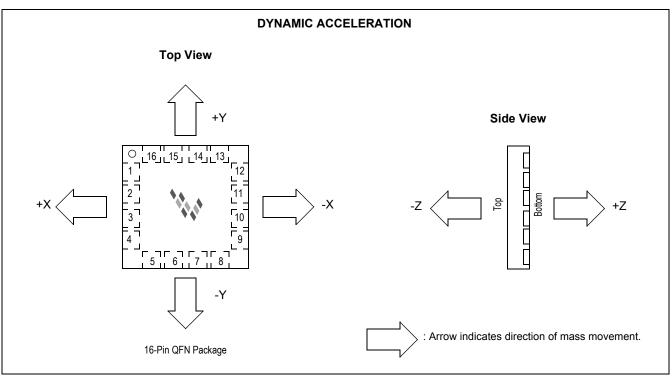
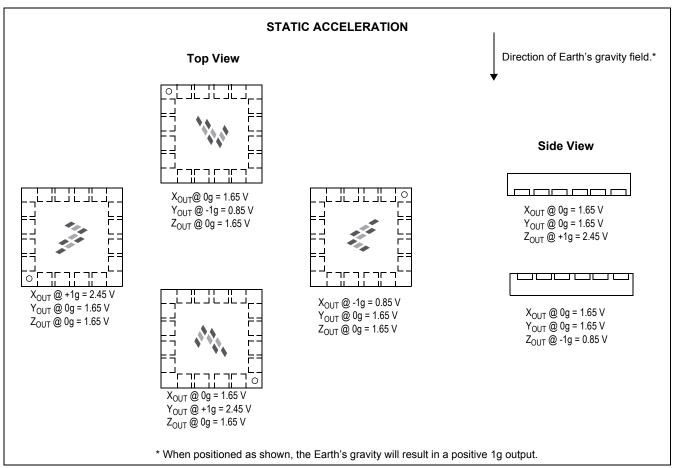
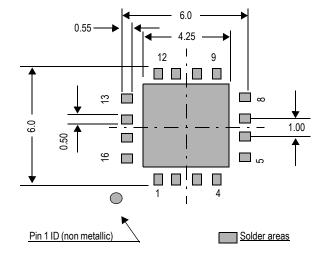




Figure 6Recommended PCB Layout for Interfacing Accelerometer to Microcontroller

NOTES

- 1. Use 0.1 μF capacitor on V_{DD} to decouple the power source.
- 2. Physical coupling distance of the accelerometer to the microcontroller should be minimal.
- 3. Flag underneath package is connected to ground.
- 4. Place a ground plane beneath the accelerometer to reduce noise, the ground plane should be attached to all of the open ended terminals shown in Figure 6.
- 5. Use an RC filter with 1.0 $k\Omega$ and 0.1 μ F on the outputs of the accelerometer to minimize clock noise (from the switched capacitor filter circuit).
- 6. PCB layout of power and ground should not couple power supply noise.
- 7. Accelerometer and microcontroller should not be a high current path.
- 8. A/D sampling rate and any external power supply switching frequency should be selected such that they do not interfere with the internal accelerometer sampling frequency (11 kHz for the sampling frequency). This will prevent aliasing errors.



MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package.

With the correct footprint, the packages will self-align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

Application Considerations for a Switched Capacitor Accelerometer

by: Wayne Chavez

INTRODUCTION

Today's low cost accelerometers are highly integrated devices employing features such as signal conditioning, filtering, offset compensation and self test. Combining this feature set with economical plastic packaging requires that the signal conditioning circuitry be as small as possible. One approach is to implement sampled data system and switched capacitor techniques as in the Freescale accelerometer.

As in all sampled data systems, precautions should be taken to avoid signal aliasing errors. This application note describes the accelerometer and how signal aliasing can be introduced and more importantly minimized.

BACKGROUND

What is aliasing? Simply put, aliasing is the effect of sampling a signal at an insufficient rate, thus creating another

signal at a frequency that is the difference between the original signal frequency and the sampling rate. A graphical explanation of aliasing is offered in Figure 1. In this figure, the upper trace shows a 50 kHz sinusoidal waveform. Note that when sampled at a 45 kHz rate, denoted by the boxes, a sinusoidal pattern is formed. Lowpass filtering the sampled points, to create a continuous signal, produces the 5 kHz waveform shown in Figure 1 (lower). (The phase shift in the lower figure is due to the low-pass filter).

Aliased signals, like the one in Figure 1 (lower) are often unintentionally produced. Signal processing techniques are well understood and sampling rates are chosen appropriately (i.e. Nyquist criteria). However, the assumption is that the signals of interest are well characterized and have a limited bandwidth. This assumption is not always true, as in the case of wideband noise.

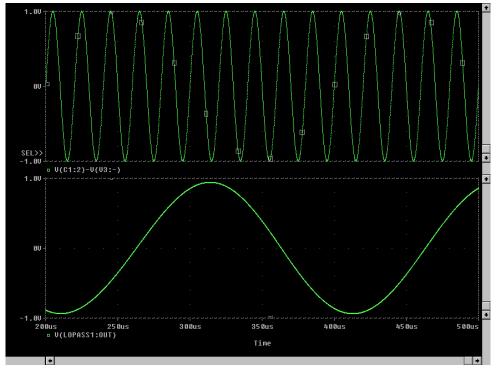


Figure 1. Aliased Signals

Given the brief example on how aliasing can occur, how does the accelerometer relate to aliasing? To answer this question, a brief summary on how the accelerometer works is in order.

The accelerometer is a two chip acceleration sensing solution. The first chip is the acceleration transducer, termed G-Cell, constructed by Micro Electro-Mechanical Systems (MEMS) technology. The G-Cell is a two capacitor element where the capacitors are in series and share a common center plate. The deflection in the center plate changes the capacitance of each capacitor which is measured by the second chip, termed control chip.

The control chip performs the signal conditioning (amplification, filtering, offset level shift) function in the system. This chip measures the G-Cell output using switched capacitor techniques. By the nature of switched cap techniques, the system is a sampled data system operating at sampling frequency f_s . The filter is switched capacitor, 4-pole Bessel implementation with a -3 dB frequency of 400 Hz.

As a sampled data system, the accelerometer is not immune to signal aliasing. However, given the accelerometer's internal filter, aliased signals will only appear in the output passband when input signals are in the range $\mid n \bullet f_s - f_{signal} \mid \leq f_{BW}.$ Where f_s is the sampling rate, f_{Signal} is the input signal frequency, f_{BW} is the filter bandwidth and n is a positive integer to account for all harmonics. The graphical representation is shown in Figure 2. The bounds can be extended beyond f_{BW} to ensure an alias free output.

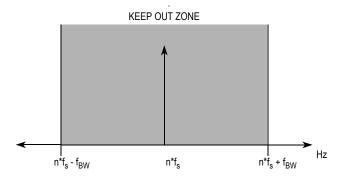
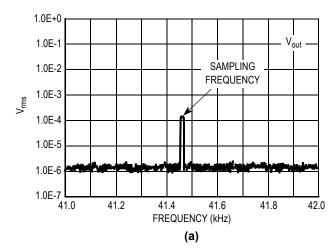
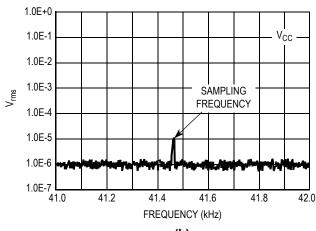


Figure 2. Input Signal Frequency Range Where a Signal Will Be Produced in the Output Passband

ACCELEROMETER INPUT SIGNALS


The accelerometer is a ratiometric electro-mechanical transducer. Therefore, the input signals to the device are the acceleration and the input power source.


The acceleration input is limited in frequency bandwidth by the geometry of the sensing, packaging, and mounting structures that define the resonant frequency and response. This response is in the range of 10 kHz, however, the practical range is less than 600 Hz for most mechanical systems. Therefore, aliasing an acceleration signal is unlikely.

The power input signal is ideally dc. However, depending on the application system architecture, the power supply line can be riddled with high frequency components. For example, dc to dc converters can operate with switching frequencies between 20 kHz and 200 kHz. This range encompasses the sampling rate of the accelerometer and point to the power source as the culprit in producing aliased signal.

DEMONSTRATION OF ALIASING

Under zero acceleration conditions a 100 mV $_{rms}$ signal was injected onto the power supply line of 5.0 Vdc. The frequency of the injected signal was tuned in to produce an alias in the accelerometer's passband. Figure 3 and Figure 4 show the difference in output when a high frequency signal is not and is present on the V_{CC} pin of the accelerometer.

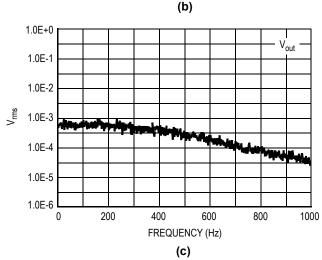
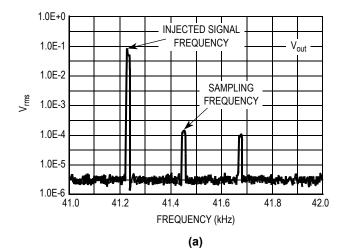
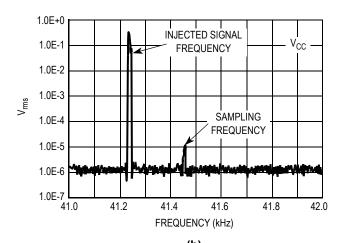




Figure 3. Normal Waveforms

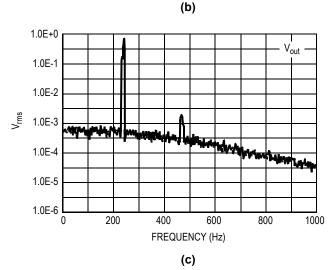


Figure 4. Aliasing Comparison

Points to Note:

- Under clean dc bias, V_{out} and V_{CC}, Figure 3a and Figure 3b have a signal component at the sampling rate. This is due to switched capacitor currents coupling through finite power supply source impedances and PCB paracitics.
- The low frequency output spectrum, Figure 3c, displays the internal lowpass filter characteristics. (The filter and sampling characteristics are sometimes useful in system debugging.)
- When an ac component is superimposed onto V_{CC} near the sampling frequency, as shown in Figure 4b, the output will contain the original signal plus a mirrored signal about the sampling frequency, shown in Figure 4a. Signals on the V_{CC} line will appear at the output due to the ratiometric characteristic of the accelerometer and will be one half the amplitude.
- As a result of sampling, the output waveform of Figure 4c is produced where the injected high frequency signal has now produced a signal in the passband.
- Harmonics of the aliased signal in the pass band are also shown in Figure 4c.
- Aliased signals in the passband will be amplified versions of the injected signals. This is due to the signal conditioning circuitry in the accelerometer that includes gain.

ALIASING AVOIDANCE KEYS

- Use a linear regulated power source when feasible. Linear regulators have excellent power supply rejection offering a stable dc source.
- If using a switching power supply, ensure that the switching frequency is not close to the accelerometer sampling frequency or its harmonics. Noting that the accelerometer will gain the aliasing signal, it is desirable to keep frequencies at least 4 kHz away from the sampling frequency and its harmonics. 4 kHz is one decade from the -3 dB frequency, therefore any signals will be sufficiently attenuated by the internal 4-pole lowpass filter.
- Proper bias decoupling will aid in noise reduction from other sources. With dense surface mount PCB assemblies, it is often difficult to place and route decoupling components. However, the accelerometer is not like a typical logic device. A little extra effort on decoupling goes a long way.
- Good PCB layout practices should always be followed. Proper system grounding is essential. Parasitic capacitance and inductance could prove to be troublesome, particularly during EMC testing. Signal harmonics and sub-harmonics play a significant role in introducing aliased signals. Clean layouts minimize the effects of parasitics and thus signal harmonics and subharmonics.

Freescale Semiconductor

Impact Measurement Using Accelerometers

by: C.S. Chua Sensor Application Engineering, Singapore, A/P

INTRODUCTION

This application note describes the concept of measuring impact of an object using an accelerometer, microcontroller hardware/software and a liquid crystal display. Due to the wide frequency response of the accelerometer from d.c. to 400 Hz,

the device is able to measure both the static acceleration from the Earth's gravity and the shock or vibration from an impact. This design uses a 40g accelerometer and yields a minimum acceleration range of -40g to +40g.

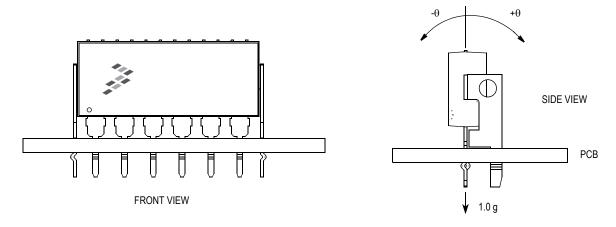


Figure 1. Orientation of Accelerometer

CONCEPT OF IMPACT MEASUREMENT

During an impact, the accelerometer will be oriented as shown in Figure 1 to measure the deceleration experienced by the object from dc to 400 Hz. Normally, the peak impact pulse is in the order of a few milliseconds. Figure 2 shows a typical crash waveform of a toy car having a stiff bumper.

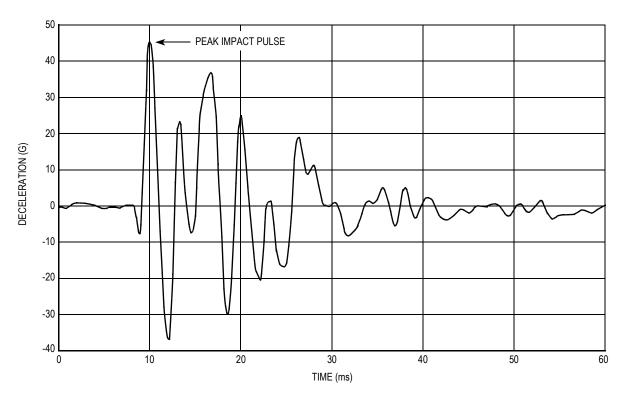


Figure 2. Typical Crash Pattern

HARDWARE DESCRIPTION AND OPERATION

Since the accelerometer is fully signal-conditioned by its internal op-amp and temperature compensation, the output of the accelerometer can be directly interfaced with an analog-to-digital (A/D) converter for digitization. A filter consists of one RC network and should be added if the connection between the output of the accelerometer and the A/D converter is a long track or cable. This stray capacitance may change the position of the internal pole which would drive the output amplifier of the accelerometer into oscillation or unstability. In this design, the cut-off frequency is chosen to be 15.9 kHz which also acts as an anti-alias filter for the A/D converter. The 3 dB frequency can be approximated by the following equation.

$$f_{-3db} = \frac{1}{2\pi RC}$$

Referring to the schematic, Figure 3, the accelerometer is connected to PORT D bit 5 and the output of the amplifier is connected to PORT D bit 6 of the microcontroller. This port is an input to the on-chip 8-bit analog-to-digital (A/D) converter. Typically, the accelerometer provides a signal output to the microprocessor of approximately 0.3 Vdc at -55g to 4.7 Vdc at +55g of acceleration. However, Freescale only guarantees the accuracy within $\pm 40g$ range. Using the same reference voltage for the A/D converter and accelerometer minimizes the number of additional components, but does sacrifice resolution. The resolution is defined by the following:

count =
$$\frac{V_{out}}{5} \times 255$$

The count at $0g = [2.5/5] \times 255 \propto 128$ The count at $+25g = [3.5/5] \times 255 \propto 179$ The count at $-25g = [1.5/5] \times 255 \propto 77$

Therefore the resolution 0.5g/count

The output of the accelerometer is ratiometric to the voltage applied to it. The accelerometer and the reference voltages are connected to a common supply; this yields a system that is ratiometric. By nature of this ratiometric system, variations in the voltage of the power supplied to the system will have no effect on the system accuracy.

The liquid crystal display (LCD) is directly driven from I/O ports A, B, and C on the microcontroller. The operation of a LCD requires that the data and backplane (BP) pins must be driven by an alternating signal. This function is provided by a software routine that toggles the data and backplane at approximately a 30 Hz rate. Other than the LCD, one light emitting diode (LED) are connected to the pulse length converter (PLM) of the microcontroller. This LED will light up for 3 seconds when an impact greater or equal to 7g is detected.

The microcontroller section of the system requires certain support hardware to allow it to function. The MC34064P-5 provides an undervoltage sense function which is used to reset the microprocessor at system power-up. The 4 MHz crystal provides the external portion of the oscillator function for clocking the microcontroller and provides a stable base for time bases functions, for instance calculation of pulse rate.

AN1611

SOFTWARE DESCRIPTION

Upon power-up of the system, the LCD will display CAL for approximately four seconds. During this period, the output of the accelerometer are sampled and averaged to obtain the zero offset voltage or zero acceleration. This value will be saved in the RAM which is used by the equation below to calculate the impact in term of g-force. One point to note is that the accelerometer should remain stationary during the zero calibration.

Impact = $[count - count_{offset}] \times resolution$

In this software program, the output of the accelerometer is calculated every 650 μ s. During an impact, the peak

deceleration is measured and displayed on the LCD for three seconds before resetting it to zero. In the mean time, if a higher impact is detected, the value on the LCD will be updated accordingly.

However, when a low g is detected (e.g. 1.0g), the value will not be displayed. Instead, more samples will be taken for further averaging to eliminate the random noise and high frequency component. Due to the fact that tilting is a low g and low frequency signal, large number of sampling is preferred to avoid unstable display. Moreover, the display value will not hold for three seconds as in the case of an impact.

Figure 4 is a flowchart for the program that controls the system.

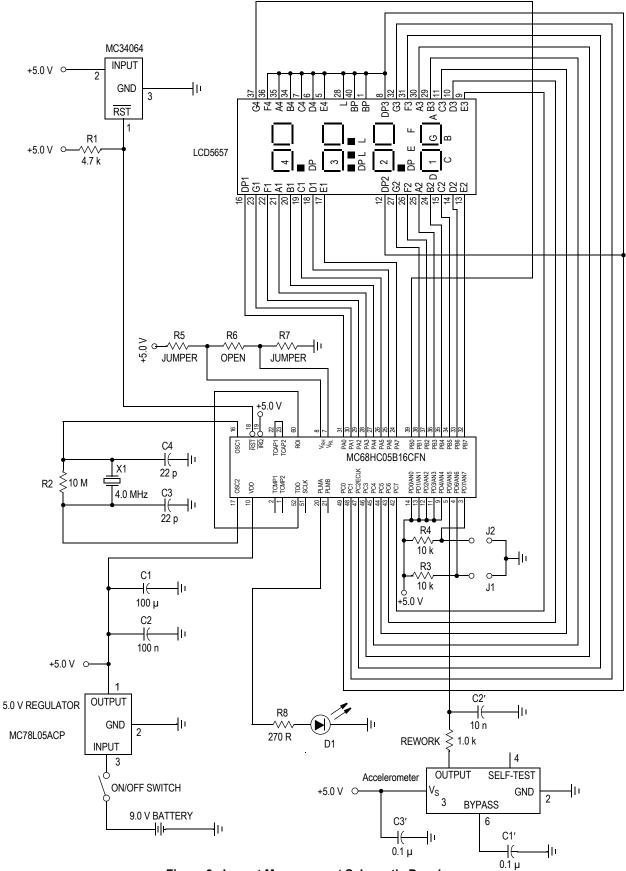


Figure 3. Impact Measurement Schematic Drawing

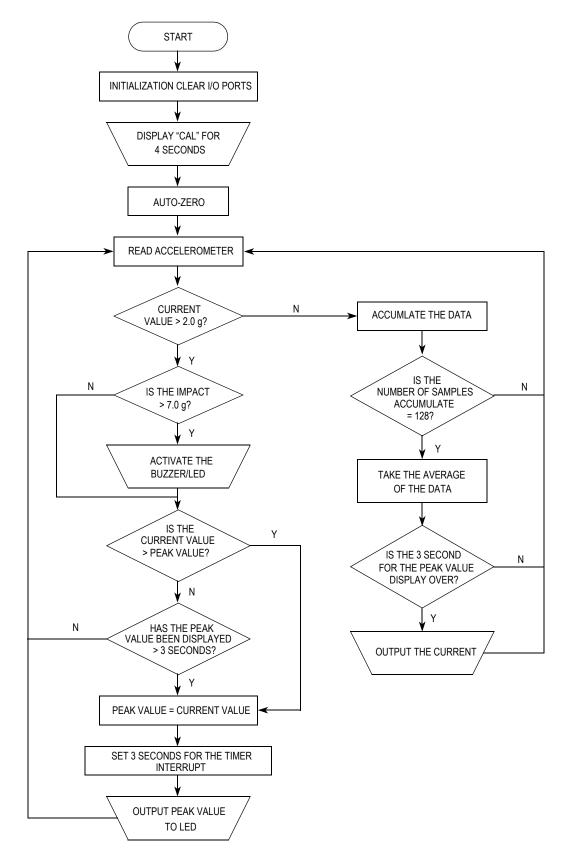


Figure 4. Main Program Flowchart

SOFTWARE SOURCE/ASSEMBLY PROGRAM CODE

```
**************************
                                                                            Accelerometer Demo Car Version 2.0
             The following code is written for MC68HC705B16 using MMDS05 software
             Version 1.01
             CASM05 - Command line assembler Version 3.04
             P & E Microcomputer Systems, Inc.
                                                                                          Written by : C.S. Chua
                                                                                                         29 August 1996
                                                    Copyright Freescale Electronics Pte Ltd 1996
                                                                                             All rights Reserved
             This software is the property of Freescale Electronics Pte Ltd.
             Any usage or redistribution of this software without the express
             written consent of Freescale is strictly prohibited.
             Freescale reserves the right to make changes without notice to any
             products herein to improve reliability, function, or design. Freescale
             does not assume liability arising out of the application or use of any
             product or circuit described herein, neither does it convey license
              under its patents rights nor the rights of others. Freescale products are
             not designed, intended or authorised for use as component in systems
             intended to support or sustain life or for any other application in
             which the failure of the Freescale product could create a situation
             a situation where personal injury or death may occur. Should the buyer
             shall indemnify and hold Freescale products for any such unintended or
             unauthorised application, buyer shall indemnify and hold Freescale and
             its officers, employees, subsidiaries, affiliates, and distributors % \left( 1\right) =\left( 1\right) \left( 1\right)
             harmless against all claims, costs, damages, expenses and reasonable % \frac{1}{2}\left( \frac{1}{2}\right) =\frac{1}{2}\left( \frac{1}{2}\right) +\frac{1}{2}\left( \frac{1}{2}\right) 
             attorney fees arising out of, directly or indirectly, any claim of
             personal injury or death associated with such unintended or unauthorised *
             use, even if such claim alleges that Freescale was negligent regarding
              the design or manufacture of the part.
             Freescale and the Freescale logo are registered trademarks of Freescale Inc.*
             Freescale Inc. is an equal opportunity/affirmative action employer.
 ******************************
******************************
                                                                                                Software Description
             This software is used to read the output of the accelerometer MMA2200W
             and display it to a LCD as gravity force. It ranges from -55g to +55g
             with 0g as zero acceleration or constant velocity. The resolution is
             The program will read from the accelerometer and hold the maximum
             deceleration value for about 3.0 seconds before resetting. At the same
              time, the buzzer/LED is activated if the impact is more than 7.0 \mathrm{g}.
             However, if the maximum deceleration changes before 3.0 seconds, it
             will update the display using the new value. Note that positive value
             implies deceleration whereas negative value implies acceleration
**********
                                             Initialisation
 ***********
PORTA
                                          EQU
                                                               $00
                                                                                                                        ; Last digit
                                                                                                                     ; Second digit (and negative sign)
PORTB
                                            EQU
                                                                        $01
                                                                                                                        ; First digit (and decimal point)
PORTC
                                            EQU
                                                                        $02
                                                                                                                      ; ADC Data
ADDATA
                                           EQU
                                                                        $08
ADSTAT
                                           EQU
                                                                        $09
                                                                                                                       ; ADC Status
PLMA
                                            EQU
                                                                        $0A
                                                                                                                     ; Pulse Length Modulator (Output to Buzzer)
MISC
                                            EQU
                                                                         $0C
                                                                                                                       ; Miscellaneous Register (slow/fast mode)
TCONTROL
                                                                        $12
                                                                                                                     ; Timer control register
                                             EQU
TSTATUS
                                             EOU
                                                                        $13
                                                                                                                       ; Timer Status Register
                                                                                                                     ; Output Compare Register 1 High Byte
OCMPHI1
                                           EQU
                                                                       $16
```

AN1611

```
OCMPLO1
                     $17
             EQU
                                   ; Output Compare Register 1 Low Byte
TCNTHI
             EQU
                     $18
                                   ; Timer Count Register High Byte
TCNTLO
             EQU
                     $19
                                   ; Timer Count Register Low Byte
OCMPHI2
                     $1E
                                   ; Output Compare Register 2 High Byte
OCMPLO2
                                    ; Output Compare Register 2 Low Byte
            User-defined RAM
                  $54
            EOU
STGN
                                  ; Acceleration (-) or deceleration (+)
PRESHI2
             EQU
                     $55
                                   ; MSB of accumulated acceleration
PRESHI
                     $56
PRESLO
                     $57
                                  ; LSB of accumulated acceleration
             EQU
             EQU
                                  ; Acceleration High Byte (Temp storage)
PTEMPLO
             EQU
                     $59
                                   ; Acceleration Low Byte (Temp storage)
             EQU
                                   ; Temp storage of acc value (High byte)
ACCHI
                     $5A
ACCLO
             EQU
                     $5B
                                  ; (Low byte); Sampling Counter; MSB of the accumulated data of low g
                                                                (Low byte)
ADCOUNTER
             EQU
                     $5C
AVERAGE H
             EQU
                     $5D
AVERAGE M
             EQU
                     $5E
AVERAGE L
             EQU
                     $5F
                                  ; LSB of the accumulated data of low g
SHIFT CNT
             EQU
                     $60
                                   ; Counter for shifting the accumulated data
AVE CNT1
             EOU
                                  ; Number of samples in the accumulated data
AVE CNT2
             EQU
                     $75
TEMPTCNTHI EQU
                     $62
                                  ; Temp storage for Timer count register
TEMPTCNTLO
                                  ; Temp storage for Timer count register
            EOU
                     $63
DECHI
                     $64
                                   ; Decimal digit high byte
             EOU
                                  ; Decimal digit low byte
DECLO
                     $65
             EQU
DCOFFSETHI
             EQU
                     $66
                                   ; DC offset of the output (high byte)
DCOFFSETLO
            EQU
                     $67
                                   ; DC offset of the output (low byte)
MAXACC
             EQU
                     $68
                                   ; Maximum acceleration
TEMPHI
             EQU
TEMPLO
             EQU
                     $6A
TEMP1
             EQU
                                   ; Temporary location for ACC during delay
                     $6В
TEMP2
             EQU
                     $6C
                                   ; Temporary location for ACC during ISR
                                   ; No of sampling (low byte)
DIV LO
             EOU
                     $6D
                                  ; No of sampling (high byte)
; No of right shift to get average value
DIV HI
             EQU
                     $6E
NO SHIFT
             EQU
                     $6F
ZERO ACC
             EQU
                     $70
                                  ; Zero acceleration in no of ADC steps
                                  ; Hold time counter
; Hold time up flag
HOLD CNT
             EQU
                     $71
HOLD DONE
                     $72
             EQU
START_TIME
                     $73
                                   ; Start of count down flag
             EQU
             EQU
                     $74
                                   ; No of shifting required for division
                                  ; ROM space 0300 to 3DFE (15,104 bytes)
             ORG
                     $300
                                   ; Display "0"
             DB
                     $FC
                                  ; Display "1"
             DB
                     $30
                                   ; Display "2"
             DB
                     $DA
                                   ; Display "3"
             DB
                     $7A
                                  ; Display "4"
; Display "5"
             DB
                     $36
             DB
                     $6E
                                  ; Display "6"
; Display "7"
             DB
                     $EE
                     $38
                                  ; Display "8"
; Display "9"
             DB
                     $FE
             DB
                     $7E
                                  ; High byte of hundreds
HUNDREDHI
             DB
                     $00
HUNDREDT O
             DB
                     $64
                                   ; Low byte of hundreds
TENHI
             DB
                     $00
                                   ; High byte of tens
TENLO
             DB
                     $0A
                                   ; Low byte of tens
************
    Program starts here upon hard reset *
                               ; Port C = 0
RESET
             CLR
                    PORTC
             CLR
                     PORTB
                                   ; Port B = 0
                                  ; Port A = 0
             CLR
                     PORTA
             LDA
                     #SFF
             STA
                     $06
                                  ; Port C as output
             STA
                     $05
                                   ; Port B as output
                     $04
                                   ; Port A as output
                     TSTATUS
             LDA
                                   ; Dummy read the timer status register
             CLR
                     OCMPHI2
                                   ; so as to clear the OCF
             CLR
                     OCMPHI1
             LDA
                     OCMPLO2
                     COMPRGT
             JSR
             CLR
                     START_TIME
```

```
LDA
                      #$40
                                    ; Enable the output compare interrupt
             STA
                      TCONTROL
             CLI
                                    ; Interrupt begins here
             LDA
                      #$CC
                                    ; Port C = 1100 1100
                                                            Letter "C"
             STA
                      PORTC
                      #$BE
                                    ; Port B = 1011 1110
                                                            Letter "A"
                      PORTB
             STA
                      #$C4
                                    ; Port A = 1100 0100
                                                            Letter "L"
             LDA
             STA
                      PORTA
             T.DA
                      #16
TDLE
             JSR
                     DLY20
                                    ; Idling for a while (16*0.125 = 2 \text{ sec})
             DECA
                                    ; for the zero offset to stabilize
             BNE
                      IDLE
                                    ; before perform auto-zero
             LDA
                      #$00
                                      Sample the data 32,768 times and take
             STA
                      DIV_LO
                                    ; the average 8000 H = 32,768
             LDA
                      #$8<del>0</del>
                                    ; Right shift of 15 equivalent to divide
             STA
                      DIV HI
                                    ; by 32,768
             LDA
                                    ; Overall sampling time = 1.033 s)
                      #!15
                      NO SHIFT
             STA
             JSR
                      READAD
                                    : Zero acceleration calibration
             X עיע
                      #5
                                    ; Calculate the zero offset
             LDA
                      PTEMPLO
                                    ; DC offset = PTEMPLO * 5
             STA
                      ZERO_ACC
             MUL
                      DCOFFSETLO
                                    ; Save the zero offset in the RAM
             STA
             TXA
             STA
                      DCOFFSETHI
             CLR
                      HOLD_CNT
                                    ; Sample the data 16 times and take
                      #$10
             LDA
                                    ; the average 0100 H = 16
             STA
                      DIV_LO
             LDA
                      #$00
                                    ; Right shift of 4 equivalent to divide
             STA
                      DIV_HI
             LDA
                                    ; Overall sampling time = 650 us
                      NO SHIFT
             STA
             LDA
                      ZERO ACC
                                    ; Display 0.0g at the start
             STA
                      MAXACC
             JSR
                      ADTOLCD
                      START TIME
             CLR
                      AVE_CNT1
             CLR
             CLR
                      AVE CNT2
             CLR
                      SHIFT CNT
             CLR
                      AVERAGE L
             CLR
                      AVERAGE_M
                      AVERAGE H
             CLR
                      READAD
REPEAT
             JSR
                                    ; Read acceleration from ADC
                      ZERO ACC
             LDA
                      #$04
             ADD
             CMP
                      PTEMPLO
             BLO
                      CRASH
                                    ; If the acceleration < 2.0g
             LDA
                      PTEMPLO
                                    ; Accumulate the averaged results
             ADD
                      AVERAGE L
                                    ; for 128 times and take the averaging
             STA
                      AVERAGE L
                                    ; again to achieve more stable
             CLRA
                                    ; reading at low g
                      AVERAGE M
             ADC
             STA
                      AVERAGE M
             CLRA
             ADC
                      AVERAGE H
                     AVERAGE_H
             STA
             LDA
                      #$01
             ADD
                      AVE_CNT1
             STA
                      AVE_CNT1
             CLRA
             ADC
                      AVE CNT2
                      AVE CNT2
             STA
                      #$04
             CMP
                     REPEAT
             BNE
             T.DA
                      AVE CNT1
             CMP
                      #$00
             BNE
                      REPEAT
SHIFTING
             INC
                      SHIFT CNT
                                    ; Take the average of the 128 samples
             LSR
                      AVERAGE H
                      AVERAGE_M
             ROR
                      AVERAGE L
             ROR
             LDA
                      SHIFT_CNT
             CMP
                      #$0A
             BLO
                      SHIFTING
             LDA
                      AVERAGE_L
```

```
PTEMPLO
             STA
             LDA
                     HOLD_CNT
                                   ; Check if the hold time of crash data
             CMP
                     #$00
             BNE
                     NON-CRASH
             LDA
                     PTEMPLO
                                   ; If yes, display the current acceleration
                     MAXACC
                     ADTOLCD
             JSR
                     NON-CRASH
             BRA
                     ZERO_ACC
CRASH
             LDA
                     #SOE
                                  ; If the crash is more than 7g
             ADD
             CMP
                     PTEMPLO
                                  ; 7g = 0E H * 0.5
             BHS
                    NO INFLATE
                     #$FF
                                  ; activate the LED
             STA
                     PLMA
NO_INFLATE
             JSR
                    MAXVALUE
                                  ; Display the peak acceleration
             JSR
                     ADTOLCD
NON-CRASH
                     SHIFT CNT
             CLR
                    AVE_CNT1
             CLR
                    AVE CNT2
             CLR
             CLR
                    AVERAGE L
             CLR
                    AVERAGE M
             CLR
                    AVERAGE H
             BRA
                    REPEAT
                                   ; Repeat the whole process
            Delay Subroutine
      (162 * 0.7725 ms = 0.125 sec)
**********
DLY20
            STA
                    TEMP1
             LDA
                     #!162
                                     ; 1 unit = 0.7725 ms
OUTLP
             CLRX
             DECX
             BNE
                     INNRLP
             DECA
                     OUTLP
             BNE
            LDA
                     TEMP1
            RTS
      Reading the ADC data X times
        and take the average
   X is defined by DIV_HI and DIV_LO
                    #$25
READAD
            LDA
             STA
                     ADSTAT
                                     ; AD status = 25H
             CLR
                     PRESHI2
             CLR
                     PRESHI
                                     ; Clear the memory
             CLR
                     PRESLO
             CLRX
             CLR
                     ADCOUNTER
LOOP128
             CMP
                     #$FF
                     INC COUNT
             BEO
                     CONT
             BRA
INC COUNT
             INC
                    ADCOUNTER
                     ADCOUNTER
                                     ; If ADCOUNTER = X
CONT
             LDA
             CMP
                     DIV_HI
                                     ; Clear bit = 0
             BEQ
                     CHECK_X
                                      ; Branch to END100
             BRA
                     ENDREAD
CHECK_X
             TXA
             CMP
                    DIV LO
             BEQ
                     END128
ENDREAD
             BRCLR
                     7,ADSTAT,ENDREAD ; Halt here till AD read is finished
                                     ; Read the AD register
             LDA
                     ADDATA
                                     ; PRES = PRES + ADDATA
             ADD
                     PRESTO
             STA
                     PRESLO
             CLRA
             ADC
                     PRESHI
             STA
                     PRESHI
             CLRA
             ADC
                     PRESHI2
             STA
                     PRESHI2
                                     ; Increase the AD counter by 1
             INCX
             BRA
                    LOOP128
                                     ; Branch to Loop128
END128
             CLR
                     RSHIFT
                                      ; Reset the right shift counter
```

```
RSHIFT
DIVIDE
           INC
                                  ; Increase the right counter
           LSR
                  PRESHI2
           ROR
                  PRESHI
                                 ; Right shift the high byte
           ROR
                  PRESLO
                                 ; Right shift the low byte
           LDA
                  RSHIFT
                 NO SHIFT
                                 ; If the right shift counter >= NO_SHIFT
                                 ; End the shifting
           BHS
                  ENDDIVIDE
                  DIVIDE
                                 ; otherwise continue the shifting
           JMP
ENDDIVIDE
           LDA
                  PRESLO
                  PTEMPTO
           STA
           RTS
***********
      Timer service interrupt
     Alternates the Port data and
         backplane of LCD
***********
                              ; Push Accumulator
; Port C = - (Port C)
; Port B = - (Port B)
TIMERCMP
         STA TEMP2
               PORTC
PORTB
PORTA
           COM
           COM
                                ; Port A = - (Port A)
           COM
                               ; Start to count down the hold time
; if START_TIME = FF
           LDA
                 START_TIME
                #$FF
           CMP
                  SKIP TIME
           BNE
           JSR
                 CHECK HOLD
SKIP_TIME
                  COMPRGT
           BSR
                                 ; Branch to subroutine compare register
                  TEMP2
           LDA
                                 ; Pop Accumulator
           RTI
*************
      Check whether the hold time
       of crash impact is due
                HOLD_CNT
HOLD_CNT
CHECK_HOLD DEC
           LDA
                 #$00
           CMP
                                ; Is the hold time up?
                 NOT_YET
           BNE
                  #$00
PLMA
           LDA
                                ; If yes,
           STA
                                 ; stop buzzer
                                ; Set HOLD DONE to FF indicate that the
           LDA
                  #$FF
                HOLD_DONE ; hold time is up

START_TIME ; Stop the counting down of hold time
           STA
           CLR
NOT YET
           RTS
*************
          Subroutine reset
     the timer compare register
**********
           LDA TCNTHI ; Read Timer count register
COMPRGT
           STA
                 TEMPTCNTHI
                                 ; and store it in the RAM
           LDA
                  TCNTLO
                  TEMPTCNTLO
           STA
                                 ; Add 1D4C H = 7500 periods
                  #$4C
           ADD
                  TEMPTCNTLO
TEMPTCNTHI
                 TEMPTCNTLO
                                 ; with the current timer count
           STA
           LDA
                                 ; 1 period = 2 us
           ADC
                  #$1D
           STA
                  TEMPTCNTHI
                                 ; Save the next count to the register
                  OCMPHI1
           STA
           LDA
                  TSTATUS
                                 ; Clear the output compare flag
           LDA
                  TEMPTCNTLO
                                 ; by access the timer status register
                                  ; and then access the output compare
           STA
                  OCMPLO1
           RTS
                                  : register
     Determine which is the next
    acceleration value to be display
***********
MAXVALUE
          LDA
                PTEMPLO
                MAXACC
           CMP
                                  ; Compare the current acceleration with
           BLS
                  OLDMAX
                                 ; the memory, branch if it is <= maxacc
           BRA
                 NEWMAX1
           LDA
                 HOLD_DONE
OLDMAX
                                 ; Decrease the Holdtime when
           CMP
                  #SFF
                                  ; the maximum value remain unchanged
```

```
NEWMAX1
            BEO
                                     ; Branch if the Holdtime is due
            LDA
                    MAXACC
                                     ; otherwise use the current value
            BRA
                    NEWMAX2
NEWMAX1
            LDA
                     #$C8
                                     ; Hold time = 200 * 15 ms = 3 sec
            STA
                    HOLD CNT
                                     ; Reload the hold time for the next
                    HOLD_DONE
            LDA
                     #$FF
                    START TIME
                                     ; Start to count down the hold time
            STA
            LDA
                    PTEMPLO
                                     ; Take the current value as maximum
NEWMAX2
                    MAXACC
            STA
            RTS
***********
     This subroutine is to convert
        the AD data to the LCD
    Save the data to be diaplayed
             in MAXACC
************
ADTOLCD
            SEI
                                     ; Disable the Timer Interrupt !!
            LDA
                    #$00
                                     ; Load 0000 into the memory
            STA
                    DECHT
            LDA
                    #$00
            STA
                    DECLO
            LDA
                    MAXACC
            LDX
            MUL
                                     ; Acceleration = AD \times 5
            ADD
                    DECLO
                                     ; Acceleration is stored as DECHI
                                     ; and DECLO
            STA
                    DECLO
            STA
                    ACCLO
                                     ; Temporary storage
            LDA
                    #$00
                                     ; Assume positive deceleration
            STA
                    SIGN
                                      ; "00" positive ; "01" negative
            CLRA
            TXA
                    DECHI
            ADC
            STA
                    DECHI
            STA
                    ACCHI
                                     ; Temporary storage
            LDA
                    DECLO
                    DCOFFSETLO
                                     ; Deceleration = Dec - DC offset
            SUB
            STA
                    DECLO
            LDA
                    DECHI
             SBC
                    DCOFFSETHI
            STA
                    DECHI
                    NEGATIVE
            BCS
                                     ; Branch if the result is negative
            BRA
                    SEARCH
                    DCOFFSETLO
                                     ; Acceleration = DC offset - Dec
NEGATIVE
            LDA
            SUB
                    ACCLO
            STA
                    DECLO
            LDA
                    DCOFFSETHI
            SBC
                    ACCHI
            STA
                    DECHI
            LDA
                     #$01
                                     ; Assign a negative sign
            STA
                    SIGN
SEARCH
            CLRX
                                     ; Start the search for hundred digit
LOOP100
                    DECLO
                                     ; Acceleration = Acceleration - 100
            LDA
                    HUNDREDLO
            SUB
            STA
                    DECLO
                    DECHI
            LDA
                    HUNDREDHI
            SBC
             STA
                    DECHI
             INCX
                                     ; x = x + 1
                    LOOP100
                                     ; if acceleration >= 100, continue the
            BCC
            DECX
                                     ; loop100, otherwise X = X - 1
                    DECLO
                                     ; Acceleration = Acceleration + 100
            LDA
            ADD
                    HUNDREDLO
                    DECLO
            STA
                    DECHT
            T.DA
            ADC
                    HUNDREDHT
            STA
                    DECHT
            TXA
                                     ; Check if the MSD is zero
            AND
                     #$FF
                    NOZERO
            BEQ
                                     ; If MSD is zero, branch to NOZERO
            LDA
                    $0300,X
                                     ; Output the first second digit
             STA
                    PORTC
            BRA
                    STARTTEN
NOZERO
            LDA
                                     ; Display blank if MSD is zero
                    #$00
            STA
                    PORTC
```

```
CLRX
STARTTEN
                                     ; Start to search for ten digit
                    DECLO
LOOP10
            LDA
                                     ; acceleration = acceleration - 10
            SUB
                    TENLO
            STA
                    DECLO
            LDA
                    DECHI
            SBC
                    TENHI
            STA
                    DECHI
            INCX
            BCC
                    LOOP10
                                     ; if acceleration >= 10 continue the
            DECX
                                     ; loop, otherwise end
                    DECLO
            LDA
                                     ; acceleration = acceleration + 10
            ADD
                    TENLO
            STA
                    DECLO
            LDA
                    DECHI
            ADC
                    TENHI
            STA
                    DECHI
                    $0300,X
            LDA
                                     ; Output the last second digit
            EOR
                    SIGN
                                     ; Display the sign
            STA
                    PORTB
            CLRX
                                     ; Start to search for the last digit
                    DECLO
                                     ; declo = declo - 1
            LDA
            TAX
            LDA
                    $0300,X
                                     ; Output the last digit
            EOR
                    #$01
                                     ; Add a decimal point in the display
            STA
                    PORTA
            CLI
                                     ; Enable Interrupt again !
            RTS
   This subroutine provides services
    \hbox{for those unintended interrupts}\\
**********
SWI
            RTI
                                    ; Software interrupt return
IRQ
            RTI
                                     ; Hardware interrupt
TIMERCAP
                                     ; Timer input capture
            RTI
TIMERROV
            RTI
                                    ; Timer overflow
SCI
            RTI
                                     ; Serial communication Interface
                                     ; Interrupt
                                     ; For 68HC05B16, the vector location
                    $3FF2
            ORG
            FDB
                    SCI
                                     ; starts at 3FF2
            FDB
                    TIMERROV
                                    ; For 68HC05B5, the address starts
            FDB
                    TIMERCMP
                                     ; 1FF2
            FDB
                    TIMERCAP
            FDB
                    IRQ
            FDB
                    SWI
                    RESET
            FDB
```

Shock and Mute Pager Applications Using Accelerometer

by: C.S. Chua Sensor Application Engineering, Singapore, A/P

INTRODUCTION

In the current design, whenever there is an incoming page, the buzzer will "beep" until any of the buttons is depressed. It can be quite annoying or embarrassing sometime when the button is not within your reach. This application note describes the concept of muting the "beeping" sound by tapping the pager lightly, which could be located in your pocket or handbag. This demo board uses an accelerometer, microcontroller hardware/software and a piezo audio transducer. Due to the wide frequency response of the accelerometer from d.c. to 400 Hz, the device is able to measure both the static acceleration from the Earth's gravity and the shock or vibration from an impact. This design uses a 40G accelerometer (P/N: MMA1201P) which yields a minimum acceleration range of -40G to +40G.

CONCEPT OF TAP DETECTION

To measure the tapping of a pager, the accelerometer must be able to respond in the range of hundreds of hertz. During the tapping of a pager at the top surface, illustrated in Figure 1, the accelerometer will detect a negative shock level between -15g to -50g of force depending on the intensity. Similarly, if the tapping action comes from the bottom of the accelerometer, the output will be a positive value. Normally, the peak impact pulse is in the order of a few milliseconds. Figure 2 shows a typical waveform of the accelerometer under shock.

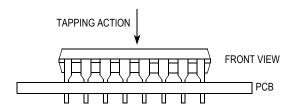


Figure 1. Tapping Action of Accelerometer

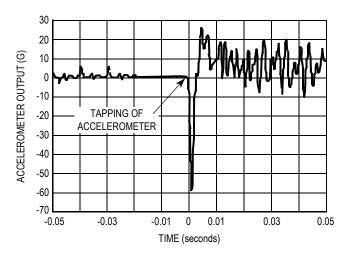


Figure 2. Typical Waveform of Accelerometer Under Tapping Action

Therefore, we could set a threshold level, either by hardware circuitry or software algorithm, to determine the tapping action and mute the "beeping." In this design, a hardware solution is used because there will be minimal code added to the existing pager software. However, if a software solution is used, the user will be able to program the desire shock level.

HARDWARE DESCRIPTION AND OPERATION

Since MMA1201P is fully signal-conditioned by its internal op-amp and temperature compensation, the output of the accelerometer can be directly interfaced with a comparator. To simplify the hardware, only one direction (tapping on top of the sensor) is monitored. The comparator is configured in such a way that when the output voltage of the accelerometer is less than the threshold voltage or Vref (refer to Figure 3), the output of the comparator will give a logic 1, illustrated in Figure 4. To decrease the V_{REF} voltage or increase the threshold impact in magnitude, turn the trimmer R2 anticlockwise.

V_{IN} 3 V_{REF} 4 1 5 6 7 +5.0 V R1 100 k C3 1.0 µ

Figure 3. Comparator Circuitry

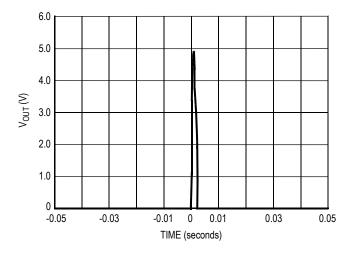


Figure 4. Comparator Output Waveform

For instance, if the threshold level is to be set to -20g, this will correspond to a Vref voltage of 1.7 V.

$$V_{REF} = V_{OFFSET} + \left(\frac{\Delta V}{\Delta G} \times G_{THRESHOLD}\right)$$
$$= 2.5 + (0.04 \times [-20])$$
$$= 1.7 \text{ V}$$

Under normal condition, V_{IN} (which is the output of the accelerometer) is at about 2.5 V. Since V_{IN} is higher than Vref, the output of the comparator is at logic 0. During any shock or impact which is greater than -20g in magnitude, the output voltage of the accelerometer will go below V_{REF} . In this case, the output logic of the comparator changes from 0 to 1.

When the pager is in silence mode, the vibrator produces an output of about $\pm 2g$. This will not trigger the comparator. Therefore, even in silence mode, the user can also tap the pager to stop the alert. Refer to Figure 5 for the vibrator waveform.

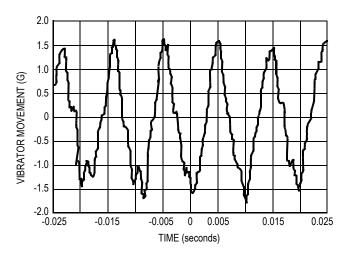


Figure 5. Vibrator Waveform

Figure 6 is a schematic drawing of the whole demo and Figure 7, Figure 8, and Figure 9 show the printed circuit board

and component layout for the shock and mute pager. Table 1 is the corresponding part list.

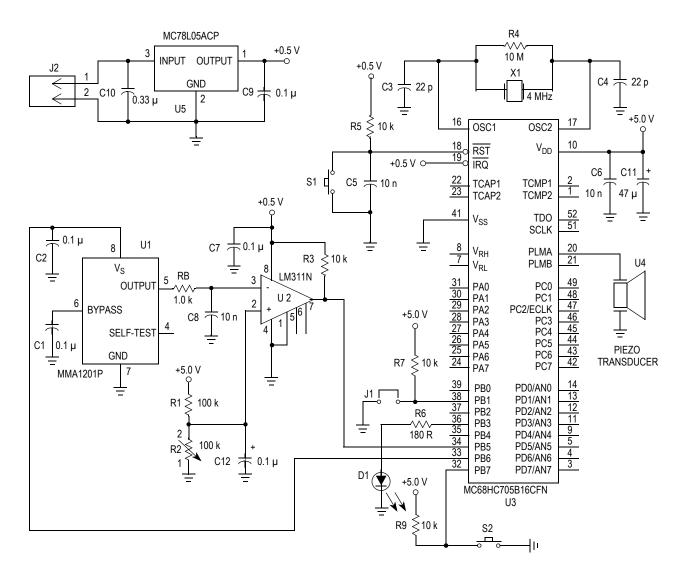


Figure 6. Overall Schematic Diagram of the Demo

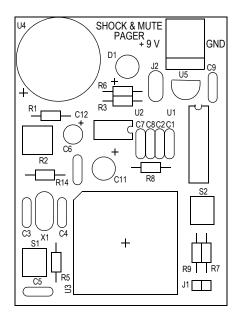


Figure 7. Silk Screen of the PCB

Table 1. Bill of Material for the Shock and Mute Pager

Device Type	Qty.	Value	References
Ceramic Capacitor	4	0.1μ	C1, C2, C7, C9
Ceramic Capacitor	2	22p	C3, C4
Ceramic Capacitor	3	10n	C5, C6, C8
Solid Tantalum	1	0.33μ	C10
Electrolytic Capacitor	1	47μ	C11
Electrolytic Capacitor	1	1μ	C12
LED	1	5mm	D1
Header	1	2 way	J1
PCB Terminal Block	1	2 way	J2
Resistor ±5% 0.25W	1	100k	R1
Single Turn Trimmer	1	100k	R2
Resistor ±5% 0.25W	4	10k	R3, R5, R7, R9
Resistor ±5% 0.25W	1	10M	R4
Resistor ±5% 0.25W	1	180R	R6
Resistor ±5% 0.25W	1	1k	R8
Push Button	2	6mm	S1, S2
MMA1201P	1	_	U1
LM311N	1	_	U2
MC68HC705B16CFN	1	_	U3
Piezo Transducer	1	_	U4
MC78L05ACP	1	_	U5
Crystal	1	4MHz	X1

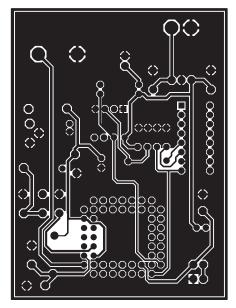


Figure 8. Solder Side of the PCB

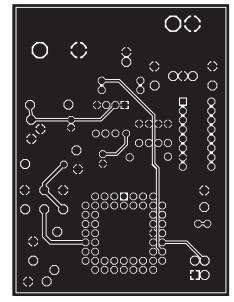


Figure 9. Component Side of the PCB

SOFTWARE DESCRIPTION

Upon powering up the system, the piezo audio transducer is activated simulating an incoming page, if the pager is in sound mode (jumper J1 in ON). Then, the accelerometer is powered up and the output of the comparator is sampled to obtain the logic level. The "beeping" will continue until the accelerometer senses an impact greater than the threshold level. Only then the alert is muted. However, when the pager is in silence mode (jumper J1 is OFF), indicated by the blinking red LED, the accelerometer is not activated. To stop the alert, press the push-button S2.

To repeat the whole process, simply push the reset switch ${\sf S1.}$

Figure 10 is a flowchart for the program that controls the system.

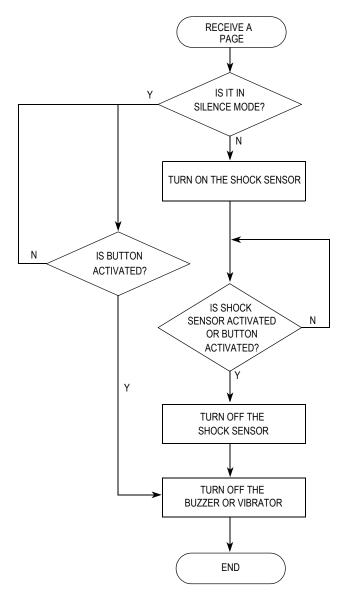


Figure 10. Main Program Flowchart

CONCLUSION

The shock and mute pager design uses a comparator to create a logic level output by comparing the accelerometer output voltage and a user-defined reference voltage. The flexibility of this minimal component, high performance design

makes it compatible with many different applications, e.g. hard disk drive knock sensing, etc. The design presented here uses a comparator which yields excellent logic-level outputs and output transition speeds for many applications.

SOFTWARE SOURCE/ASSEMBLY PROGRAM CODE

```
**************************
                  Pager Shock & Mute Detection Version 1.0
   The following code is written for \texttt{MC68HC705B16} using \texttt{MMDS05} software
   Version 1.01
   CASM05 - Command line assembler Version 3.04
   P & E Microcomputer Systems, Inc.
                         Written by : C.S. Chua
                             9th January 1997
                            Software Description
   J1 ON - Sound mode
   Buzzer will turn off if the accelerometer is tapped or switch S2 is
   depressed.
   J1 OFF - Silence mode
   LED will turn off if and only if S2 is depressed
**********
            I/O Declaration
***********
            EQU
                  $01
PORTR
                                ; Port B
                                ; FORT B
; D/A to control buzzer
; Timer control register
; Timer Status Register
; Output Compare Register 1 High Byte
; Output Compare Register 1 Low Byte
; Timer Count Register High Byte
; Timer Count Register Low Byte
; Output Compare Register 2 High Byte
; Output Compare Register 2 Low Byte
PLMA
                    $0A
            EQU
TCONTROL
            EQU
                    $12
TSTATUS
            EQU
                    $13
OCMPHI1
            EQU
                    $16
OCMPLO1
            EQU
                    $17
TCNTHI
            EQU
                    $18
TCNTLO
            EQU
                     $19
OCMPHI2
                     $1E
OCMPLO2
            EQU
                    $1F
                                   ; Output Compare Register 2 Low Byte
**********
        RAM Area ($0050 - $0100)
          ORG
                  $50
STACK
            RMB
                    4
                                  ; Stack segment
                                 ; Temp. storage of timer result (LSB)
TEMPTCNTLO
            RMB
                    1
TEMPTCNTHI
                                   ; Temp. storage of timer result (MSB)
*************
        ROM Area ($0300 - $3DFD)
            ORG
                  $300
***********
   Program starts here upon hard reset *
**********
             CLR
                      PORTB
                                    ; Initialise Ports
                       #%01001000
                                        ; Configure Port B
              LDA
              STA
                      $05
                      TSTATUS
                                        ; Dummy read the timer status register so as to clear the OCF
              LDA
              CLR
                      OCMPHI2
              CLR
                      OCMPHI1
              LDA
                      OCMPLO2
                       COMPRGT
              JSR
                                         ; Enable the output compare interrupt
              LDA
                       #$40
                       TCONTROL
              STA
              LDA
                       #10
                                         ; Idle for a while before "beeping"
IDLE
              JSR
                       DLY20
                       IDLE
              BNE
              CLI
                                         ; Interrupt begins here
              BRSET
                       1, PORTB, SILENCE
                                        ; Branch if J1 is off
                       6, PORTB
              BSET
                                        ; Turn on accelerometer
              JSR
                      DLY20
                                        ; Wait till the supply is stable
                       5, PORTB, MUTE
TEST
              BRSET
                                        ; Sample shock sensor for tapping
                       7, PORTB, MUTE
                                        ; Sample switch S2 for muting
             BRCLR
              JMP
                       TEST
              BCLR
                      6,PORTB
MUTE
                                        ; Turn off accelerometer
              SEI
              CLR
                       PLMA
                                        ; Turn off buzzer
```

```
DONE
             JMP
                      DONE
                                        ; End
             BRSET
                      7,PORTB,SILENCE ; Sample switch S2 for stopping LED
STLENCE
             SEI
             BCLR
                      3, PORTB
                                       ; Turn off LED
             JMP
                      DONE
       Timer service interrupt
       Alternates the PLMA data
       and bit 3 of Port B
            BSR
                    COMPRGT
TIMERCMP
                                       ; Branch to subroutine compare register
                   1, PORTB, SKIPBUZZER ; Branch if J1 is OFF
            BRSET
            LDA
                    PLMA
                    #$80
            EOR
                                       ; Alternate the buzzer
            STA
                    PLMA
            RTI
            BRSET 3,PORTB,OFF_LED ; Alternate LED supply BSET 3,PORTB
SKIPBUZZER
                    3, PORTB
            RTI
OFF_LED
            BCLR
                    3, PORTB
            RTI
**********
           Subroutine reset
      the timer compare register
           *******
                  TCNTHI ; Read Timer count register
TEMPTCNTHI ; and store it in the RAM
COMPRGT
            LDA
            STA
            LDA
                    TCNTLO
            STA
                    TEMPTCNTLO
            ADD
                    #$50
                                    ; Add C350 H = 50,000 periods
                    TEMPTCNTHI #$C3
                                    ; with the current timer count
            STA
            LDA
                                    ; 1 period = 2 us
            ADC
                    TEMPTCNTHI
            STA
                                     ; Save the next count to the register
                    OCMPHI1
            STA
                    TSTATUS
            LDA
                                   ; Clear the output compare flag
            LDA
                    TEMPTCNTLO
                                    ; by access the timer status register
            STA
                    OCMPLO1
                                     ; and then access the output compare register
            RTS
       Delay Subroutine for 0.20 sec
   Input: None
   Output: None
DLY20
            STA
                  STACK+2
                    STACK+3
            STX
                                 ; 1 unit = 0.7725 mS
            LDA
                    #!40
OUTLP
INNRLP
            DECX
            BNE
                    INNRLP
            DECA
            BNE
                    OUTLP
            LDX
                    STACK+3
            LDA
                    STACK+2
            RTS
   This subroutine provides services
    for those unintended interrupts
SWI
            RTI
                                    ; Software interrupt return
            RTI
                                     ; Hardware interrupt
TIMERCAP
            RTI
                                     ; Timer input capture
TIMERROV
            RTI
                                    ; Timer overflow interrupt
SCI
            RTI
                                     ; Serial communication Interface Interrupt
                    $3FF2
                                    ; For 68HC05B16, the vector location
            ORG
            FDB
                    SCI
                                     ; starts at 3FF2
                                    ; For 68HC05B5, the address starts at 1FF2
            FDB
                    TIMERROV
            FDB
                    TIMERCMP
                    TIMERCAP
            FDB
            FDB
                    IRQ
            FDB
            FDB
                    RESET
```

Baseball Pitch Speedometer

by: Carlos Miranda, Systems and Applications Engineer and David Heeley, Systems and Applications Mechanical Engineer

INTRODUCTION

The Baseball Pitch Speedometer, in its simplest form, consists of a target with acceleration sensors mounted on it, an MCU to process the sensors' outputs and calculate the ball speed, and a display to show the result. The actual implementation, shown in Figure 1, resembles a miniature pitching cage, that can be used for training and/or entertainment. The cage is approximately 6 ft. tall by 3 ft. wide by 6 ft. deep. The upper portion is wrapped in a nylon net to retain the baseballs as they rebound off the target. A natural rubber mat, backed by a shock resistant acrylic plate, serve as the target. Accelerometers, used to sense the ball impact, and buffers, used to drive the signal down the transmission line, are mounted on the back side of the target. The remainder of the electronics is contained in a display box on the top front side of the cage.

Accelerometers are sensors that measure the acceleration exerted on an object. They convert a physical quantity into an electrical output signal. Because acceleration is a vector quantity, defined by both magnitude and direction, an accelerometer's output signal typically has an offset voltage and can swing positive and negative relative to the offset, to account for both positive and negative acceleration. An example acceleration profile is shown in Figure 2. Because acceleration is defined as the rate of change of velocity with respect to time, the integration of acceleration as a function of time will yield a net change in velocity. By digitizing and numerically integrating the output signal of an accelerometer through the use of a microcontroller, the area under the curve could be computed. The result corresponds to the net change in velocity of the object under observation. This is the basic principle behind the Baseball Pitch Speedometer.

Figure 1. David Heeley, mechanical designer of the Baseball Pitch Speedometer Demo, tests his skills at Sensors Expo Boston '97.

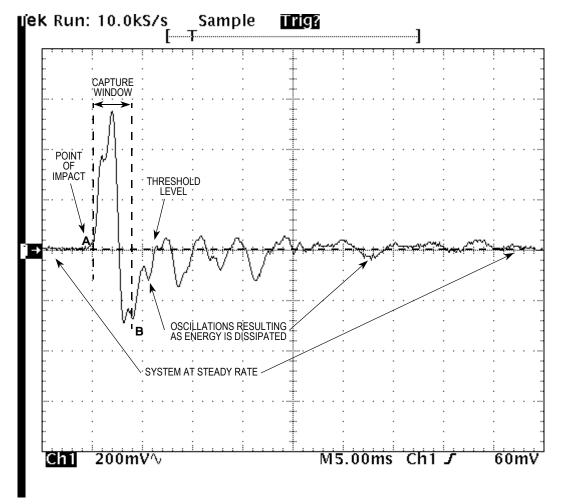


Figure 2. Typical Crash Pattern for the Baseball Pitch Speedometer Demo

THEORY OF OPERATION

When a ball is thrown against the target, the accelerometer senses the impact and produces an analog output signal, proportional to the acceleration measured, resulting in a crash signature. The amplitude and duration of the crash signature is a function of the velocity of the ball. How can this crash signature be correlated to the velocity of the baseball? By making use of the principle of conservation of momentum (see Equation 1). The principle of conservation of momentum states that the total momentum within a closed system remains constant. In our case, the system consists of the thrown ball and the target.

$$\begin{split} & m_{ball} * V_{ball,initial} + m_{target} * V_{target,initial} = \\ & m_{ball} * V_{ball,final} + m_{target} * V_{target,final} \end{split} \tag{1}$$

When the ball is thrown, it has a momentum equivalent to m_{ball} *V_{ball,initial}. The target initially has zero momentum since it is stationary. When the ball collides with the target, part of the momentum of the ball is transferred to the target, and the target will momentarily experience acceleration, velocity, and some finite, though small, displacement before dissipating the momentum and returning to a rest state. The other portion of

momentum is retained by the ball as it bounces off the target, due to the elastic nature of the collision. By measuring the acceleration imparted on the target, its velocity is computed through integration. Ideally, if the mass of the ball, the mass of the target, and the final velocity of the ball are known, then the problem could be solved analytically and the initial velocity of the baseball determined.

The analysis of the crash phenomenon is, however, actually quite complex. Some factors that must be taken into account and that complicate the analysis greatly, are the spring constant and damping coefficient of the target. The target will be displaced during impact because it is anchored to the frame by a thick rubber mat. This action effectively causes the system to have a certain amount of spring. Also, though the mat is very dense, it will deform somewhat during impact and will act as shock absorber. In addition, the ball itself also has a spring constant and damping coefficient associated with it, since it bounces off the target and, though not noticeable by the naked eye, will deform during the impact. Finally, and of even greater significance, the mass of the ball, the mass of the target, and the final velocity of the ball are neither known nor measured. So how can the system work?

The Baseball Pitch Speedometer works by exploiting the fact that the final velocity of the target will be, according to Eq. 1, linearly proportional to the initial velocity of the thrown ball. Therefore, by measuring the acceleration response of the system to various ball velocities, which can be measured by independent means such as a radar gun, the system could be calibrated and a linear model developed. To facilitate the characterization and calibration of the system, a pitching machine was used to ensure that the incident ball speed

would be repeatable. It also eliminated potential error caused by the variability of location of impact on the target that would inevitably result from several manual throws. Figure 3shows a linear regression plot of the response of the system as a function of incident velocity. As is indicated by the plot, just a simple constant of proportionality could be used to correlate the measured acceleration response to the incident velocity of the ball, with fairly accurate results.

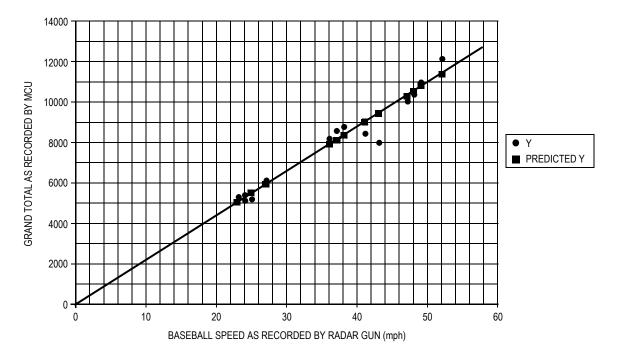


Figure 3. Baseball Pitch Speedometer Characterization Data

IMPLEMENTATION — HARDWARE

The target mat of the Baseball Pitch Speedometer has an area of approximately 9 $\rm ft^2$ (3 by 3). Even though the rubber material used to construct the target is quite dense and heavy, the transmission of an impact is very poor if the ball strikes the target too far from the sensor. Therefore, to cover such a relatively large area it is necessary to use at least four devices;

one centered in each quadrant of the square target. In addition, a shock resistant plate about a quarter inch thick is mounted behind the rubber mat. These features help make the response of the system more uniform and reduce errors that result from the variability of where the ball strikes the target.

The bulk of the circuit hardware is contained in a display box mounted on the top front side of the cage. Since the accelerometers are physically located far away from the mother board (about 10 feet of wiring), op-amps were used to buffer the accelerometers' output and drive the transmission line. The four accelerometer signals are then simultaneously fed into a comparator network and four of the ADC inputs on an MC68HC11 microcontroller. The MC68HC11 was selected because it has the capability of converting four A/D channels in one conversion sequence and operates at a higher clock speed. These two features reduce the overall time interval between digitizations of the analog signal (that result from the minimum required time for proper A/D conversion and from software latency) thus allowing a more accurate representation of the acceleration waveform to be captured. The comparator network serves a similar purpose by eliminating the additional software algorithm and execution time that would be required to continually monitor the outputs of all four accelerometers and determine whether impact has occurred or not. By minimizing this delay (some is still present since the output signal must exceed a threshold, and a finite amount of time is required for this) more of the initial and more significant part of the signal is captured.

The comparator network employs four LM311's configured to provide an OR function, and a single output is fed into an input capture pin on the MCU. A potentiometer and filter capacitor are used to provide a stable reference threshold voltage to the comparator network. The threshold voltage is set as close as possible to the accelerometers' offset voltage to minimize the delay between ball impact and the triggering of the conversion sequence, but enough clearance must be provided to prevent false triggering due to noise. Because the comparator network is wired such that any one of the accelerometer outputs can trigger it, the threshold voltage must be higher than the highest accelerometer offset voltage. Hysteresis is not necessary for the comparator network,

because once the MCU goes into the conversion sequence it ignores the input capture pin.

The system is powered using a commercially available 9 V supply. A Freescale MC7805 voltage regulator is used to provide a steady 5 Volt supply for the operation of the MCU, the accelerometers, the comparator network, and the op-amp buffers. The 9 V supply is directly connected to the common anode 8-segment LED displays. Each segment can draw as much as 30 mA of current. Therefore, to ensure proper operation, the power supply selected to build this circuit should be capable of supplying at least 600 mA. Ports B and C on the MCU are used to drive the LED displays. Each port output pin is connected via a resistor to the base of a BJT. which has the emitter tied to ground. A current limiting resistor is connected between the collector of each BJT and the cathode of the corresponding segment on the display. To minimize the amount of board space consumed by the output driving circuitry, MPQ3904s (quad packaged 2N3904s) were selected instead of the standard discrete 2N3904s. The zero bit on Port C is connected to a combination BJT and MOSFET circuit that drives the "Your Speed" and "Best Speed" LED's. The circuit is wired so that the LED's toggle, and only one can be ON at a time.

Figure 4 shows a schematic of the circuit used. Part (a) shows the accelerometers, the op-amps used to buffer the outputs and drive the transmission lines, the comparator network and the potentiometer used to set the detection threshold. Part (b) shows the MCU, with its minimal required supporting circuitry. Part (c) shows the voltage regulator, a mapping of the cathodes to the corresponding segments on the LED displays, the BJT switch circuitry used to drive the seven segment display LEDs (although not shown on the schematic, this circuit block is actually repeated 15 times), and finally, the circuitry used to drive the "Your Speed" Best Speed" LEDs.

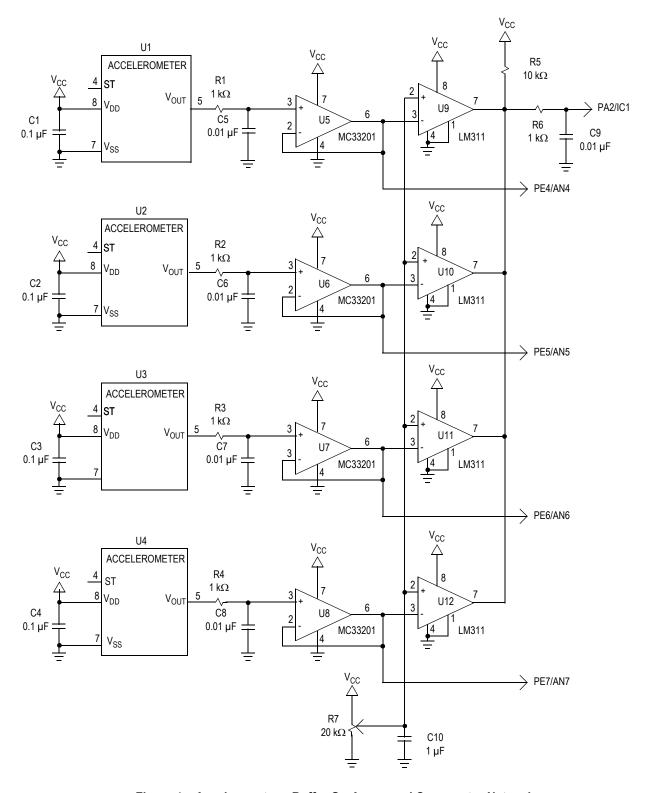


Figure 4a. Accelerometers, Buffer Op-Amps, and Comparator Network

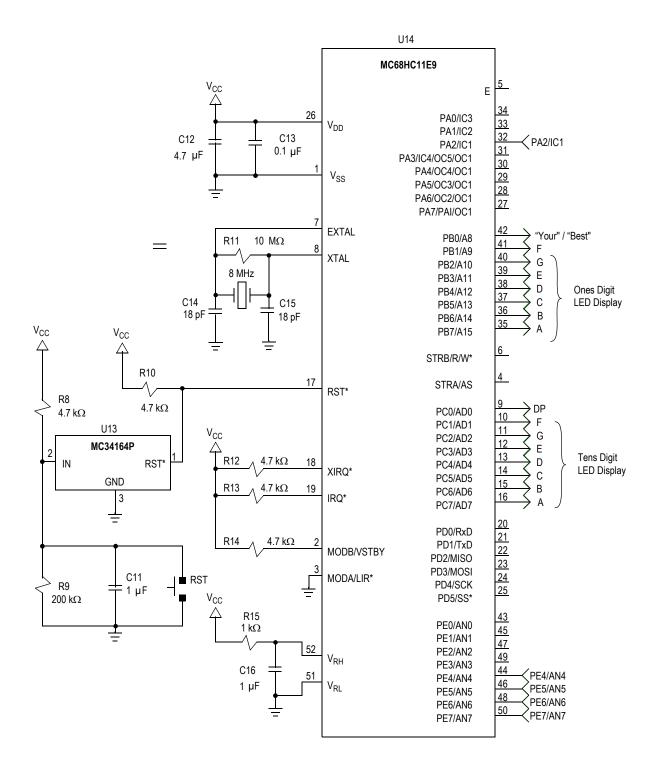
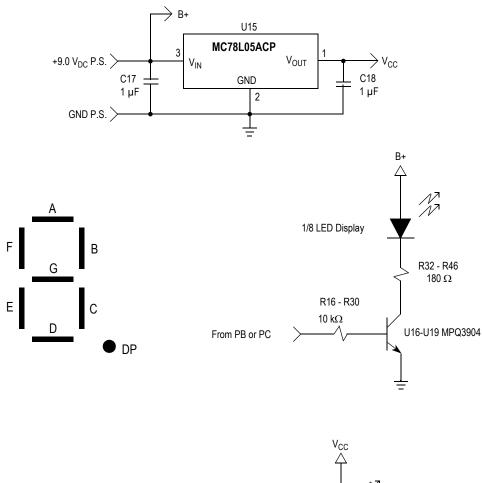



Figure 4b. MC68HC11E9 MCU with Supporting Circuitry

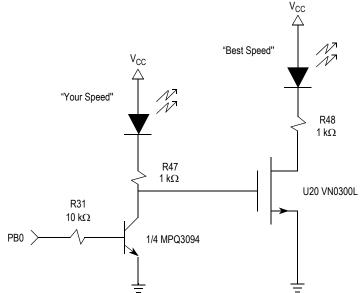


Figure 4c. Voltage Regulator, LED Segment Mapping, and LED Driving Circuitry

IMPLEMENTATION — **SOFTWARE**

The operation of the Baseball Pitch Speedometer is very simple. Upon power on reset, the output LEDs are initialized to display 00 and "Best Speed." The analog to digital converter is turned on and the offset voltages of the accelerometers are measured and stored. Finally, all the variables are initialized and the MCU goes into a dormant state, where it will wait for a negative edge input capture pulse to trigger it to begin processing the crash signal.

Once the input capture flag is set, the MCU will immediately begin the analog to digital conversion sequence. As it digitizes the crash signature, it will calculate the absolute difference between the current value and the stored offset voltage value. It will integrate by summing up all the differences. Figure 2 shows a typical crash signature of the Baseball Pitch Speedometer. As illustrated, starting at the point of impact (A), the acceleration will initially ramp up, reaching a maximum, then decrease as the target is displaced. Because the target is constrained to the frame structure, the acceleration will continue to decrease until it reaches a minimum (point B). which correspond to the travel stop of the target. It is difficult to determine exactly when point B will occur, because the amplitude and duration of the initial acceleration pulse will vary with ball speed. Therefore, the capture window duration is set so that it will encompass most typical crash signatures. while rejecting most of the secondary ripples that result as the energy is dissipated by the system.

After integrating the four signals, the results are added together to produce an overall sum. This procedure averages out the individual responses and reduces measurement error due to the variability of where the ball lands on the target. The MCU then divides the grand sum by an empirically predetermined constant of proportionality. The result will then go through a binary to BCD conversion algorithm. A look-up table is used to match the BCD numbers to their corresponding 7-segment display codes. The calculated speed is displayed on the two digit 8-segment displays (one segment corresponds to the decimal point), and the "Your

Speed" LED is turned on while the "Best Speed" LED is turned off. After a duration of approximately five seconds, the LEDs are toggled and stored best speed is redisplayed. The five second delay is used to provide enough time for the user to check his/her speed and also to allow the target to return to a rest state. The system is now ready for another pitch. A complete listing of the software is presented in the Appendix.

CONCLUSION

The Baseball Pitch Speedometer works fairly well, with an accuracy of ± 5 mph. The dynamic range of the system is also worthy of note, measuring speeds from less than 10 mph up to well above the 70 mph range. One key point to emphasize, is that the system is empirically calibrated, and so to maintain good accuracy the system should only be used with balls of mass equal to those used during calibration.

Although intended mainly for training and recreational purposes, the Baseball Pitch Speedometer demonstrates a very important concept concerning the use of accelerometers. Accelerometers can be used not only to detect that an event such as impact or motion has occurred, but more importantly they measure the intensity of such events. They can be used to discern between different crash levels and durations. This is very useful in applications where it is desired to have the system respond in accord with the magnitude of the input being monitored. An example application would be a smart air bag system, where the speed at which the bag inflates is proportional to the severity of the crash. The deployment rate of the airbag would be controlled so that it does not throw the occupant back against the seat, thus minimizing the possibility of injury to the occupant. Another application where this concept may be utilized is in car alarms, where the response may range from an increased state of readiness and monitoring, to a full alarm sequence depending on the intensity of the shock sensed by the accelerometer. This could be used to prevent unnecessary firing of the alarm in the event that an animal or person were to inadvertently bump or brush against the automobile.

APPENDIX — ASSEMBLY CODE LISTING FOR BASEBALL PITCH SPEEDOMETER

```
* Baseball Pitch Speedometer - Rev. 1.0
* Program waits for detection of impact via the input capture pin and then reads four A/D channels.
 The area under the Acceleration vs. Time curve is found by subtracting the steady state offsets
* from the digitized readings and summing the results. The sum is then divided by an empirically
* determined constant of proportionality, and the speed of the ball is displayed.
* Written by Carlos Miranda
* Systems and Applications
* Sensor Products Division
* Freescale Semiconductor Products Sector
* May 6, 1997
*************************************
         Although the information contained herein, as well as any information provided relative
         thereto, has been carefully reviewed and is believed accurate, Freescale assumes no
         liability arising out of its application or use, neither does it convey any license under
         its patent rights nor the rights of others.
* These equates assign memory addresses to variables.
              EQU
                              $B600
CODEBGN
              EOU
                              $B60D
REGOFF
              EOU
                              $1000
                                      ;Offset to access registers beyond direct addressing range.
PORTC
              EQU
                              $03
                              $04
PORTB
              EQU
DDRC
              EOU
                              $07
TCTL2
              EOU
                              $21
TFLG1
              EOU
                              $23
ADCTL
              EQU
                              $30
              EQU
                              $31
ADR1
              EOU
                              $32
ADR2
ADR3
              EOU
                              $33
ADR4
              EQU
                              $34
OPTION
              EOU
                              $39
STACK
              EQU
                              $01FF
                                      ;Starting address for the Stack Pointer.
                              $0000
              EQU
* These equates assign specific masks to variables to facilitate bit setting, clearing, etc.
ADPU
              EOU
                              $80
                                      ;Power up the analog to digital converter circuitry.
CSEL
              EQU
                              $40
                                      ;Select the internal system clock.
CCF
              EQU
                              $80
                                      ;Conversion complete flag.
IC1F
               EQU
                              $04
                                      ;Input Capture 1 flag.
IC1FLE
              EOU
                              $20
                                      ;Configure Input Capture 1 to detect falling edges only.
IC1FCLR
                                      ;Clear the Input Capture 1 flag.
              EQU
                              $FB
CHNLS47
              EQU
                              $14
                                      ; Select channels 4 through 7 with MULT option ON.
                                      ;Number of A/D samples taken.
SAMPLES
                              $0200
              EQU
OC1F
              EOU
                              $80
                                      Output Compare 1 flag.
OC1FCLR
              EQU
                              $7F
                                      ;Clear the Output Compare flag.
                              $0098
CURDLY
              EQU
                                      ;Timer cycles to create delay for displaying "Your Speed."
RAMBYTS
                              $19
                                      ; Number of RAM variables to clear during initialization.
              EOU
AT.T.ONES
              EOU
                              SFF
YOURSPD
              EQU
PRPFCTR
              EOU
                              $00AD
                                      ;This constant of proportionality was empirically determined.
* Variables used for computation.
              ORG
                              RAM
OFFSET1
              RMB
                              1
                                      ;One for each accelerometer.
OFFSET2
              RMB
                              1
OFFSET3
               RMB
                              1
OFFSET4
              RMB
                              1
SUM1
               RMR
                              2
                                      ; Area under the acceleration vs. time curve.
SUM2
               RMB
                              2
SUM3
              RMB
                              2
SUM4
              RMB
                              2
GRNDSUM
               RMB
COUNT
              RMB
CURBIN
              RMR
                              1
TEMPBIN
               RMB
BCD
              RMB
                              2
CURDSPL
              RMR
                              2
                              1
MAXBIN
               RMB
MAXDSPL
              RMB
* LED seven segment display patterns table.
               ORG
                              EEPROM
```

```
START
               JMP
SEVSEG
               FCB
                                %11111010
               FCB
                                %01100000
               FCB
                                %11011100
               FCB
                                %11110100
               FCB
                                %01100110
                                %10110110
               FCB
               FCB
                                %10111110
               FCB
                                %11100000
                                %1111110
               FCB
               FCB
                                %11100110
* This is the main program loop.
               ORG
                                CODEBGN
START
               LDS
                                #STACK
               LDX
                                #REGOFF
                                LEDINIT
               JSR
               JSR
                                ADCINIT
                                VARINIT
               JSR
                                CAPTURE
MAIN
               JSR
               JSR
                                COMPUTE
                                BINTBCD
               JSR
                                OUTPUT
               JISR
               BRA
                                MAIN
* This subroutine initializes ports B & C, and the LED display.
T.E.D.T.N.T.T
               PSHX
               PSHA
               LDX
                                #REGOFF
               BSET
                                DDRC, X, ALLONES
                                                         ;Configure port C as an output.
               LDAA
                                SEVSEG
               STAA
                                PORTB,X
               STAA
                                PORTC,X
               PULA
               PULX
               RTS
* This subroutine initializes the analog to digital converter.
ADCINIT
               PSHX
               PSHA
               LDX
                                #REGOFF
               BSET
                                OPTION, X, ADPU
                                                         ;Turn on A/D converter via ADPU bit.
               BCLR
                                OPTION, X, CSEL
                                                         ;Select system e clock via CSEL bit.
               CLRA
DELAY
               INCA
               BNE
                                DELAY
               PULA
               PULX
               RTS
* This subroutine clears all the memory variables.
VARINIT
               PSHX
                                #$0000
               LDX
CLRVAR
               CLR
                                OFFSET1,X
               INX
                                #RAMBYTS
                                                         ; Number of RMB bytes.
               CPX
               BLO
                                CLRVAR
DONECLR
               LDX
                                #REGOFF
               T.DAA
                                #CHNLS47
                                                         :Measure the offset.
               STAA
                                ADCTL,X
OFSWAIT
               BRCLR
                                ADCTL, X, CCF, OFSWAIT
               LDD
                                ADR1,X
               STD
                                OFFSET1
               LDD
                                ADR3,X
               STD
                                OFFSET3
               PULX
               RTS
* This subroutine waits for impact and computes the area under the curve.
CAPTURE
               PSHX
               PSHA
               PSHB
               LDX
                                #REGOFF
               BSET
                                TCTL2,X,IC1FLE
                                                         ;Set IC1 to detect falling edge only.
                                TFLG1,X,IC1FCLR
               BCLR
MONITOR
               BRCLR
                                TFLG1,X,IC1F,MONITOR
ADCREAD
               LDAA
                                #CHNLS47
                                                         ;Select channels 4 - 7 for conversion.
               STAA
                               ADCTL . X
ADCWAIT
               BRCLR
                                ADCTL,X,CCF,ADCWAIT
CALDLT1
               LDAB
                                ADR1,X
```

```
SUBB
                                        OFFSET1
               \mathtt{BPL}
                                        ADDSUM1
               COMB
               INCB
ADDSUM1
                CLRA
               ADDD
                                        SUM1
                                        SUM1
               STD
CALDLT2
               LDAB
                                        ADR2,X
                SUBB
                                        OFFSET2
                                        ADDSUM2
               RPT.
                COMB
                INCB
ADDSUM2
               CLRA
                                        SUM2
               ADDD
               STD
                                        SUM2
                                        ADR3,X
CALDLT3
               LDAB
               SUBB
                                        OFFSET3
               BPL
                                        ADDSUM3
               COMB
                INCB
ADDSUM3
               CLRA
                                        SUM3
               ADDD
                STD
                                        SUM3
CALDLT4
               LDAB
                                        ADR4,X
                                        OFFSET4
               SUBB
               \mathtt{BPL}
                                        ADDSUM4
               сомв
               INCB
ADDSUM4
               CLRA
               ADDD
                                        SUM4
                                        SUM4
               STD
                LDD
                                        COUNT
               ADDD
                                        #$0001
                                        COUNT
               STD
                CPD
                                        #SAMPLES
               BLO
                                        ADCREAD
               PULB
                PULA
               PULX
               RTS
* This subroutine computes the ball speed by dividing the overall sum by a constant.
COMPUTE
               PSHX
               PSHA
               PSHB
               LDD
                                        SUM1
                                        SUM2
               ADDD
                ADDD
                                        SUM3
               ADDD
                                        SUM4
                                        GRNDSUM
               STD
               LDX
                                        #PRPFCTR
                IDIV
               XGDX
                                        CURBIN
                STAB
                PULB
               PULA
               PULX
               RTS
* This subroutine converts from binary to BCD. (Limited to number up to 99 decimal.)
BINTBCD
               PSHX
               PSHA
               PSHB
                LDX
                                        #$0000
               LDAA
                                        CURBIN
               STAA
                                        TEMPBIN
                CLRA
               CLRB
BINSHFT
                                        TEMPBIN
               LSL
               ROLB
               LSLA
                                        #$10
               CMPB
                BLO
                                        CHKDONE
                INCA
                                        #$0F
               ANDB
CHKDONE
                INX
               CPX
                                        #$0008
```

```
BEQ
                                        RAILAT9
CHKETVE
               CMPB
                                        #$05
               BLO
                                        BINSHFT
               ADDB
                                        #$03
               BRA
                                        BINSHFT
RAILAT9
               CMPA
                                        #$09
                                                        ;Force the display to "99" if speed > 100 mph.
               BLS
                                        DONE
               LDD
                                        #$0909
DONE
               STD
                                        BCD
                                                        ; This part finds the seven segment display codes.
               T-DX
                                        #SEVSEG
               XGDX
               ADDB
                                        BCD
               XGDX
               LDAA
                                        $00,X
               STAA
                                        CURDSPL
                                        #SEVSEG
               LDX
               XGDX
               ADDB
                                        BCD+1
               XGDX
               LDAA
                                        $00,X
               STAA
                                        CURDSPL+1
               PULB
               PULA
               PULX
               RTS
* This subroutine displays the current speed for 5 seconds & then displays the maximum.
OUTPUT
               PSHX
               PSHA
               PSHB
LDX
               #REGOFF
                                        CURBIN
               LDAA
               CMPA
                                        MAXBIN
                                        OLDMAX
               BLS
               STAA
                                        MAXBIN
               LDD
                                        CURDSPL
               STD
                                        MAXDSPL
OLDMAX
               ממיז
                                        CURDSPL
               STD
                                        PORTC,X
               BSET
                                        PORTB, X, YOURSPD
                                                                      ;Toggle the "YOUR"/"BEST" LEDs.
               ממיז
                                        #$0000
LEDWAIT
               BCLR
                                        TFLG1,X,OC1FCLR
                                                                      ;Clear output compare 1 flag.
DSPLDLY
                                        TFLG1,X,OC1F,DSPLDLY
               BRCLR
               ADDD
                                        #$0001
               CPD
                                        #CURDLY
                                                                      ; Decimal 152. (152 * 33ms = 5.0 sec)
               BLO
                                        LEDWAIT
               LDX
                                        #$0000
RECLEAR
               CLR
                                        SUM1,X
                                                        ;Clear 12 RAM bytes beginning at address "SUM1".
               INX
                                                        ;Clears SUM1 thru SUM4, GRNDSUM, and COUNT.
               CPX
                                        #$000C
               BLO
                                        RECLEAR
               LDX
                                        #REGOFF
               ממיז
                                        MAXDSPL
               STD
                                        PORTC,X
                                                        ;The "YOUR"/"BEST" LEDS are automatically toggled.
               PULB
               PIII.A
               PULX
               RTS
```

Reducing Accelerometer Susceptibility to BCI

by: Brandon Loggins

INTRODUCTION

Automobile manufacturers require all system electronics to pass stringent electromagnetic compatibility (EMC) tests. Airbag systems are one of the systems that must perform adequately under EMC tests. There are different types of tests for EMC, one of which is testing the tolerance of the system to high frequency conducted emissions. One of the most stringent methods for EMC evaluation is the Bulk Current Injection (BCI) test. The entire airbag system must continue to function normally throughout the BCI test. This application note will discuss how to reduce susceptibility to BCI for the Freescale accelerometer but the information presented here can be applied to other electronic components in the system.

BCI TEST SETUP

The BCI test procedure follows a published SAE engineering standard, "Immunity to Radiated Electric Fields ~ Bulk Current Injection (BCI)", or SAE J 1113/401. For an airbag module, this involves injecting the desired current into the wiring harness by controlling current in the injection probe. The test frequency can vary from one to several hundred MHz. There are at least 20 frequency steps per octave required for the test, but as many as 50 steps per octave can be used. The injection probe is placed on the harness in one of three distances from the airbag module connector: 120, 450 and 750 mm. There is a monitor pickup probe present to measure the amount of current being injected. It is placed 50 mm from the airbag module. This feeds back to the system to ensure that the desired test current is being injected on to the wiring harness. Figure 1 shows the setup for the BCI test. (For more details, see the SAE J 1113/401 Test Procedure).

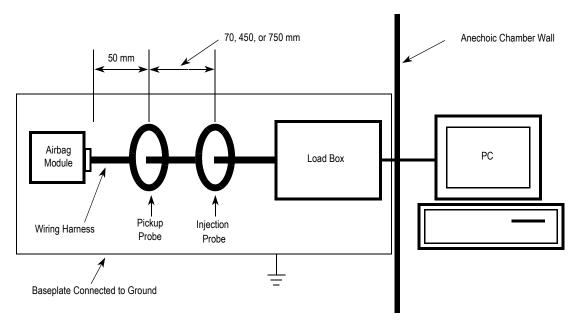


Figure 1. BCI Test Setup

The harness connects the airbag module to a load box. This load box provides simulated loads for terminating the remainder of the airbag system (firing ignitors, etc.). The data coming back is translated from J1850 to RS232 to be communicated to a dummy terminal on a PC. For safety reasons, this test is typically performed inside an anechoic chamber to shield high frequency emissions from equipment and humans.

BCI TEST PROCEDURE FOR THE MMA2202D ACCELEROMETER

The accelerometer is evaluated in the following manner. In an airbag system, the microcontroller's A/D converter digitizes the accelerometer output. The microcontroller sends this value to the communication ASIC which translates the logic from board level logic to RS232, then sends the value back along the wiring harness. Once through the chamber wall, the data is translated to RS232 and fed to a dummy terminal. On the terminal screen, the A/D codes for the accelerometer can be monitored for unexpected performance.

Ideally, when the accelerometer is at rest (no acceleration applied), the output should be at 0g, regardless of what EMC testing the system may be subjected to. Depending on the crash algorithm of the airbag module software, there is some allowable offset shift that can be tolerated. Higher shift in output could create errors in the crash analysis software, perhaps causing the airbags to unnecessarily deploy when there is not a crash or not deploy when there is a crash.

The accelerometer must be able to meet the airbag system requirements throughout BCI exposure. It has a sensitivity of 40 mV/g and an offset (0g output) of 2.50 V. During the BCI test, the accelerometer output should be 2.50 V at 0g with as little drift as possible. A typical airbag system may have software that can tolerate from as little as 0.5 g up to 2.0 g. of deviation from the offset. The system would then expect the accelerometer output to be within 40 mV of the offset during the entire BCI test. Therefore, at any given frequency of the BCI test, if the output deviates outside this expected window of drift, it fails the test.

MMA2202D ACCELEROMETER BCI TEST RESULTS

If a system has not been well designed for electromagnetic compatibility, the accelerometer, as well as other devices, can have performance problems. What has been found for the accelerometer is that in some system applications, it suffers from an offset shift when certain frequencies of BCI are applied. For example, in one airbag system being tested at a certain frequency, with the desired BCI current applied, the offset is found to shift down by 60 mV. This would equate to an error of 1.5 g. See Figure 2. At other frequencies, this shift is even higher. This DC shift plot was taken with an oscilloscope using a 20 MHz filter to remove the high frequency component of the signal. Probes are placed at the accelerometer in the system application. The plot shows the accelerometer output before and after BCI was applied (before and after the RF generator creating the high frequency signal was turned on).

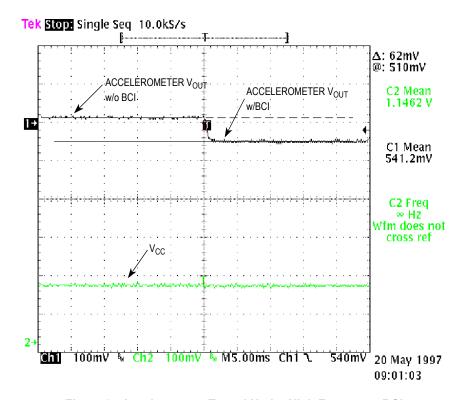


Figure 2. Accelerometer Tested Under High Frequency BCI

This phenomenon has been determined to be system level related. PCB layout and grounding for the accelerometer will affect its performance. This was found by testing the accelerometer outside of the airbag module. The device was put on a test board by itself with only the supply decoupling capacitor of 0.1 μF connected to it. To simulate the effect of BCI on V_{CC}, a frequency generator was used to inject a known high frequency sinusoid that caused BCI failure on to the 5.0 V supply voltage. The device was first tested in small test board with ground provided by one wire back to the supply. This grounding reproduced the failure due to BCI seen at the module level. The test board was then mounted down to a ground plane provided by a copper plate and the accelerometer ground was soldered to the plate (providing a low impedance path to ground). With this setup, the offset shift did not occur.

If a system does not incorporate a good PCB layout providing a low impedance to ground, the accelerometer output may shift at certain high frequencies. This output offset shift was caused by a shift in the 0-5.0 V supply window. Because the accelerometer has a ratiometric output, its offset is dependent on the supply voltage. Any change in the supply voltage will result in the same proportional change in the output. For example, if the 5.0 V supply were to change by 10%, from 5.0 V to 5.5 V, the accelerometer offset will change by 10% also, from 2.5 V to 2.75 V. This phenomena would also occur if the ground were to shift. A 100 mV change in ground would result in a 50 mV change in the output. If the accelerometer does not have low impedance path to ground and parasitics from a poor ground are present as a result, the ground seen by the accelerometer may change over frequency. So, during a BCI test, if the 5.0 V supply does not shift but the output of the accelerometer does, the ground to the accelerometer may be moving.

It was found with some experimentation that the offset shift can be eliminated with proper board layout techniques as described below.

PROPER LAYOUT TECHNIQUES

Since the accelerometer is a sensitive analog device that relies on a clean supply to function within established parameters, there are some techniques that can be employed to minimize the effects of BCI on the accelerometer performance. PCB layout is paramount to reducing susceptibility to BCI.

- A low impedance path to ground will provide shunting of the high frequency interference and minimize its effect on the accelerometer. The best way to provide a good path is by putting a solid, unbroken ground plane in the PCB. This ground plane should be shunted to chassis ground at the module connector. This will ensure that the high frequency BCI will be shunted before interfering with accelerometer performance.
- All accelerometer pins that require ground connection should be tied together to a common ground.

- Traces attached directly to the connector pins can receive high RF noise, which can couple to nearby traces and components. Increasing series impedance of the traces helps reduce the couple or conducted noise. High frequency filters on the supply line and other susceptible lines may be required to filter out high frequency interference introduced by the BCI test. Signal lines that carry low current can tolerate series resistances of 100-200 Ω.
- Decoupling capacitors on every input line to the common ground plane will help shunt the high frequency away from the system. These should be placed near the connector.
- Signal trace lengths to and from the accelerometer should be kept at a minimum. The shorter the trace, the less chance it has of picking up high frequency BCI signals as it crosses the board. Trace lengths can be reduced by placing the accelerometer and the microcontroller as close together as possible. Signal and ground traces looping should be minimized.
- A decoupling capacitor on the accelerometer Vcc pin will also help minimize BCI effects. The recommended value is 0.1 μF. This capacitor should be placed as close as possible to the accelerometer to achieve the best results.
- To maximize ratiometricity, the accelerometer Vcc and the
 microcontroller A/D reference pin should be on the same
 trace. The accelerometer ground and the microcontroller
 ground should also share the same ground point.
 Therefore, when there is signal interference due to BCI,
 the A/D converter and the accelerometer will see the
 interference at the same level. This will result in the same
 digital code representation of acceleration without signal
 interference.
- A clean power supply to both the accelerometer and the microcontroller should be provided. Supply traces should avoid high current traces that might carry high RF currents during the BCI test. The traces should be as short as possible.
- The accelerometer should be placed on the opposite end of the PCB away from the connector. The farther the distance, the lower the chance high frequency RF from BCI will interfere with the accelerometer.
- The accelerometer should be placed away from high current paths that may carry high RF currents during the BCI test.

Automotive customers will continue to require airbag systems to have high standards for EMC. One way to test for EMC is perform the Bulk Current Injection test. Because of the high current involved, BCI is one of the most difficult EMC tests to pass. Being part of the airbag system, the accelerometer must continue to function normally under application of high frequency BCI. The accelerometer is highly sensitive to placement on the board and its connection to ground. Poor design will caused the device to fail the BCI test. The practice of good PCB layout, device placement and good grounding will allow the accelerometer to function within specification and pass the BCI test.

Using an Accelerometer Evaluation Board

by: Leticia Gomez and Raul Figueroa Sensor Products, Systems and Applications Engineering

INTRODUCTION

This application note describes the Accelerometer Evaluation Board. The accelerometer evaluation boards are small circuit boards intended to serve as aids in system designs with the capability for mounting and quickly evaluating the low g devices. It also provides a means for understanding the best mounting position and location of an accelerometer in your product.

CIRCUIT DESCRIPTION

Figure 2 and Figure 3 are circuit schematics of the single and dual-axis evaluation boards respectively. The recommended decoupling capacitor at the power source and recommended RC filter at the output, are included on the evaluation board. This RC filter at the output of the accelerometer minimizes clock noise that may be present from the switched capacitor filter circuit. No additional components are necessary to use the evaluation board.

Refer to the respective datasheet of the device being used for specifications and technical operation of a specific accelerometer.

POWER HEADER ON LOW G SINGLE AXIS EVALUATION BOARDS

The power header provides a means for connecting to the accelerometer analog output through a wire to another breadboard or system. Four through-hole sockets are included to allow access to the following signals: VDD, GND, ST and STATUS. These sockets can be used as test points or as means for connecting to other hardware.

The ON/OFF switch (S1) provides power to the accelerometer and helps preserve battery life if a battery is being used as the power source. S1 must be set towards the ON position for the accelerometer to function. The green LED (D1) is lit when power is supplied to the accelerometer.

A self-test pushbutton (S2) on the evaluation board is a self-test feature that provides verification of the mechanical and electrical integrity of the accelerometer. The STATUS pin is an output from the fault latch and is set high if one of the fault conditions exists. A second pressing of the pushbutton (S2) resets the fault latch, unless of course one or more fault conditions continue to exist.

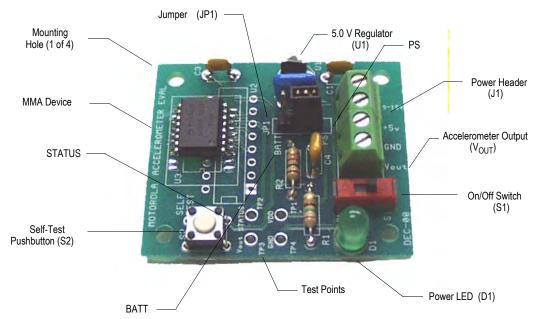


Figure 1. MMA1250D, MMA1260D, MMA1270D and MMA2260D Accelerometer Evaluation Board

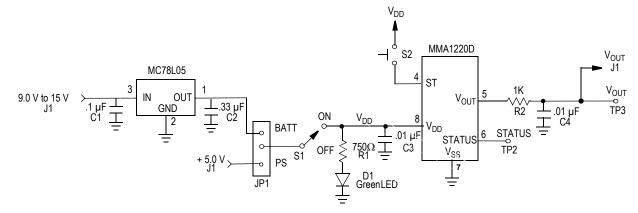


Figure 2. MMA1250D, MMA1260D, MMA1270D and MMA2260D Evaluation Board Circuit Schematics

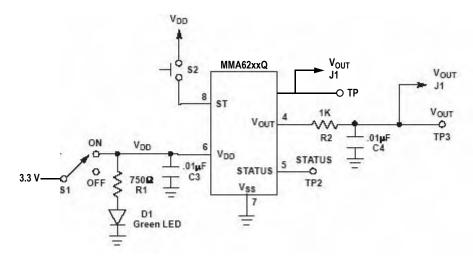


Figure 3. MMA6200Q Series Evaluation Board Circuit Schematic

OPTIONAL SOCKET MOUNTING

The board allows for direct mounting of a 16-pin DIP or SOIC package. For the SOIC device, a 20-pin test socket is used to allow for evaluation of more than one device without soldering directly to the board and potentially damaging the PCB. Care must be taken in placing the device correctly in the socket as four pins of the socket will not be used. With the board oriented as shown in Figure 3, Pin 1 should face downward and the device should be positioned toward the top of the test socket, thereby exposing the bottom four pins of the test socket. The socket is marked to help identify the four unused socket pins. Lids to secure the device in the socket are included with the board and delicately snap into place. The lids can be removed by applying pressure to the sides of the lid or by lifting the top and bottom snaps of the lid.

The evaluation board has a 4-pin header (J1 in Figure 1) for interfacing to a 5 volt power source or a 9 to 15 volt power source (for example, 9 V battery). Jumper JP1 (see Figure 1) must have the following placement: on PS if a 5 V supply is being used or on BATT if a 9 V to 15 V supply is used. A 5 V regulator (U1 in Figure 1) supplies the necessary power for the accelerometer in the BATT option.

Table 1. Pin Out Description

Pin	Name	Description	
4	ST	Logic input pin to initiate self-test	
5	V _{OUT}	Output voltage of the accelerometer	
6	STATUS	Logic output pin to indicate fault	
7	V _{SS}	Power supply ground	
8	V_{DD}	Power supply input	

Board Layout and Content

Figure 4 and Figure 5 show the layout used on the evaluation board. Through-hole mounting components have been selected to facilitate component replacement.

Mounting Considerations

System design and sensor mounting can affect the response of a sensor system. The placement of the sensor itself is critical to obtaining the desired measurements. It is important that the sensor be mounted as rigidly as possible to obtain accurate results. Since the thickness and mounting of the board varies, parasitic resonance may distort the sensor

measurement. Hence, it is vital to fasten and secure to the largest mass structure of the system, i.e. the largest truss, the largest mass, the point closest to source of vibration. On the other hand, dampening of the sensor device can absorb much of the vibration and give false readings as well. The evaluation board has holes on the four corners of the board for mounting. It is important to maintain a secure mounting scheme to capture the true motion.

Orientation of the sensor is also crucial. For best results, align the sensitive axis of the accelerometer to the axis of vibration. In the case of the MMA1220D, the sensitive axis is perpendicular to the plane of the evaluation board.

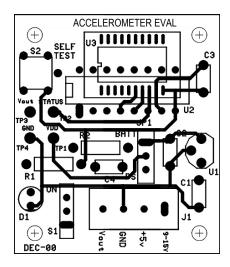


Figure 4. Board Layout (Component Side)

ORDERING INFORMATION

The Accelerometer Evaluation Boards are available to order as Evaluation Kits. Each kit includes an Evaluation Board with the accelerometer in an anti–static bag, a sensor repository CD that contains sensor brochures, data sheets, and the revised data book, and instructions for using the Evaluation Board.

Table 2 shows the kits that are available, or will be available soon. Check our website for availability.

SUMMARY

The Accelerometer Evaluation Board is a design-in tool for customers seeking to quickly evaluate an accelerometer in terms of output signal, device orientation, and mounting considerations. Both through-hole and surface mount packages can be evaluated. With the battery supply option and corner perforations, the board can easily be mounted on the end product; such as a motor or a piece of equipment. Easy access to the main pins allows for effortless interfacing to a microcontroller or other system electronics. The simplicity of this evaluation board provides reduced development time and assists in selecting the best accelerometer for the application.

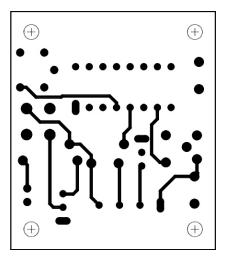


Figure 5. Board Layout (Back Side)

Table 2. Evaluation Kits Order Information

Part Number	G Range	Axis
Kit1925MMA1250D	5.0g	Z
Kit1925MMA1260D	1.5g	Z
Kit1925MMA1270D	2.5g	Z
Kit1925MMA2260D	1.5g	Х
Kit1925MMA6260Q	1.5g	XY, 50 Hz
Kit1925MMA6261Q	1.5g	XY, 300 Hz
Kit1925MMA6262Q	1.5g	XY, 150 Hz
Kit1925MMA6263Q	1.5g	XY, 900 Hz
Kit1925MMA6231Q	1.5g	XY, 300 Hz
Kit1925MMA6233Q	1.5g	XY, 900 Hz

Using the TRIAX Evaluation Board

by: Michelle Clifford Sensor Products Division, Tempe, AZ

INTRODUCTION

Using micro machining and integrated circuit technology, Freescale produces highly reliable, capacitive, acceleration sensors. Freescale's accelerometers were initially designed for front- and side-impact airbags in the automotive arena, but now there are extensive applications in medical, appliance, consumer, and industrial areas such as high-end washing machines, gaming devices, LCD projectors, robotics, and fitness equipment.

TRIAX Board Overview

The TRIAX demo was built to combine many of the demos that we have available for accelerometers. These modules enable you to see how accelerometers can add additional functionality to many applications in different industries. By thinking of accelerometer applications in terms of the measurements performed, they can be grouped into five categories — Tilt, Position, Movement, Vibration, and Shock. This document describes the different demos available for each of the five categories of accelerometer measurement and how they can be demonstrated using the TRIAX board.

The TRIAX board is designed for three-axis sensing. Freescale offers three-axis sensing in several different ways. A three accelerometer solution can be achieved using two X-axis accelerometers in a 16-pin SOIC package, with one device rotated 90 degrees from the other to achieve X and Y axis sensing, and a Z-axis accelerometer in a 16-pin SOIC package. A two accelerometer solution is achieved using the MMA6260D, which is an X and Y-axis device and a Z-axis accelerometer, both in 6x6x2mm QFN packages. Sensor Products is in development with three-axis sensing in a single package.

Tilt

Tilt Applications refer to Inclinometers, Anti-Theft Devices, Game pads for Video Games or Joysticks, Sports Diagnostics and Physical Therapy Applications, PDAs, LCD Projection, and Camcorder Stability.

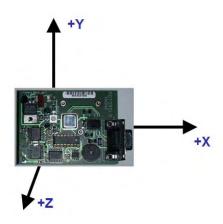


Figure 1. TRIAX Board and Corresponding Axis

Medical Applications for tilt range from Physical Therapy devices to Medical Equipment monitoring, where the accelerometers are used to ensure that the equipment is being used properly. For example, wrist mounted heartbeat monitors obtain the most accurate measurement if the blood pressure sensing device is at the same elevation as your heart. By using an accelerometer to measure the angle of your arm, the monitor can guide the user to the correct arm position before taking the measurement. The accuracy and the repeatability of the blood pressure measurement is greatly increased by using that tilt information to tell users exactly where to position their arms. In addition, the accelerometer is also able to stop a measurement if a user's wrist shifts out of the proper position by constantly sensing motion and position. Through software the monitor can tell not only at what angle it is mounted, but also if it is moving significantly or if the angle has changed.

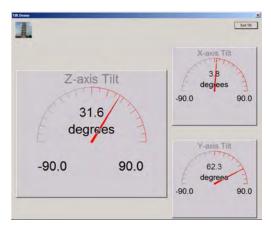


Figure 2. Tilt Demo Interface

Another large consumer application for Tilt is represented in the PDA Module. New cell phones and PDAs will be designed with fewer buttons, leaving room for a larger screen. Accelerometers can be used for many new functions—one being menu navigation. The user would simply navigate through a list of items simply by tilting the phone. The PDA Module uses the Z-axis accelerometer output data to extract the degree of tilt and moves the cursor on the list displayed on the PC up or down.

Figure 3. PDA Demo Interface

The Digitally Filtered Tilt Module will measure tilt in lawnmowers, forklifts, and other industrial equipment where there is vibration that can distort the accelerometer output. Using software filtering algorithms, the tilt information can be more accurately determined. In addition, the accelerometer can also be used to extract information on whether the motor is running or if the blades are engaged.

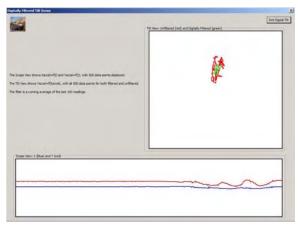


Figure 4. Digitally Filtered Tilt Demo Interface

The Anti-Theft Alarm Module is a stand-alone demo that can be used in laptops or other electronic equipment for added security features. The accelerometer is used to detect when the laptop is lifted. When the Anti-Theft Alarm Module is selected, the serial cable can be removed. The microcontroller constantly samples the accelerometer for static tilt information. If the TRIAX board is tilted 15 degrees, then the piezohorn will sound.

Position

Personal navigation applications are Car navigation, Backup GPS, and Map Tracking.

An accelerometer can be used to measure position values by using software algorithms to integrate the accelerometer signal. Since integration introduces errors over time, the accuracy of the derived velocity and position values decrease as the integration interval increases.

To obtain postion data, first velocity data is obtained through integration. Then position is obtained through a second integration. The accelerometer accuracy is approximated based on the integration interval and the desired velocity accuracy by either of the following equations:

$$a = v / (9.807 * t)$$
, where $v = m/sec$, $t = sec$, $a = G's$

Similarly, for position measurements, the required accelerometer accuracy can be approximated based on the integration interval and the desired position accuracy by:

$$a = x / (9.807 * t * t)$$
, where $x = m$, $t = sec$, $a = G's$

Motion

Some MOTION Applications are Braking Systems (trailer brakes), Pedometers, Accidental Drop Protection, Battery Conservation, Robotics and Motion Control, and Virtual Reality.

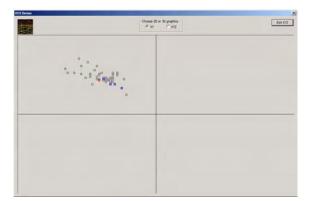


Figure 5. Positioning Demo Interface

Translation of accelerometer motion can be used for further calculation of position or speed. The Positioning Demo uses the TRIAX Board to show the first step for determining position.

Another application of movement measurement is pedometers. Mechanical pedometers simply count the number of steps taken. The pedometer displays either the number of steps taken or the distance traveled by using simple multiplication based on the average length of the user's stride. For this reason, they are not exceptionally accurate; if stride length varies, these mechanical pedometers may have a margin of error greater than 10 percent.

Using accelerometers, a pedometer can be designed with two-axis sensing for determining not only distance, but speed as well. One axis, measuring in the Z-axis, would determine the number of steps taken. A second accelerometer, sensing movement in the X-axis direction, parallel to the ground can be used with the Z-axis device to determine the length, the speed, and the impact of each stride. With all this information, pedometers can be more accurate and provide more functionality as well.

Movement can be detected using the accelerometer, but with that, also lack of movement can be detected as well. This is demonstrated in the Battery Saver Module. The X, Y, and Z-axis accelerometers are sampled by the microcontroller. When there is movement detected, the piezohorn is turned on signaling the movement detected. When there is no movement detected, the horn is silent. This module is used to demonstrate how the accelerometer can be effectively used in applications with full power and low power mode options, such as cell phones or GPS equipment. The cell phone or GPS device will detect motion and run in full power mode or continually receive satellite updates for positioning information. When there is no movement detected, they will run in low power mode and will not receive Satellite updates as often.

Rotational Acceleration

Rotational Acceleration is another measurement of movement that is obtained from accelerometers. Applications that can be enhanced by rotational acceleration data are Washing Machines for load imbalance and rotational compensation for Video Camera Stability.

Washing Machine load imbalance can be determined with an accelerometer after the fact by measuring the vibration. However, the accelerometer is used more effectively to predict the imbalance before it occurs. The accelerometer monitors the rotational orbit of the tub, extracting the RPM and elliptic geometric figures of merit to predict a load imbalance condition. The Load Imbalance Module (see Figure 6) monitors the rotational orbit of the TRIAX board, displaying the RPMs and a graphical elliptical display to demonstrate the application.

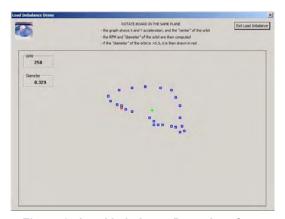


Figure 6. Load Imbalance Demo Interface

Vibration Measurement

Applications measuring vibration are Seismic Activity for earthquake detection, Smart Motor Preventive Maintenance, Hard Disk Drive Vibration Correction, and Acoustics Measurement and Control.

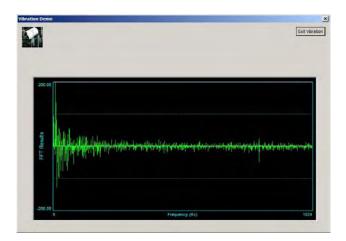


Figure 7. Vibration Demo Interface

Smart Motor Preventive Maintenance can be demonstrated using the Vibration Analysis Module (see Figure 7). Structural resonance in rotating machinery often increases noise and vibration levels leading to premature failure. An accelerometer can be used to not only detect when a rotating machine is failing from increased vibration, but an accelerometer can predict the failure by recognizing the vibration signature. Every motion has a vibration signature that is comprised of various levels of harmonics of vibration. The accelerometer is

able to determine the harmonics of the motor and monitor when the values have changed, predicting a problem with the machinery before a failure occurs. The Music Pitch Analysis Demo uses an accelerometer to detect the harmonics from a vibration. This can be quickly demonstrated using tuning forks with the TRIAX board. For example, striking an "A" tuning fork and placing it next to the TRIAX board, the highest amplitude frequency recognized by the accelerometer would be 440 Hz and the check box corresponding to an "A" would be selected. See Figure 8.

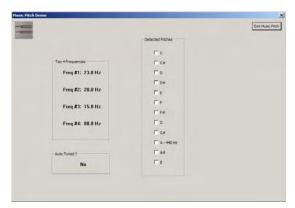


Figure 8. Music Pitch Analysis Demo

Accelerometers can also be used to detect the rotational vibration (RV) of hard disk drives (HDDs). When the RV characteristics of an operational HDD becomes too large or contains certain spectral content, the drive's performance is often compromised. Poor seek times, read/write errors, and lost data can be the result of excessive RV. The accelerometer detects the RV and enables the HDD to adjust the drive for better operation.

Shock Measurement

Shock Applications range from Black Boxes and Event Data Recorders, Hard Disk Drive Protection, and Shipping & Handling Monitors to record shock levels experienced during transportation of fragile products.

The Shock Detection Module provides a simple demonstration of using the accelerometer to not only detect shock, but also to detect which axis the shock occurred. This is a stand-alone module. Therefore, once the Shock Detection Module is selected, the serial cable can be disconnected for the demonstration. The TRIAX board beeps once when the impact occurs in the X-axis, twice when it occurs in the Y-axis and three times when the impact occurs in the Z-axis.

This demonstration can be further enhanced by adding software to sample the signal for shock recognition features that would determine different actions for different types of shock. The accelerometers available on the TRIAX board are ±1.5g, therefore the shock conditions are anything above 1g. For many applications, a higher g-range is necessary. Freescale offers accelerometers from ±1.5g all the way up to ±250g. For applications requiring a higher g range, there are devices available.

Circuit Description

The TRIAX board is used to demonstrate many different applications; therefore it was not optimally designed for one specific application. The basic components are three low g accelerometers, a microcontroller, serial communication circuitry, EEPROM for data collection, and a piezohorn. This TRIAX board displays the three-axis solution with three accelerometers in the 16-pin SOIC. The microcontroller selected was the MC68908KX8. It was selected because it has an SCI required for the serial communication, four 8-bit ADC channels, three of which are required for the three accelerometer voltage outputs, and 8 Kb of on-chip, in-circuit programmable FLASH memory that is used for calibration data and remembering which software module was last run using the PC.

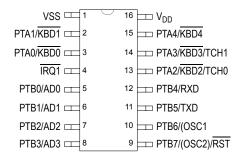


Figure 9. MC68HC908KX8 PDIP and SOIC Pin Assignments

Calibration

The zero g offset for the MMA1260D and the MMA2260D accelerometers are specified with a typical value of 2.5 V ±.

Follow these steps to determine the calibration values. Write down the A/D values for the X, Y, and Z outputs at 0g and 1g:

- 1. Start the RAW data software module.
- Enter the A/D values for X, Y, and Z when experiencing Og and 1g of static acceleration. Refer to Table 1 to see how to position the TRIAX boards to achieve the correct values
- 3. Write the value in a similar table as show in Figure 10.
- 4. Close the RAW data module.
- 5. Start the CALIBRATE software module.
- Fill in the A/D values that were determined. See Figure 11 for typical values.
- 7. Press the Calibration button.
- 8. Close the CALIBRATE software module.

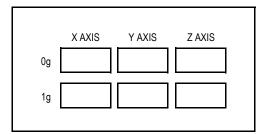


Figure 10. Calibration Data Table

Table 1. TRIAX Board Calibration Positions

	0g				
X at 0g	Place the TRIAX board on a flat surface so the components are face up and the battery is resting on the table.				
Y at 0g	Place the TRIAX board on a flat surface so the components are face up and the battery is resting on the table.				
Z at 0g	Hold the TRIAX board on its side so that the serial cable is at the top. The TRIAX board is perfectly horizontal when X has a maximum voltage without being shaken.				
	1g				
X at 1g	Hold the TRIAX board perpendicular so that the serial cable is at the top. The TRIAX board is perfectly horizontal when Y has a maximum voltage without being shaken.				
Y at 1g	Hold the TRIAX board on its side so that the serial cable is at the top. The TRIAX board is perfectly horizontal when X has a maximum voltage without being shaken.				
Z at 1g	Place the TRIAX board on a flat surface so the components are face up and the battery is resting on the table.				

The table in Figure 11 provides *typical values*. These typical values enable the TRIAX board to work with the PC software; however, accurately calibrating the accelerometers is necessary to find the exact values for the board. Use these values as a reference to enure the values that were obtained using the RAW DATA module were gathered by holding the board correctly.

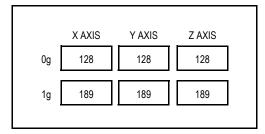


Figure 11. Typical A/D Values for Calibrating the TRIAX Board

Serial Connection and PC Operation

The TRIAX boards have serial circuitry and a DB9 connector for serial communication with the PC. The microcontroller is programmed with different modules that transmit data to the PC at different speeds and with different

accelerometer data, depending on the current module selected with the PC interface.

To set up the system for PC operation, follow these steps:

- 1. Connect the TRIAX board to the PC using a DB9 male/female serial cable.
- 2. Launch the PC Software Executable program TRIAX3.2.exe.
- 3. Slide the TRIAX board switch in the On position.
- 4. Confirm that a data handshake occurs when the piezohorn beeps.

Before any module is started, a handshake occurs with the PC and the TRIAX board. If S2 is pressed after Reset and before the Handshake, then the system goes into Sample Mode (X&Y 100x/s 40.96s).

A Handshake occurs by the microcontroller waiting for the character *R*. When recognized, it responds with a character that represents the version of the microcontroller software available. For Version 2 (TRIAX07.asm), the microcontroller returns an *N*. (i.e., *M* for TRIAX06.asm) and it beeps once. When the connection between the TRIAX board and the PC is established, the microcontroller waits for a character from the PC. Each character received tells the microcontroller which firmware module should be run. Then the selected firmware module will continue to run until the microcontroller is restarted.

Stand Alone Operation

There is a feature on the TRIAX board that does not require the PC. It allows two demonstrations to run. The first demonstration that is always available in stand-alone operation is the free-fall demonstration. The second demonstration is the most recently used stand-alone application that was selected using the PC software.

To run the free-fall demonstration without the PC connected, turn the TRIAX board on while holding the pushbutton. Continue holding the pushbutton for 10 seconds. When the piezohorn sounds, the Free-fall Module is activated. To allow the user to drop and catch the TRIAX board, it sounds the piezohorn when the free-fall conditions are met. The Free-fall Module continues to run until the board is restarted.

To run the most recently used stand-alone operation, hold down the pushbutton while turning on the TRIAX board. For example, if the battery saver demo was the last module run,

then you will be able to run the battery saver module or the Free-fall Module. To run the battery saver module, hold the pushbutton while turning on the TRIAX board and then quickly release the pushbutton. The piezohorn automatically starts beeping to signal that movement is detected. The battery saver module continues to run until the board is restarted.

SUMMARY

There are many new applications being designed using accelerometers. The TRIAX board is designed to demonstrate some of the general accelerometer applications. This application note describes these applications using the software programs available for the TRIAX board. After reading this application note, the user will be able to use the TRIAX board to demonstrate the existing accelerometer applications and be able to demonstrate their own design ideas.

±1.5g Dual Axis Micromachined Accelerometer Power Supply Rejection Ratio (PSRR) Suggestions

by: Peter Schultz Product Engineer

COMPONENT DESCRIPTION

The MMA6200Q series is a two axis (X and Y) accelerometer family with sensitivity parallel to the device's mounting plane. The device utilizes variable capacitance sensing elements and a two-channel interface IC all in a 16-pin QFN package.

This section provides a general description of the device power supply rejection ratio (PSRR), how it affects device performance, and suggestions for improvement.

INTRODUCTION TO POWER SUPPLY

Rejection Ratio

The power supply rejection ratio is a measure of how well the device rejects the noise on the power supply line. The MMA6200Q series is capable of being used in several different applications. In some cases it may be possible for supply line noise to adversely affect the output signal. This phenomenon can create large output signals when the supply line noise frequencies are roughly equal to the device's oscillator frequency and/or harmonics. The oscillator drives the g-cell sampling as well as the internal low pass filter. When the difference between the frequency of the noise on the supply and the oscillator frequency is less than the low pass filter cutoff frequency the aliased signal passes through the filter. This aliased signal is then amplified internally by the device creating an even more adverse effect. This noise at the output can be as much as ten times the amplitude of the input noise at the oscillator frequency or its harmonics.

IMPROVING THE POWER SUPPLY

Rejection Ratio

If the power supply contains noise approaching the oscillator frequency, large amounts of noise may be observed at the output of the device. This does not become an issue until the noise frequency is a little larger than the oscillator frequency; a little larger here meaning still within the internal low pass filter's bandwidth. In application a simple low pass

filter at the input helped to resolve this issue by attenuating much of the offending noise before it enters the device.

A simple two element low pass filter at the input of the device, made up of a resistor in series with a capacitor in shunt with V_{dd} , works rather well (see Figure 1).

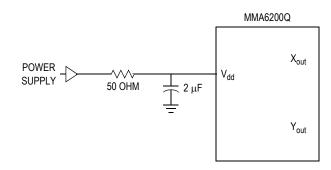


Figure 1. RC Input Loading for PSRR at V_{dd}

With this combination of a 50 ohm resistor and a 2 μF capacitor there is a large reduction in the PSRR, roughly 10X. This is now well below unity gain; meaning at the output of the device there is noticeably less noise than was supplied to the device, at the oscillator frequency and/or its harmonics. The first harmonic is at the oscillator frequency of roughly 15 KHz. The following illustration shows the effect on the PSRR when placing different values of capacitance at the input and retaining the 50 ohm resistor. There is six harmonics represented in the illustration the first of which is at about 15 KHz. These data points at the different harmonics represent the ratio of the output noise to the input noise. Depending on the application needs one can use this illustration to help determine the capacitive needs for the filter (see Figure 2). The plot is given in Log scale.

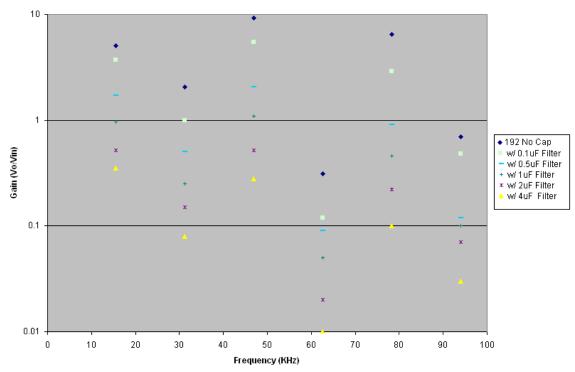


Figure 2. PSRR with 50 Ohm and Varying Input Capacitance

One can see the PSRR has improved by roughly a factor of 10 with a 2 μ F capacitor at the input. Not only can the plot be used as a guide in the design of an input filter, it can also help put in perspective the possible amplitudes of the signal and about what frequencies they may occur. From looking at the plot one can see that for a capacitance of 1 μ F the gains at the two most predominate noise frequencies is unity. This means the aliased signals will not be larger in amplitude than the input noise that created it; giving the recommended smaller capacitance filter in the following illustration (see Figure 3).

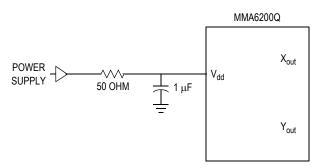


Figure 3. Recommended RC Input Loading for PSRR at V_{dd}

With cost as one of the deciding factors, this is a recommended filter design for reducing the PSRR. One should note however that variations in the individual devices and the different axes of the device produce plots that may look significantly different. The intent here is only to give an idea of the effects of different capacitances on the oscillator induced frequency gains. One must also remember to absorb any impedance the source may have into the RC filter as the source will also add its own impedance to the network.

If the series resistance and/or reactance is increased the amount of noise at the output will be decreased. The series reactance can be increased with the use of an inductor in series with the resistor (see Figure 4). This is more advantageous then adding more resistance due to the fact that it does not produce a large DC voltage drop.

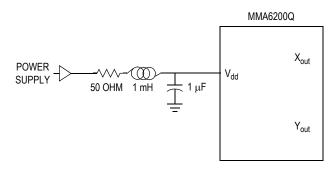


Figure 4. Recommended RCL Input Loading for PSRR at V_{dd}

The device was designed to operate with 3.3 Vdc at V_{dd} . If this input voltage is allowed to drop by more than half a volt the device may not operate correctly; hence the use of an inductor. With the use of an application board there was found to be greater than a factor of two drop in the output noise at the first harmonic with the use of the 1 mH inductor. The later harmonics incur a larger improvement due to the higher reactance of the inductor at the higher frequencies. As a result there was greater than a factor of eight improvement with the third and fifth harmonics. This RC and RLC circuit produced the following PSRR plot (see Figure 5).

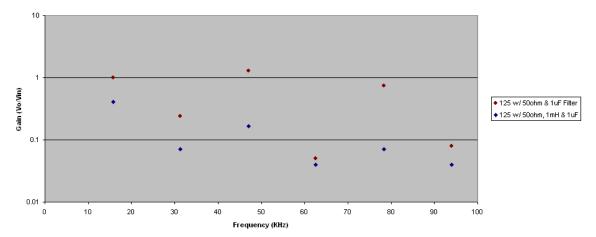


Figure 5. PSRR with RC and RLC Input Filter

If a smaller capacitance is desired in application with no inductor one can increase the value of just the series resistor. However one must take into consideration the tradeoffs involved. In order to get roughly the same improvement in the PSRR with a 0.5 μF capacitor as there was with the 50 ohm and 2 μF RC combination one must increase the series impedence to 150 ohms (see Figure 6).

This alternate RC circuit produces the following effect on the PSRR (see Figure 7). Notice the similarity in the gain when compared with the 50 ohm 2 μF filter. It is still well below unity for this configuration.

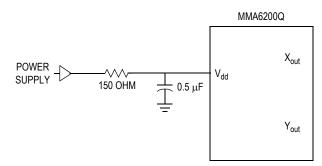


Figure 6. Alternate RC Input Loading for PSRR at V_{dd}

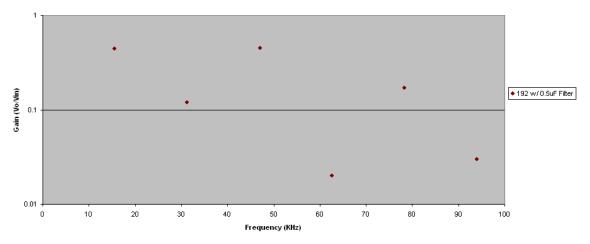


Figure 7. PSRR with 150 Ohm and 0.5 μF Input Capacitance

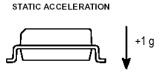
As stated before this large value of resistance creates a DC voltage drop at the input of the device. However, it could be reduced some and still achieve less than unity gain. With the same voltage at the input of the filter the output voltage of the device is lowered. In this case it drops by roughly 5 percent. In turn, this loss in DC voltage also lowers the ratio-metric error. However if the voltage at Vdd is allowed to drop much lower than 2.7 volts the device may not operate at all. If cost and space permits, one should consider, as stated previously, the substitution of a series inductor in place of at least part of this series resistance. This can greatly decrease the DC voltage drop problem.

To get a 150 ohm impedance at the frequency of the first harmonic we have X = 2*pie*(15 KHz)*L = 150 ohm. Solving for L gives the somewhat large value of 1.6 mH for the

inductor. A 1 mH inductor at 15 KHz has an impedance of about 95 ohms and these devices can be had in quantity (1000 or more) for less then twenty cents each.

CONCLUSION

The MMA6200Q series family of devices require external RC and possibly L components to correct power supply rejection ratio issues caused by noisy power supply lines. This may not be of concern in many applications; however, it may be in some. The preceding gives an introduction to power supply rejection ratio as well as some information to better understand this potential problem. Also included are some example filters, the effects on PSRR, as well as suggested choices.


Measuring Tilt with Low-g Accelerometers

by: Michelle Clifford and Leticia Gomez Sensor Products, Tempe, AZ

INTRODUCTION

This application note describes how accelerometers are used to measure the tilt of an object. Accelerometers can be used for measuring both dynamic and static measurements of acceleration. Tilt is a static measurement where gravity is the acceleration being measured. Therefore, to achieve the highest degree resolution of a tilt measurement, a low-g, high-sensitivity accelerometer is required. The Freescale MMA6200Q and MMA7260Q series accelerometers are good solutions for XY and XYZ tilt sensing. These devices provide a sensitivity of 800 mV/g in 3.3 V applications. The MMA2260D and MMA1260D are also good solutions for 5 V applications providing a sensitivity of 1200mV/g for X and Z, respectively. All of these accelerometers will experience acceleration in the range of +1g to -1g as the device is tilted from -90 degrees to +90 degrees.

1g = 9.8 m/s

MODULE

A simple tilt application can be implemented using an 8 or 10-bit microcontroller that has 1 or 2 ADC channels to input the analog output voltage of the accelerometers and general purpose I/O pins for displaying the degrees either on a PC through a communication protocol or on an LCD. See Figure 1 for a typical block diagram. Some applications may not require a display at all. These applications may only require an I/O channel to send a signal for turning on or off a device at a determined angle range.

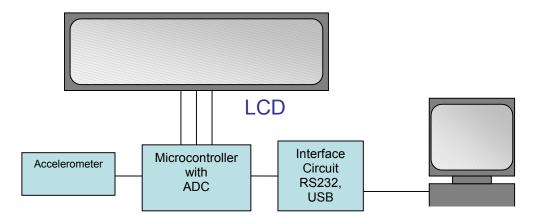
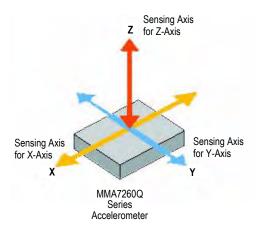
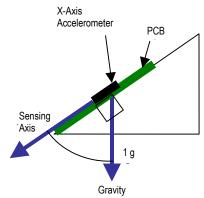


Figure 1. Typical Tilt Application Block Diagram


MOUNTING CONSIDERATIONS


Device selection depends on the angle of reference and how the device will be mounted in the end application. This will allow you to achieve the highest degree resolution for a given solution due to the nonlinearity of the technology. First, you need to know what the sensing axis is for the accelerometer. See Figure 2 to see where the sensing axes are for the

MMA7260Q. To obtain the most resolution per degree of change, the IC should be mounted with the sensitive axis parallel to the plane of movement where the most sensitivity is desired. For example, if the degree range that an application will be measuring is only 0° to 45° and the PCB will be mounted perpendicular to gravity, then an X-Axis device

AN3107

would be the best solution. If the degree range was 0° to 45° and the PCB will be mounted perpendicular to gravity, then a Z-Axis device would be the best solution. This is understood more when thinking about the output response signal of the device and the nonlinearity.

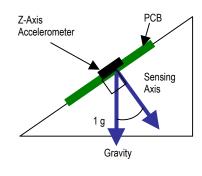


Figure 2. Sensing Axis for the MMA7260Q Accelerometer With X, Y, and Z-Axis for Sensing Acceleration

Figure 3. Gravity Component of a Tilted X-Axis Accelerometer

Figure 4. Gravity Component of a Tilted Z-Axis Accelerometer

NONLINEARITY

As seen in Figure 5, the typical output of capacitive, micromachined accelerometers is more like a sine function. The figure shows the analog output voltage from the accelerometer for degrees of tilt from -90° to +90°. The change in degrees of tilt directly corresponds to a change in the acceleration due to a changing component of gravity acted on the accelerometer. The slope of the curve is actually the sensitivity of the device.

As the device is tilted from 0° , the sensitivity decreases. You see this in the graph as the slope of output voltage decreases for an increasing tilt towards 90° . Because of this nonlinearity, the degree resolution of the application must be determined at 0° and 90° to ensure the lowest resolution is still within the required application resolution. This will be explained more in the following section.

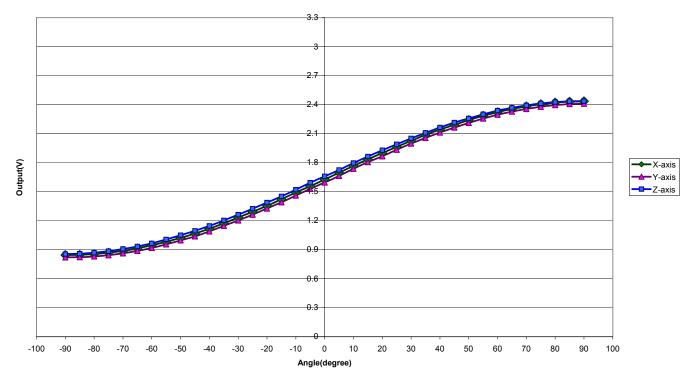


Figure 5. Typical Nonlinear Output of X, Y, and Z-Axis Accelerometers

CALCULATING DEGREE OF TILT

In order to determine the angle of tilt, θ , the A/D values from the accelerometer are sampled by the ADC channel on the microcontroller. The acceleration is compared to the zero q offset to determine if it is a positive or negative acceleration, e.g., if value is greater than the offset then the acceleration is seeing a positive acceleration, so the offset is subtracted from the value and the resulting value is then used with a lookup table to determine the corresponding degree of tilt (See Table 1 for a typical 8-bit lookup table), or the value is passed to a tilt algorithm. If the acceleration is negative, then the value is subtracted from the offset to determine the amount of negative acceleration and then passed to the lookup table or algorithm. One solution can measure 0° to 90° of tilt with a single axis accelerometer, or another solution can measure 360° of tilt with two axis configuration (XY, X and Z), or a single axis configuration (e.g. X or Z), where values in two directions are converted to degrees and compared to determine the quadrant that they are in. A tilt solution can be solved by either implementing an arccosine function, an arcsine function, or a look-up table depending on the power of the microcontroller and the accuracy required by the application. For simplicity, we will use the equation: $\theta = \arcsin(x)$. The $\arcsin(y)$ can determine the range from 0° to 180°, but it cannot discriminate the angles in range from 0° to 360°, e.g. arcsin(45°) = arcsin(135°). However, the sign of x and y can be used to determine which quadrant the angle is in. By this means, we can calculate the angle β in one quadrant (0-90°) using $\arcsin(y)$ and then determine θ in the determined quadrant.

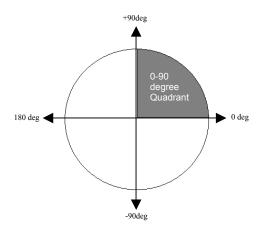


Figure 6. The Quadrants of a 360 Degree Rotation

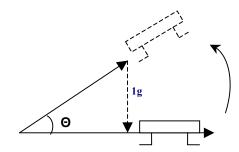


Figure 7. An Example of Tilt in the First Quadrant

[1]
$$V_{OUT} = V_{OFFSET} + \left(\frac{\Delta V}{\Delta g} \times 1.0g \times \sin\theta\right)$$

where: V_{OUT} = Accelerometer Output in Volts

V_{OFF} = Accelerometer 0g Offset

 $\Delta V/\Delta g$ = Sensitivity

1g = Earth's Gravity

 θ = Angle of Tilt

Solving for the angle:

[2]
$$\theta = \arcsin\left(\frac{V_{OUT} - V_{OFFSET}}{\frac{\Delta V}{\Delta g}}\right)$$

This equation can be used with the MMA6260Q as an example:

$$V_{OUT} = 1650 \text{mV} + 800 \text{mV} \times \sin \theta$$

Where the angle can be solved by

$$\theta = \arcsin\left(\frac{V_{OUT} - 1650 mV}{800 mV/g}\right)$$

From this equation, you can see that at 0° the accelerometer output voltage would be 1650mV and at 90° the accelerometer output would be 2450mV.

INTERFACING TO ADC

An 8-Bit ADC

An 8-bit ADC cuts 3.3V supply into 255 steps of 12.9mV for each step. Therefore, by taking one ADC reading of the MMA6260Q at 0g (0° of tilt for an x-axis device) and 1g (90° of tilt for an x-axis device), would result in the following:

0°: 1650mV + 12.9mV = 1662.9mV, which is 0.92° resolution

90°: 2450mV+ 12.9mV = 2462.9mV, which is 6.51° resolution

Due to the nonlinearity discussed earlier, you will see that the accelerometer is most sensitive when the sensing axis is closer to 0°, and less sensitive when closer to 90°. Therefore, the system provides a 0.92 degree resolution at the highest sensitivity point (0 degrees), and a 6.51 degree resolution at the lowest sensitivity point (90°).

A 10-Bit ADC

A 10-bit ADC cuts 3.3V supply into 1023 steps of 3.2mV for each step. Therefore, by taking one ADC reading of the MMA6260Q again at 0g (0° of tilt for an x-axis device), would now result in the following:

0°: 1650mV + 3.2mV = 1653.2mV

90° 2450mV + 3.2mV = 2453.2mV

AN3107

This results in a 0.229 degree resolution at the highest sensitivity point (0°) and a 3.26 degree resolution at the lowest sensitivity point (90°).

A 12-Bit ADC

A 12-bit ADC cuts 3.3V supply into 4095 steps of 0.8mV for each step. Therefore, by taking one ADC reading of the MMA6260Q again at 0g (0 $^{\circ}$ of tilt for an x-axis device), would now result in the following:

0°: 1650mV + 0.8mV = 1650.8mV

90°: 2450mV + 0.8mV = 2450.8mV

This results in a 0.057 degree resolution at the highest sensitivity point (0 $^{\circ}$) and 1.63 degree resolution at the lowest sensitivity point (90 $^{\circ}$). However, for 0.8mV changes, the noise factor becomes the factor to consider during design. How much noise the system has will depend on how much resolution you can get with a higher bit count.

TILT APPLICATIONS

There are many applications where tilt measurements are required or will enhance its functionality. In the cell phone market and handheld electronics market, tilt applications can be used for controlling menu options, e-compass compensation, image rotation, or function selection in response to different tilt measurements. In the medical markets, tilt is used for making blood pressure monitors more accurate. They can also be used for feedback for tilting hospital beds or chairs. A tilt controller can also be used for an easier way to control this type of equipment. Accelerometers for tilt measurements can also be designed into a multitude of products, such as game controllers, virtual reality input devices, HDD portable products, computer mouse, cameras, projectors, washing machines, and personal navigation systems.

Table 1. 8-Bit Lookup Table for Determining Degree of Tilt

ADC Bits	Calculated Voltage	g	arcsine	arccos
66	-0.80	-1.00	-87.47	177.47
67	-0.79	-0.98	-79.39	169.39
68	-0.77	-0.97	-75.19	165.19
69	-0.76	-0.95	-71.93	161.93
70	-0.75	-0.93	-69.16	159.16
71	-0.73	-0.92	-66.70	156.70
72	-0.72	-0.90	-64.47	154.47
73	-0.71	-0.89	-62.40	152.40
74	-0.70	-0.87	-60.47	150.47
75	-0.68	-0.85	-58.65	148.65
76	-0.67	-0.84	-56.92	146.92
77	-0.66	-0.82	-55.26	145.26
78	-0.64	-0.81	-53.67	143.67
79	-0.63	-0.79	-52.14	142.14
80	-0.62	-0.77	-50.66	140.66
81	-0.61	-0.76	-49.23	139.23
82	-0.59	-0.74	-47.83	137.83
83	-0.58	-0.73	-46.48	136.48
84	-0.57	-0.73	-45.15	135.15
		-		
85	-0.55	-0.69	-43.86	133.86
86	-0.54	-0.68	-42.59	132.59
87	-0.53	-0.66	-41.35	131.35
88	-0.52	-0.64	-40.13	130.13
89	-0.50	-0.63	-38.93	128.93
90	-0.49	-0.61	-37.76	127.76
91	-0.48	-0.60	-36.60	126.60
92	-0.46	-0.58	-35.46	125.46
93	-0.45	-0.56	-34.33	124.33
94	-0.44	-0.55	-33.22	123.22
95	-0.43	-0.53	-32.12	122.12
96	-0.43	-0.52	-31.04	121.04
97	-0.40	-0.50	-29.97	119.97
98	-0.39	-0.48	-28.91	118.91
99	-0.37	-0.47	-27.86	117.86
100	-0.36	-0.45	-26.82	116.82
101	-0.35	-0.44	-25.79	115.79
102	-0.34	-0.42	-24.77	114.77
103	-0.32	-0.40	-23.76	113.76
104	-0.31	-0.39	-22.75	112.75
105	-0.30	-0.37	-21.75	111.75
106	-0.28	-0.35	-20.76	110.76
107	-0.27	-0.34	-19.78	109.78
108	-0.26	-0.32	-18.80	108.80
109	-0.24	-0.32	-17.83	107.83
110	-0.24	-0.29	-16.86	106.86
111	-0.23	-0.29	-15.90	105.90
				105.90
112	-0.21	-0.26	-14.94	
113	-0.19	-0.24	-13.99	103.99
114	-0.18	-0.23	-13.04	103.04
115	-0.17	-0.21	-12.09	102.09
116	-0.15	-0.19	-11.15	101.15
117	-0.14	-0.18	-10.21	100.21
118	-0.13	-0.16	-9.27	99.27
119	-0.12	-0.15	-8.34	98.34
120	-0.10	-0.13	-7.41	97.41
121	-0.09	-0.11	-6.48	96.48
122	-0.08	-0.10	-5.55	95.55
123	-0.06	-0.08	-4.62	94.62
124	-0.05	-0.06	-3.70	93.70
125	-0.03	-0.05	-3.70	93.70
126	-0.03	-0.03	-1.85	91.85
127	-0.01	-0.02	-0.92	90.92
128	0.00	0.00	0.00	90.00

129	ADC Bits	Calculated Voltage	g	arcsine	arccos			
131	129	0.01	0.02	0.92				
132	130	0.03	0.03	1.85				
133	131		0.05	2.77	87.23			
134	132	0.05	0.06	3.70	86.30			
135	133	0.06	0.08					
136	134	0.08	0.10	5.55	84.45			
137 0.12 0.15 8.34 81.66 138 0.13 0.16 9.27 80.73 139 0.14 0.18 10.21 79.79 140 0.15 0.19 11.15 78.85 141 0.17 0.21 12.09 77.91 142 0.18 0.23 13.04 76.96 143 0.19 0.24 13.99 76.01 144 0.21 0.26 14.94 75.06 145 0.22 0.27 15.90 74.10 146 0.23 0.29 16.86 73.14 147 0.24 0.31 17.83 72.17 148 0.26 0.32 18.80 71.20 149 0.27 0.34 19.78 70.22 150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75	135	0.09	0.11	6.48	83.52			
138 0.13 0.16 9.27 80.73 139 0.14 0.18 10.21 79.79 140 0.15 0.19 11.15 78.85 141 0.17 0.21 12.09 77.91 142 0.18 0.23 13.04 76.96 143 0.19 0.24 13.99 76.01 144 0.21 0.26 14.94 75.06 145 0.22 0.27 15.90 74.10 146 0.23 0.29 16.86 73.14 147 0.24 0.31 17.83 72.17 148 0.26 0.32 18.80 71.20 149 0.27 0.34 19.78 70.22 150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75 67.25 153 0.32 0.40 25.79 <td>136</td> <td>0.10</td> <td>0.13</td> <td>7.41</td> <td>82.59</td>	136	0.10	0.13	7.41	82.59			
139								
140 0.15 0.19 11.15 78.85 141 0.17 0.21 12.09 77.91 142 0.18 0.23 13.04 76.96 143 0.19 0.24 13.99 76.01 144 0.21 0.26 14.94 75.06 145 0.22 0.27 15.90 74.10 146 0.23 0.29 16.86 73.14 147 0.24 0.31 17.83 72.17 148 0.26 0.32 18.80 71.20 149 0.27 0.34 19.78 70.22 150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75 67.25 153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 153 0.35 0.44 25.79 <td></td> <td>0.13</td> <td></td> <td></td> <td></td>		0.13						
141 0.17 0.21 12.09 77.91 142 0.18 0.23 13.04 76.96 143 0.19 0.24 13.99 76.01 144 0.21 0.26 14.94 75.06 145 0.22 0.27 15.90 74.10 146 0.23 0.29 16.86 73.14 147 0.24 0.31 17.83 72.17 148 0.26 0.32 18.80 71.20 149 0.27 0.34 19.78 70.22 150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 <td></td> <td></td> <td></td> <td>-</td> <td></td>				-				
142 0.18 0.23 13.04 76.96 143 0.19 0.24 13.99 76.01 144 0.21 0.26 14.94 75.06 145 0.22 0.27 15.90 74.10 146 0.23 0.29 16.86 73.14 147 0.24 0.31 17.83 72.17 148 0.26 0.32 18.80 71.20 149 0.27 0.34 19.78 70.22 150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75 67.25 153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 153 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 <td>-</td> <td></td> <td></td> <td>_</td> <td></td>	-			_				
143 0.19 0.24 13.99 76.01 144 0.21 0.26 14.94 75.06 145 0.22 0.27 15.90 74.10 146 0.23 0.29 16.86 73.14 147 0.24 0.31 17.83 72.17 148 0.26 0.32 18.80 71.20 149 0.27 0.34 19.78 70.22 150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75 67.25 153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.44 25.79 64.21 155 0.35 0.44 25.79 64.21 158 0.39 0.48 28.91 <td></td> <td></td> <td></td> <td></td> <td></td>								
144 0.21 0.26 14.94 75.06 145 0.22 0.27 15.90 74.10 146 0.23 0.29 16.86 73.14 147 0.24 0.31 17.83 72.17 148 0.26 0.32 18.80 71.20 149 0.27 0.34 19.78 70.22 150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75 67.25 153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 <td></td> <td></td> <td></td> <td></td> <td></td>								
145 0.22 0.27 15.90 74.10 146 0.23 0.29 16.86 73.14 147 0.24 0.31 17.83 72.17 148 0.26 0.32 18.80 71.20 149 0.27 0.34 19.78 70.22 150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75 67.25 153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 159 0.40 0.50 29.97 <td>_</td> <td></td> <td></td> <td></td> <td></td>	_							
146 0.23 0.29 16.86 73.14 147 0.24 0.31 17.83 72.17 148 0.26 0.32 18.80 71.20 149 0.27 0.34 19.78 70.22 150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75 67.25 153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 <td></td> <td></td> <td></td> <td></td> <td></td>								
147 0.24 0.31 17.83 72.17 148 0.26 0.32 18.80 71.20 149 0.27 0.34 19.78 70.22 150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75 67.25 153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 <td></td> <td></td> <td></td> <td></td> <td>_</td>					_			
148 0.26 0.32 18.80 71.20 149 0.27 0.34 19.78 70.22 150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75 67.25 153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 <td></td> <td></td> <td></td> <td></td> <td></td>								
149 0.27 0.34 19.78 70.22 150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75 67.25 153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 <td></td> <td></td> <td></td> <td></td> <td></td>								
150 0.28 0.35 20.76 69.24 151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75 67.25 153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 <td></td> <td></td> <td></td> <td></td> <td></td>								
151 0.30 0.37 21.75 68.25 152 0.31 0.39 22.75 67.25 153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 <td></td> <td></td> <td></td> <td></td> <td></td>								
152 0.31 0.39 22.75 67.25 153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 <td></td> <td></td> <td></td> <td></td> <td></td>								
153 0.32 0.40 23.76 66.24 154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 <td></td> <td></td> <td></td> <td></td> <td></td>								
154 0.34 0.42 24.77 65.23 155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 <td></td> <td></td> <td></td> <td></td> <td></td>								
155 0.35 0.44 25.79 64.21 156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 <td></td> <td></td> <td></td> <td></td> <td></td>								
156 0.36 0.45 26.82 63.18 157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 <td></td> <td></td> <td></td> <td></td> <td></td>								
157 0.37 0.47 27.86 62.14 158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 <td></td> <td></td> <td>_</td> <td></td> <td></td>			_					
158 0.39 0.48 28.91 61.09 159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 <td></td> <td></td> <td></td> <td></td> <td></td>								
159 0.40 0.50 29.97 60.03 160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 <td></td> <td></td> <td></td> <td></td> <td></td>								
160 0.41 0.52 31.04 58.96 161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 <td></td> <td></td> <td></td> <td></td> <td></td>								
161 0.43 0.53 32.12 57.88 162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 <td></td> <td></td> <td></td> <td></td> <td></td>								
162 0.44 0.55 33.22 56.78 163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 <td></td> <td>-</td> <td></td> <td></td> <td></td>		-						
163 0.45 0.56 34.33 55.67 164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 <td></td> <td></td> <td></td> <td></td> <td></td>								
164 0.46 0.58 35.46 54.54 165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 <td></td> <td></td> <td></td> <td></td> <td></td>								
165 0.48 0.60 36.60 53.40 166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 <td></td> <td></td> <td></td> <td></td> <td></td>								
166 0.49 0.61 37.76 52.24 167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 <td></td> <td></td> <td></td> <td></td> <td></td>								
167 0.50 0.63 38.93 51.07 168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 <td></td> <td></td> <td></td> <td></td> <td></td>								
168 0.52 0.64 40.13 49.87 169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 <td></td> <td></td> <td></td> <td></td> <td></td>								
169 0.53 0.66 41.35 48.65 170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 <td></td> <td></td> <td></td> <td></td> <td></td>								
170 0.54 0.68 42.59 47.41 171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 <td></td> <td></td> <td></td> <td></td> <td></td>								
171 0.55 0.69 43.86 46.14 172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 <td></td> <td></td> <td></td> <td></td> <td></td>								
172 0.57 0.71 45.15 44.85 173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 <td></td> <td></td> <td></td> <td></td> <td></td>								
173 0.58 0.73 46.48 43.52 174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 <td></td> <td></td> <td>0.71</td> <td>45.15</td> <td>44.85</td>			0.71	45.15	44.85			
174 0.59 0.74 47.83 42.17 175 0.61 0.76 49.23 40.77 176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 <td></td> <td></td> <td></td> <td></td> <td></td>								
176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61								
176 0.62 0.77 50.66 39.34 177 0.63 0.79 52.14 37.86 178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61	175	0.61		49.23	40.77			
178 0.64 0.81 53.67 36.33 179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61	176	0.62		50.66	39.34			
179 0.66 0.82 55.26 34.74 180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61	177	0.63	0.79	52.14	37.86			
180 0.67 0.84 56.92 33.08 181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61	178	0.64	0.81	53.67				
181 0.68 0.85 58.65 31.35 182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61	179	0.66						
182 0.70 0.87 60.47 29.53 183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61	180							
183 0.71 0.89 62.40 27.60 184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61								
184 0.72 0.90 64.47 25.53 185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61								
185 0.73 0.92 66.70 23.30 186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61								
186 0.75 0.93 69.16 20.84 187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61								
187 0.76 0.95 71.93 18.07 188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61								
188 0.77 0.97 75.19 14.81 189 0.79 0.98 79.39 10.61								
189 0.79 0.98 79.39 10.61								
190 0.80 1.00 87.47 2.53	190	0.80	1.00	87.47	2.53			

Using the MMA7260Q Evaluation Board

by: Michelle Clifford and John Young Applications Engineers Tempe, AZ

INTRODUCTION

This application note describes the Accelerometer Evaluation Board (Figure 2) for the MMA7260Q 3-axis low-g accelerometer. The Accelerometer Evaluation Board is a small circuit board intended to be used for evaluating the MMA7260Q and developing prototypes quickly without requiring a PCB to be designed to accommodate for the small profile QFN package. It also provides a means for understanding the best mounting position and location of an accelerometer in your product with provided board mounting points.

CIRCUIT DESCRIPTION

Figure 3 is a circuit schematic of the evaluation board. The recommended decoupling capacitor at the power source and recommended RC filter at the output, are included on the evaluation board. For a complete description of the operation of the accelerometer, refer to the MMA7260Q datasheet. There is an RC filter at each of the three accelerometer outputs in order to minimize clock noise that may be present from the switched capacitor filter circuit. No additional components are necessary to use the evaluation board.

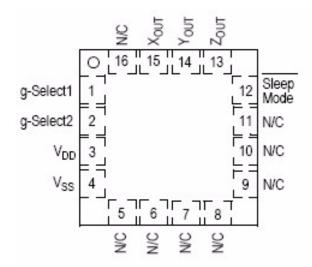


Figure 1. Pin Connections

Figure 2. Evaluation Board for MMA7260Q

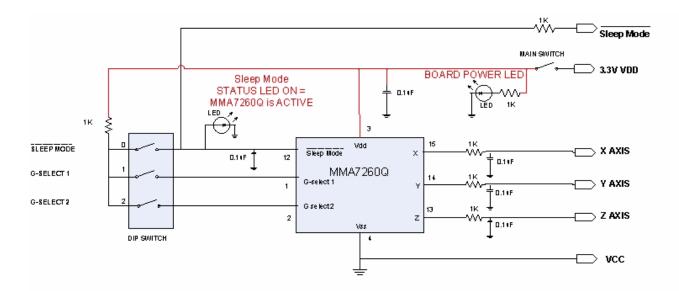


Figure 3. Circuit Schematic of the MMA7260Q Evaluation Board

Table 1. Description of Output/Input Pads

Output/Input Pads	Description
Sleep Mode	Used for an external source to enable/disable sleep mode
3.3V VDD	Input Voltage
X axis	Analog Voltage output of X axis
Y axis	Analog Voltage output of Y axis
Z axis	Analog Voltage output of Z axis

The evaluation board has pads for interfacing to a 3.3 volt power source or battery. The pads on the side of the board also provide a means for connecting to the accelerometer analog output by soldering a wire from the evaluation board to another breadboard or system. The ON/OFF switch provides power to the accelerometer and helps preserve battery life if a battery is being used as the power source. S1 must be set towards the ON position for the accelerometer to function. The green LED labeled PWR is lit when power is supplied to the accelerometer.

G-SELECT DIPSWITCH SETTINGS

The g-Select is a powerful features on the MMA7260Q allowing one device to measure 4 different ranges of acceleration. See Table 2. The g-Select allows one device to provide two different applications in one package. By adjusting the dip-switches on the evaluation board, the accelerometer can toggle between the different g-Ranges with the same accelerometer part. The following table outlines the g-Ranges that the toggle selections correspond to. The dip-switches on the evaluation board allow users to make selections without having to create the PCB board and define settings as in the finished product. A microcontroller in a finished product could also use this g-Select functionality of the MMA7260Q to adjust the g-Ranges of the device as needed by the end customer.

Table 2. g-Select pin Descriptions

g-Select2	g-Select1	g-Range	Sensitivity
0	0	1.5g	800mV/g
0	1	2g	600mV/g
1	0	4g	300mV/g
1	1	6g	200mV/g

SLEEP MODE FUNCTION

The MMA7260Q device features a sleep mode function, activated by a sleep mode option on the device's pinout. The sleep mode pin on the MMA7260Q is an active high pin, enabling the device 'on' when Vdd is applied to that particular Pin 12.

This is selectable on the evaluation board using either the INPUT/OUTPUT sleep mode Pad or the dip switch that is provided. When the dip switch is activated, the device is enabled. The same occurs with the Sleep Mode Pad. When the user attaches a 3.3 V or VDD voltage to this, the device will be enabled. A VCC connection to this pin will place the device in standby mode. If the device is enabled, the LED labeled sleep mode will be lit.

The sleep mode allows the MMA7260Q device to operate on standby at 5 μ A supply current. Regular operation uses 500 μ A of supply current.

MOUNTING CONSIDERATIONS

In Figure 4 there is a diagram of the evaluation board and the corresponding axes due to the orientation of the device. System design and sensor mounting can affect the response of a sensor system. The placement of the sensor itself is critical to obtaining the desired measurements. It is important that the sensor be mounted as rigidly as possible to obtain

accurate results. Since the thickness and mounting of the board varies, parasitic resonance may distort the sensor measurement. Hence it is vital to fasten and secure to the largest mass structure of the system, i.e. the largest truss, the largest mass, the point closest to the source of vibration. On the other hand, dampening of the sensor device can absorb much of the vibration and give false readings as well. The evaluation board has holes in each of the four corners of the board for mounting. It is important to maintain a secure mounting scheme to capture the true motion.

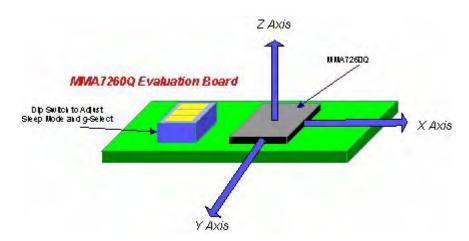


Figure 4. Board Orientation Corresponding to the Three Axes

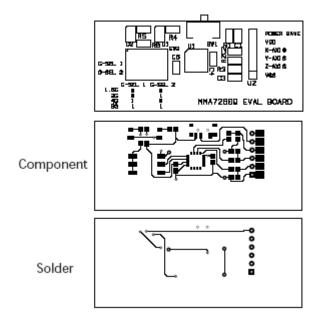


Figure 5. Board Layout for Component, Top Layer, and Bottom Layer

Soldering the QFN Stacked Die Sensors to the PC Board

by: Dave Mahadevan Sensor and Analog Products Tempe, Arizona

INTRODUCTION

The third generation of inertial sensors (accelerometers) uses the Quad Flat No-Lead (QFN) platform with stacked die configuration to minimize the footprint. The QFN sensors are the first product of its kind. This application note describes suggested methods of soldering these devices to the PC board. Figure 1 shows the top and bottom view of QFN 16 lead, 6 x 6 mm individual sensor devices and the device soldered to the board.

Overview of Soldering Considerations

The information provided here is based on experiments executed on QFN devices. They do not represent exact conditions present at a customer site. Hence, information herein should be used as guidance. Any necessary adjustments required should be done by the customers.

The stacked die QFN is designed for both consumer and automotive applications. Solder Joint Reliability (SJR) varies for both applications. Table 1 lists the applications and requirements with their respective results.

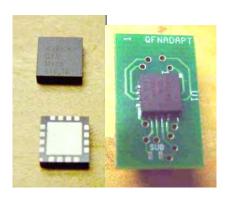


Figure 1. QFN 16-Lead, 6x6 mm Stacked Die Sensor

Table 1.	Applications	and SJR	Requirements
----------	--------------	---------	--------------

Application	Temperature Cycle Range	No. of Cycles Required	Specification	Preconditions	Remarks	Results
Consumer	-25 to +85°C	500	Freescale spec 12MWS00024B	None	Temperature	Passed more than 2000 cycles
Automotive	-40 to +125°C	1000	AEC-Q100	None	cycled at -40 to	
Special Consumer	-25 to +85°C	500	Special Customer Specification	8 hours of steam aging before soldering	+125°C	Passed more than 1000 cycles

NOTE: The above specifications are for component life only. Hence, it is assumed that the devices have to meet at least the life cycle of the components for SJR.

The above results show SJR with exposed pads solder down. To meet automotive applications, as well as severe reflow conditions like that of special consumer applications, the exposed pad (die pad or flag) should also to be soldered to the PC board. However, it is always recommended to solder the exposed flag to the PC board, thereby increasing the SJR.

Freescale QFN sensors are compliant with Restrictions on Hazardous Substances (RoHS), having halide free molding

compound (green) and lead-free terminations. These terminations are compatible with tin-lead (Sn-Pb) as well as tin-silver-copper (Sn-Ag-Cu) solder paste soldering processes. Reflow profiles applicable to those processes can be used successfully for soldering the devices. This document provides a suggested reflow profile for the JEDEC compliant lead-free soldering process (per JEDEC Standard 20, Revision C) as well as the footprint information for the QFN device (see Figure 3.

Test Procedure

The test board panel design for QFN stacked die package incorporates input from customers as to thickness, trace material, and layers of construction. This was accomplished to simulate as nearly as possible, the same conditions the package will be subjected to by the customers. Solder paste printing at the board level is a critical factor in SJR for QFN and all leadless devices. The final stencil used had a thickness of 6 mils (150 microns). The I/O pad openings (for the so-called *leads*) were 1:1 with the PCB pad size. The exposed flag region for the stencil was pulled away from the I/O to reduce the likelihood for solder bridging or scavenging. Because the evaluation was only done to determine SJR, good electrical dies were not required.

Only mechanical dies to simulate the actual thermal cycling conditions were used in assembly. To check for solder failure, an electrical open was viewed as an indication. Hence, all the leads were shorted in a daisy chain fashion (see Figure 2). For redundancy, two wire bonds were provided for each joint. The

temperature range for the experimental cycling was from -40°C to +125°C with 15 minute dwells at extremes and 15 minute ramps between extremes. The chamber was temperature profiled for stability for various packages and test boards.

Resistance measurements through the daisy chain nets were carried out on a continuous basis. Event detectors measured the resistance with a setup point of 300 ohms being the failure criterion [IPC-SM-785]. For the QFN packages, the start resistance through the daisy chain was on the order of 1 ohm. When the event detectors recorded a failure, the net failing was identified and documented. Results indicated that the first failure (with exposed flags soldered down) was more than 2000 temperature cycles. For special customer requirement conditions, the first failure occurred beyond 1000 cycles with exposed flag soldered down. Freescale specification 12MWS00049B, Revision F, was used for the soldering process.

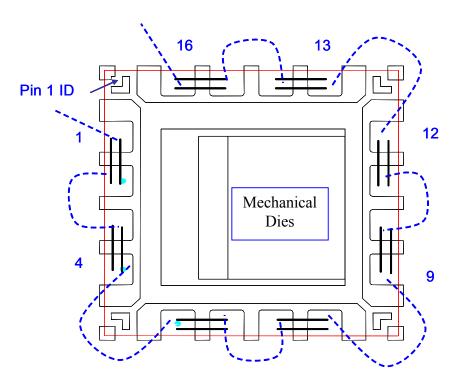
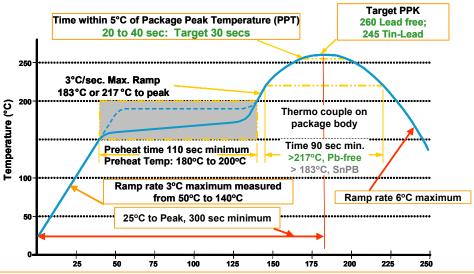



Figure 2. Daisy Chain Wire Bonding of QFN devices

Footprint and Reflow Profiles

Figure 3 provides the JEDEC compliant reflow conditions.

Figure 4 illustrates the footprint of the QFN 16 lead 6×6 mm package for solder paste printing purposes. Because the small pads located in the corners of the 6×6 , 16 lead QFN package do not need to be soldered, they are not represented on the footprint (see Figure 3).

Notes:

- 1. Time and temperatures are defined from JEDEC Std. 20, Rev C, and averages of 30 customer inputs.
 2. Reflow conditions for Sn-PB and Sn-AG-Cu solder paste soldering processes should be less than the profile given above.

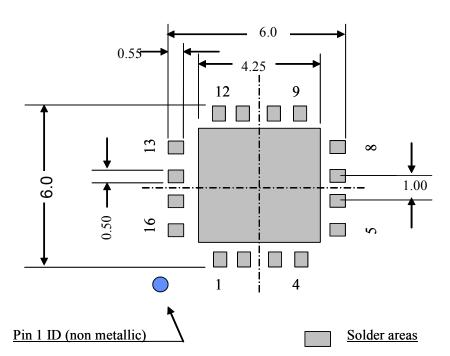


Figure 3. Profile (Pattern) for Package Peak Temperature (PPT)

Figure 4. Footprint for 16-Lead OFN, 6 x 6 mm

NOTE: For automotive use, the die-pad (Flag) should be soldered down. All dimensions are in mm.

Summary

There are many new applications being designed using QFN stacked die accelerometers. This application note provides a description of the positive reliability results obtained while following the conditions described in this document.

Using the Sensing Triple Axis Reference Board (STAR)

by: John Young and Michelle Clifford Sensor and Analog Products Tempe, AZ

INTRODUCTION

The Sensing Triple Axis Reference Board (STAR) is a Freescale demonstration tool that is designed to allow visualization of key accelerometer applications in the consumer industry. In the past few years, accelerometers have changed dramatically during this entrance to the consumer market with increased sensitivity, reduced power consumption, and reduced package size. In addition, there has been development of accelerometer applications in many new markets. The MMA7260Q leaps forward in these requirements in addition to new functionality such as a g-Select feature and low power supply to allow system developer's more opportunities for integration of the five measurements of Freescale accelerometers (See AN1986).

MMA7260Q

The STAR board is a demonstration tool for the MMA7260Q, a 3-Axis Low-g accelerometer. The MMA7260Q has many unique features that make it an ideal solution for many consumer applications such as freefall protection for laptops and MP3 players, tilt detection for e-compass compensation and cell phone scrolling, motion detection for handheld games and game controllers, position sensing for g-mice, shock detection for warranty monitors, and vibration for out of balance detection.

Features such as low power, low current, and sleep mode with a quick turn on time allow the battery life to be extended in end applications. The 3-axis sensing in a small QFN package requires only 6 mm x 6 mm board space, with a profile of 1.45 mm, allowing for easy integration into many small handheld electronics.

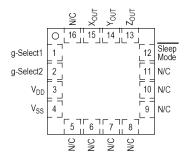


Figure 1. Pin Connections for the MMA7260Q

g-SELECT

The MMA7260Q has a unique feature that allows the range of g-force to be determined by changing inputs to the Quad Flat No-Lead (QFN). Table 1 below shows the configurable settings for the accelerometer, allowing multiple g-ranges.

Table 1. Configurable Setting for Accelerometer

g-Select2	g-Select1	g-Range	Sensitivity
0	0	1.5g	800 mV/g
0	1	2g	600 mV/g
1	0	4g	300 mV/g
1	1	6g	200 mV/g

The dipswitches located on the (STAR) Board allow for the manual setting of the g-range. The ON position indicates a logic "1" which is equal to Vdd of the MMA7260Q. The OFF position is a logic "0" or Vss of the MMA7260Q. For a final design, the g-Select is best configured to additional I/O of a chosen microcontroller. Therefore, the sensitivity of the device could be easily changed with a quick change in the software. In addition, the software can be configured so that different sensitivities can be used for several applications, where the MCU drives the g-Select during different modes of operation.

MICROCONTROLLER

The MC68HC908KX8, an 8-bit MCU with 8-bit ADCs, was selected to sample the MMA7260Q 3-axis signals. An SCI for the serial communication, four 8-bit ADC channels to process

the 3 analog signals, and 8 Kbytes of FLASH memory to save calibration data and other software configuration data also make it a suitable solution.

The MCU sends data via RS232 port to a CPU for further processing and graphical display of the acceleration data. In stand alone operation, the MCU can store acceleration, motion, or position data to a set of external EEPROMs which can later be downloaded to an excel file through the serial connection using the demo software provided. During stand alone operation, there are Status LEDs and a Piezo-electric buzzer allowing the MCU to display program modes.

More information regarding the MCU can be found in the MC68HC908KX8, MC68HC908KX2 Technical Datasheet (Freescale document number MC68HC908KX8/D).

REFERENCE BOARD

The goal of the Mini-TRIAX was to provide a small board with the capability to demonstrate and evaluate many accelerometer applications. Many design considerations were taken in effect to have a small and versatile tool (board size is 1.850" x 1.50").

Table 2 provides a brief description of the components on the STAR board and Figure 2 showing the location on the board.

Table 2. Components on the Mini-TRIAX Board

Component	Component Function
MMA7260Q	3 axis Accelerometer part to give vibration and inertial readings to the board
MC68HC908KX8	8-Bit processor used on the board. It is featured in a dip socket rather than SMT so it can be removed by a user for reprogramming for final solution designing.
LM317-L	Adjustable Voltage regulator. This part allows for the regulation of power to all the components on the board. 3.6 V
LM2765M6	Charge pump. This allows the use of a small 3 V battery to provide power at a higher voltage to the necessary level for the other components. With this, a standard 3V, 2/3A battery can easily be purchased. It keeps the size small rather than using a large 9V battery & holder.
2/3A battery Holder	The power of the board is supplied by a 3 V 2/3 A or 123 battery. It is commercially available at any consumer battery stand. This is the holder.
DB9 Serial Connector	The Mini-TRIAX communicates using a RS232 port, and this is the connector used for the cable.
MAX3316CAE	RS232 Chipset. This part allows the interface between the MCU and the standard RS232 communications port.
CTX690CT-ND	This is the external canned clock oscillator that allows the MCU to communicate with the RS232 port. This clock is set for 14.7456 MHz
25LC640	This is one of two EEPROMs. They are used via SCI to store accelerometer values at 200 times a second to memory.
Dip Switch	The STAR contains a set of 2 dip switches that allow the user to use the function defined as 'g-select' on the MMA7260Q accelerometer. This enables the user to define the g-force range, from a 1.5 g device to a 2 g, 4 g, and 6 g device with two simple buttons.
Momentary switch	This enables the MCU to detect inputs to the STAR from the user during standalone mode, when the board is not connected via RS232.
Buzzer & LEDs	These provide status/outputs for the STAR. It notifies the user if the board is on, if a certain condition is satisfied, etc.

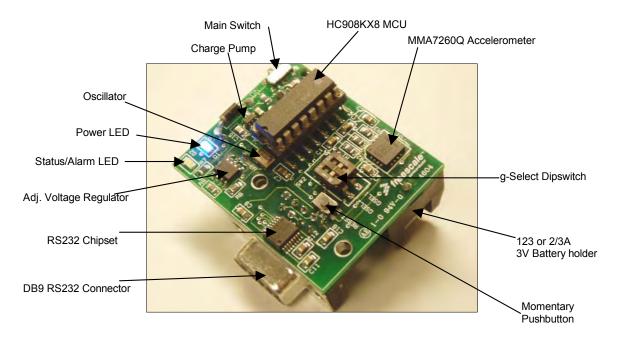


Figure 2. Location of Components on Board

VOLTAGE/POWER

A 2/3 A battery was chosen as a power supply with its ability to supply 1400 mAH for the STAR. It was also a design consideration to reduce the size of the demonstration board. The 2/3 A battery is available at any commercial battery stand. The other options were two AA batteries or a 9 V battery, significantly larger in size when coupled with battery holders. As can be seen in Figure 2, a number of the components are driven at a 3.6 V supply. The MMA7260Q is optimal at 3.3 V

so a slightly higher voltage was used to compensate for any small drop in voltage. The RS232 chipset was driven directly from the 3 V source due to the logic level thresholds of that particular device.

The 3.6 V supply is obtained from the 3 V battery by the use of a charge pump, the LM2765M6. This allows the doubling of voltage to 6 V. This is regulated back down to 3.6 V via the adjustable regulator LM317-L and supplied to the other ICs.

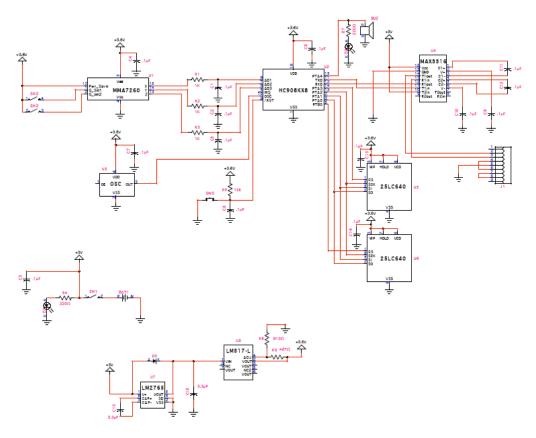


Figure 3. Schematic of Board

SOFTWARE

A software program was developed to provide an interface as well as a development system. The software can be used for displaying the 8-bit ADC values sent through the RS232 connection, or utilized for analyzing accelerometer data to demonstrate end applications. The software is sorted by various modules that showcase these possible end-applications for the MMA7260Q. This allows for developmental ideas for the MMA7260Q as a user can sample possible final products with a single reference/development tool. Some software modules such as free fall and battery saver can be initiated without the use of the PC connection, activated by a push button. The software available for the STAR board can be found on the Freescale Web site.

MODES OF OPERATION

The STAR board has three modes of operation - sending data to the PC for analysis or display, saving data to external memory (2 EEPROMs), or running a stand alone module. The

stand alone modules contain demonstration tools such as freefall, battery saver, or shock alarm. The operation mode can be selected via the STAR's push button or by selecting a stand alone module on the PC software. In the push button operation mode, a user can push the STAR's tactile switch to select the most recent stand alone module. If the user depresses the same button for 20 seconds, it will cause the STAR to run the freefall stand alone module.

SUMMARY

The MMA7260Q has many unique features such as low power, low current, a quick turn on time, and 3-axis sensing with g-select all in a small QFN package. The STAR enables the user to quickly see many capabilities of the device along with application ideas to pursue. In addition, with data download capability, the STAR provides a quick way to prototype a software solution to gain a better understanding for the capability of the device.

AN3112

APPENDIX A

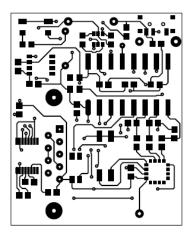


Figure 4. Component Layer of STAR Board

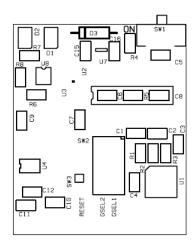


Figure 5. Component Silkscreen

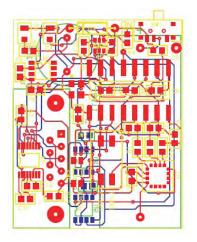
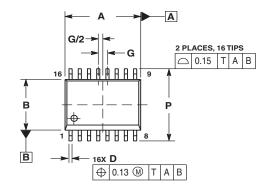
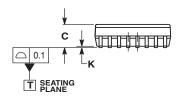
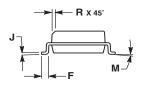
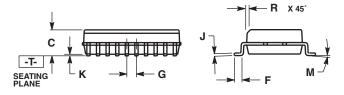





Figure 6. All Layers

Package Dimensions

CASE 475-01 ISSUE B 16 LEAD SOIC

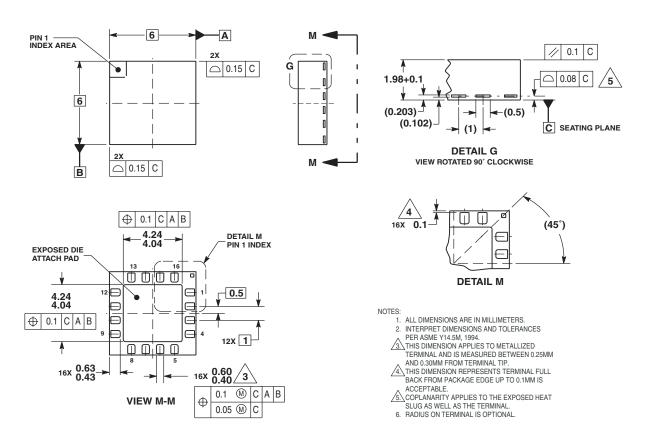

NOTES:


- ES:

 1. ALL DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES
 PER ASME Y14.5M, 1994.
 3. DIMENSIONS "A" AND "B" DO NOT INCLUDE
 MOLD FLASH OR PROTRUSIONS. MOLD FLASH
 OR PROTRUSIONS SHALL NOT EXCEED 0.15
 PER SIDE.

 A DIMENSION "D" DOES NOT INCLUDE DAMPAR.
- DIMENSION "D" DOES NOT INCLUDE DAMBAR PROTRUSION. PROTRUSIONS SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.75.

	MILLIM	ETERS
DIM	MIN	MAX
Α	10.15	10.45
В	7.40	7.60
С	3.30	3.55
D	0.35	0.49
F	0.76	1.14
G	1.27	BSC
J	0.25	0.32
K	0.10	0.25
M	0°	7°
Р	10.16	10.67
R	0.25	0.75



CASE 475A-01 ISSUE A 20 LEAD SOIC

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

MILLIM	ETERS
MIN	MAX
12.67	12.96
7.40	7.60
3.30	3.55
0.35	0.49
0.76	1.14
1.27	BSC
0.25	0.32
0.10	0.25
0°	7°
10.16	10.67
0.25	0.75
	MIN 12.67 7.40 3.30 0.35 0.76 1.27 0.25 0.10 0° 10.16

PACKAGE DIMENSIONS (CONTINUED)

CASE 1477-01 ISSUE O 16-LEAD QFN

Accelerometer Glossary of Terms

Acceleration Change in velocity per unit time.

Acceleration Vector Vector describing the net acceleration acting upon the device.

Frequency Bandwidth The accelerometer output frequency range.

g A unit of acceleration equal to the average force of gravity occurring at the earth's

surface. A g is approximately equal to 32.17 ft/s² or 9.807 m/s².

NonlinearityThe maximum deviation of the accelerometer output from a point-to-point straight line

fitted to a plot of acceleration vs. output voltage. This is determined as the percentage of

the full-scale output (FSO) voltage at full-scale acceleration (40g).

Ratiometric The variation of the accelerometer's output offset and sensitivity linearly proportional to

the variation of the power supply voltage.

Sensitivity The change in output voltage per unit g of acceleration applied. This is specified in mV/g.

Sensitive Axis The most sensitive axis of the accelerometer. On the DIP package, acceleration is in the

direction perpendicular to the top of the package (positive acceleration going into the device). On the SIP package, acceleration is in the direction perpendicular to the pins.

Transverse Acceleration Any acceleration applied 90° to the axis of sensitivity.

Transverse Sensitivity Error The percentage of a transverse acceleration that appears at the output. For example, if

the transverse sensitivity is 1%, then a +40 g transverse acceleration will cause a 0.4 g signal to appear on the output. Transverse sensitivity can result from sensitivity of the

g-cell to transverse forces.

Freescale Semiconductor 2-207

Section Three

Pressure Sensor Overview

Freescale's pressure sensors are silicon micromachined, electromechanical devices featuring device uniformity and consistency, high reliability, accuracy, and repeatability at competitively low costs. With more than 25 years in pressure sensor engineering, technology development, and manufacturing, these pressure sensors have been designed into automotive, industrial, healthcare, commercial, and consumer products worldwide.

Pressure sensors operate in pressures up to 150 psi (1,000 kPa). For maximum versatility, Freescale pressure sensors are single silicon, piezoresistive devices with three levels of device sophistication. The basic sensor device provides uncompensated sensing, the next level adds device compensation, and the third and most value added pressure sensors, are the integrated devices. Compensated sensors are available in temperature compensated and calibrated configurations; integrated devices are available in temperature compensated, calibrated, and signal conditioned (or amplified) configurations. Each sensor family is available in gauge, absolute, and differential pressure references in a variety of packaging and porting options.

Pressure Sensor Products

Mini Selector Guide
Device Numbering System for Pressure Sensors 3-4
What Are the Pressure Packaging Options? 3-5
Orderable Part Numbers
General Product Information
Freescale Semiconductor Pressure Sensors 3-8
Integration
Sensor Applications
Pressure Sensor FAQ's 3-14
Data Sheets 3-15
Application Notes 3-245
Package Dimensions 3-471
Reference Tables 3-488
Mounting and Handling Suggestions for the Unibody Pressure Sensor Package
Standard Warranty Clause
Glossary of Terms
Symbols, Terms and Definitions

Mini Selector Guide

PRESSURE SENSORS

Integrated Pressure Sensors

Product	Pressure Rating	Pressure Rating	Pressure Rating	Pressure Rating	Pressure Rating	Full Scale	Sensitivity	Accuracy 0°C–85°C	Pressure Type ⁽¹⁾		
Family	Maximum (PSI)	Maximum (kPa)	Maximum (in H ₂ O)	Maximum (cm H ₂ O)	Maximum (mm Hg)	Span (Typ) (Vdc)	(mV/kPa)	(% of VFSS)	Α	D	G
MPX4080	11.6	80	321	815	600	4.3	54	±3.0		•	
MPX4100	15.2	105	422	1070	788	4.6	54	±1.8	•		
MPX4101	14.8	102	410	1040	765	4.6	54	±1.8	•		
MPXH6101	14.8	102	410	1040	765	4.6	54	±1.8	•		
MPX4105	15.2	105	422	1070	788	4.6	51	±1.8	•		
MPX4115	16.7	115	462	1174	863	4.6	46	±1.5	•		
MPX6115	16.7	115	462	1174	863	4.6	46	±1.5	•		
MPX4200	29	200	803	2040	1500	4.6	26	±1.5	•		
MPX4250	36 36	250 250	1000 1000	2550 2550	1880 1880	4.7 4.7	20 19	±1.5 ±1.4	•	•	•
MPXH6250	36	250	1000	2550	1880	4.7	19	±1.5	•		
MPXV4006	0.87	6	24	61	45	4.6	766	±5.0		•	V
MPXV5004	0.57	4	16	40	29	3.9	1000	±2.5		•	٧
MPX5010	1.45	10	40	102	75	4.5	450	±5.0		•	٧
MPX5050	7.25	50	201	510	375	4.5	90	±2.5		•	•
MPX5100	14.5 16.7	100 115	401 462	1020 1174	750 863	4.5 4.5	45 45	±2.5 ±2.5	•	•	•
MPX5500	72.5	500	2000	5100	3750	4.5	9	±2.5		•	•
MPX5700	102	700	2810	7140	5250	4.5	6	±2.5	•	•	•
MPX5999	150	1000	4150	10546	7757	4.5	5	±2.5		•	
MPXH6300	44	300	1200	3060	2250	4.7	16	±1.8	•		
MPXH6400	60	400	1600	4000	3000	4.7	12	±1.5	•		
MPXV7007	±1.0	±7	±28	±70	±53	4.0	286	±5.0		•	•
MPXV7025	±3.5	±25	±100	±254	±190	4.5	90	±5.0		•	•

NOTES:

^{1.} A = Absolute, D = Differential, G = Gauge, V = Vacuum

PRESSURE SENSORS (continued)

Compensated Pressure Sensors

Product Family	Pressure Rating Maximum	Pressure Rating Maximum	Pressure Rating Maximum	Pressure Rating Maximum	Pressure Rating Maximum	Offset (mV)	Full Scale Span	Sensitivity (mV/kPa)	Pressure Type ⁽¹⁾		
railily	(PSI)	(kPa)	(in H ₂ O)	(cm H ₂ O)	(mm Hg)	(1114)	(Typ) (mV)	(IIIV/KPa)	Α	D	G
MPX2010	1.45	10	40	102	75	±1.0	25	2.5		•	•
MPX2053	7	50	201	510	375	±1.0	40	0.8		•	٧
MPX2102	14.5 14.5	100 100	400 400	1020	750 750	±2.0 ±1.0	40 40	0.4 0.4	•	•	V V
MPX2202	29 29	200 200	800 800	2040	1500 1500	±1.0 ±1.0	40 40	0.2 0.2	•	•	٧
MPX2050	7	50	201	510	375	±1.0	40	0.8		•	•
MPX2100	14.5 14.5	100 100	400 400	1020	750 750	±2.0 ±1.0	40 40	0.4 0.4	•	•	
MPX2200	29 29	200 200	800 800	2040	1500 1500	±1.0 ±1.0	40 40	0.2 0.2	•	•	V

NOTES:

Compensated Medical Grade Pressure Sensors

Product Family	Pressure Rating Maximum	Pressure Rating Maximum	Pressure Rating Maximum	Pressure Rating Maximum	Pressure Rating Maximum	Supply Voltage (Typ)	Offset Maximum	Sensitivity (mV/kPa)		Pressur Type ⁽¹⁾	
, anning	(PSI)	(kPa)	(in H ₂ O)	(cm H ₂ O)	(mm Hg)	(Vdc)	(mV)	(III V/IKI U)	Α	D	G
MPXC2011	1.45	10	40	102	75	10.0	1.0	n/a			•
MPX2300	5.8	40	161	408	300	6.0	0.75	5.0			•

NOTES:

Tire Pressure Monitoring Sensors

Product	Maximum Pressure	Maximum Operating	Maximum Pressure	Full Scale Span	Best Pressure	Best Pressure Accuracy	Best Temperature	Supply Voltage	Sensitivity	Pressu Type		ıre (1)
Floudet	Rating (PSI)	Pressure (kPa)	Rating (BAR)	Output (Digital)	Accuracy (-20°C)	(+25°C to +70°C)	Accuracy (+25°C)	(V)	(kPa/count)	Α	D	G
MPXY8020A	92.4	637.5	6.4	8-bit	±15 kPa	±7.5 kPa	±4°C	2.1 to 3.6	2.5	•		
MPXY8021A	92.4	637.5	6.4	8-bit	±20 kPa	±7.5 kPa	±4°C	2.1 to 3.6	2.5	•		
MPXY8040A	130.5	900	9.0	8-bit	±25 kPa	±20 kPa	±4°C	2.1 to 3.6	5.0	•		

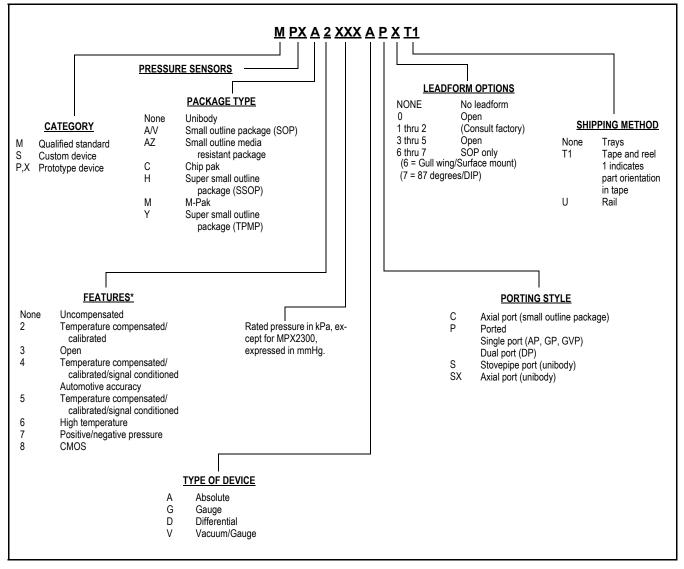
NOTES:

Uncompensated Pressure Sensors

Product Family	Pressure Rating Maximum	Pressure Rating Maximum	Pressure Rating Maximum	Pressure Rating Maximum	Pressure Rating Maximum	Offset (Typ)	Full Scale Span (Typ)	Sensitivity (mV/kPa)	Pressu Type ⁽¹		
	(PSI)	(kPa)	(in H ₂ O)	(cm H ₂ O)	(mm Hg)	(mV)	(Typ) (mV)	(Α	D	G
MPX10	1.45	10	40	102	75	20	35	3.5		•	•
MPX12	1.45	10	40	102	75	20	55	3.5		•	•
MPX53	7	50	200	510	375	20	60	1.2		•	•

NOTES:

Freescale Semiconductor 3-3


^{1.} A = Absolute, D = Differential, G = Gauge, V = Vacuum

^{1.} A = Absolute, D = Differential, G = Gauge, V = Vacuum

^{1.} A = Absolute, D = Differential, G = Gauge, V = Vacuum

^{1.} A = Absolute, D = Differential, G = Gauge, V = Vacuum

Device Numbering System for Pressure Sensors

Note: Actual product marking may be abbreviated due to space constraints but packaging label will reflect full part number.

*Only applies to qualified and prototype devices. This does not apply to custom devices.

Examples: MPX10DP 10 kPa uncompensated, differential device in minibody package, ported, no leadform, shipped in trays.

MPXA4115A6T1 115 kPa automotive temperature compensated and calibrated device with signal conditioning, SOP surface

mount with gull wing leadform, shipped in tape and reel.

What Are the Pressure Packaging Options?

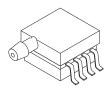
(Sizes not to scale)

Preferred Pressure Sensor Packaging Options

CASE 482 SUFFIX AG/G6

SOP AXIAL PORT CASE 482A SUFFIX AC6/GC6

SOP CASE 482B SUFFIX G7U


SOP AXIAL PORT CASE 482C SUFFIX GC7U

MPAK CASE 1320 SUFFIX A/D

MPAK AXIAL PORT CASE 1320A SUFFIX AS/GS

SOP SIDE PORT CASE 1369 SUFFIX AP/GP

SOP DUAL PORT CASE 1351 SUFFIX DP

SOP VACUUM PORT CASE 1368 SUFFIX GVP

SSOP CASE 1317 SUFFIX A6

SSOP AXIAL PORT CASE 1317A SUFFIX AC6

SSOP TIRE PRESSURE MONITOR CASE 1352 SUFFIX A6

Pressure Sensor Packaging

UNIBODY BASIC ELEMENT CASE 344 SUFFIX A/D

UNIBODY SINGLE PORT CASE 344B SUFFIX AP/GP

UNIBODY DUAL PORT CASE 344C SUFFIX DP

MEDICAL CHIP PAK CASE 423A SUFFIX DT1

UNIBODY STOVEPIPE PORT CASE 344E SUFFIX AS/GS

UNIBODY BASIC ELEMENT CASE 867 SUFFIX A/D

UNIBODY SINGLE PORT CASE 867B SUFFIX AP/GP

UNIBODY DUAL PORT CASE 867C SUFFIX DP

UNIBODY AXIAL PORT CASE 867F SUFFIX ASX/GSX

UNIBODY STOVEPIPE PORT CASE 867E SUFFIX AS/GS

Orderable Part Numbers

PRESSURE SENSOR ORDERABLE PART NUMBERS

Uncompensated	MPX2102D	Integrated	MPX5100A	MPXV6115VC6U
MPX10D	MPX2102GP	MPXV5004GC6T1	MPX5100AP	MPX4200A
MPX10DP	MPX2102DP	MPXV5004GC6U	MPX5100D	MPX4250D
MPX10GP	MPX2102GVP	MPXV5004GC7U	MPX5100DP	MPX4250DP
MPX10GS	MPXM2102D	MPXV5004G6U	MPX5100GP	MPX4250GP
MPXV10GC6U	MPXM2102DT1	MPXV5004G7U	MPX5100GSX	MPX4250A
MPXV10GC7U	MPXM2102GS	MPXV5004GP	MPXV5100DP	MPX4250AP
MPX12D	MPXM2102GST1	MPXV5004GP1	MPXV5100GC6U	MPXA4250AC6T1
MPX12DP	MPXV2102GP	MPXV5004DP	MPXV5100GC7U	MPXA4250AC6U
MPX12GP	MPXV2102DP	MPXV5004GVP	MPX4080D	MPXA4250A6T1
MPX53D	MPX2102A	MPXV4006GC6T1	MPX4100A	MPXA4250A6U
MPX53DP	MPX2102AP	MPXV4006GC6U	MPX4100AP	MPXH6250A6U
MPX53GP	MPX2102ASX	MPXV4006GC7U	MPX4100AS	MPXH6250A6T1
MPXM53GS	MPXM2102A	MPXV4006G6U	MPXA4100AC6U	MPXH6300ACGU
MPXM53GST1	MPXM2102AT1	MPXV4006G7U	MPXA4100A6T1	MPXH6300AC6T1
MPXV53GC6U	MPXM2102AS	MPXV4006GP	MPXA4100A6U	MPXH6300A6U
MPXV53GC7U	MPXM2102AST1	MPXV4006DP	MPXAZ4100AC6U	MPXH6300A6T1
Compensated	MPX2100D	MPXV7007DP	MPXAZ4100A6U	MPXH6400A6U
MPX2300DT1	MPX2100GP	MPXV7007GP	MPX4101A	MPXH6400A6T1
MPX2301DT1	MPX2100DP	MPXV7007GC6U	MPXA4101AC6U	MPXH6400AC6U
MPX2010D	MPX2100GVP	MPXV7007GC6T1	MPXH6101A6T1	MPXH6400AC6T1
MPX2010GP	MPX2100A	MPX5010D	MPXH6101A6U	MPX5700A
MPX2010DP	MPX2100AP	MPX5010DP	MPX4105A	MPX5700AP
MPX2010GS	MPX2100ASX	MPX5010DP1	MPXV4115VC6U	MPX5700AS
MPX2010GSX	MPX2202D	MPX5010GP	MPXV4115V600	MPX5700ASX
MPXM2010D	MPX2202GP	MPX5010GS	MPXV4115V6U	MPX5700D
MPXM2010DT1	MPX2202DP	MPX5010GSX	MPX5999D	MPX5700DP
MPXM2010GS	MPXM2202D	MPXV5010GC6T1	MPX4115A	MPX5700GP
MPXM2010GST1	MPXM2202DT1	MPXV5010GC6U	MPX4115AP	MPX5700GP1
MPXC2011DT1	MPXM2202GS	MPXV5010GC7U	MPX4115AS	MPX5700GF 1
MPXC2011DT1	MPXM2202GST1	MPXV5010G6U	MPXA4115AC6U	MPXY8020A6U
MPXV2010GP	MPXV2202GP	MPXV5010G0U	MPXA4115A6T1	MPXY8020A6T1
MPXV2010GP	MPXV2202DP	MPXV5010GP	MPXA4115A6U	MPXY8021A6U
MPX2053D	MPXV2202GF	MPXV5010GP	MPXA4115AP	MPXY8021A6T1
MPX2053GP	MPXV2202GC611	MPXV7025DP	MPXAZ4115AC6U	MPXY8040A6U
MPX2053DP	MPX2202A	MPXV7025GP	MPXAZ4115A6T1	MPXY8040A6T1
MPX2053GVP	MPX2202A	MPXV7025GC6U	MPXAZ4115A6U	WFX18040A011
MPXM2053D	MPXM2202AF	MPXV7025GC6T1	MPXAZ4115A6U	
	MPXM2202AT1	MPX5500D	MPXAZ6115AP	
MPXM2053DT1	MPXM2202AT1			
MPXM2053GS		MPX5500DP	MPXAZ6115APT1	
MPXM2053GST1	MPXM2202AST1	MPX5050D	MP3H6115A6T1	
MPXV2053GP	MPX2200D	MPX5050DP	MP3H6115A6U	
MPXV2053DP	MPX2200GP	MPX5050GP1	MP3H6115AC6T1	
MPX2050D	MPX2200DP	MPX5050GP	MP3H6115AC6U	
MPX2050GP	MPX2200GSX	MPXV5050GP	MPXAZ6115AC6U	
MPX2050DP	MPX2200A	MPXV5050DP	MPXA6115AC6U	
MPX2050GSX	MPX2200AP	MPXV5050VC6T1	MPXA6115A6U	
			MPXH6115A6T1	
			MPXH6115A6U	
			MPXH6115AC6T1	
			MPXH6115AC6U	
			MPXHZ6115A6T1	
			MPXHZ6115A6U	

General Product Information

Performance, competitive price and application versatility are just a few of the Freescale Semiconductor pressure sensor advantages.

PRESSURE SENSOR APPLICATIONS VERSATILITY

For Freescale Semiconductor's pressure sensors, new applications emerge every day as engineers and designers realize that they can convert their expensive mechanical pressure sensors to Freescale Semiconductor's lower-cost, semiconductor-based devices. Applications include automotive and aviation, industrial, healthcare and medical products and systems.

PERFORMANCE

The performance of Freescale Semiconductor pressure sensors is based on its patented strain gauge design. Unlike the more conventional pressure sensors which utilize four closely matched resistors in a distributed Wheatstone bridge configuration, the device uses only a single piezoresistive element ion implanted on an etched silicon diaphragm to sense the stress induced on the diaphragm by an external pressure. The extremely linear output is an analog voltage that is proportional to pressure input and ratiometric with supply voltage. High sensitivity and excellent long-term repeatability make these sensors suitable for the most demanding applications.

ACCURACY

Computer controlled laser trimming of on-chip calibration and compensation resistors provide the most accurate pressure measurement over a wide temperature range. Temperature effect on span is typically $\pm 0.5\%$ of full scale over a temperature range from 0 to 85°C, while the effect on offset voltage over a similar temperature range is a maximum of only ± 1 mV.

UNLIMITED VERSATILITY

Choice of Specifications

Freescale Semiconductor's pressure sensors are available in pressure ranges to fit a wide variety of automotive, healthcare, consumer and industrial applications.

Choice of Measurement

Devices are available for differential, absolute, or gauge pressure measurements.

Choice of Chip Complexity

Freescale Semiconductor's pressure sensors are available as the basic sensing element, with temperature compensation and calibration, or with full signal conditioning circuitry included on the chip. Uncompensated devices permit external compensation to any degree desired.

Choice of Packaging

Available as a basic element for custom mounting, or in conjunction with Freescale Semiconductor's designed ports, printed circuit board mounting is easy. Our Small Outline and Super Small Outline packaging options provide surface mount, low profile, and top piston fit package selections. Alternate packaging material, which has been designed to meet biocompatibility requirements, is also available.

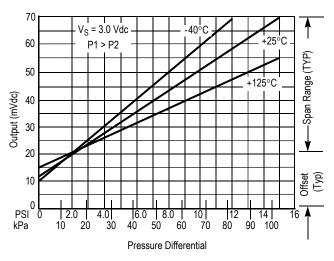
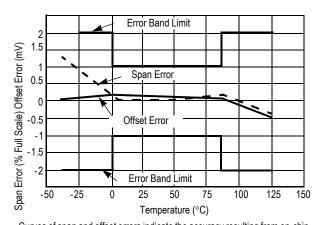



Figure 1. Typical Output versus Pressure Differential

Curves of span and offset errors indicate the accuracy resulting from on-chip compensation and laser trimming.

Figure 2. Temperature Error Band Limit and Typical Span and Offset Errors

Freescale Semiconductor Pressure Sensors

INTRODUCTION

Freescale Semiconductor pressure sensors combine advanced piezoresistive sensor architecture with integrated circuit technology to offer a wide range of pressure sensing devices for automotive, medical, consumer and industrial applications. Selection versatility includes choice of:

Pressure Ranges in PSI

0 to 1.45, 0 to 6, 0 to 7.3, 0 to 14.5, 0 to 29, 0 to 75, 0 to 100, 0 to 150 psi.

Sensing Options

Uncompensated, Temperature Compensated/Calibrated, and Signal Conditioned (with on-chip amplifiers)

Application Measurements

Absolute, Differential, Gauge

Package Options

- Basic Element, Ported Elements for specific measurements
- · Surface Mount and Through Hole, Low Profile packages

THE BASIC STRUCTURE

The Freescale Semiconductor pressure sensor is designed utilizing a monolithic silicon piezoresistor, which generates a changing output voltage with variations in applied pressure. The resistive element, which constitutes a strain gauge, is ion implanted on a thin silicon diaphragm.

Applying pressure to the diaphragm results in a resistance change in the strain gauge, which in turn causes a change in the output voltage in direct proportion to the applied pressure. The strain gauge is an integral part of the silicon diaphragm, hence there are no temperature effects due to differences in thermal expansion of the strain gauge and the diaphragm. The output parameters of the strain gauge itself are temperature dependent, however, requiring that the device be compensated if used over an extensive temperature range. Simple resistor networks can be used for narrow temperature ranges, i.e., 0°C to 85°C. For temperature ranges from -40°C to +125°C, more extensive compensation networks are necessary.

FREESCALE SEMICONDUCTOR'S LOCALIZED SENSING ELEMENTS

Excitation current is passed longitudinally through the resistor (taps 1 and 3), and the pressure that stresses the diaphragm is applied at a right angle to the current flow. The stress establishes a transverse electric field in the resistor that is sensed as voltage at taps 2 and 4, which are located at the midpoint of the resistor (Figure 3b).

The transducer (Figure 3a) uses a single element eliminating the need to closely match the four stress and temperature sensitive resistors that form a distributed Wheatstone bridge design. At the same time, it greatly simplifies the additional circuitry necessary to accomplish calibration and temperature compensation. The offset does not depend on matched resistors but instead on how well the transverse voltage taps are aligned. This alignment is accomplished in a single photolithographic step, making it easy to control, and is only a positive voltage, simplifying schemes to zero the offset.

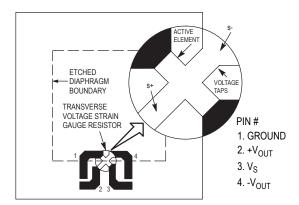


Figure 3a. X-ducer™ Sensor Element — Top View

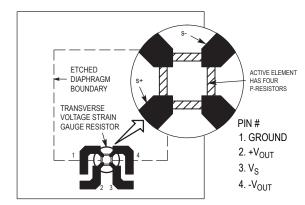


Figure 3b. Localized Sensing Element

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{out} = V_{off} + \text{sensitivity } \times P$ over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 4) or (2) a least squares best line fit. While a least squares fit gives the "best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. Freescale Semiconductor's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

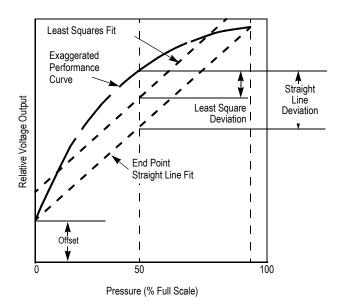
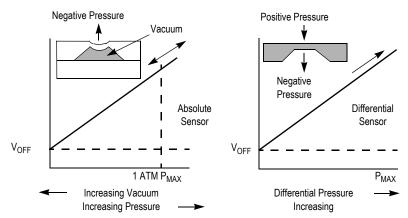


Figure 4. Linearity Specification Comparison

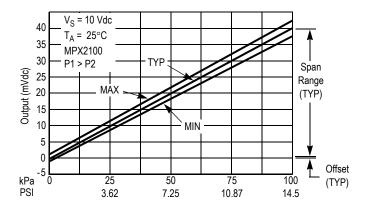
OPERATION


Freescale Semiconductor pressure sensors provide three types of pressure measurement: Absolute Pressure, Differential Pressure and Gauge Pressure.

Absolute Pressure Sensors measure an external pressure relative to a zero-pressure reference (vacuum) sealed inside the reference chamber of the die during manufacture. This corresponds to a deflection of the diaphragm equal to approximately 14.5 psi (one atmosphere), generating a quiescent full-scale output for the MPXH6101A6T1 (14.5 psi) sensor, and a half-scale output for the MPX4200A (29 psi) device. Measurement of external

pressure is accomplished by applying a relative negative pressure to the "Pressure" side of the sensor.

Differential Pressure Sensors measure the difference between pressures applied simultaneously to opposite sides of the diaphragm. A positive pressure applied to the "Pressure" side generates the same (positive) output as an equal negative pressure applied to the "Vacuum" side.


Gauge Pressure readings are a special case of differential measurements in which the pressure applied to the "Pressure" side is measured against the ambient atmospheric pressure applied to the "Vacuum" side through the vent hole in the chip of the differential pressure sensor elements.

Freescale Semiconductor sensing elements can withstand pressure inputs as high as four times their rated capacity, although accuracy at pressures exceeding the rated pressure will be reduced. When excessive pressure is reduced, the previous linearity is immediately restored.

Figure 5. Pressure Measurements

TYPICAL ELECTRICAL CHARACTERISTIC CURVES

Compensated V_S = 10 Vdc -40°C 90 Uncompensated V_S = 3 Vdc +25°C 80 P1 > P2 70 Output (mVdc) 60 Uncompensated 50 40 30 Compensated 20 10 6 7 PSI 20 30 40 50 10 kPa Pressure Differential

Figure 6. Output versus Pressure Differential

Figure 7. Typical-Output Voltage versus
Pressure and Temperature for Compensated
and Uncompensated Devices

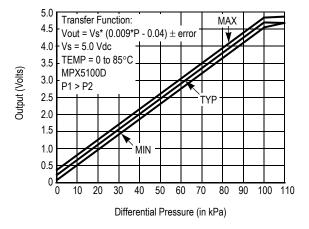
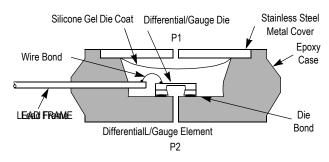



Figure 8. Signal Conditioned MPX5100

UNIBODY CROSS-SECTIONAL DRAWINGS

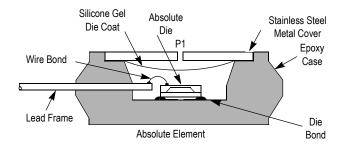


Figure 9. Cross-Sectional Diagrams (not to scale)

Figure 9 illustrates the absolute sensing configuration (right) and the differential or gauge configuration in the basic chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from harsh environments, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPX series pressure sensor operating characteristics and internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term stability. Contact the factory for information regarding media compatibility in your application.

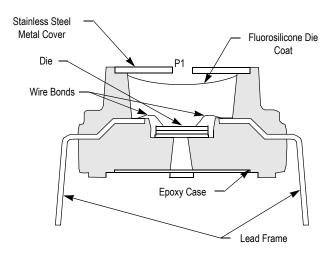


Figure 10. Cross-Sectional Diagram (not to scale)

Figure 10 illustrates the differential/gauge die in the basic chip carrier (Case 473). A silicone gel isolates the die surface and wirebonds from the environment, while

allowing the pressure signal to be transmitted to the silicon diaphragm.

Freescale Semiconductor 3-11

Integration

ON-CHIP SIGNAL CONDITIONING

To make the designer's job even easier, Freescale Semiconductor's integrated devices carry sensor technology one step further. In addition to the on-chip temperature compensation and calibration offered currently on the 2000 series, amplifier signal conditioning has been integrated *on-chip* in the 4000, 5000 and 6000 series to allow interface directly to any microcomputer with an on-board A/D converter.

The signal conditioning is accomplished by means of a four-stage amplification network, incorporating linear bipolar processing, thin-film metallization techniques, and interactive laser trimming to provide the state-of-the-art in sensor technology.

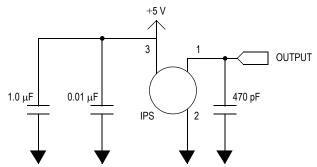


Figure 11. Recommended Power Supply Decoupling.
For Output Filtering Recommendations
(Refer to Application Note AN1646

DESIGN CONSIDERATIONS FOR DIFFERENT LEVELS OF SENSOR INTEGRATION

	DESIGN ADVANTAGES	DESIGN CONSIDERATIONS
Uncompensated Sensors	High Sensitivity	Device-to-Device Variation in Offset and Span
	Lowest Device Cost	Temperature Compensation Circuitry Required
	Low-Level Output Allows Flexibility of Signal Conditioning	Requires Signal Conditioning/ Amplification of Output Signal
		Relatively Low Input Impedance (400 Ω Typical)
Temperature Compensated & Calibrated (2000 Series)	Reduced Device-to-Device Variations in Offset and Span	Lower Sensitivity Due to Span Compensation (Compared to Uncompensated)
	Reduced Temperature Drift in Offset and Span	Priced Higher than Uncompensated Device
	Reasonable Input Impedance (2K Ω Typical)	Requires Signal Conditioning/ Amplification of Output Signal
	Low Level Output Allows Flexibility in Signal Conditioning	
Integrated Pressure Sensors (4000, 5000 and 6000 Series)	No Amplification Needed Direct Interface to MPU	Priced Higher than Compensated/ Uncompensated Device
	Signal Conditioning, Calibration of Span and Offset, Temperature Compensation Included On-Chip	

Sensor Applications

AUTOMOTIVE/AVIATION APPLICATIONS

- · Fuel Level Indicator
- Altimeters
- Air Speed Indicator
- · Ejection Seat Control
- Turbo Boost Control
- Manifold Vacuum Control
- Fuel Flow Metering
- Oil Filter Flow Indicator
- · Oil Pressure Sensor
- · Air Flow Measurement
- Anti-Start
- · Breathalizer Systems
- Smart Suspension Systems
- · Variometer-Hang glider & Sailplanes
- · Automotive Speed Control

HEALTHCARE APPLICATIONS

- Blood Pressure
- · Esophagus Pressure
- · Heart Monitor
- Interoccular Pressure
- Saline Pumps
- · Kidney Dialysis
- · Blood Gas Analysis
- · Blood Serum Analysis
- Seating Pressure (Paraplegic)
- Respiratory Control
- · Intravenous Infusion Pump Control
- · Hospital Beds
- · Drug Delivery
- IUPC
- Patient Monitors

INDUSTRIAL/COMMERCIAL APPLICATIONS

- · Electronic Fire Fighting Control
- Flow Control
- Barometer
- HVAC Systems
- · Tire Pressure Monitoring
- · Water Filtered Systems (Flow Rate Indicator)
- · Air Filtered Systems (Flow Rate Indicator)
- Tactile Sensing for Robotic Systems
- · Boiler Pressure Indicators
- · End of Tape Readers
- Disc Drive Control/Protection Systems
- · Ocean Wave Measurement
- · Diving Regulators
- · Oil Well Logging
- Building Automation (Balancing, Load Control, Windows)
- Fluid Dispensers
- Explosion Sensing Shock Wave Monitors
- · Load Cells
- Autoclave Release Control
- · Soil Compaction Monitor Construction
- Water Depth Finders (Industrial, Sport Fishing/Diving)
- Pneumatic Controls Robotics
- · Pinch Roller Pressure Paper Feed
- Blower Failure Safety Switch Computer
- · Vacuum Cleaner Control
- Electronic Drum
- Pressure Controls Systems Building, Domes
- Engine Dynamometer
- · Water Level Monitoring
- Altimeters

Freescale Semiconductor has tested media tolerant sensor devices in selected solutions or environments and test results are based on particular conditions and procedures selected by Freescale Semiconductor. Customers are advised that the results may vary for actual services conditions. Customers are cautioned that they are responsible to determine the media compatibility of sensor devices in their applications and the foreseeable use and misuses of their applications.

3-13

Pressure Sensor FAQ's

We have discovered that many of our customers have similar questions about certain aspects of our pressure sensor technology and operation. Here are the most frequently asked questions and answers that have been explained in relatively non-technical terms.

Q. How do I calculate total pressure error for my applications?

A. You can calculate total error in two fashions, worst case error and most probable error. Worst case error is taking all the individual errors and adding them up, while most probable error sums the squares of the individual errors and then take the square root of the total. In summary, Error (Worst Case) = E1 + E2 + E3 + ... + En, while Error (Most Probable) = SQRT[(E1)2 + (E2)2 + (E3)2 + ... (En)2]; Please note that not all errors may apply in your individual application.

Q. What is the media tolerance of our pressure sensors?

A. Most Freescale Semiconductor pressure sensors are specifically designed for dry air applications. However, Freescale Semiconductor now offers an MPXAZ series specifically designed for improved media resistance. This series incorporates a durable barrier that allows the sensor to operate reliably in high humidity conditions as well as environments containing common automotive media. NOTE: Applications exposing the sensor to media other

than what has been specified could potentially limit the lifetime of the sensor. Please consult the Freescale Semiconductor factory for more information regarding media compatibility in your specific application.

Q. Can I pull a vacuum on P1?

A. Our pressure sensors are based on a silicon diaphragm and can tolerate a pressure that alternates from positive to negative. It is important that the applied pressure not rise above the overpressure specification in the positive or negative range.

Q. What will happen if I run the pressure sensor beyond the rated operating pressure?

A. For bare elements (uncompensated and compensated series devices), when you take the sensor higher than the rated pressure, the part will still provide an output increasing linearly with pressure. When you go below the minimum rated pressure, the output of the sensor will eventually go negative. Freescale Semiconductor, however, does not guarantee electrical specifications beyond the rated operating pressure range specified in the data sheet of each device. The integrated series devices will not function at all beyond the rated pressure of the part. These series of parts will saturate at near 4.8 V and 0.2 V and thus no further change in output will occur.

Technical Data

High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated

Freescale's MP3H6115A series sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The small form factor and high reliability of on-chip integration make the Freescale pressure sensor a logical and economical choice for the system designer.

The MP3H6115A series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- Improved Accuracy at High Temperature
- · Available in Super Small Outline Package
- 1.5% Maximum Error over 0° to 85°C
- · Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated from -40° to +125°C
- Durable Thermoplastic (PPS) Surface Mount Package

Application Examples

- · Aviation Altimeters
- Industrial Controls
- Engine Control/Manifold Absolute Pressure (MAP)
- Weather Station and Weather Reporting Device Barometers

ORDERING INFORMATION

Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Marking
Basic Element	Absolute, Element Only	1317	MP3H6115A6U	Rails	MP3H6115A
	Absolute, Element Only	1317	MP3H6115A6T1	Tape and Reel	MP3H6115A
Ported Element	Absolute, Axial Port	1317A	MP3H6115AC6U	Rails	MP3H6115A
	Absolute, Axial Port	1317A	MP3H6115AC6T1	Tape and Reel	MP3H6115A

MP3H6115A SERIES

INTEGRATED
PRESSURE SENSOR
15 TO 115 KPA (2.2 TO 16.7 PSI)
0.12 TO 2.9 VOLTS OUTPUT

SUPER SMALL OUTLINE PACKAGE

MP3H6115A6U/T1 CASE 1317-04

MP3H6115AC6U/T1 CASE 1317A-01

PIN NUMBER					
1	N/C	5	N/C		
2	V _S	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

NOTE: Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is denoted by the chamfered corner of the package.

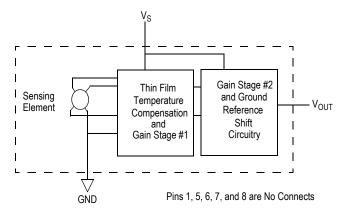


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Parametrics	Symbol	Value	Units
Maximum Pressure (P1 > P2)	P _{max}	400	kPa
Storage Temperature	T _{stg}	-40° to +125°	°C
Operating Temperature	T _A	-40° to +125°	°C
Output Source Current @ Full Scale Output(2)	I _o +	0.5	mAdc
Output Sink Current @ Minimum Pressure Offset ⁽²⁾	l _o -	-0.5	mAdc

- 1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
- $2. \ \ \text{Maximum Output Current is controlled by effective impedance from } V_{out} \text{ to Gnd or } V_{out} \text{ to } V_{S} \text{ in the application circuit.} \\$

Table 2. Operating Characteristics

 $(V_S = 3.0 \text{ Vdc}, T_A = 25^{\circ}\text{C} \text{ unless otherwise noted}, P1 > P2.)$

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range		P _{OP}	15	_	115	kPa
Supply Voltage ⁽¹⁾		V _S	2.7	3.0	3.3	Vdc
Supply Current		l _o	_	4.0	8.0	mAdc
Minimum Pressure Offset ⁽²⁾ @ V _S = 3.0 Volts	(0 to 85°C)	V _{off}	0.079	0.12	0.161	Vdc
Full Scale Output ⁽³⁾ @ V _S = 3.0 Volts	(0 to 85°C)	V _{FSO}	2.780	2.82	2.861	Vdc
Full Scale Span ⁽⁴⁾ @ V _S = 3.0 Volts	(0 to 85°C)	V _{FSS}	2.660	2.70	2.741	Vdc
Accuracy ⁽⁵⁾	(0 to 85°C)	_	_	_	±1.5	%V _{FSS}
Sensitivity		V/P	_	27	_	mV/kPa
Response Time ⁽⁶⁾		t _R	_	1.0	_	ms
Warm-Up Time ⁽⁷⁾		_	_	20	_	ms
Offset Stability ⁽⁸⁾		_	_	±0.25	_	%V _{FSS}

- 1. Device is ratiometric within this specified excitation range.
- 2. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 3. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 4. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 5. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at 25°C due to all sources of error including the following:
 - · Linearity:Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis:Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure at 25°C.
 - TcSpan:Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - TcOffset:Output deviation with minimum pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the pressure has been stabilized.
- 8. Offset Stability is the product's output deviation when subjected to 1000 cycles of Pulsed Pressure, Temperature Cycling with Bias Test.

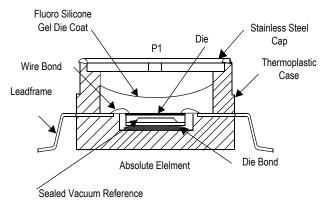


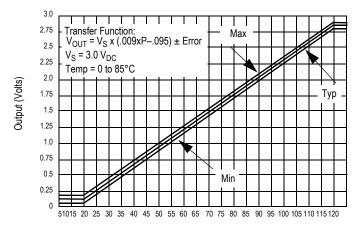
Figure 2. Cross Sectional Diagram SSOP (not to scale)

+5.1 V

V_S Pin 2

MP3H6115A

V_{OUT} Pin 4


GND Pin 3

47 pF \$ 51 K

Figure 3. Typical Application Circuit (Output Source Current Operation)

Figure 2 illustrates the absolute sensing chip in the basic Super Small Outline chip carrier (Case 1317).

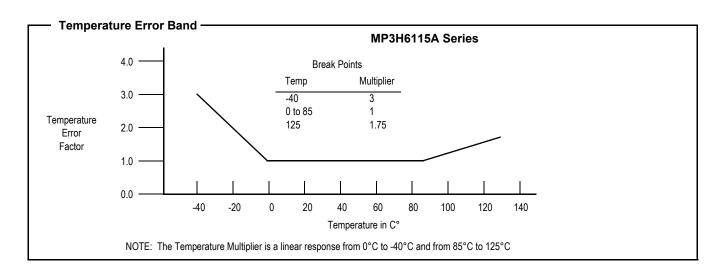
Figure 3 shows a typical application circuit (output source current operation).

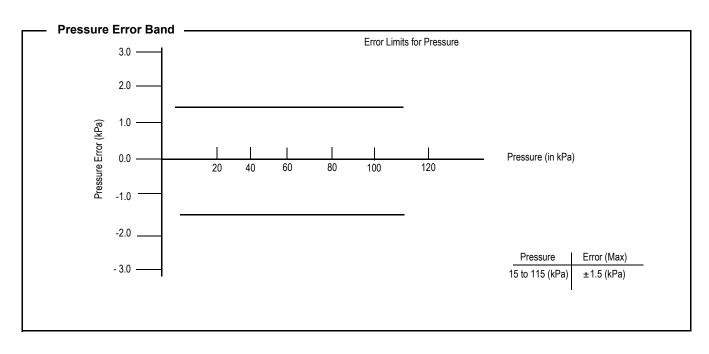
Pressure (Reference to Sealed Vacuum) in kPa

Figure 4. Output versus Pressure Differential

Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over 0 to 85°C temperature range. The output will saturate outside of the rated pressure range.

A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to


be transmitted to the silicon diaphragm. The MP3H6115A series pressure sensor operating characteristics, internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.


Transfer Function (MP3H6115A) -

Normal Transfer Value: $V_{OUT} = V_S x (0.009 x P - 0.095)$

± (Pressure Error x Temp. Factor x 0.009 x V_S)

 $V_{S} = 3.0 \pm 0.3 V_{DC}$

MINIMUM RECOMMENDED FOOTPRINT FOR SUPER SMALL OUTLINE PACKAGES

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a

solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.

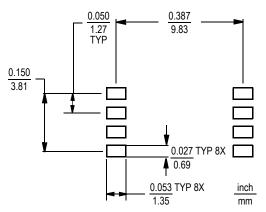


Figure 5. SSOP Footprint (Case 1317 and 1317A)

10 kPa Uncompensated Silicon Pressure Sensors

The MPX10 and MPXV10GC series devices are silicon piezoresistive pressure sensors providing a very accurate and linear voltage output — directly proportional to the applied pressure. These standard, low cost, uncompensated sensors permit manufacturers to design and add their own external temperature compensation and signal conditioning networks. Compensation techniques are simplified because of the predictability of Freescale's single element strain gauge design. Figure 1 shows a schematic of the internal circuitry on the stand-alone pressure sensor chip.

Features

- Low Cost
- Patented Silicon Shear Stress Strain Gauge Design
- Ratiometric to Supply Voltage
- Easy to Use Chip Carrier Package Options
- · Differential and Gauge Options
- Durable Epoxy Unibody Element or Thermoplastic (PPS) Surface Mount Package

Functional Description

- · Air Movement Control
- · Environmental Control Systems
- · Level Indicators
- Leak Detection
- Medical Instrumentation
- Industrial Controls
- Pneumatic Control Systems
- Robotics

ORDERING INFORMATION ⁽¹⁾					
Device Type	Options	Case No.	Order Number	Device Marking	
SMALL OUTLIN	E PACKAGE (MP)	V10G SERIE	S)		
Ported	Rails	482A	MPXV10GC6U	MPXV10G	
Elements	Tape and Reel	482A	MPXV10GC6T1	MPXV10G	
	Rails	482C	MPXV10GC7U	MPXV10G	
UNIBODY PACE	KAGE (MPX10 SEI	RIES)			
Basic Element	Differential	344	MPX10D	MPX10D	
Ported	Differential	344C	MPX10DP	MPX10DP	
Elements	Gauge	344B	MPX10GP	MPX10GP	
	Gauge	344E	MPX10GS	MPX10D	

 MPX10 series pressure sensors are available in differential and gauge configurations. Devices are available in the basic element package or with pressure port fittings which provide printed circuit board mounting ease and barbed hose pressure connections.

MPX10 MPXV10GC SERIES

UNCOMPENSATED PRESSURE SENSOR 0 TO 10 kPA (0-1.45 psi) 35 mV FULL SCALE SPAN (TYPICAL)

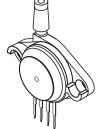
SMALL OUTLINE PACKAGES

MPXV10GC6U CASE 482A-01

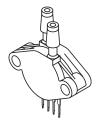
MPXV10GC7U CASE 482C-03

SMALL OUTLINE PACKAGE PIN NUMBERS				
1	GND	5	N/C	
2	+V _{out}	6	N/C	
3	Vs	7	N/C	
4	–V _{out}	8	N/C	

NOTE: Pin 1 is noted by the notch in the lead.


UNIBODY PACKAGE PIN NUMBERS					
1	GND	3	V _s		
2	+V _{out}	4	–V _{out}		

NOTE: Pin 1 is noted by the notch in the lead.


UNIBODY PACKAGES

MPX10D CASE 344-15

MPX10GP CASE 344B-01

MPX10DP CASE 344C-01

MPX10GS CASE 344E-01

MPX10

Figure 1. Uncompensated Pressure Sensor Schematic

VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output

voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	75	kPa
Burst Pressure (P > P2)	P _{BURST}	100	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics (V_S = 3.0 Vdc, T_A = 25°C unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Units
Differential Pressure Range ⁽¹⁾	P _{OP}	0	_	10	kPa
Supply Voltage ⁽²⁾	V _S	_	3.0	60	V_{DC}
Supply Current	I _O	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	20	35	50	mV
Offset ⁽⁴⁾	V _{OFF}	0	20	35	mV
Sensitivity	ΔV/ΔΡ	_	3.5	_	mV/kPa
Linearity ⁽⁵⁾	_	-1.0	_	1.0	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to 10 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (–40°C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Coefficient of Full Scale Span ⁽⁵⁾	TCV _{FSS}	-0.22	_	-0.16	%V _{FSS} /°C
Temperature Coefficient of Offset ⁽⁵⁾	TCV _{OFF}	_	±15	_	μV/°C
Temperature Coefficient of Resistance ⁽⁵⁾	TCR	0.28	_	0.34	%/Z _{IN} /°C
Input Impedance	Z _{IN}	400	_	550	Ω
Output Impedance	Z _{OUT}	750	_	1250	Ω
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up Time ⁽⁷⁾	_	_	20	_	ms
Offset Stability ⁽⁸⁾	_	_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum related pressure.
- 4. Offset (VOFF) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified pressure range.
 - Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure with the specified range, when this pressure is cycled to and from the minimum
 - or maximum rated pressure at 25°C.
 - TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative
 - to 25°C.
 - TCR: Z_{IN} deviation with minimum rated pressure applied, over the temperature range of -40°C to ±125°C, relative to 25°C.
- 6. Response Time is defined as the time form the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the pressure is stabilized.
- 8. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

TEMPERATURE COMPENSATION

Figure 2 shows the typical output characteristics of the MPX10 and MPXV10GC series over temperature.

Because this strain gauge is an integral part of the silicon diaphragm, there are no temperature effects due to differences in the thermal expansion of the strain gauge and the diaphragm, as are often encountered in bonded strain gauge pressure sensors. However, the properties of the strain gauge itself are temperature dependent, requiring that the device be temperature compensated if it is to be used over an extensive temperature range.

Temperature compensation and offset calibration can be achieved rather simply with additional resistive components, or by designing your system using the MPX2010D series sensor.

Several approaches to external temperature compensation over both –40 to +125°C and 0 to +80°C ranges are presented in Application Note AN840.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{out} = V_{off} + sensitivity \times P$ over the operating pressure range (Figure 3). There are two basic methods for calculating nonlinearity: 1) end point straight line fit or 2) a least squares best line fit. While a least squares fit gives the "best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. Freescale's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

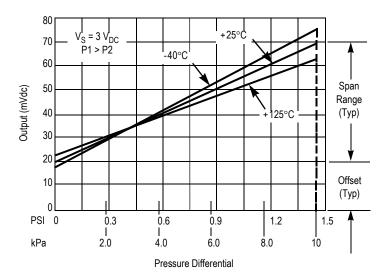


Figure 2. Output versus Pressure Differential

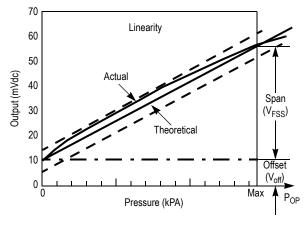


Figure 3. Linearity Specification Comparison

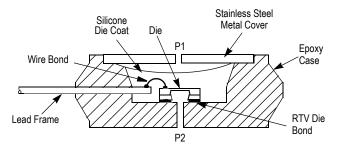


Figure 4. Unibody Package — Cross-Sectional Diagram (Not to Scale)

Figure 4 illustrates the differential or gauge configuration in the basic chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPX10 and MPXV10GC series pressure sensor operating characteristics and internal reliability and

qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application.

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The Freescale pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the following table.

Part Number	Case Type	Pressure (P1) Side Identifier
MPX10D	344	Stainless Steep Cap
MPX10DP	344C	Side with Part Marking
MPX10GP	344B	Side with Port Attached
MPX10GS	344E	Side with Port Attached
MPX10GC6U	482A	Side with Part Marking
MPXV10C7U	482C	Side with Part Marking

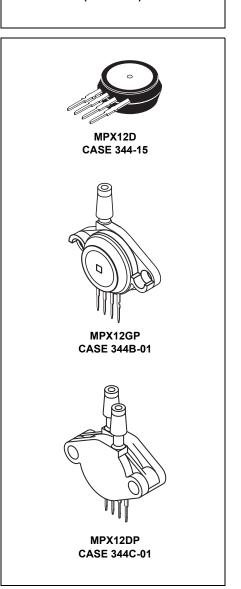
10 kPa Uncompensated Silicon Pressure Sensors

The MPX12 series device is a silicon piezoresistive pressure sensor providing a very accurate and linear voltage output — directly proportional to the applied pressure. This standard, low cost, uncompensated sensor permits manufacturers to design and add their own external temperature compensating and signal conditioning networks. Compensation techniques are simplified because of the predictability of Freescale's single element strain gauge design.

Features

- Low Cost
- · Patented Silicon Shear Stress Strain Gauge Design
- Ratiometric to Supply Voltage
- · Easy to Use Chip Carrier Package Options
- · Differential and Gauge Options
- Durable Epoxy Package

Application Examples


- Air Movement Control
- · Environmental Control Systems
- Level Indicators
- · Leak Detection
- Medical Instrumentation
- Industrial Controls
- · Pneumatic Control Systems
- Robotics

ORDERING INFORMATION ⁽¹⁾					
Device Type	Options	Case No.	Order Number	Device Marking	
Basic Element	Differential	344	MPX12D	MPX12D	
Ported Elements	Differential	344C	MPX12DP	MPX12DP	
	Gauge	344B	MPX12GP	MPX12GP	

 MPX12 series pressure sensors are available in differential and gauge configurations. Devices are available in the basic element package or with pressure port fittings which provide printed circuit board mounting ease and barbed hose pressure connections.

MPX12 SERIES

UNCOMPENSATED PRESSURE SENSOR 0 TO 10 kPA (0-1.45 psi) 55 mV FULL SCALE SPAN (TYPICAL)

PIN NUMBERS					
1	GND	3	V_{SS}		
2	+V _{out}	4	–V _{out}		

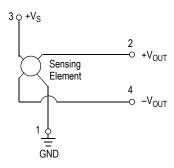


Figure 1. Uncompensated Pressure Sensor Schematic

VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output

voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	75	kPa
Burst Pressure (P1 > P2)	P _{BURST}	100	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics (VS = 3.0 Vdc, TA = 25×C unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Unit
Differential Pressure Range ⁽¹⁾	P _{OP}	0	_	10	kPa
Supply Voltage ⁽²⁾	V _S	_	3.0	6.0	Vdc
Supply Current	I _o	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	45	55	70	mV
Offset ⁽⁴⁾	V _{off}	0	20	35	mV
Sensitivity	ΔV/ΔΡ	_	5.5	_	mV/kPa
Linearity ⁽⁵⁾	_	-0.5	_	5.0	%V _{FSS}
Pressure Hysteresis ⁶ (0 to 10 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (–40°C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Coefficient of Full Scale Span ⁽⁵⁾	TCV _{FSS}	-0.22	_	-0.16	%V _{FSS} /°C
Temperature Coefficient of Offset ⁽⁵⁾	TCV _{off}	_	±15	_	μV/°C
Temperature Coefficient of Resistance ⁽⁵⁾	TCR	0.28	_	0.34	%Z _{in} /°C
Input Impedance	Z _{in}	400	_	550	W
Output Impedance	Z _{out}	750	_	1250	W
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up Time ⁽⁷⁾	_	_	20	_	ms
Offset Stability ⁽⁸⁾	_	_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum related pressure.
- 4. Offset (V_{OFF}) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified pressure range.
 - Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure with the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure at 25°C.
 - TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
 TCR: Z_{IN} deviation with minimum rated pressure applied, over the temperature range of -40°C to ±125°C, relative to 25°C.
- 6. Response Time is defined as the time form the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the pressure is stabilized.
- 8. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

TEMPERATURE COMPENSATION

Figure 2 shows the typical output characteristics of the MPX12 series over temperature.

Because this strain gauge is an integral part of the silicon diaphragm, there are no temperature effects due to differences in the thermal expansion of the strain gauge and the diaphragm, as are often encountered in bonded strain gauge pressure sensors. However, the properties of the strain gauge itself are temperature dependent, requiring that the device be temperature compensated if it is to be used over an extensive temperature range.

Temperature compensation and offset calibration can be achieved rather simply with additional resistive components, or by designing your system using the MPX2010D series sensor.

Several approaches to external temperature compensation over both –40 to +125°C and 0 to +80°C ranges are presented in Applications Note AN840.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{out} = V_{off} + \text{sensitivity x P}$ over the operating pressure range (Figure 3). There are two basic methods for calculating nonlinearity: (1) end point straight line fit or (2) a least squares best line fit. While a least squares fit gives the "best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. Freescale's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

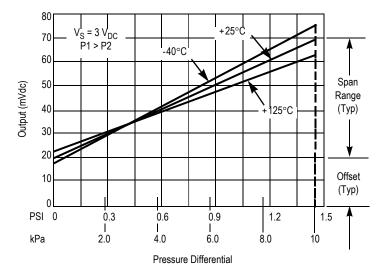


Figure 2. Output versus Pressure Differential

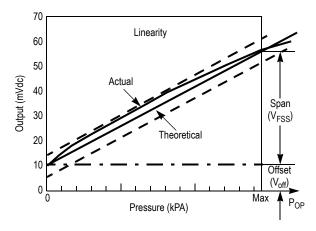


Figure 3. Linearity Specification Comparison

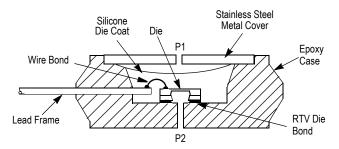


Figure 4. Unibody Package — Cross-Sectional Diagram (not to scale)

Figure 4 illustrates the differential or gauge configuration in the basic chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPX12 series pressure sensor operating characteristics and internal reliability and qualification tests

are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application/

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The Freescale MPX pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the following table

Part Number	Case Type	Pressure (P1) Side Identifier
MPX12D	344	Stainless Steel Cap
MPX12DP	344C	Side with Part Marking
MPX12GP	344B	Side with Port Attached

50 kPa Uncompensated **Silicon Pressure Sensors**

The MPX53/MPXV53GC series silicon piezoresistive pressure sensors provide a very accurate and linear voltage output — directly proportional to the applied pressure. These standard, low cost, uncompensated sensors permit manufacturers to design and add their own external temperature compensating and signal conditioning networks. Compensation techniques are simplified because of the predictability of Freescale's single element strain gauge design.

Features

- Low Cost
- Patented Silicon Shear Stress Strain Gauge Design
- Ratiometric to Supply Voltage
- Easy to Use Chip Carrier Package Options
- 60 mV Span (Typ)
- Differential and Gauge Options

Typical Applications

- Air Movement Control
- **Environmental Control Systems**
- Level Indicators
- Leak Detection
- Medical Instrumentation
- **Industrial Controls**
- Pneumatic Control Systems
- Robotics


	ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking		
SMALL O	UTLINE PACKAGE ⁽¹⁾ (N	//PXV2010	G SERIES)				
Ported	Gauge, Side Port, SMT	482A	MPXV53DC6T1	Tape & Rail	MPXV53G		
Elements	Differential, Dual Port,	482A	MPXV53GC6U	Rails	MPXV53G		
	SMT	482C	MPXV53G7U	Rails	MPXV53G		
UNIBODY	′ PACKAGE ⁽²⁾ (MPX201	0 SERIES)				
Basic Element	Differential	344	MPX53D	-	MPX2010D		
Ported	Differential	344C	MPX53DP	_	MPX2010DP		
Elements	Gauge	344B	MPX53GP	-	MPX2010GP		

- 1. The MPXV53GC series pressure sensors are available with a pressure port, surface mount, or DIP leadforms and two packing options.
- MPX53 series pressure sensors are available in differential and gauge configurations. Devices are available with basic element package or with pressure port fittings, providing printed circuit board mounting ease and barbed hose pressure.

MPX53 MPXV53GC **SERIES**

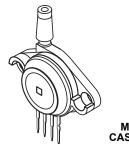
UNCOMPENSATED PRESSURE SENSOR 0 TO 50 kPA (0 - 7.25 psi) 60 mV FULL SCALE SPAN (TYPICAL)

SMALL OUTLINE PACKAGES

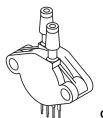
CASE 482A-01

MPXV53GC7U **CASE 482C-03**

SMALL OUTLINE PACKAGE PIN NUMBERS					
1	GND ⁽¹⁾	5	N/C		
2	+V _{OUT}	6	N/C		
3	V _S	7	N/C		
4	–V _{OUT}	8	N/C		


1. Pin 1 in noted by the notch in the lead.

UNIBODY PACKAGE PIN NUMBERS				
1	GND ⁽¹⁾	3	V _S	
2	+V _{OUT}	4	-V _{OUT}	


1. Pin 1 in noted by the notch in the lead.

UNIBODY PACKAGES

MPX53GP CASE 344B-01

MPX53DP **CASE 344C-01**

MPX53

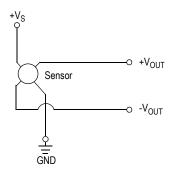


Figure 1. Uncompensated Pressure Sensor Schematic

VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE

The differential voltage output of the sensor is directly proportional to the differential the pressure side (P1) relative to the vacuum side (P2). Similarly, output voltage increases

as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).

Figure 1 shows a schematic of the internal circuitry on the stand-alone pressure sensor chip.

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	200	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 3.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Units
Pressure Range ⁽¹⁾	P _{OP}	0	_	50	kPa
Supply Voltage ⁽²⁾	V _S	_	3.0	60	V_{DC}
Supply Current	I _O	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	45	60	90	mV
Offset ⁽⁴⁾	V _{OFF}	0	20	35	mV
Sensitivity	ΔV/ΔΡ	_	1.2	_	mV/kPa
Linearity ⁽⁵⁾	_	-0.6	_	0.4	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to 50 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (–40°C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Coefficient of Full Scale Span ⁽⁵⁾	TCV _{FSS}	-0.22	_	-0.16	%V _{FSS} /°C
Temperature Coefficient of Offset ⁽⁵⁾	TCV _{OFF}	_	±15	_	μV/°C
Temperature Coefficient of Resistance ⁽⁵⁾	TCR	0.31	_	0.37	%Z _{IN} /°C
Input Impedance	Z _{IN}	355	_	505	Ω
Output Impedance	Z _{OUT}	750	_	1875	Ω
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up Time	_	_	2.0	_	ms
Offset Stability ⁽⁷⁾	_	_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum related pressure.
- 4. Offset (V_{OFF}) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
 - Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at 25°C.
- 6. Response Time is defined as the time form the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

TEMPERATURE COMPENSATION

Figure 2 shows the typical output characteristics of the MPX53/MPXV53GC series over temperature.

The piezoresistive pressure sensor element is a semiconductor device which gives an electrical output signal proportional to the pressure applied to the device. This device uses a unique transverse voltage diffused semiconductor strain gauge which is sensitive to stresses produced in a thin silicon diaphragm by the applied pressure.

Because this strain gauge is an integral part of the silicon diaphragm, there are no temperature effects due to differences in the thermal expansion of the strain gauge and the diaphragm, as are often encountered in bonded strain gauge pressure sensors. However, the properties of the strain gauge itself are temperature dependent, requiring that the device be temperature compensated if it is to be used over an extensive temperature range.

Temperature compensation and offset calibration can be achieved rather simply with additional resistive components, or by designing your system using the MPX2053 series sensors.

Several approaches to external temperature compensation over both –40 to +125°C and 0 to +80°C ranges are presented in Freescale Application Note AN840.

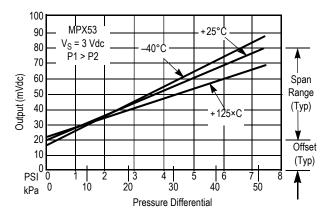


Figure 2. Output vs. Pressure Differential

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{out} = V_{off} + \text{sensitivity x P}$ over the operating pressure range (see Figure 3). There are two basic methods for calculating nonlinearity: (1) end point straight line fit or (2) a least squares best line fit. While a least squares fit gives

the "best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. Freescale's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

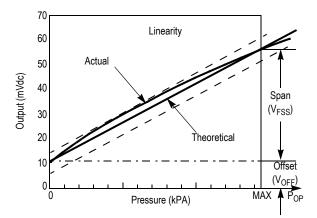


Figure 3. Linearity Specification Comparison

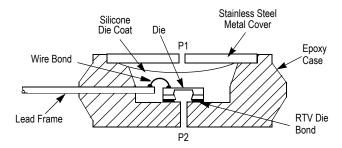


Figure 4. Unibody Package: Cross Sectional Diagram (Not to Scale)

Figure 4 illustrates the differential or gauge configuration in the unibody chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPX53/MPXV53GC series pressure sensor operating characteristics and internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application.

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The Freescale MPX pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the following table.

Part Number	Case Type	Pressure (P1) Side Identifier
MPX53D	344	Stainless Steep Cap
MPX53DP	344C	Side with Port Marking
MPX53GP	344B	Side with Port Attached
MPX53GC Series	482A, 482C	Side with Port Attached

MPX2010 Rev 10, 05/2005

10 kPa On-Chip Temperature Compensated & Calibrated

Silicon Pressure Sensors

The MPX2010/MPXV2010G series silicon piezoresistive pressure sensors provide a very accurate and linear voltage output directly proportional to the applied pressure. These sensors house a single monolithic silicon die with the strain gauge and thin film resistor network integrated on each chip. The sensor is laser trimmed for precise span, offset calibration and temperature compensation.

Features

- Temperature Compensated over 0°C to +85°C
- · Ratiometric to Supply Voltage
- · Differential and Gauge Options

Typical Applications

- · Respiratory Diagnostics
- · Air Movement Control
- Controllers
- Pressure Switching

	ORDERING INFORMATION					
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking	
SMALL OUT	LINE PACKAG	E (MPXV2010	G SERIES)		•	
Ported Elements	Gauge, Side Port, SMT	1369	MPXV2010GP	Trays	MPXV2010G	
	Differential, Dual Port, SMT	1351	MPXV2010DP	Trays	MPXV2010G	
UNIBODY PA	ACKAGE (MPX	2010 SERIES)		•	
Basic Element	Differential	344	MPX2010D	_	MPX2010D	
Ported Elements	Differential, Dual Port	344C	MPX2010DP	_	MPX2010DP	
	Gauge	344B	MPX2010GP	_	MPX2010GP	
	Gauge, Axial	344E	MPX2010GS	_	MPX2010D	
	Gauge, Axial PC Mount	344F	MPX2010GSX	_	MPX2010D	

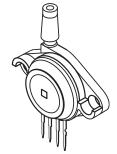
MPX2010 MPXV2010G SERIES

COMPENSATED
PRESSURE SENSOR
0 to 10 kPa (0 to 1.45 psi)
FULL SCALE SPAN: 25 mV

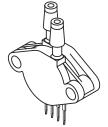
MPXV2010GP CASE 1369-01 CASE 1351-01

SMALL OUTLINE PACKAGE PIN NUMBERS						
1	1 GND ⁽¹⁾ 5 N/C					
2	+V _{OUT}	6	N/C			
3	Vs	7	N/C			
4	-V _{OUT}	8	N/C			

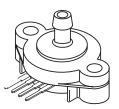
1. Pin 1 in noted by the notch in the lead.


UNIBODY PACKAGE PIN NUMBERS				
1	GND ⁽¹⁾	3	V _S	
2	+V _{OUT}	4	–V _{OUT}	

1. Pin 1 in noted by the notch in the lead.


UNIBODY PACKAGES

MPX2010GP CASE 344-15


MPX2010GP CASE 344B-01

MPX2010DP CASE 344C-01

MPX2010GS CASE 344E-01

MPX2010GSX CASE 344F-01

MPX2010

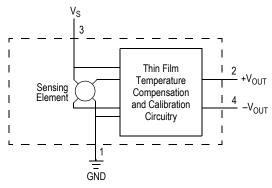


Figure 1. Temperature Compensated and Calibrated Pressure Sensor Schematic

VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output

voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).

Figure 1 shows a block diagram of the internal circuitry on the stand-alone pressure sensor chip.

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	75	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 10 V_{DC}$, $T_A = 25^{\circ}C$ unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Units
Pressure Range ⁽¹⁾	P _{OP}	0	_	10	kPa
Supply Voltage ⁽²⁾	Vs	_	10	16	V _{DC}
Supply Current	I _O	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	24	25	26	mV
Offset ⁽⁴⁾	V _{OFF}	-1.0	_	1.0	mV
Sensitivity	ΔV/ΔΡ	_	2.5	_	mV/kPa
Linearity ⁽⁵⁾	_	-1.0	_	1.0	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to 50 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (–40°C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Effect on Full Scale Span ⁽⁵⁾	TCV _{FSS}	-1.0	_	1.0	%V _{FSS}
Temperature Effect on Offset ⁽⁵⁾	TCV _{OFF}	-1.0	_	1.0	mV
Input Impedance	Z _{IN}	1000	_	2550	W
Output Impedance	Z _{OUT}	1400	_	3000	W
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up Time	_	_	2.0	_	ms
Offset Stability ⁽⁷⁾	_	_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum related pressure.
- 4. Offset (V_{OFF}) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - $\bullet \ \, \text{TcOffset:} \qquad \text{Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.}$
 - Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{ESS}, at 25°C.
- 6. Response Time is defined as the time form the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

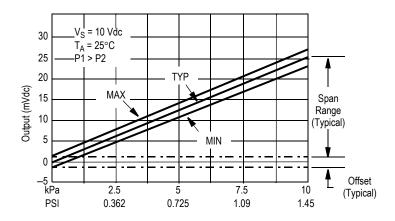


Figure 2. Output vs. Pressure Differential

Figure 2 shows the output characteristics of the MPX2010/MPXV2010G series at 25°C. The output is directly proportional to the differential pressure and is essentially a straight line.

The effects of temperature on full scale span and offset are very small and are shown under Operating Characteristics.

This performance over temperature is achieved by having both the shear stress strain gauge and the thin-film resistor circuitry on the same silicon diaphragm. Each chip is dynamically laser trimmed for precise span and offset calibration and temperature compensation.

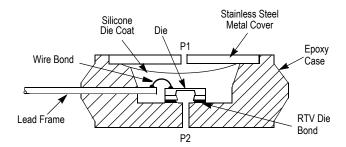


Figure 3. Unibody Package: Cross Sectional Diagram (Not to Scale)

Figure 3 illustrates the differential/gauge die in the basic chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPX2010/MPXV2010G series pressure sensor operating characteristics and internal reliability and

qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{out} = V_{off} + \text{sensitivity } \times P$ over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 4) or (2) a least squares best line fit. While a least squares fit gives the "best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. Freescale's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

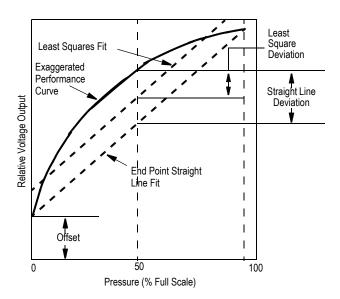


Figure 4. Linearity Specification Comparison

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The Freescale MPX pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the following table.

Table 3. Pressure (P1) Side Delineation

Part Number	Case Type	Pressure (P1) Side Identifier
MPX2010D	344	Stainless Steep Cap
MPX2010DP	344C	Side with Part Marking
MPX2010GP	344B	Side with Port Attached
MPX2010GS	344E	Side with Port Attached
MPX2010GSX	344F	Side with Port Attached
MPXV2010GP	1369	Side with Port Attached
MPXV2010DP	1351	Side with Part Marking

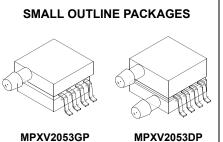
Technical Data

50 kPa On-Chip Temperature Compensated & Calibrated Silicon Pressure Sensors

The MPX2053/MPXV2053G device is a silicon piezoresistive pressure sensor providing a highly accurate and linear voltage output - directly proportional to the applied pressure. The sensor is a single, monolithic silicon diaphragm with the strain gauge and a thin-film resistor network integrated on-chip. The chip is laser trimmed for precise span and offset calibration and temperature compensation.

Features

- Temperature Compensated Over 0°C to +85°C
- · Easy-to-Use Chip Carrier Package Options
- · Ratiometric to Supply Voltage
- Differential and Gauge Options


Application Examples

- · Pump/Motor Controllers
- · Robotics
- Level Indicators
- Medical Diagnostics
- · Pressure Switching
- Non-Invasive Blood Pressure Measurement

ORDERING INFORMATION					
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking
SMALL OUTL	INE PACKAGE (MPXV20	53G SERIES)		
Ported Elements	Gauge, Side Port, SMT	1369	MPXV2053GP	Trays	MPXV2053G
	Differential Dual Port, SMT	1351	MPXV2053DP	Trays	MPXV2053G
UNIBODY PA	CKAGE (MPX20	53 SERIE	S)		•
Basic Element	Differential	344	MPX2053D	_	MPX2053D
Ported Elements	Differential, Dual Port	344C	MPX2053DP	_	MPX20153DP
	Gauge	344B	MPX2053GP	_	MPX2053GP
	Gauge, Axial PC Mount	344F	MPX2053GSX	_	MPX2053D
	Gauge, Vacuum	344D	MPX2053GVP	_	MPX2053GVP

MPX2053 MPXV2053G SERIES

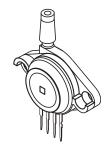
0 TO 50 kPA (0 TO 7.25 psi) 40 mV FULL SCALE SPAN (TYPICAL)

SMALL OUTLINE PACKAGE PIN NUMBERS					
1	GND ⁽¹⁾	5	N/C		
2	+V _{OUT}	6	N/C		
3	V _S	7	N/C		
4	-V _{OUT}	8	N/C		

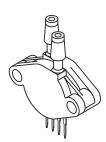
CASE 1351-01

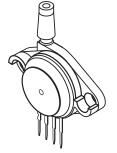
1. Pin 1 in noted by the notch in the lead.

CASE 1369-01


UNIBODY PACKAGE PIN NUMBERS				
1	GND ⁽¹⁾	3	V_S	
2	+V _{OUT}	4	–V _{OUT}	

1. Pin 1 in noted by the notch in the lead.


UNIBODY PACKAGES


MPX2053GP CASE 344-15

MPX2053GP CASE 344B-01

MPX2053DP CASE 344C-01

MPX2053GVP CASE 344D-01

MPX2053GSX CASE 344F-01

MPX2053

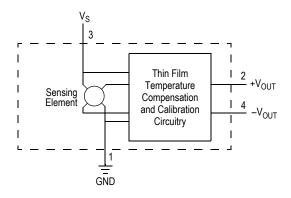


Figure 1. Temperature Compensated and Calibrated Pressure Sensor Schematic

VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output

voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).

Figure 1 shows a block diagram of the internal circuitry on the stand-alone pressure sensor chip.

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	20	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 10 V_{DC}$, $T_A = 25^{\circ}C$ unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Units
Pressure Range ⁽¹⁾	P _{OP}	0	_	50	kPa
Supply Voltage ⁽²⁾	V _S	_	10	16	V_{DC}
Supply Current	Io	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	38.5	40	41.5	mV
Offset ⁽⁴⁾	V _{OFF}	-1.0	_	1.0	mV
Sensitivity	ΔV/ΔΡ	_	0.8	_	mV/kPa
Linearity ⁽⁵⁾	_	-0.6	_	0.4	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to 50 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (–40°C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Effect on Full Scale Span ⁽⁵⁾	TCV _{FSS}	-2.0	_	2.0	%V _{FSS}
Temperature Effect on Offset ⁽⁵⁾	TCV _{OFF}	-1.0	_	1.0	mV
Input Impedance	Z _{IN}	1000	_	2550	W
Output Impedance	Z _{OUT}	1400	_	3000	W
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up Time	_	_	2.0	_	ms
Offset Stability ⁽⁷⁾	_	_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum related pressure.
- 4. Offset (V_{OFF}) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
 - $\bullet \ \ \text{Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at $25^{\circ}C$.}$
- 6. Response Time is defined as the time form the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

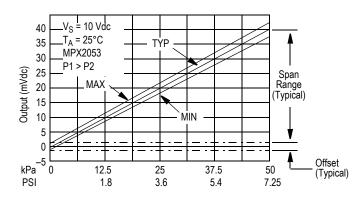


Figure 2. Output vs. Pressure Differential

Figure 2 shows the output characteristics of the MPX2053/MPXV2053G series at 25°C. The output is directly proportional to the differential pressure and is essentially a straight line.

The effects of temperature on full scale span and offset are very small and are shown under Operating Characteristics.

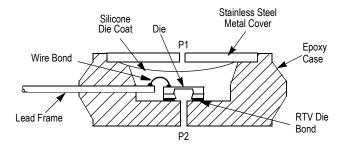


Figure 3. Unibody Package: Cross Sectional Diagram (Not to Scale)

Figure 3 illustrates the differential/gauge die in the basic chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPX2053/MPXV2053G series pressure sensor operating characteristics and internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{out} = V_{off} + \text{sensitivity } \times P$ over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 4) or (2) a least squares best line fit. While a least squares fit gives the "best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. Freescale's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

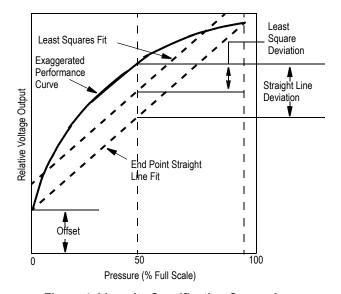


Figure 4. Linearity Specification Comparison

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The Freescale MPX pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the following table.

Table 3. Pressure (P1) Side Delineation

Part Number	Case Type	Pressure (P1) Side Identifier
MPX2053D	344	Stainless Steep Cap
MPX2053DP	344C	Side with Part Marking
MPX2053GP	344B	Side with Port Attached
MPX2053GSX	344F	Side with Port Attached
MPXV2053GVP	344D	Stainless Steep Cap
MPXV2053GP	1369	Side with Port Attached
MPXV2053DP	1351	Side with Part Marking

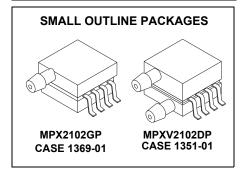
MPX2102 Rev 3, 05/2005

100 kPa On-Chip Temperature Compensated & Calibrated Silicon Pressure Sensors

The MPX2102/MPXV2102G series device is a silicon piezoresistive pressure sensor providing a highly accurate and linear voltage output directly proportional to the applied pressure. The sensor is a single, monolithic silicon diaphragm with the strain gauge and a thin-film resistor network integrated on-chip. The chip is laser trimmed for precise span and offset calibration and temperature compensation.

Features

- Temperature Compensated Over 0°C to +85°C
- Easy-to-Use Chip Carrier Package Options
- · Available in Absolute, Differential and Gauge Configurations
- · Ratiometric to Supply Voltage


Application Examples

- · Pump/Motor Controllers
- · Robotics
- Level Indicators
- · Medical Diagnostics
- Pressure Switching
- Barometers
- Altimeters

	ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking		
SMALL OUTL	INE PACKAGE (N	/IPXV2102G SE	RIES)				
Ported Elements	Gauge, Side Port, SMT	1369	MPXV2102GP	Trays	MPXV2102G		
	Differential, Dual Port, SMT	1351	MPXV2102DP	Trays	MPXV2102G		
UNIBODY PA	CKAGE (MPX210	2 SERIES)					
Basic Element	Absolute, Differential	344	MPX2102A MPX2102D	_	MPX2102A MPX2102D		
Ported Elements	Differential, Dual Port	344C	MPX2102DP	_	MPX2102DP		
	Absolute, Gauge	344B	MPX2102AP MPX2102GP	_	MPX2102AP MPX2102GP		
	Absolute, Gauge Axial	344F	MPX2102ASX MPX2102GSX	_	MPX2102A MPX2102D		
	Gauge, Vacuum	344D	MPX2102GVP	_	MPX2102GVP		

MPX2102 MPXV2102G SERIES

0 TO 100 kPA (0 TO 14.5 psi) 40 mV FULL SCALE SPAN (TYPICAL)

SMALL OUTLINE PACKAGE PIN NUMBERS					
1	GND ⁽¹⁾	5	N/C		
2	+V _{OUT}	6	N/C		
3	V _S	7	N/C		
4	–V _{OUT}	8	N/C		

1. Pin 1 in noted by the notch in the lead.

UNIBODY PACKAGE PIN NUMBERS					
1	GND ⁽¹⁾	3	V _S		
2	+V _{OUT}	4	–V _{OUT}		

1. Pin 1 in noted by the notch in the lead.

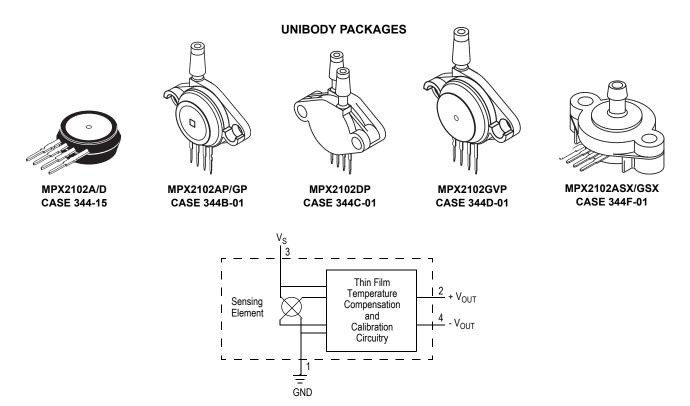


Figure 1. Temperature Compensated Pressure Sensor Schematic

VOLTAGE OUTPUT VS. APPLIED DIFFERENTIAL PRESSURE

The differential voltage output of the sensor is directly proportional to the differential pressure applied.

The absolute sensor has a built-in reference vacuum. The output voltage will decrease as vacuum, relative to ambient, is drawn on the pressure (P1) side.

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure

(P1) side relative to the vacuum (P2) side. Similarly, output voltage increases as increasing vacuum is applied to the vacuum (P2) side relative to the pressure (P1) side.

Figure 1 illustrates a block diagram of the internal circuitry on the stand-alone pressure sensor chip.

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	400	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 10 V_{DC}$, $T_A = 25$ °C unless otherwise noted, P1 > P2)

Char	acteristic	Symbol	Min	Тур	Max	Units
Differential Pressure Range ⁽¹⁾		P _{OP}	0	_	100	kPa
Supply Voltage ⁽²⁾		V _S	_	10	16	V _{DC}
Supply Current		Io	_	6.0	_	mAdc
Full Scale Span ⁽³⁾		V _{FSS}	38.5	40	41.5	mV
Offset ⁽⁴⁾	MPX2102D Series MPX2102A Series	V _{OFF}	-1.0 -2.0	_	1.0 2.0	mV
Sensitivity		ΔV/ΔΡ	_	0.4	_	mV/kPa
Linearity ⁽⁵⁾	MPX2102D Series MPX2102A Series		-0.6 -1.0	_	0.4 1.0	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to 100	kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (- 40°C	C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Coefficient of Full S	Scale Span ⁽⁵⁾	TCV _{FSS}	-2.0	_	2.0	%V _{FSS}
Temperature Coefficient of Offse	t ⁽⁵⁾	TCV _{OFF}	-1.0	_	1.0	mV
Input Impedance		Z _{IN}	1000	_	2500	W
Output Impedance		Z _{OUT}	1400	_	3000	W
Response Time ⁽⁶⁾ (10% to 90%)		t _R	_	1.0	_	ms
Warm-Up Time		_	_	20	_	ms
Offset Stability ⁽⁷⁾		_	_	±0.5	_	%V _{FSS}
		•	•			

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum related pressure.
- 4. Offset (V_{OFF}) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified pressure range.
 - Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure with the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure at 25°C.
 - TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
- 6. Response Time is defined as the time form the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{OUT} = V_{OFF} + \text{sensitivity} \times P$ over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 2) or (2) a least squares best line fit. While a least squares fit gives the "best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. Freescale's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

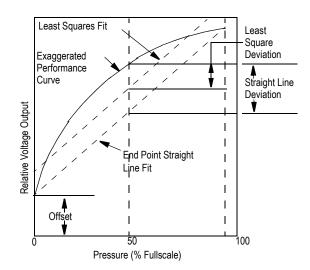


Figure 2. Linearity Specification Comparison

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

Figure 3 shows the output characteristics of the MPX2102/MPXV2102G series at 25°C. The output is directly proportional to the differential pressure and is essentially a straight line.

The effects of temperature on Full Scale Span and Offset are very small and are shown under Operating Characteristics.

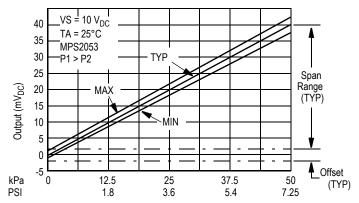


Figure 3. Output vs. Pressure Differential

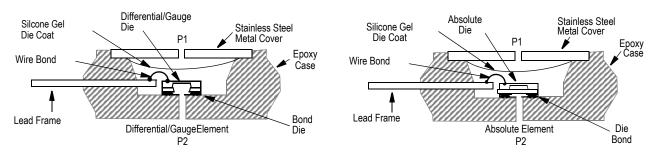


Figure 4. Cross Sectional Diagrams (Not to Scale)

Figure 4 illustrates the absolute sensing configuration (right) and the differential or gauge configuration in the basic chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPX2102/MPXV2102G series pressure sensor operating characteristics and internal reliability and

qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application.

MPX2102

3-49

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing the silicone gel which isolates the die. The differential or gauge sensor is designed to operate with positive differential pressure applied, P1 > P2. The absolute sensor is designed for vacuum applied to P1 side.

The Pressure (P1) side may be identified by using Table 3.

Table 3. Pressure (P1) Side Delineation

Part Number		Case Type	Pressure (P1) Side Identifier
MPX2102A	MPX2102D	344	Stainless Steep Cap
MPX2102DP		344C	Side with Part Marking
MPX2102AP	MPX2102GP	344B	Side with Port Attached
MPX2102GVP		344D	Stainless Steep Cap
MPX2102ASX	MPX2102GSX	344F	Side with Port Marking
MPX2102GP		1369	Side with Port Attached
MPX2102DP		1351	Side with Part Marking

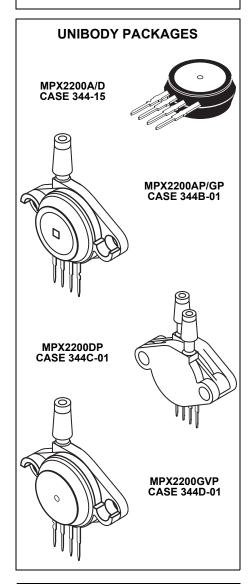
200 kPa On-Chip Temperature Compensated & Calibrated Pressure Sensors

The MPX2200 series device is a silicon piezoresistive pressure sensor providing a highly accurate and linear voltage output - directly proportional to the applied pressure. The sensor is a single monolithic silicon diaphragm with the strain gauge and a thin-film resistor network integrated on-chip. The chip is laser trimmed for precise span and offset calibration and temperature compensation. They are designed for use in applications such as pump/motor controllers, robotics, level indicators, medical diagnostics, pressure switching, barometers, altimeters, etc.

Features

- Temperature Compensated Over 0°C to +85°C
- ±0.25% Linearity (MPX2200D)
- · Easy-to-Use Chip Carrier Package Options
- Available in Absolute, Differential and Gauge Configurations

Typical Applications


- Pump/Motor Controllers
- Robotics
- · Level Indicators
- · Medical Diagnostics
- Pressure Switching
- Barometers
- · Altimeters

	ORDERING INFORMATION ⁽¹⁾						
Device Type	Options	Case No.	MPX Series Order Number	Device Marking			
Basic Element	Absolute, Differential	344	MPX2200A MPX2200D	MPX2200A MPX2200D			
Ported	Differential	344C	MPX2200DP	MPX2200DP			
Elements	Absolute, Gauge	344B	MPX2200AP MPX2200GP	MPX2200AP MPX2200GP			
	Gauge, Vacuum	344D	MPX2200GVP	MPX2200GVP			

 MPX2200 series pressure sensors are available in absolute, differential and gauge configurations. Devices are available in the basic element package or with pressure port fittings which provide printed circuit board mounting ease and barbed hose pressure connections.

MPX2200 SERIES

0 TO 200 kPA (0 TO 29 psi) 40 mV FULL SCALE SPAN (TYPICAL)

Ī	PIN NUMBER					
Ī	1	GND ¹	3	V _S		
	2	+V _{OUT}	4	-V _{OUT}		

1. Pin 1 in noted by the notch in the lead.

MPX2200

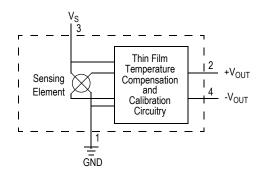


Figure 1. Temperature Compensation Pressure Sensor Schematic

VOLTAGE OUTPUT VS. APPLIED DIFFERENTIAL PRESSURE

The differential voltage output of the sensor is directly proportional to the differential pressure applied.

The absolute sensor has a built-in reference vacuum. The output voltage will decrease as vacuum, relative to ambient, is drawn on the pressure (P1) side.

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure

(P1) side relative to the vacuum (P2) side. Similarly, output voltage increases as increasing vacuum is applied to the vacuum (P2) side relative to the pressure (P1) side.

Figure 1 illustrates a block diagram of the internal circuitry on the stand-alone pressure sensor chip.

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	800	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 10 V_{DC}$, $T_A = 25$ °C unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Units
Differential Pressure Range ⁽¹⁾	P _{OP}	0	_	200	kPa
Supply Voltage ⁽²⁾	V _S	_	10	16	V_{DC}
Supply Current	I _O	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	38.5	40	41.5	mV
Offset ⁽⁴⁾	V _{OFF}	-1.0	_	1.0	mV
Sensitivity	ΔV/ΔΡ	_	0.2	_	mV/kPa
Linearity ⁽⁵⁾ MPX2200D Series MPX2200A Series	_	-0.25 -1.0	_	0.25 1.0	%V _{FSSI}
Pressure Hysteresis ⁽⁵⁾ (0 to 200 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (- 40°C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Coefficient of Full Scale Span ⁽⁵⁾	TCV _{FSS}	-1.0	_	1.0	%V _{FSS}
Temperature Coefficient of Offset ⁽⁵⁾	TCV _{OFF}	-1.0	_	1.0	mV
Input Impedance	Z _{IN}	1300	_	2500	W
Output Impedance	Z _{OUT}	1400	_	3000	W
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up Time	_	_	20	_	ms
Offset Stability ⁽⁷⁾	_	_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum related pressure.
- 4. Offset (V_{OFF}) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified pressure range.
 - Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure with the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure at 25°C.
 - TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
- 6. Response Time is defined as the time form the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{OUT} = V_{OFF} + \text{sensitivity } \times P$ over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 2) or (2) a least squares best line fit. While a least squares fit gives the

"best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. Freescale's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

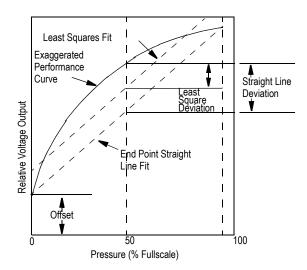


Figure 2. Linearity Specification Comparison

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

Figure 3 shows the output characteristics of the MPX2102/MPXV2102G series at 25°C. The output is directly proportional to the differential pressure and is essentially a straight line.

The effects of temperature on Full Scale Span and Offset are very small and are shown under Operating Characteristics.

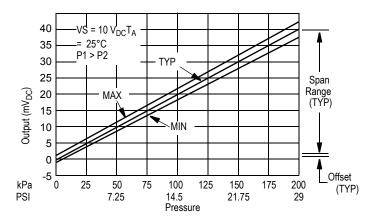
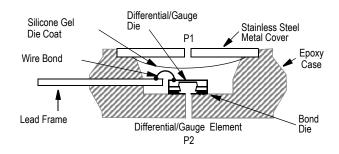



Figure 3. Output vs. Pressure Differential

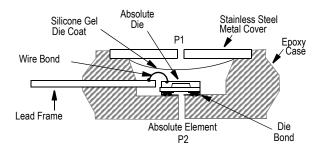


Figure 4. Cross Sectional Diagrams (Not to Scale)

Figure 4 illustrates an absolute sensing die (right) and the differential or gauge die in the basic chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPX2200 series pressure sensor operating characteristics and internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application.

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing the silicone gel which isolates the die from the environment. The differential

or gauge sensor is designed to operate with positive differential pressure applied, P1 > P2. The absolute sensor is designed for vacuum applied to P1 side.

The Pressure (P1) side may be identified by using Figure 3.

Table 3. Pressure (P1) Side Delineation

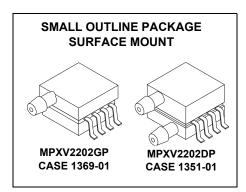
Part Number	Case Type	Pressure (P1) Side Identifier
MPX2200A/D	344	Stainless Steep Cap
MPX2200DP	344C	Side with Part Marking
MPX2200AP/GP	344B	Side with Port Attached
MPX2200GVP	344D	Stainless Steep Cap

200 kPa On-Chip Temperature Compensated & Calibrated Pressure Sensors

The MPX2202/MPXV2202G device series is a silicon piezoresistive pressure sensor providing a highly accurate and linear voltage output - directly proportional to the applied pressure. The sensor is a single monolithic silicon diaphragm with the strain gauge and a thin-film resistor network integrated onchip. The chip is laser trimmed for precise span and offset calibration and temperature compensation. They are designed for use in applications such as pump/motor controllers, robotics, level indicators, medical diagnostics, pressure switching, barometers, altimeters, etc.

Features

- Temperature Compensated Over 0°C to +85°C
- Easy-to-Use Chip Carrier Package Options
- Available in Absolute, Differential and Gauge Configurations


Typical Applications

- Pump/Motor Controllers
- Robotics
- Level Indicators
- · Medical Diagnostics
- · Pressure Switching
- Barometers
- Altimeters

	ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking		
SMALL OU	SMALL OUTLINE PACKAGE (MPX2202G SERIES)						
Ported Elements	Gauge, Side Port, SMT	1369	MPXV2202GP	Trays	MPXV2202G		
	Differential, Dual Port, SMT	1351	MPXV2202DP	Trays	MPXV2202G		
UNIBODY I	PACKAGE (MPX2202	SERIES)					
Basic Element	Absolute, Differential	344	MPX2202A MPX2202D	_	MPX2202A MPX2202D		
Ported	Differential, Dual Port	344C	MPX2202DP	_	MPX2202DP		
Elements	Absolute, Gauge	344B	MPX2202AP MPX2202GP	_	MPX2202AP MPX2202GP		
	Absolute, Gauge Axial	344F	MPX2202ASX MPX2202GSX	_	MPX2202A MPX2202D		
	Gauge, Vacuum	344D	MPX2202GVP	_	MPX2202GVP		

MPX2202 SERIES

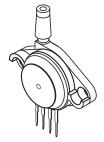
0 TO 200 kPA (0 TO 29 psi) 40 mV FULL SCALE SPAN (TYPICAL)

SMALL OUTLINE PACKAGE PIN NUMBERS				
1	GND ⁽¹⁾	5	N/C	
2	+V _{OUT}	6	N/C	
3	V _S	7	N/C	
4	V _S	8	N/C	

1. Pin 1 is noted by the notch in the lead.

UNIBODY PACKAGE PIN NUMBERS				
1	GND ⁽¹⁾	3	V_S	
2	+V _{OUT}	4	V _S	

1. Pin 1 is noted by the notch in the lead.


MPXV2202A/D CASE 344-15

MPXV2202AP/GP CASE 344B-01

MPXV2202DP CASE 344C-01

MPXV2202GVP CASE 344D-01

MPXV2202ASX/GSX CASE 344F-01

Figure 1 illustrates a block diagram of the internal circuitry on the stand-alone pressure sensor chip.

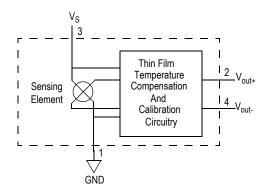


Figure 1. Temperature Compensated Pressure Sensor Schematic

VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE

The differential voltage output of the sensor is directly proportional to the differential pressure applied.

The absolute sensor has a built-in reference vacuum. The output voltage will decrease as vacuum, relative to ambient, is drawn on the pressure (P1) side.

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure (P1) side relative to the vacuum (P2) side. Similarly, output voltage increases as increasing vacuum is applied to the vacuum (P2) side relative to the pressure (P1) side.

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{max}	800	kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics

 $(V_S = 10 \text{ Vdc}, T_A = 25^{\circ}\text{C unless otherwise noted}, P1 > P2)$

Characteristics	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾	P _{OP}	0	-	200	kPa
Supply Voltage ⁽²⁾	V _S	_	10	16	Vdc
Supply Current	Io	_	6.0	-	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	38.5	40	41.5	mV
Offset ⁽⁴⁾	V _{off}	-1.0	_	1.0	mV
Sensitivity	ΔV/ΔΡ	_	0.2	_	mV/kPa
Linearity ⁽⁵⁾ MPX2202D Series MPX2202A Series	_	-0.6 -1.0	_	0.4 1.0	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to 200 kPa)	_	_	±0.1	-	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (-40°C to +125°C)	_	_	± 0.5	-	%V _{FSS}
Temperature Effect on Full Scale Span ⁽⁵⁾	TCV _{FSS}	-2.0	_	2.0	%V _{FSS}
Temperature Effect on Offset ⁽⁵⁾	TCV _{off}	-1.0	_	1.0	mV
Input Impedance	Z _{in}	1000	_	2500	W
Output Impedance	Z _{out}	1400	_	3000	W
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up	_	_	20	_	ms
Offset Stability ⁽⁷⁾	_	_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 4. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified pressure range.
 - Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{out} = V_{off} + \text{sensitivity x P}$ over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 2) or (2) a least squares best line fit. While a least squares fit gives the "best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. Freescale's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

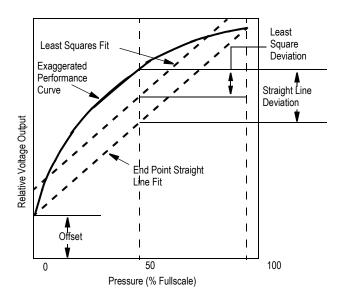


Figure 2. Linearity Specification Comparison

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

Figure 3 shows the output characteristics of the MPX2202/MPXV2202G series at 25°C. The output is directly proportional to the differential pressure and is essentially a straight line.

The effects of temperature on Full Scale Span and Offset are very small and are shown under Operating Characteristics.

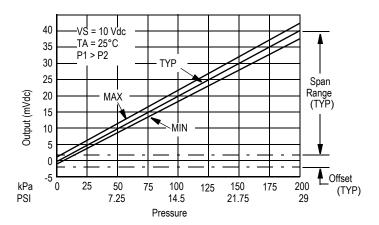
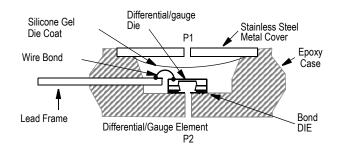



Figure 3. Output versus Pressure Differential

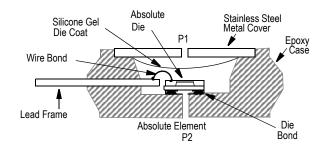


Figure 4. . Cross-Sectional Diagrams (Not to Scale)

Figure 4 illustrates an absolute sensing die (right) and the differential or gauge die in the basic chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPX2202/MPXV2202G series pressure sensor operating characteristics and internal reliability and

qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application.

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing the silicone gel which isolates the die from the environment. The differential or gauge sensor is designed to operate with positive differential pressure applied, P1 > P2. The absolute sensor is designed for vacuum applied to P1 side.

The Pressure (P1) side may be identified by using the table below:

Table 3. Pressure (P1)/Vacuum (P2) Side Identification Table

Part Number	Case Type	Pressure (P1) Side Identifier
MPX2202A/D	344	Stainless Steel Cap
MPX2202DP	344C	Side with Part Marking
MPX2202AP/GP	344B	Side with Port Attached
MPX2202GVP	344D	Stainless Steel Cap
MPX2202ASX/GSX	344F	Side with Port Attached
MPXV2202GP	1369	Side with Port Attached
MPXV2202DP	1351	Side with Part Marking

High Volume Pressure Sensor For Disposable Applications

Freescale Semiconductor, Inc. has developed a low-cost, high volume miniature pressure sensor package which is ideal as a sub-module component or a disposable unit. The unique concept of the Chip Pak allows great flexibility in system design while allowing an economic solution for the designer. This new chip carrier package uses Freescale's unique sensor die with its piezoresistive technology, along with the added feature of on-chip, thin-film temperature compensation and calibration.

NOTE: Freescale is also offering the Chip Pak package in application-specific configurations, which will have an "SPX" prefix, followed by a four-digit number, unique to the specific customer.

Features

- Low Cost
- Integrated Temperature Compensation and Calibration
- Ratiometric to Supply Voltage
- · Polysulfone Case Material (Medical, Class V Approved)
- Provided in Easy-to-Use Tape and Reel

Typical Applications

- · Medical Diagnostics
- Infusion Pumps
- · Blood Pressure Monitors
- Pressure Catheter Applications
- · Patient Monitoring

The MPX2300DT1/MPX2301DT1 silicon pressure sensors are available in tape and reel packaging

ORDERING INFORMATION

Device Type	Case No.	Device Description	Marking
MPX2300DT1	423A	Chip Pak, Full Gel	Date Code, Lot ID
MPX2301DT1	423A	Chip Pak, 1/3 Gel	Date Code, Lot ID

Packaging Information	Reel Size	Tape Width	Quantity
Tape and Reel	330 mm	24 mm	1000 pc/reel

MPX2300DT1 MPX2301DT1

PRESSURE SENSORS 0 TO 300 MM HG (0 TO 40 kPA)

MPX2300DT1/MPX2301DT1 CASE 423A-03

PIN NUMBER						
1	V_S	3	S-			
2	S+	4	GND			

NOTE: The die and wire bonds are exposed on the front side of the Chip Pak (pressure is applied to the backside of the device). Front side die and wire protection must be provided in the customer's housing. Use caution when handling the devices during all processes.

The MPX2300DT1/MPX2301DT1 Pressure Sensors have been designed for medical usage by combining the performance of Freescale's shear stress pressure sensor design and the use of biomedically approved materials. Materials with a proven history in medical situations have been chosen to provide a sensor that can be used with confidence in applications, such as invasive blood pressure monitoring. It can be sterilized using ethylene oxide. The portions of the pressure sensor that are required to be biomedically approved are the rigid housing and the gel coating.

The rigid housing is molded from a white, medical grade polysulfone that has passed extensive biological testing including: tissue culture test, rabbit implant, hemolysis, intracutaneous test in rabbits, and system toxicity, USP.

A silicone dielectric gel covers the silicon piezoresistive sensing element. The gel is a nontoxic, nonallergenic elastomer system which meets all USP XX Biological Testing Class V requirements. The properties of the gel allow it to transmit pressure uniformly to the diaphragm surface, while isolating the internal electrical connections from the corrosive effects of fluids, such as saline solution. The gel provides electrical isolation sufficient to withstand defibrillation testing, as specified in the proposed Association for the Advancement of Medical Instrumentation (AAMI) Standard for blood pressure transducers. A biomedically approved opaque filler in the gel prevents bright operating room lights from affecting the performance of the sensor. The MPX2301DT1 is a reduced gel option.

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (Backside)	P _{max}	125	PSI
Storage Temperature	T _{stg}	-25 to +85	°C
Operating Temperature	T _A	+15 to +40	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics (VS = 6 Vdc, TA = 25×C unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit
Pressure Range	P _{OP}	0	_	300	mm Hg
Supply Voltage ⁽¹⁾	V _S	_	6.0	10	Vdc
Supply Current	I _o	_	1.0	_	mAdc
Zero Pressure Offset	V _{off}	-0.75	_	0.75	mV
Sensitivity	_	4.95	5.0	5.05	μV/V/mmHg
Full Scale Span ⁽²⁾	V _{FSS}	2.976	3.006	3.036	mV
Linearity + Hysteresis ⁽³⁾	_	-1.5	_	1.5	%V _{FSS}
Accuracy ⁽⁹⁾ V _S = 6 V, P = 101 to 200 mmHg	_	-1.5	_	1.5	%
Accuracy ⁽⁹⁾ V _S = 6 V, P = 201 to 300 mmHg	_	-3.0	_	3.0	%
Temperature Effect on Sensitivity	TCS	-0.1	_	+0.1	%/°C
Temperature Effect on Full Scale Span ⁽⁴⁾	TCV _{FSS}	-0.1	_	+0.1	%/°C
Temperature Effect on Offset ⁽⁵⁾	TCV _{off}	-9.0	_	+9.0	μV/°C
Input Impedance	Z _{in}	1800	_	4500	W
Output Impedance	Z _{out}	270	_	330	W
$R_{CAL} (150 \text{ k}\Omega)^{(6)}$	R _{CAL}	97	100	103	mm Hg
Response Time ⁽⁷⁾ (10% to 90%)	t _R	_	1.0	_	ms
Temperature Error Band	_	0	_	85	°C
Stability ⁽⁸⁾	_	_	±0.5	_	%V _{FSS}

^{1.} Recommended voltage supply: $6 \text{ V} \pm 0.2 \text{ V}$, regulated. Sensor output is ratiometric to the voltage supply. Supply voltages above +10 V may induce additional error due to device self-heating.

- 3. Maximum deviation from end-point straight line fit at 0 and 200 mmHg.
- 4. Slope of end-point straight line fit to full scale span at 15°C and +40°C relative to +25°C.
- 5. Slope of end-point straight line fit to zero pressure offset at 15°C and +40°C relative to +25°C.
- 6. Offset measurement with respect to the measured sensitivity when a 150k ohm resistor is connected to V_S and S+ output.
- 7. For a 0 to 300 mm Hg pressure step change.
- 8. Stability is defined as the maximum difference in output at any pressure within POP and temperature within +10°C to +85°C after:
 - 1000 temperature cycles, -40°C to +125°C.
 - 1.5 million pressure cycles, 0 to 300 mm Hg.

Measured at 6.0 Vdc excitation for 100 mmHg pressure differential. V_{FSS} and FSS are like terms representing the algebraic difference between full scale output and zero pressure offset.

Technical Data

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPX4080D series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This patented, single element transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.

Features

- 3.0% Maximum Error over 0° to 85°C
- Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated from -40° to 105°C
- · Easy-to-Use, Durable Epoxy Unibody Package

	ORDERING INFORMATION					
Device	Device Device Type Case No. Device Marking					
MPX4080D Differential 867 MPX4080D						

MPX4080D

INTEGRATED PRESSURE SENSOR 0 TO 80 kPA (0 TO 11.6 psi) 0.58 TO 4.9 V OUTPUT

MPX4080D CASE 867-08

PIN NUMBERS					
1	V _{out}	4	NC		
2	GND	5	NC		
3	V _S	6	NC		

Note: Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

Figure 1 shows a block diagram of the internal circuitry integrated on the pressure sensor chip.

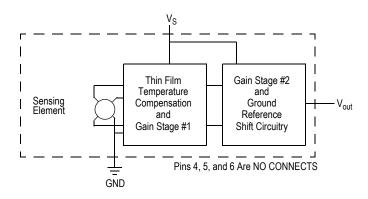


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings (1)

Rating	I	Symbol	Value	Unit
Maximum Pressure	(P1 > P2) (P2 > P1)	P _{max}	400 400	kPa
Storage Temperature		T _{stg}	-40° to +125°	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics (VS = 5.1 Vdc, TA = 25×C unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 4 required to meet electrical specifications.)

Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾	P _{OP}	0	_	80	kPa
Supply Voltage ⁽²⁾	V _S	4.85	5.1	5.35	Vdc
Supply Current	Io	_	7.0	10	mAdc
Minimum Pressure Offset ⁽³⁾ (0 to 85°C) @ $V_S = 5.1 \text{ V}$	V _{off}	0.478	0.575	0.672	Vdc
Full Scale Output ⁽⁴⁾ (0 to 85°C) @ $V_S = 5.1 \text{ V}$	V _{FSO}	4.772	4.900	5.020	Vdc
Full Scale Span ⁽⁵⁾ (0 to 85°C) @ $V_S = 5.1 \text{ V}$	V _{FSS}	_	4.325	_	Vdc
Accuracy ⁽⁶⁾	_	_	_	3.0	%V _{FSS}
Sensitivity	V/P	_	54	_	mV/kPa

- 1. 0kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure at 25°C.
 - TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
 - Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS} at 25°C.

ON-CHIP TEMPERATURE COMPENSATION, CALIBRATION AND SIGNAL CONDITIONING

Figure 2 shows the sensor output signal relative to differential pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature

range of 0° to 85° C using the decoupling circuit shown in Figure 4. The output will saturate outside of the specified pressure range.

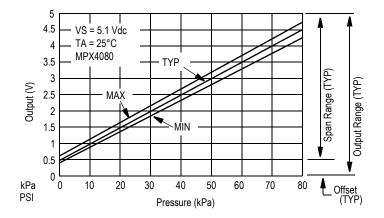


Figure 2. Output versus Pressure Differential

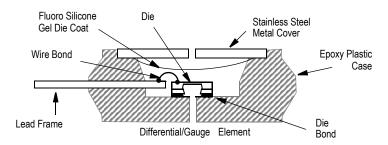


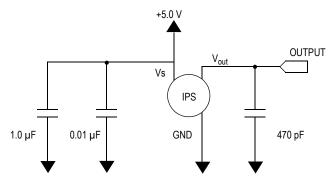
Figure 3. Cross-Sectional Diagrams (Not to Scale)

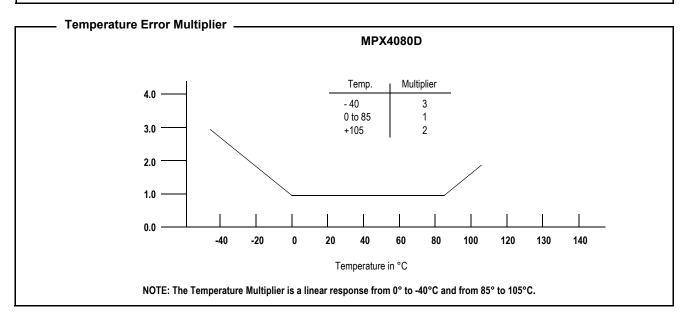
Figure 3 illustrates the differential sensing chip in the basic chip carrier (Case 867). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm.

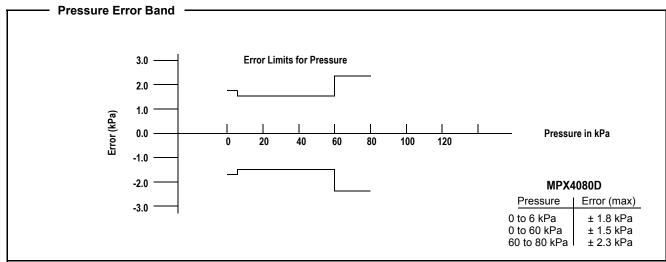
The MPX4080D pressure sensor operating characteristics, internal reliability, and qualification tests are based on use of dry air as the pressure media. Media, other

than dry air, may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Figure 4 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.




Figure 4. Recommended Power Supply Decoupling and Output Filter (For additional output filtering information, refer to Application Note AN1646.)


Transfer Function (MPX4080D) -

Nominal Transfer Value: $V_{out} = V_S (P \times 0.01059 + 0.11280)$

± (Pressure Error x Temp. Mult. x 0.01059 x V_S)

 $V_S = 5.1 \text{ V} \pm 0.25 \text{ V} \text{ P kPa}$

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

The two sides of the pressure sensor are designated as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluorosilicone gel which protects the die from harsh media. The pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side is identified by the stainless steel cap.

MPX4080D

Technical Data

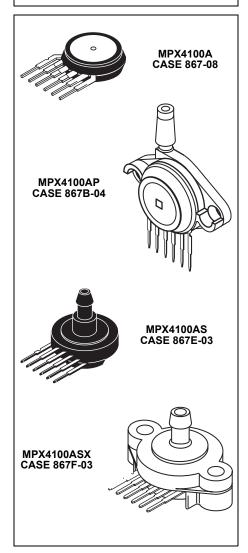
Integrated Silicon Pressure Sensor Manifold Absolute Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPX4100 series Manifold Absolute Pressure (MAP) sensor for engine control is designed to sense absolute air pressure within the intake manifold. This measurement can be used to compute the amount of fuel required for each cylinder. The small form factor and high reliability of on-chip integration makes the MAP sensor a logical and economical choice for automotive system designers.

FeaturesFeatures

- 1.8% Maximum Error Over 0° to 85°C
- Specifically Designed for Intake Manifold Absolute Pressure Sensing in Engine Control Systems
- · Ideally Suited for Microprocessor Interfacing
- Temperature Compensated Over -40°C to +125°C
- · Durable Epoxy Unibody Element
- Ideal for Non-Automotive Applications

Typical Applications


· Manifold Sensing for Automotive Systems

ORDERING INFORMATION ⁽¹⁾						
Device Type	Options	Case No.	MPX Series Order Number	Device Marking		
Basic Element	Absolute, Element Only	867-08	MPX4100A	MPX4100A		
Ported Elements	Absolute, Ported	867B-04	MPX4100AP	MPX4100AP		
	Absolute, Stove Pipe Port	867E-03	MPX4100AS	MPX4100A		
	Absolute, Axial Port	867F-03	MPX4100ASX	MPX4100A		

 The MPX4100A series MAP silicon pressure sensors are available in the Basic Element, or with pressure port fittings that provide mounting ease and barbed hose connections.

MPX4100 SERIES

INTEGRATED
PRESSURE SENSOR
20 TO 105 kPA (2.9 TO 15.2 psi)
0.3 TO 4.9 V OUTPUT

PIN NUMBERS					
1	V _{OUT}	4	NC		
2	GND	5	NC		
3	V _S	6	NC		

The MPX4100 series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor

processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

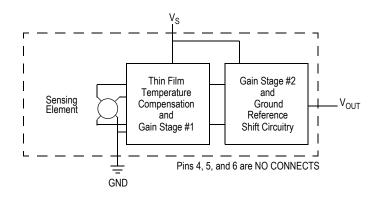


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. MAXIMUM RATINGS⁽¹⁾

Rating	Symbol	Value	Unit
Overpressure ⁽²⁾ (P1 > P2)	P _{max}	400	kPa
Burst Pressure ⁽²⁾ (P1 > P2)	P _{burst}	1000	kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} $T_C = 25$ °C unless otherwise noted.

^{2.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. OPERATING CHARACTERISTICS (VS = 5.1 Vdc, TA = 25×C unless otherwise noted, P1 > P2)

Characterist	ic	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽²⁾		P _{OP}	20	_	105	kPa
Supply Voltage ⁽²⁾		Vs	4.85	5.1	5.35	Vdc
Supply Current		Io	_	7.0	10	mAdc
Minimum Pressure Offset ⁽³⁾ @ V _S = 5.1 V	(0 to 85°C)	V _{off}	0.225	0.306	0.388	Vdc
Full Scale Output ⁽⁴⁾ @ V _S = 5.1 V	(0 to 85°C)	V _{FSO}	4.815	4.897	4.978	Vdc
Full Scale Span ⁽⁵⁾ @ V _S = 5.1 V	(0 to 85°C)	V _{FSS}	_	4.59	_	Vdc
Accuracy ⁽⁶⁾	(0 to 85°C)	_	_	_	±1.8	%V _{FSS}
Sensitivity		V/P	_	54	_	mV/kPa
Response Time ⁽⁷⁾		t _R	_	1.0	_	ms
Output Source Current at Full Scale Out	tput	I _{O+}	_	0.1	_	mAdc
Warm-Up Time ⁽⁸⁾		_	_	20	_	ms
Offset Stability ⁽⁹⁾		_	_	±0.5	_	%V _{FSS}

- 1. Decoupling circuit shown in Figure 3 required to meet electrical specifications.
- 2. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 3. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
 - minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
 - Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at 25°C.
- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 9. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.
- 10. Device is ratiometric within this specified excitation range.

Table 3. MECHANICAL CHARACTERISTICS

Characteristic	Symbol	Min	Тур	Max	Unit
Weight, Basic Element (Case 867)	_	-	4.0	1	Grams
Common Mode Line Pressure ⁽¹⁾	_	-	-	690	kPa

1. Common mode pressures beyond specified may result in leakage at the case-to-lead interface.

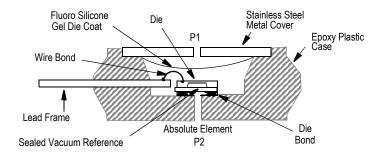


Figure 2. Cross-Sectional Diagram (Not to Scale)

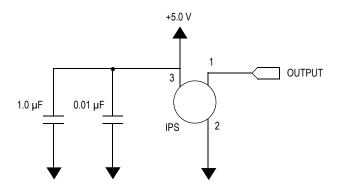


Figure 3. Recommended Power Supply Decoupling

(For output filtering recommendations, refer to Application Note AN1646.)

Figure 2 illustrates an absolute sensing chip in the basic chip carrier (Case 867). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. The MPX4100A series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on

sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0° to 85°C. (The output will saturate outside of the specified pressure range.)

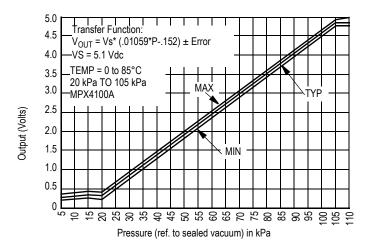
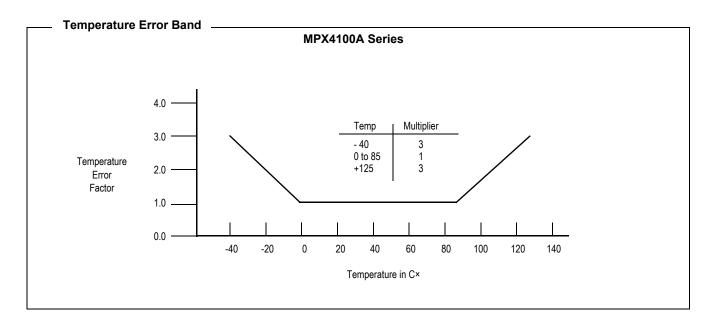
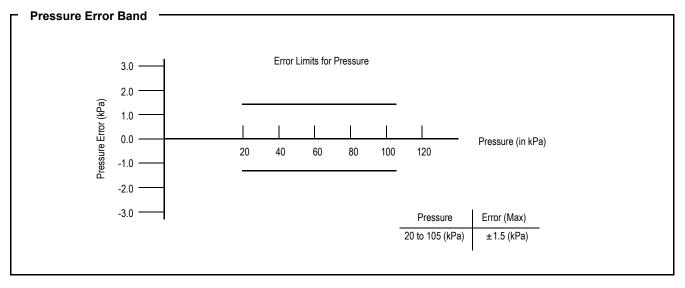


Figure 4. Output versus Absolute Pressure


MPX4100


Transfer Function (MPX4100A)

Nominal Transfer Value: $V_{out} = V_S (P \times 0.01059 - 0.1518)$

± (Pressure Error x Temp. Factor x 0.01059 x V_S)

 $V_S = 5.1 \text{ V} \pm 0.25 \text{ Vdc}$

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

The two sides of the pressure sensor are designated as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluorosilicone gel, which protects the die from harsh media. The MPX pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the table below:

Part Number	Case Type	Pressure (P1) Side Identifier
MPX4100A	867	Stainless Steel Cap
MPX4100AP	867B	Side with Port Marking
MPX4100AS	867E	Side with Port Attached
MPX4100ASX	867F	Side with Port Attached

MPX4100

Technical Data

Integrated Silicon Pressure Sensor for Manifold Absolute Pressure **Applications On-Chip Signal Conditioned, Temperature** Compensated and Calibrated

The Freescale MPX4100A/MPXA4100A series Manifold Absolute Pressure (MAP) sensor for engine control is designed to sense absolute air pressure within the intake manifold. This measurement can be used to compute the amount of fuel required for each cylinder. The small form factor and high reliability of on-chip integration makes the Freescale MAP sensor a logical and economical choice for automotive system designers.

The MPX4100A/MPXA4100A series piezoresistive transducer is a state-ofthe-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Features

- 1.8% Maximum Error Over 0° to 85°C
- Specifically Designed for Intake Manifold Absolute Pressure Sensing in **Engine Control Systems**
- Temperature Compensated Over -40°C to +125°C
- Durable Epoxy Unibody Element or Thermoplastic (PPS) Surface Mount Package

Typical Applications Application Examples

- Manifold Sensing for Automotive Systems
- Ideally suited for Microprocessor or Microcontroller-Based Systems
- Also Ideal for Non-Automotive Applications

				ORDERING INFORMATION						
Options	Case No.	MPX Series Order No.	Packing Options	Device Marking						
TLINE PACKAGE (MPX	A4100A	SERIES)								
Absolute, Element Only	482	MPXA4100A6U	Rails	MPXA4100A						
	482	MPXA4100A6T1	Tape & Reel	MPXA4100A						
Absolute, Axial Port	482A	MPXA4100AC6U	Rails	MPXA4100A						
PACKAGE (MPX4100A	SERIES)								
Absolute, Element Only	867	MPX4100A	_	MPX4100A						
Absolute, Ported	867B	MPX4100AP	_	MPX4100AP						
Absolute, Stove Pipe Port	867E	MPX4100AS	_	MPX4100A						
A I	bsolute, Element Only bsolute, Axial Port PACKAGE (MPX4100A bsolute, Element Only bsolute, Ported	TLINE PACKAGE (MPXA4100A bsolute, Element Only 482 482 bsolute, Axial Port 482A PACKAGE (MPX4100A SERIES bsolute, Element Only 867 bsolute, Ported 867B	TLINE PACKAGE (MPXA4100A SERIES)	TLINE PACKAGE (MPXA4100A SERIES)						

MPXA4100A **SERIES**

MPX4100A

INTEGRATED PRESSURE SENSOR 15 TO 115 KPA (2.2 TO 16.7 PSI) **0.2 TO 4.8 V OUTPUT**

SMALL OUTLINE PACKAGES

MPXA4100A6U **CASE 482-01**

MPXA4100AC6U **CASE 482A-01**

SMALL OUTLINE PACKAGE PIN NUMBERS ⁽¹⁾							
1	1 N/C 5 N/C						
2	V _S	6	N/C				
3	GND	7	N/C				
4	V _{OUT}	8	N/C				

1. Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

UNIBODY PACKAGE PIN NUMBERS ⁽¹⁾						
1	V _{OUT}	4	N/C			
2	GND	5	N/C			
3	Vs	6	N/C			

1. Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

UNIBODY PACKAGES

MPX4100A **CASE 867-08**

MPX4100AS **CASE 867E-03**

MPX4100A

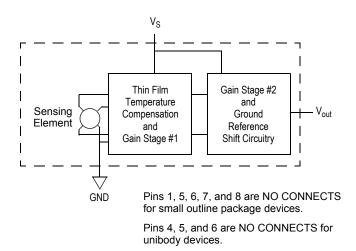


Figure 1. Temperature Compensated and Calibrated Pressure Sensor Schematic

VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output

voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).

Figure 1 shows a block diagram of the internal circuitry on the stand-alone pressure sensor chip.

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	20	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 10 V_{DC}$, $T_A = 25^{\circ}C$ unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Units
Pressure Range ⁽¹⁾	P _{OP}	0	_	50	kPa
Supply Voltage ⁽²⁾	Vs	_	10	16	V_{DC}
Supply Current	Io	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	38.5	40	41.5	mV
Offset ⁽⁴⁾	V _{OFF}	-1.0	_	1.0	mV
Sensitivity	ΔV/ΔΡ	_	0.8	_	mV/kPa
Linearity ⁽⁵⁾	_	-0.6	_	0.4	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to 50 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (–40°C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Effect on Full Scale Span ⁽⁵⁾	TCV _{FSS}	-2.0	_	2.0	%V _{FSS}
Temperature Effect on Offset ⁽⁵⁾	TCV _{OFF}	-1.0	_	1.0	mV
Input Impedance	Z _{IN}	1000	_	2550	W
Output Impedance	Z _{OUT}	1400	_	3000	W
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up Time	_	_	2.0	_	ms
Offset Stability ⁽⁷⁾	_	_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum related pressure.
- 4. Offset (V_{OFF}) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
 - Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at 25°C.
- 6. Response Time is defined as the time form the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

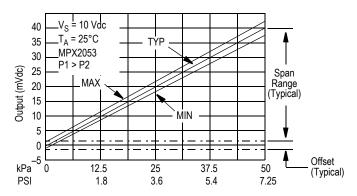


Figure 2. Output vs. Pressure Differential

Figure 2 shows the output characteristics of the MPX2053/MPXV2053G series at 25°C. The output is directly proportional to the differential pressure and is essentially a straight line.

The effects of temperature on full scale span and offset are very small and are shown under Operating Characteristics.

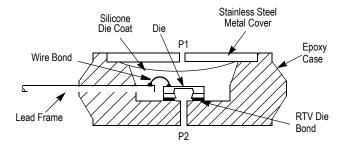


Figure 3. Unibody Package: Cross Sectional Diagram (Not to Scale)

Figure 3 illustrates the differential/gauge die in the basic chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPX2053/MPXV2053G series pressure sensor operating characteristics and internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{out} = V_{off} + \text{sensitivity x P over the operating}$ pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 4) or (2) a least squares best line fit. While a least squares fit gives the "best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user.

Freescale's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

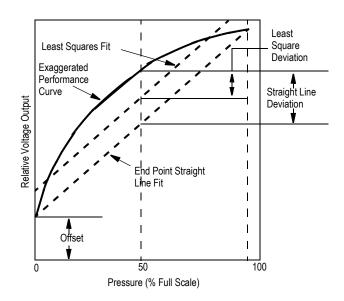


Figure 4. Linearity Specification Comparison

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The Freescale MPX pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the following table.

Table 3. Pressure (P1) Side Delineation

Part Number	Case Type	Pressure (P1) Side Identifier
MPX2053D	344	Stainless Steep Cap
MPX2053DP	344C	Side with Part Marking
MPX2053GP	344B	Side with Port Attached
MPX2053GSX	344F	Side with Port Attached
MPXV2053GVP	344D	Stainless Steep Cap
MPXV2053GP	1369	Side with Port Attached
MPXV2053DP	1351	Side with Part Marking

Freescale Semiconductor

Technical Data

Integrated Silicon Pressure Sensor for Manifold Absolute Pressure Applications On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The Freescale MPX4101A/MPXA4101A/MPXH6101A series Manifold Absolute Pressure (MAP) sensor for engine control is designed to sense absolute air pressure within the intake manifold. This measurement can be used to compute the amount of fuel required for each cylinder. The small form factor and high reliability of on-chip integration makes the Freescale MAP sensor a logical and economical choice for automotive system designers.

The MPX4101A/MPXA4101A/MPXH6101A series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Features

- 1.72% Maximum Error Over 0° to 85°C
- Specifically Designed for Intake Manifold Absolute Pressure Sensing in Engine Control Systems
- Temperature Compensated Over –40°C to +125°C
- Durable Epoxy Unibody Element or Thermoplastic (PPS) Surface Mount Package

Typical Applications

- · Manifold Sensing for Automotive Systems
- Ideally Suited for Microprocessor or Microcontroller-Based Systems
- · Also Ideal for Non-Automotive Applications

UNIBODY PACKAGE PIN NUMBERS ⁽¹⁾					
1 V _{OUT} 4 N/C					
2	GND	5	N/C		
3	V _S	6	N/C		

 Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

SMALL OUTLINE PACKAGE					
PIN NUMBERS ⁽¹⁾					
1	N/C	5	N/C		
2	V _S	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

SUPER SMALL OUTLINE PACKAGE			
PIN NUMBERS ⁽¹⁾			
1	N/C	5	N/C
2	V _S	6	N/C
3	GND	7	N/C
4	V _{OUT}	8	N/C

1. Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

MPX4101A MPXA4101A MPXH6101A SERIES

INTEGRATED
PRESSURE SENSOR
15 TO 102 kPA
(2.18 TO 14.8 psi)
0.25 TO 4.95 V OUTPUT

UNIBODY PACKAGE

MPX4101A CASE 867-O8

SMALL OUTLINE PACKAGE

MPXA4101AC6U CASE 482A-01

SUPER SMALL OUTLINE PACKAGE

MPXH6101A6U/6T1 CASE 1317-04

ORDERING INFORMATION					
Device Type	Options	Case No.	MPX Series Order No.	MPX Series Order No. Packing Options D	
UNIBODY PACKAGE (MPX4101A SERIES)					
Basic Element	Absolute, Element Only	867	MPX4101A — MPX		MPX4101A
SMALL OUTLINE PACKAGE (MPXA4101A SERIES)					
Ported Element	Absolute, Axial Port	482A	MPXA4101AC6U	Rails	MPXA4101A
SUPER SMALL OUTLINE PACKAGE (MPXA6101A SERIES)					
Basic Element	Absolute, Element Only	1317	MPXH6101A6U	Rails	MPXH6101A
	Absolute, Element Only	1317	MPXH6101A6T1	Tape and Reel	MPXH6101A

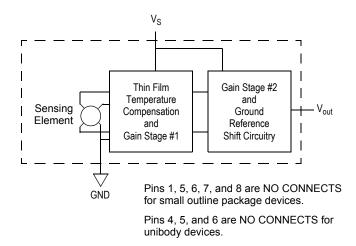


Figure 1. Temperature Compensated and Calibrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	400	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 5.1 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2.

Decoupling circuit shown in Figure 3 required to meet electrical specifications.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾		P _{OP}	15	_	102	kPa
Supply Voltage ⁽²⁾		Vs	4.85	5.1	5.35	Vdc
Supply Current		Io	_	7.0	10	mAdc
Minimum Pressure Offset @ V _S = 5.1 Volts ⁽³⁾	(0 to 85°C)	V _{off}	0.171	0.252	0.333	Vdc
Full Scale Output @ V _S = 5.1 Volts ⁽⁴⁾	(0 to 85°C)	V _{FSO}	4.870	4.951	5.032	Vdc
Full Scale Span @ V _S = 5.1 Volts ⁽⁵⁾	(0 to 85°C)	V _{FSS}	_	4.7	_	Vdc
Accuracy ⁽⁶⁾	(0 to 85°C)	_	_	_	±1.72	%V _{FSS}
Sensitivity		V/P	_	54		mV/kPa
Response Time ⁽⁷⁾		t _R	_	15		ms
Output Source Current at Full Scale Output		I _{o+}	_	0.1		mAdc
Warm-Up Time ⁽⁸⁾		_	_	20		ms
Offset Stability ⁽⁹⁾		_	_	±0.5		%V _{FSS}

1. 1.0 kPa (kiloPascal) equals 0.145 psi.

· Pressure Hysteresis:

- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (VFSO) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
 - minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
 - Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{ESS}, at 25°C.
- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

Figure 2 illustrates an absolute sensing chip in the super small outline package (Case 1317).

Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0° to 85°C. The output will saturate outside of the specified pressure range.

A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. The MPX4101A/

MPXA4101A/MPXH6101A series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Figure 3 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

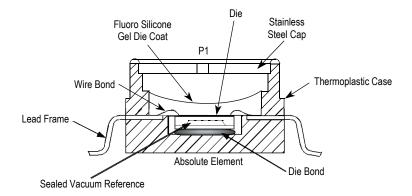
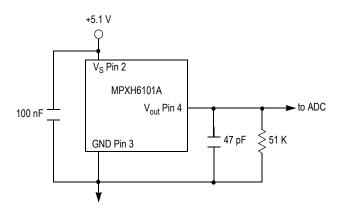



Figure 2. Cross Sectional Diagram SSOP (not to scale)

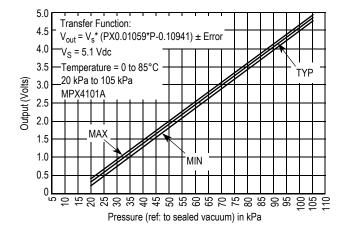
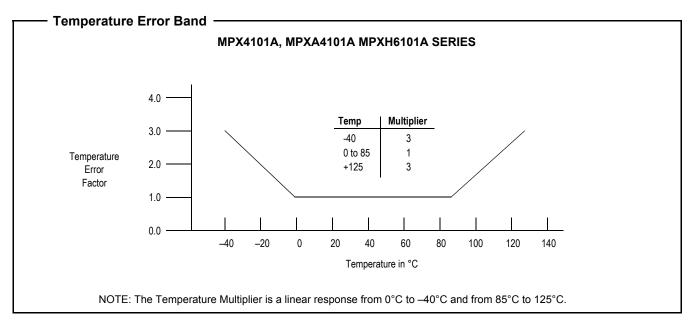
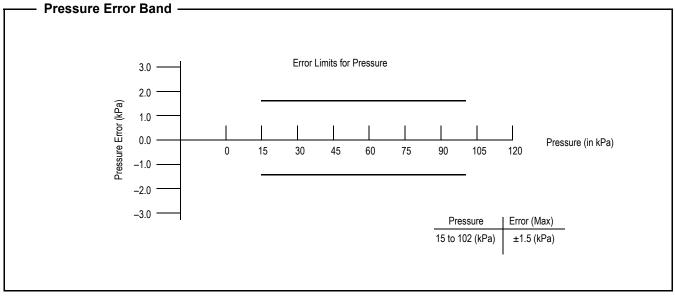


Figure 3. Recommended Power Supply Decoupling and Output Filtering


Figure 4. Output versus Absolute Pressure


Transfer Function (MPX4101A, MPXA4101A, MPXH6101A)

Nominal Transfer Value: $V_{out} = V_S (P \times 0.01059 - 0.10941)$

± (Pressure Error x Temp. Factor x 0.01059 x V_S)

 V_S = 5.1 V \pm 0.25 Vdc

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluorosilicone gel which protects the die from harsh media. The Freescale pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the table below:

Part Number	Case Type	Pressure (P1) Side Identifier
MPX4101A	867	Stainless Steel Cap
MPXA4101AC6U	482A	Side with Port Attached
MPXH6101A6U	1317	Stainless Steel Cap
MPXH6101A6T1	1317	Stainless Steel Cap

MPX4101A

INFORMATION FOR USING THE SMALL OUTLINE PACKAGES

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

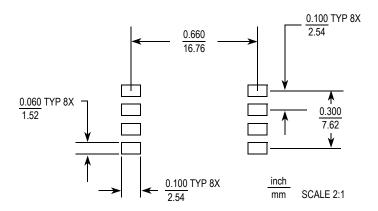


Figure 5. SOP Footprint (Case 482)

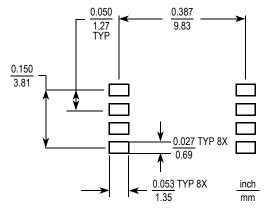


Figure 6. SSOP Footprint (Case 1317)

Integrated Silicon Pressure Sensor for Manifold Absolute Pressure Applications On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The Freescale MPX4105A series Manifold Absolute Pressure (MAP) sensor for engine control is designed to sense absolute air pressure within the intake manifold. This measurement can be used to compute the amount of fuel required for each cylinder.

Freescale's MAP sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The small form factor and high reliability of on-chip integration make the Freescale MAP sensor a logical and economical choice for the automotive system designer.

The MPX4105A series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- 1.8% Maximum Error Over 0° to 85°C
- Specifically Designed for Intake Manifold Absolute Pressure Sensing in Engine Control Systems
- Temperature Compensated Over –40 to +125°C
- Durable Epoxy Unibody Element

Typical Applications

- Manifold Sensing for Automotive Systems
- · Ideally Suited for Microprocessor or Microcontroller-Based Systems
- Also Ideal for Non-Automotive Applications

ORDERING INFORMATION						
Device Type Options Case No. MPX Series Order No. Device Marking						
UNIBODY PACKAG	E (MPX4105A S	SERIES)				
Basic Element Absolute, 867 MPX4105A MPX4105A Element						

MPX4105A SERIES

INTEGRATED
PRESSURE SENSOR
15 TO 105 kPA (2.2 TO 15.2 psi)
0.3 TO 4.9 V OUTPUT

UNIBODY PACKAGE

MPX4105A CASE 867-08

PIN NUMBERS ⁽¹⁾					
1	V _{out}	4	N/C		
2	GND	5	N/C		
3	V _S	6	N/C		

 Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

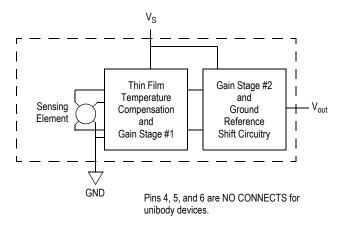


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	400	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 5.1 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2.

Decoupling circuit shown in Figure 3 required to meet electrical specifications.)

Chara	acteristic	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾		P _{OP}	15	_	105	kPa
Supply Voltage ⁽²⁾		V _S	4.85	5.1	5.35	Vdc
Supply Current		Io	_	7.0	10	mAdc
Minimum Pressure Offset ⁽³⁾	(0 to 85°C)	V _{off}	0.184	0.306	0.428	Vdc
Full Scale Output ⁽⁴⁾	(0 to 85°C)	V _{FSO}	4.804	4.896	4.988	Vdc
Full Scale Span ⁽⁵⁾	(0 to 85°C)	V _{FSS}	_	4.590	_	Vdc
Accuracy ⁽⁶⁾	(0 to 85°C)	_	_	_	±1.8	%V _{FSS}
Sensitivity		ΔV/ΔΡ	_	51		mV/kPa
Response Time ⁽⁷⁾		t _R	_	1.0	_	ms
Output Source Current at Full Scale Ou	tput	I _{o+}	_	0.1	—	mAdc
Warm-Up Time ⁽⁸⁾		_	_	15		ms
Offset Stability ⁽⁹⁾		_	_	±0.65		%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to
 - and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
 - minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
 - Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at 25°C.
- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Table 3. Mechanical Characteristics

Characteristics	Тур	Unit
Weight, Basic Element (Case 867)	4.0	grams

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

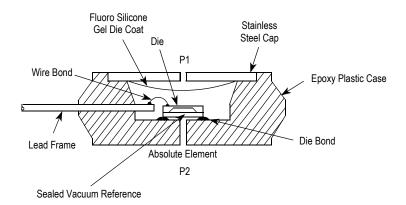


Figure 2. Cross Sectional Diagram (not to scale)

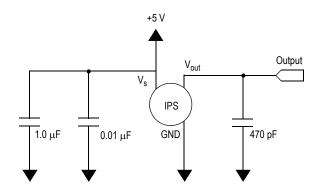


Figure 3. Recommended Power Supply Decoupling and Output Filtering

Figure 2 illustrates an absolute sensing chip in the basic chip carrier (Case 867).

A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. The MPX4105A series pressure sensor operating characteristics, internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

(For additional output filtering, please refer to Application Note AN1535)

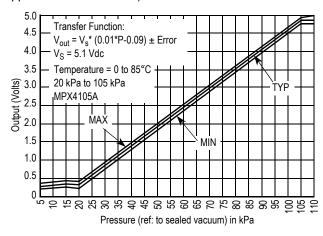
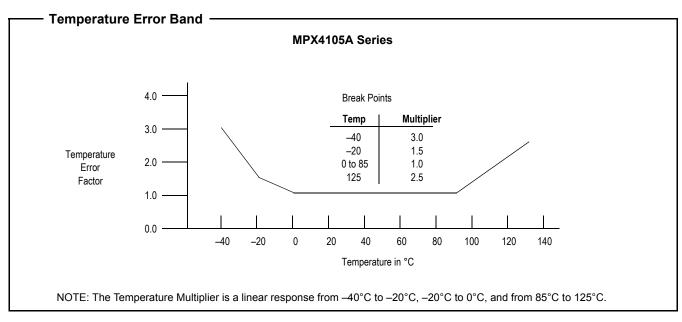


Figure 4. Output versus Absolute Pressure

Figure 3 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.


Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over a temperature range of 0° to 85°C. The output will saturate outside of the specified pressure range.


Transfer Function (MPX4105A)

Nominal Transfer Value: $V_{out} = V_{S} (P \times 0.01 - 0.09)$

± (Pressure Error x Temp. Factor x 0.01 x V_S)

 V_S = 5.1 V \pm 0.25 Vdc

Technical Data

Integrated Silicon Pressure Sensor for Manifold Absolute Pressure Applications On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The Freescale MPX4200A series Manifold Absolute Pressure (MAP) sensor for turbo boost engine control is designed to sense absolute air pressure within the intake manifold. This measurement can be used to compute the amount of fuel required for each cylinder.

The MPX4200A series sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high level analog output signal and temperature compensation. The small form factor and reliability of on-chip integration make the Freescale MAP sensor a logical and economical choice for automotive system designers.

Features

- Specifically Designed for Intake Manifold Absolute Pressure Sensing in Engine Control Systems
- · Patented Silicon Shear Stress Strain Gauge
- Temperature Compensated Over –40° to +125°C
- Offers Reduction in Weight and Volume Compared to Existing Hybrid Modules
- · Durable Epoxy Unibody Element

Typical Applications

- · Manifold Sensing for Automotive Systems
- · Ideally suited for Microprocessor or Microcontroller-Based Systems
- · Also ideal for Non-Automotive Applications

ORDERING INFORMATION					
Device Type Options Case No. MPX Series Device Order No. Marking					
UNIBODY PACKAGE (MPX4200A SERIES)					
Basic Element Absolute, Element 867 MPX4200A MPX4200A					

MPX4200A SERIES

INTEGRATED
PRESSURE SENSOR
20 to 200 kPa (2.9 to 29 psi)
0.3 to 4.9 V OUTPUT

UNIBODY PACKAGE

MPX4200A CASE 867-08

PIN NUMBERS ⁽¹⁾					
1	V _{out}	4	N/C		
2	GND	5	N/C		
3	V_S	6	N/C		

 Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

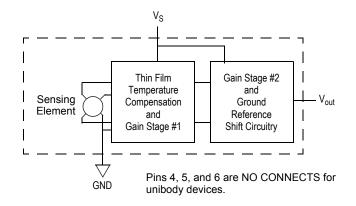


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	800	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 5.1 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2.

Decoupling circuit shown in Figure 3 required to meet electrical specifications.)

Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾	P _{OP}	20	_	200	kPa
Supply Voltage ⁽²⁾	V _S	4.85	5.1	5.35	Vdc
Supply Current	Io	_	7.0	10	mAdc
Minimum Pressure Offset @ V _S = 5.1 Volts ⁽³⁾ (0 to 85°C)	V _{off}	0.199	0.306	0.413	Vdc
Full Scale Output @ V _S = 5.1 Volts ⁽⁴⁾ (0 to 85°C)	V _{FSO}	4.725	4.896	4.978	Vdc
Full Scale Span @ V _S = 5.1 Volts ⁽⁵⁾ (0 to 85°C)	V _{FSS}	_	4.590	_	Vdc
Accuracy ⁽⁶⁾ (0 to 85°C)	_	_	_	±1.5	%V _{FSS}
Sensitivity	V/P	_	25.5		mV/kPa
Response Time ⁽⁷⁾	t _R	_	1.0		ms
Output Source Current at Full Scale Output	I _{o+}	_	0.1		mAdc
Warm-Up Time ⁽⁸⁾		_	20		ms
Offset Stability ⁽⁹⁾		_	±0.5		%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to
 - and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
 - minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
 - $\bullet \ \ \text{Variation from Nominal:} \ \ \text{The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at $25^{\circ}C$.}$
- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Table 3. Mechanical Characteristics

Characteristics	Тур	Unit
Weight, Basic Element (Case 867)	4.0	grams

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

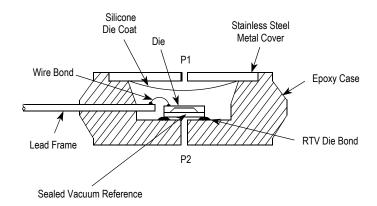


Figure 2. Cross Sectional Diagram (not to scale)

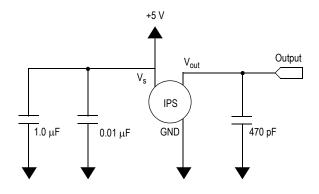


Figure 3. Recommended Power Supply Decoupling and Output Filtering

(For additional output filtering, please refer to Application Note AN1535)

Figure 2 illustrates the absolute sensing chip in the basic chip carrier (Case 867). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. The MPX4200A series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

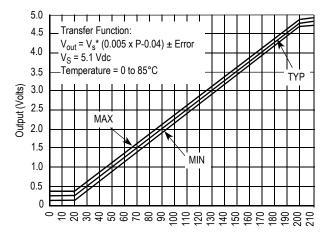


Figure 4. Output versus Absolute Pressure

Figure 3 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over temperature range of 0° to 85°C. The output will saturate outside of the specified pressure range.

Technical Data

Integrated Silicon Pressure Sensor Manifold Absolute Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPX4250A/MPXA4250A series Manifold Absolute Pressure (MAP) sensor for engine control is designed to sense absolute air pressure within the intake manifold. This measurement can be used to compute the amount of fuel required for each cylinder.

The MPX4250A/MPXA4250A series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, particularly those employing a microcontroller or microprocessor with A/D inputs. This transducer combines advanced micromachining techniques, thin-film metallization and bipolar processing to provide an accurate, high-level analog output signal that is proportional to the applied pressure. The small form factor and high reliability of on-chip integration make the Freescale sensor a logical and economical choice for the automotive system engineer.

Features

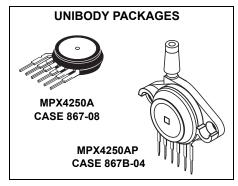
- 1.5% Maximum Error Over 0° to 85°C
- Specifically Designed for Intake Manifold Absolute Pressure Sensing in Engine Control Systems
- · Patented Silicon Shear Stress Strain Gauge
- Temperature Compensated Over -40° to +125°C
- Offers Reduction in Weight and Volume Compared to Existing Hybrid Modules
- Durable Epoxy Unibody Element or Thermoplastic Small Outline, Surface Mount Package
- · Ideal for Non-Automotive Applications

Typical Applications

- · Turbo Boost Engine Control
- Ideally Suited for Microprocessor or Microcontroller-Based Systems

	ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order Number	Packing Options	Device Marking		
SMALL (OUTLINE PACKAGE ⁽¹⁾	(MPXA425	0A SERIES)				
Basic	Absolute, Element Only	482	MPXA4250A6U	Rails	MPXA4250A		
Elements		482	MPXA4250A6T1	Tape & Reel	MPXA4250A		
Ported	Absolute, Axial Port	482A	MPXA4250AC6U	Rails	MPXA4250A		
Elements		482A	MPXA4250AC6T1	Tape & Reel	MPXA4250A		
UNIBOD	UNIBODY PACKAGE ⁽²⁾ (MPX4250A SERIES)						
Basic Element	Absolute, Element Only	867	MPX4250A	_	MPX4250A		
Ported Elements	Absolute, Ported	867B	MPX4250AP	_	MPX4250AP		

- 1. The MPXA4250A series pressure sensors are available in the basic element package or with pressure port fitting. Two packing options are offered for each type.
- 2. The MPX4250A series pressure sensors are available in the basic element package or with pressure port fittings providing mounting ease and barbed hose connections.


MPX4250A MPXA4250A SERIES

INTEGRATED
PRESSURE SENSOR
20 TO 250 kPA (2.9 TO 36.3 psi)
0.2 TO 4.9 V OUTPUT

MPXA4250A6U/6T1 CASE 482-01 SMALL OUTLINE PACKAGES MPXA4250AC6U/C6TCASE 482A-01

SMALL OUTLINE PACKAGE PIN NUMBERS					
1	N/C ^{(1), (2)}	5 ⁽²⁾	N/C		
2	V _S	6 ⁽²⁾	N/C		
3	GND	7 ⁽²⁾	N/C		
4	V _{OUT}	8	N/C		

- 1. Pin 1 in noted by the notch in the lead.
- Pins 1, 5, 6, and 7 are internal device connections. Do not connect to external circuitry or ground.

UNIBODY PACKAGE PIN NUMBERS					
1	V _{OUT} ⁽¹⁾	4	N/C ⁽²⁾		
2	GND	5	N/C ⁽²⁾		
3	V _S	6	N/C ⁽²⁾		

- 1. Pin 1 in noted by the notch in the lead.
- Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground.

MPX4250A

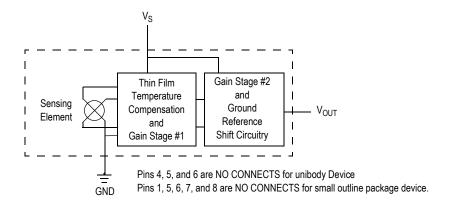


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure ⁽²⁾ (P1 > P2)	P _{MAX}	1000	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} TC = 25°C unless otherwise noted.

^{2.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 5.1 V_{DC}$, $T_A = 25^{\circ}C$ unless otherwise noted, P1 > P2, Decoupling circuit shown in Figure 3 required to meet electrical specifications.)

Characteris	tic	Symbol	Min	Тур	Max	Units
Differential Pressure Range ⁽¹⁾		P _{OP}	20	_	250	kPa
Supply Voltage ⁽²⁾		V _S	4.85	5.1	5.35	V _{DC}
Supply Current		I _O	_	7.0	10	mAdc
Minimum Pressure Offset ⁽³⁾ @ V _S = 5.1 Volts	(0 to 85°C)	V _{OFF}	0.133	0.204	0.264	V _{DC}
Full Scale Output ⁽⁴⁾ @ V _S = 5.1 Volts	(0 to 85°C)	V _{FSO}	4.826	4.896	4.966	V _{DC}
Full Scale Span ⁽⁵⁾ @ V _S = 5.1 Volts	(0 to 85°C)	V _{FSS}	_	4.692	_	V _{DC}
Accuracy ⁽⁶⁾	(0 to 85°C)	_	_	_	±1.5	%V _{FSS}
Sensitivity		ΔV/ΔΡ	_	20	_	mV/kPa
Response Time ⁽⁷⁾		t _R	_	1.0	_	msec
Output Source Current at Full Scale Ou	tput	l _O +	_	0.1	_	mAdc
Warm-Up Time ⁽⁸⁾		_	_	20	_	msec
Offset Stability ⁽⁹⁾			_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (V_{OFF}) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation at any temperature from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to
 - and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the

minimum or maximum rated pressure, at 25°C.

- TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
- TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
- · Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of VFSS, at 25°C.
- 7. Response Time is defined as the time form the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the pressure is stabilized.
- 9. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Table 3. Mechanical Characteristics

Characteristics	Тур	Unit
Weight, Basic Element (Case 867)	4.0	Grams
Weight, Small Outline Package (Case 482)	1.5	Grams

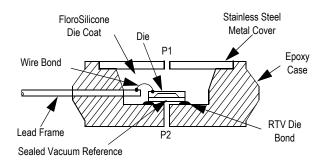


Figure 2. Cross Sectional Diagram (Not to Scale)

Figure 2 illustrates the absolute pressure sensing chip in the basic chip carrier (Case 867). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm.

The MPX4250A/MPXA4250A series pressure sensor operating characteristics and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability.

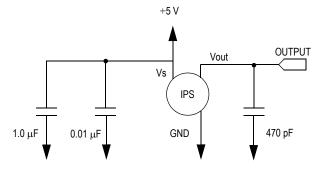


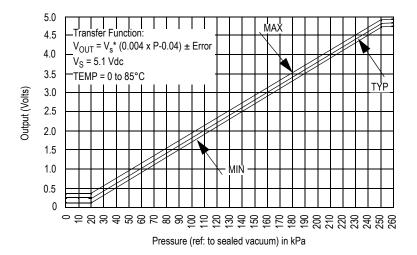
Figure 3. Recommended Power Supply Decoupling and Output Filtering

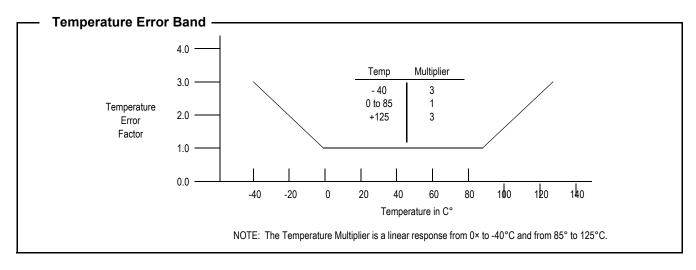
(For additional output filtering, please refer to Application Note AN1646.

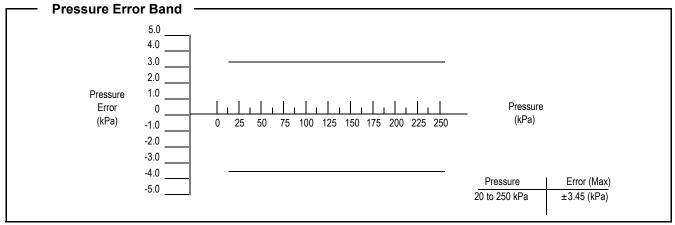
Contact the factory for information regarding media compatibility in your application.

Figure 3 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller.

Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over temperature range of 0° to 85°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range.




Figure 4. Output vs. Absolute Pressure


Transfer Function -

Nominal Transfer Value: $V_{OUT} = V_S (P \times 0.004 - 0.04)$

 \pm (Pressure Error \times Temp. Factor \times 0.004 \times V_S)

 $V_S = 5.1 \text{ V } \pm 0.25 \text{ V}_{DC}$

INFORMATION FOR USING THE SMALL OUTLINE PACKAGE (CASE 482)

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct Footprint, the packages will self align when subjected to a

solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

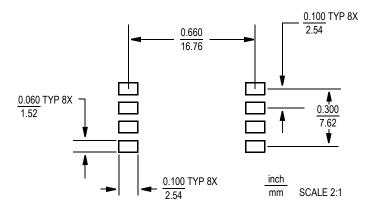


Figure 5. SOP Footprint (Case 482)

Technical Data

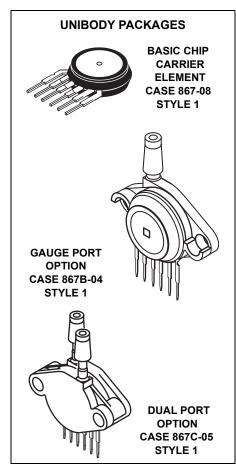
Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPX4250D series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, particularly those employing a microcontroller or microprocessor with A/D inputs. This transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high-level analog output signal that is proportional to the applied pressure. The small form factor and high reliability of on-chip integration make the Freescale sensor a logical and economical choice for the automotive system engineer.

Features

- Differential and Gauge Applications Available
- 1.4% Maximum Error Over 0° to 85°C
- Patented Silicon Shear Stress Strain Gauge
- Temperature Compensated Over –40° to +125°C
- Offers Reduction in Weight and Volume Compared to Existing Hybrid Modules
- Durable Epoxy Unibody Element

Typical Applications


Ideally Suited for Microprocessor or Microcontroller-Based Systems

ORDERING INFORMATION ⁽¹⁾						
Device Type Case No. MPX Series Device Order No. Marking						
UNIBODY PACKAGE (MPX425	0D SERIES)					
Basic Element	867	MPX4250D	MPX4250D			
Gauge Ported Element	867B	MPX4250GP	MPX4250GP			
Dual Ported Element	867C	MPX4250DP	MPX4250DP			

 The MPX4250D series silicon pressure sensors are available in the basic element package or with pressure port fittings that provide mounting ease and barbed hose connections.

MPX4250D SERIES

INTEGRATED
PRESSURE SENSOR
0 TO 250 kPA (0 TO 36.3 psi)
0.2 TO 4.9 V OUTPUT

PIN NUMBERS ⁽¹⁾					
1	V _{out}	4	N/C		
2	GND	5	N/C		
3	V_S	6	N/C		

 Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

MPX4250D

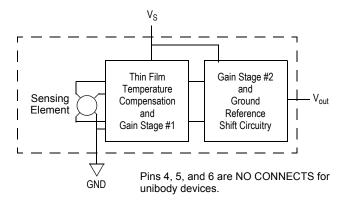


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	1000	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 5.1 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2.

Decoupling circuit shown in Figure 3 required to meet electrical specifications.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾		P _{OP}	0	_	250	kPa
Supply Voltage ⁽²⁾		V _S	4.85	5.1	5.35	Vdc
Supply Current		Io		7.0	10	mAdc
Minimum Pressure Offset @ V _S = 5.1 Volts ⁽³⁾	(0 to 85°C)	V _{off}	0.139	0.204	0.269	Vdc
Full Scale Output @ V _S = 5.1 Volts ⁽⁴⁾	(0 to 85°C)	V _{FSO}	4.844	4.909	4.974	Vdc
Full Scale Span @ V _S = 5.1 Volts ⁽⁵⁾	(0 to 85°C)	V _{FSS}	_	4.705	_	Vdc
Accuracy ⁽⁶⁾	(0 to 85°C)	_		_	±1.4	%V _{FSS}
Sensitivity		ΔV/ΔΡ		18.8		mV/kPa
Response Time ⁽⁷⁾		t _R	_	1.0		ms
Output Source Current at Full Scale Output		I _{o+}	_	0.1		mAdc
Warm-Up Time ⁽⁸⁾		_	_	20		ms
Offset Stability ⁽⁹⁾		_	_	±0.5		%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the

minimum or maximum rated pressure, at 25°C.

- TcSpan: Output deviation over the temperature range of 0 to 85°C, relative to 25°C.
- TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
- Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at 25°C.
- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Table 3. Mechanical Characteristics

Characteristics	Тур	Unit
Weight, Basic Element (Case 867)	4.0	grams

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

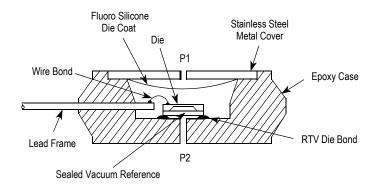


Figure 2. Cross Sectional Diagram (not to scale)

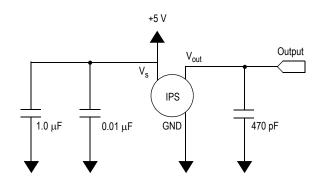


Figure 3. Recommended Power Supply Decoupling and Output Filtering (For additional output filtering, please refer to Application Note AN1535)

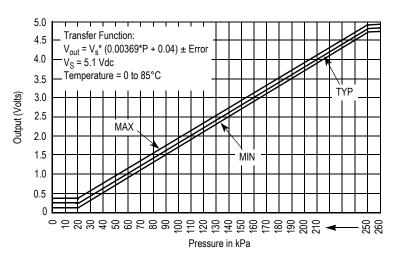


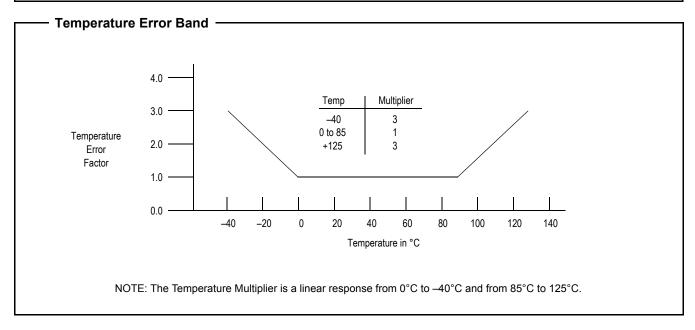
Figure 4. Output versus Absolute Pressure

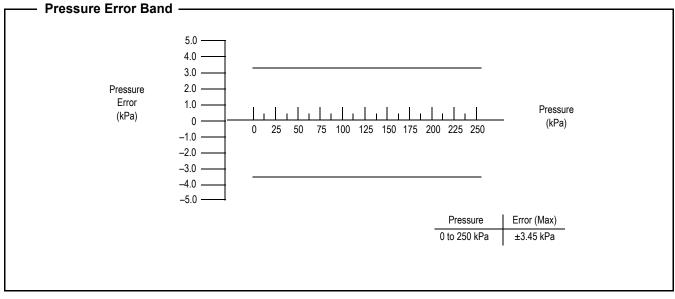
Figure 2 illustrates the differential/gauge pressure sensing chip in the basic chip carrier (Case 867). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm.

The MPX4250D series pressure sensor operating characteristics and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on sensor

performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Figure 3 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller.


Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0° to 85°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range.


MPX4250D

Transfer Function (MPX4250D)

Nominal Transfer Value: $V_{out} = V_S \times (0.00369 \times P + 0.04) \pm (Pressure Error \times Temp. Factor \times 0.00369 \times V_S)$

 V_S = 5.1 \pm 0.25 Vdc

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, **Temperature Compensated and Calibrated**

The MPX5010/MPXV5010G series piezoresistive transducers are state-ofthe-art monolithic silicon pressure sensors designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.

Features

- 5.0% Maximum Error over 0° to 85°C
- Ideally Suited for Microprocessor or Microcontroller-Based Systems
- Durable Epoxy Unibody and Thermoplastic (PPS) Surface Mount Package
- Temperature Compensated over -40° to +125°C
- Patented Silicon Shear Stress Strain Gauge
- Available in Differential and Gauge Configurations
- Available in Surface Mount (SMT) or Through-hole (DIP) Configurations

Application Examples

- Hospital Beds
- **HVAC**
- Respiratory Systems
- Process Control

	ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options			
SMALL O	UTLINE PACKAGE (MPX)	√5010G S	ERIES)				
Basic	Gauge, Element Only, SMT	482	MPXV5010G6U	Rails	MPXV5010G		
Elements	Gauge, Element Only, DIP	482B	MPXV5010G7U	Rails	MPXV5010G		
Ported	Gauge, Axial Port, SMT	482A	MPXV5010GC6U	Rails	MPXV5010G		
Elements	Gauge, Axial Port, DIP	482C	MPXV5010GC7U	Rails	MPXV5010G		
	Gauge, Axial Port, SMT	482A	MPXV5010GC6T1	Tape &	MPXV5010G		
				Reel			
	Gauge, Side Port, SMT	1369	MPXV5010GP	Trays	MPXV5010G		
	Gauge, Dual Port, SMT	1351	MPXV5010DP	Trays	MPXV5010G		
UNIBODY	PACKAGE (MPX2202 SE	ERIES)					
Basic Element	Differential	867	MPX5010D	_	MPXV5010D		
Ported	Differential, Gauge	867C	MPX5010DP	_	MPXV5010DP		
Elements	Gauge	867B	MPX5010GP	_	MPXV5010GP		
	Gauge, Axial	867E	MPX5010GS	_	MPXV5010D		
	Gauge, Axial PC Mount	867F	MPX5010GSX	_	MPXV5010D		

MPX5010 MPXV5010G **SERIES**

INTEGRATED PRESSURE SENSOR 0 to 10 kPa (0 to 1.45 psi) 0.2 to 4.7 V OUTPUT

SMALL OUTLINE PACKAGE

CASE 482-01

MPXV5010GC6U/C6T1 **CASE 482A-01**

MPXV5010G7U **CASE 482B-03**

MPXV5010GC7U **CASE 482C-03**

CASE 1369-01

MPXV5010DP CASE 1351-01

UNIBODY PACKAGE PIN NUMBERS ⁽¹⁾					
1	V_{out}	4	N/C		
2	Gnd	5	N/C		
3	V_S	6	N/C		

1. Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

SMALL OUTLINE PACKAGE PIN NUMBERS ⁽¹⁾				
1	N/C	5	N/C	
2	Vs	6	N/C	
3	Gnd	7	N/C	
4	V _{out}	8	N/C	

1. Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

CASE 867F-03

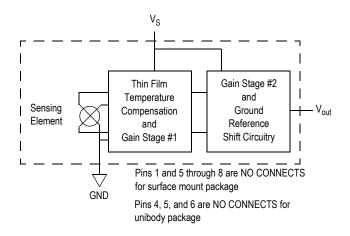


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{max}	75	kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 3 required to meet specification.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾		P _{OP}	0	_	10	kPa
Supply Voltage ⁽²⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		Io	_	5.0	10	mAdc
Minimum Pressure Offset ⁽³⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{off}	0	0.2	0.425	Vdc
Full Scale Output ⁽⁴⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSO}	4.475	4.7	4.925	Vdc
Full Scale Span ⁽⁵⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSS}	4.275	4.5	4.725	Vdc
Accuracy ⁽⁶⁾	(0 to 85°C)	_	_	_	±5.0	%V _{FSS}
Sensitivity		V/P	_	450		mV/kPa
Response Time ⁽⁷⁾		t _R	_	1.0		ms
Output Source Current at Full Scale Output		I _{O+}	_	0.1		mAdc
Warm-Up Time ⁽⁸⁾		_	_	20		ms
Offset Stability ⁽⁹⁾		_	1	±0.5		%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to

and from the minimum or maximum operating temperature points, with zero differential pressure applied.

• Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the

minimum or maximum rated pressure, at 25°C.

• TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.

• TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to

25°C.

- $\bullet \ \ \text{Variation from Nominal:} \ \ \text{The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at $25^{\circ}C$.}$
- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Table 3. Mechanical Characteristics

Characteristics	Тур	Unit
Weight, Basic Element (Case 867)	4.0	grams
Weight, Basic Element (Case 482)	1.5	grams

ON-CHIP TEMPERATURE COMPENSATION, CALIBRATION AND SIGNAL CONDITIONING

The performance over temperature is achieved by integrating the shear-stress strain gauge, temperature compensation, calibration and signal conditioning circuitry onto a single monolithic chip.

Figure 2 illustrates the Differential or Gauge configuration in the basic chip carrier (Case 482). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm.

The MPX5010 and MPXV5010G series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on

sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Figure 3 shows the recommended decoupling circuit for interfacing the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0° to 85°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range.

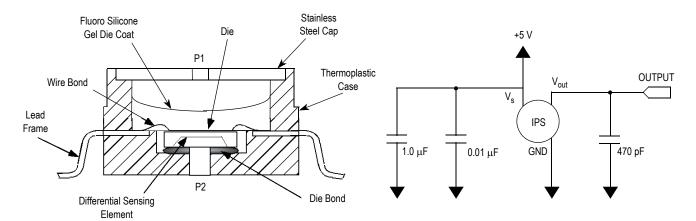
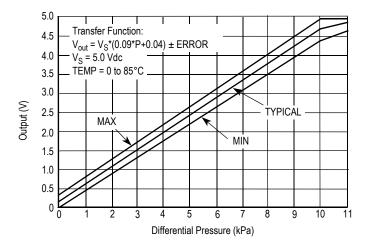
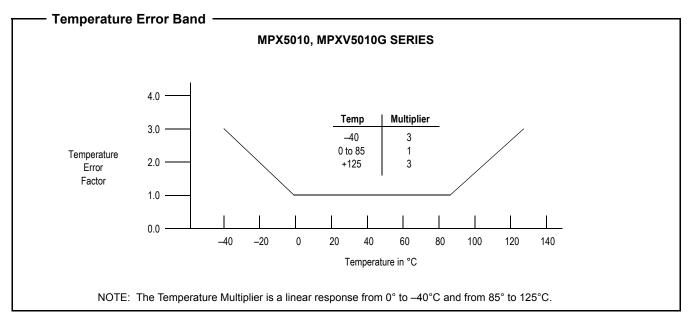


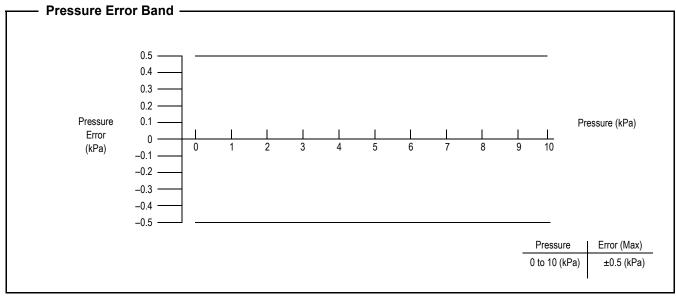
Figure 2. Cross-Sectional Diagram SOP (not to scale)

Figure 3. Recommended Power Supply Decoupling and Output Filtering

(For additional output filtering, please refer to Application Note AN1646.)




Figure 4. Output versus Pressure Differential


Transfer Function (MPX5010, MPXV5010G)

Nominal Transfer Value: $V_{out} = V_S x (0.09 x P + 0.04)$

± (Pressure Error x Temp. Factor x 0.09 x V_S)

 V_S = 5.0 V \pm 0.25 Vdc

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluorosilicone gel which protects the die from harsh media. The MPX pressure

sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the table below:

Part Number	Case Type	Pressure (P1) Side Identifier
MPX5010D	867	Stainless Steel Cap
MPX5010DP	867C	Side with Part Marking
MPX5010GP	867B	Side with Port Attached
MPX5010GS	867E	Side with Port Attached
MPX5010GSX	867F	Side with Port Attached
MPXV5010G6U	482	Stainless Steel Cap
MPXV5010G7U	482B	Stainless Steel Cap
MPXV5010GC6U/T1	482A	Side with Port Attached
MPXV5010GC7U	482C	Side with Port Attached
MPXV5010GP	1369	Side with Port Attached
MPXV5010DP	1351	Side with Part Marking

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

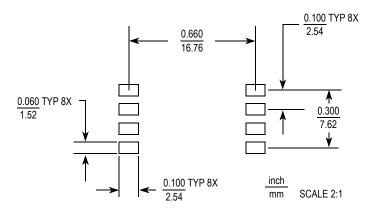
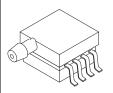


Figure 5. SOP Footprint (Case 482)

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPX5050/MPXV5050G series piezoresistive transducer is a state-of-theart monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This patented, single element transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.

Features


- 2.5% Maximum Error over 0° to 85°C
- Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated Over –40° to +125°C
- Patented Silicon Shear Stress Strain Gauge
- Durable Epoxy Unibody Element
- · Easy-to-Use Chip Carrier Option

	ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking		
SMALL O	JTLINE PACKAGE (M	PXV505	0G SERIES)				
Ported	Side Port	1369	MPXV5050GP	Trays	MPXV5050G		
Elements	Dual Port	1351	MPXV5050DP	Trays	MPXV5050G		
UNIBODY	PACKAGE (MPX5050	SERIE	S)				
Basic Element	Differential	867	MPX5050D	_	MPX5050D		
Ported Element	Differential Dual Ports	867C	MPX5050DP	_	MPX5050DP		
	Gauge	867B	MPX5050GP	_	MPX5050GP		

MPX5050 MPXV5050G SERIES

INTEGRATED
PRESSURE SENSOR
0 to 50 kPa (0 to 7.25 psi)
0.2 to 4.7 V Output

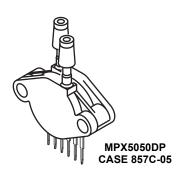
SMALL OUTLINE PACKAGE SURFACE MOUNT

MPXV5050GP CASE 1369-01

MPXV5050DP CASE 1351-01

SMA	SMALL OUTLINE PACKAGE PIN NUMBERS ⁽¹⁾					
1	N/C	5	N/C			
2	Vs	6	N/C			
3	Gnd	7	N/C			
4	V _{out}	8	N/C			

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.


UNIBODY PACKAGE PIN NUMBERS(1)							
1	V _{out}	4	N/C				
2	Gnd	5	N/C				
3	V _S	6	N/C				

 Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

UNIBODY PACKAGES

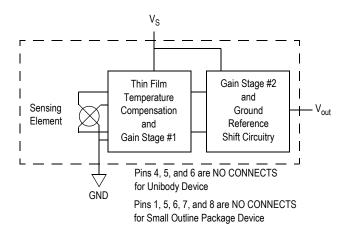


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{max}	200	kPa
Storage Temperature	T _{stg}	–40° to +125°	°C
Operating Temperature	T _A	–40° to +125°	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. . Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 4 required to meet electrical specifications.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾		P _{OP}	0	_	50	kPa
Supply Voltage ⁽²⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		Io	1	7.0	10	mAdc
Minimum Pressure Offset ⁽³⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{off}	0.088	0.2	0.313	Vdc
Full Scale Output ⁽⁴⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSO}	4.587	4.7	4.813	Vdc
Full Scale Span ⁽⁵⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSS}	_	4.5	_	Vdc
Accuracy ⁽⁶⁾	(0 to 85°C)	_	1	_	±2.5	%V _{FSS}
Sensitivity		V/P	_	90		mV/kPa
Response Time ⁽⁷⁾		t _R	_	1.0		ms
Output Source Current at Full Scale Output		I _{O+}	_	0.1		mAdc
Warm-Up Time ⁽⁸⁾		_	_	20		ms
Offset Stability ⁽⁹⁾		_	_	±0.5		%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to

and from the minimum or maximum operating temperature points, with zero differential pressure applied.

• Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the

minimum or maximum rated pressure at 25°C.

• TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.

TcOffset: Output deviation with minimum pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.

Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS} at 25°C.

- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Table 3. Mechanical Characteristics

Characteristics	Тур	Unit
Weight, Basic Element (Case 867)	4.0	grams
Weight, Basic Element (Case 1369)	1.5	grams

Figure 3 illustrates the Differential/Gauge Sensing Chip in the basic chip carrier (Case 867). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm.

The MPX5050/MPXV5050G series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Figure 2 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0× to 85×C using the decoupling circuit shown in Figure 4. The output will saturate outside of the specified pressure range.

Figure 4 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

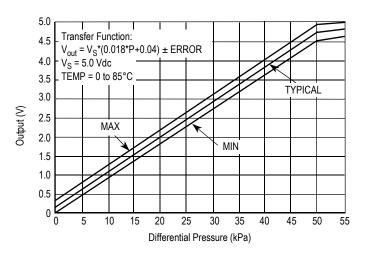


Figure 2. Output versus Pressure Differential

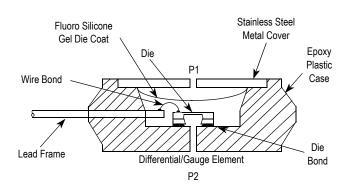


Figure 3. Cross-Sectional Diagram (not to scale)

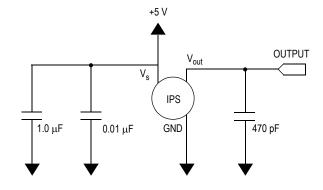
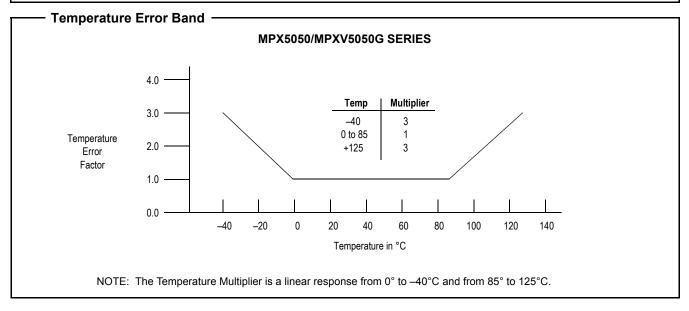
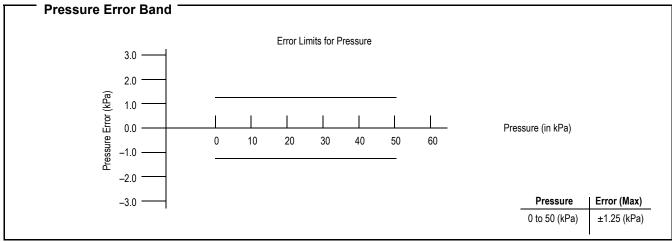


Figure 4. Recommended Power Supply Decoupling and Output Filtering


(For additional output filtering, please refer to Application Note AN1646.)


Transfer Function

Nominal Transfer Value: $V_{out} = V_S (P \times 0.018 + 0.04)$

± (Pressure Error x Temp. Factor x 0.018 x V_S)

 V_S = 5.0 V \pm 0.25 Vdc

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluorosilicone gel which protects the die from harsh media. The MPX pressure

sensor is designed to operate with positive differential pressure applied, P1 > P2.

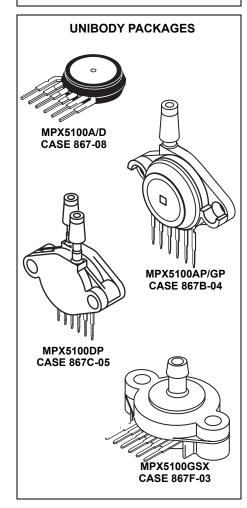
The Pressure (P1) side may be identified by using the table below:

Part Number	Case Type	Pressure (P1) Side Identifier
MPX5050D	867	Stainless Steel Cap
MPX5050DP	867C	Side with Part Marking
MPX5050GP	867B	Side with Port Attached
MPXV5050GP	1369	Side with Port Attached
MPXV5050DP	1351	Side with Part Marking

MPX5050

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated, and Calibrated

The MPX5100 series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This patented, single element transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.


Features

- 2.5% Maximum Error over 0° to 85°C
- Ideally suited for Microprocessor or Microcontroller-Based Systems
- Patented Silicon Shear Stress Strain Gauge
- · Available in Absolute, Differential and Gauge Configurations
- Durable Epoxy Unibody Element
- · Easy-to-Use Chip Carrier Option

	ORDERING INFORMATION							
Device Type	Options	Case No.	MPX Series Order Number	Device Marking				
UNIBODY	UNIBODY PACKAGE (MPX5100 SERIES)							
Basic	Absolute	867	MPX5100A	MPX5100A				
Elements	Differential	867	MPX5100D	MPX5100D				
Ported	Differential Dual Ports	867C	MPX5100DP	MPX5100DP				
Elements	Absolute, Single Port	867B	MPX5100AP	MPX5100AP				
	Gauge, Single Port	867B	MPX5100GP	MPX5100GP				
	Gauge, Axial PC Mount	867F	MPX5100GSX	MPX5100GSX				

MPX5100 SERIES

INTEGRATED PRESSURE SENSOR 0 to 100 kpa (0 to 14.5 psi) 15 to 115 kPa (2.18 to 16.68 psi) 0.2 to 4.7 V Output

PIN NUMBER ⁽¹⁾					
1	V _{OUT}	4	N/C		
2	GND	5	N/C		
3	٧s	6	N/C		

 Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

MPX5100

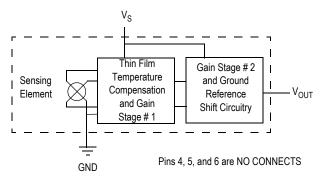


Figure 1. Fully Integrated Pressure Sensor Schematic

TABLE 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	400	kPa
Storage Temperature	T _{STG}	-40° to +125°C	°C
Operating Temperature	T _A	-40° to +125°C	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

TABLE 2. Operating Characteristics ($V_S = 5.0 V_{DC}$, $T_A = 25^{\circ}C$ unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 4 required to meet electrical specifications.)

С	haracteristic	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾ Gauge, Differential: MPX5100D Absolute: MPX5100A		P _{OP}	0 15	_ _	100 115	kPa
Supply Voltage ⁽²⁾		V _S	4.75	5.0	5.25	V _{DC}
Supply Current		I _O	_	7.0	10	mAdc
Minimum Pressure Offset ⁽³⁾ @ V _S = 5.0 V	(0 to 85°C)	V _{OFF}	0.088	0.20	0.313	V _{DC}
Full Scale Output ⁽⁴⁾ @ V _S = 5.0 V	Differential and Absolute (0 to 85°C) Vacuum	V _{FSO}	4.587 3.688	4.700 3.800	4.813 3.913	V _{DC}
Full Scale Span ⁽⁵⁾ @ V _S = 5.0 V	Differential and Absolute (0 to 85°C) Vacuum	V _{FSS}	_	4.500 3.600	_	V _{DC}
Accuracy ⁽⁶⁾		_	_	_	±2.5	%V _{FSS}
Sensitivity		V/P	_	45	_	mV/kPa
Response Time ⁽⁷⁾		t _R	_	1.0	_	ms
Output Source Current at Full Scale Output		I _{O+}	_	0.1	_	mAdc
Warm-Up Time ⁽⁸⁾		_	_	20	_	ms
Offset Stability ⁽⁹⁾		_	_	±0.5	_	%V _{FSS}

- 1. 0.1 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (V_{OFF}) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to

and from the minimum or maximum operating temperature points, with zero differential pressure applied.

• Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum

or maximum rated pressure at 25°C.

TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.

TcOffset: Output deviation with minimum pressure applied over the temperature range of 0° to 85°C, relative to 25°C.

- Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS} at 25°C.
- 7. Response Time is defined as the time for the incremental changed in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-Up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

TABLE 3. MECHANICAL CHARACTERISTICS

Characteristics	Тур	Unit
Weight, Basic Element (Case 867)	4.0	grams

Figure 2 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0× to 85×C using the decoupling circuit shown in Figure 4. The output will saturate outside of the specified pressure range.

Figure 3 illustrates both the Differential/Gauge and the Absolute Sensing Chip in the basic chip carrier (Case 867). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm.

The MPX5100 series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

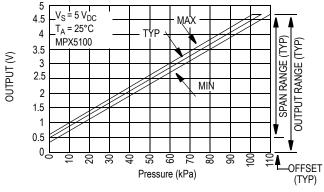
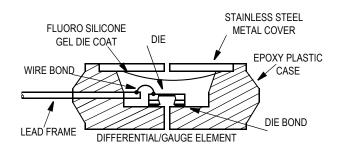



Figure 2. Output Vs. Pressure Differential

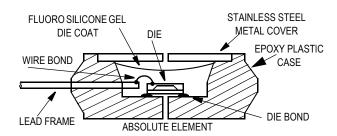
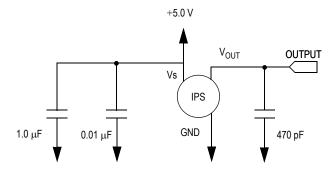
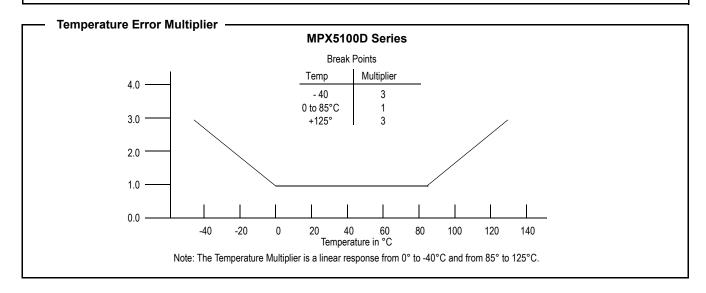


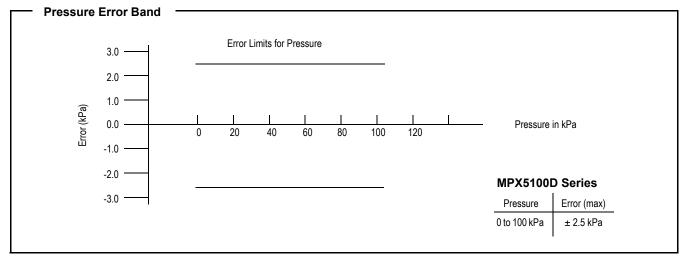
Figure 3. Cross Sectional Diagrams (Not to Scale)

Figure 4 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input

of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.



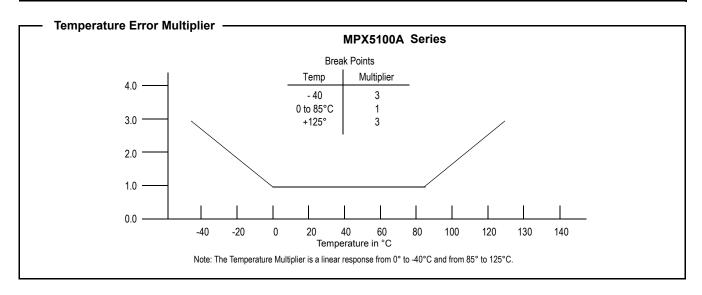

Figure 4. Recommended Power Supply Decoupling and Output Filtering (For additional output filtering, please refer to Application Note AN1646.)

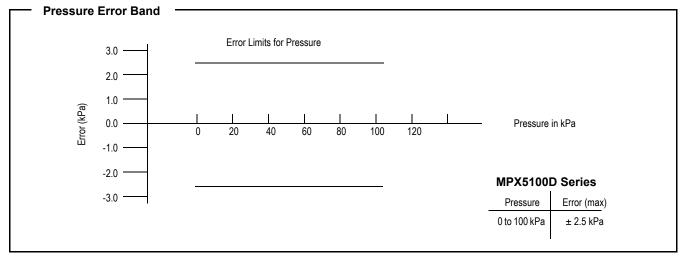

Transfer Function (MPX5100D, MPX5100G -

Nominal Transfer Value: VOUT = VS (P x 0.009 + 0.04)

± (Pressure Error x Temp. Mult. x 0.009 x VS)

 $V\dot{S} = 5.0 \text{ V } \pm 5\% \text{ P kPa}$




Transfer Function (MPX5100A -

Nominal Transfer Value: $V_{OUT} = V_S$ (P x 0.009 + 0.095)

 \pm (Pressure Error x Temp. Mult. x 0.009 x V_S)

 $V_S = 5.0 \text{ V } \pm 5\% \text{ P kPa}$

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluorosilicone gel which protects the die from harsh media. The MPX pressure

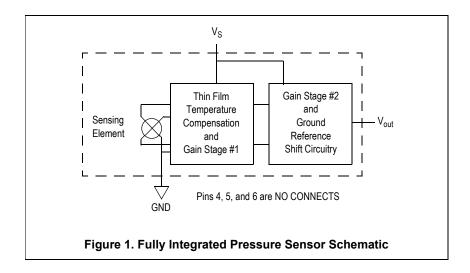
sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using Table 4 below:

TABLE 4. PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

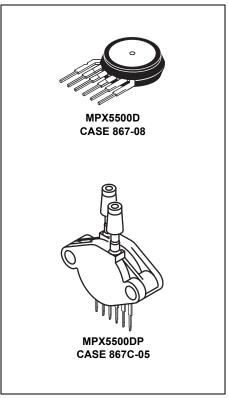
Part Number	Case Type	Pressure (P1) Side Identifier
MPX5100A, MPX5100D	867	Stainless Steel Cap
MPX5100DP	867C	Side with Part Marking
MPX5100AP, MPX5100GP	867B	Side with Port Attached
MPX5100GSX	867F	Side with Port Attached

MPX5100


Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPX5500 series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This patented, single element transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.

Features


- 2.5% Maximum Error over 0° to 85°C
- · Ideally suited for Microprocessor or Microcontroller-Based Systems
- · Patented Silicon Shear Stress Strain Gauge
- Durable Epoxy Unibody Element
- Available in Differential and Gauge Configurations

ORDERING INFORMATION						
Device	Ontions	Case	ase MPX Series			
Туре	Options	Туре	Order Number	Device Marking		
Basic Element	Differential	867	MPX5500D	MPX5500D		
Ported Elements	Differential Dual Ports	867C	MPX5500DP	MPX5500DP		

MPX5500 SERIES

INTEGRATED
PRESSURE SENSOR
0 to 500 kPa (0 to 72.5 psi)
0.2 to 4.7 V Output

PIN NUMBERS ⁽¹⁾						
1 V _{out} 4 N/C						
2	GND	5	N/C			
3	V _S	6	N/C			

 Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure ⁽²⁾ (P2 \leq 1 Atmosphere)	P1 _{max}	2000	kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

Maximum Ratings apply to Case 867 only. Extended exposure at the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 4. required to meet electrical specifications.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾		P _{OP}	0	_	500	kPa
Supply Voltage ⁽²⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		I _O	_	7.0	10	mAdc
Zero Pressure Offset ⁽³⁾	(0 to 85°C)	V _{off}	0.088	0.20	0.313	Vdc
Full Scale Output ⁽⁴⁾	(0 to 85°C)	V _{FSO}	4.587	4.70	4.813	Vdc
Full Scale Span ⁽⁵⁾	(0 to 85°C)	V _{FSS}	_	4.50	_	Vdc
Accuracy ⁽⁶⁾	(0 to 85°C)	_	_	_	±2.5	%V _{FSS}
Sensitivity		V/P	_	9.0		mV/kPa
Response Time ⁽⁷⁾		t _R	_	1.0		ms
Output Source Current at Full Scale Output		I _{O+}	_	0.1		mAdc
Warm-Up Time ⁽⁸⁾		_	_	20		ms

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to

and from the minimum or maximum operating temperature points, with zero differential pressure applied.

• Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the

minimum or maximum rated pressure, at 25°C.

TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.

• TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.

Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at 25°C.

- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the device to meet the specified output voltage after the pressure has been stabilized.

Table 3. Mechanical Characteristics

Characteristics	Тур	Unit
Weight, Basic Element (Case 867)	4.0	grams

^{2.} This sensor is designed for applications where P1 is always greater than, or equal to P2. P2 maximum is 500 kPa.

Figure 3 illustrates the Differential/Gauge basic chip carrier (Case 867). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. (For use of the MPX5500D in a high pressure, cyclic application, consult the factory.)

The MPX5500 series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Figure 2 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0° to 85°C using the decoupling circuit shown in Figure 4. The output will saturate outside of the specified pressure range.

Figure 4 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

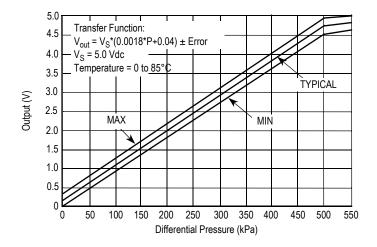


Figure 2. Output versus Pressure Differential

Figure 3. Cross-Sectional Diagrams (not to scale)

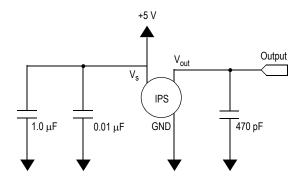


Figure 4. Recommended Power Supply Decoupling and Output Filtering (For additional output filtering, please refer to Application Note AN1646)

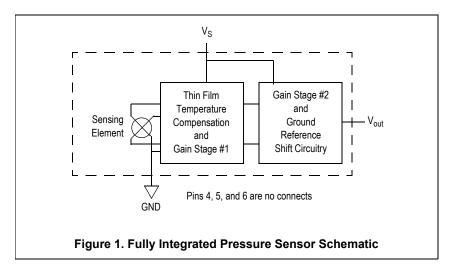
PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluoro silicone gel which protects the die from harsh media. The Freescale MPX pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the table below:

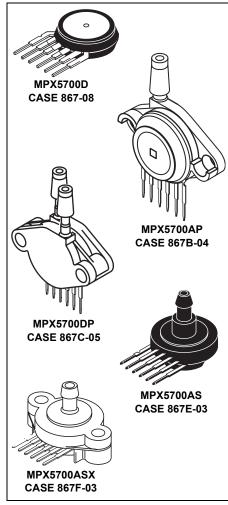
Part Number	Case Type	Pressure (P1) Side Identifier
MPX5500D	867	Stainless Steel Cap
MPX5500DP	867C	Side with Part Marking

Technical Data


Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPX5700 series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This patented, single element transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.

Features


- 2.5% Maximum Error over 0° to 85°C
- Ideally Suited for Microprocessor or Microcontroller-Based Systems
- · Available in Absolute, Differential and Gauge Configurations
- · Patented Silicon Shear Stress Strain Gauge
- · Durable Epoxy Unibody Element

	ORDERING INFORMATION							
Device	Options	Case	MPX	Series				
Type	Options	Type	Order Number	Device Marking				
Basic	Differential	867	MPX5700D	MPX5700D				
Element	Absolute	867	MPX5700A	MPX5700A				
Ported	Differential Dual Ports	867C	MPX5700DP	MPX5700DP				
Elements	Gauge	867B	MPX5700GP	MPX5700GP				
	Gauge, Axial	867E	MPX5700GS	MPX5700D				
	Absolute	867B	MPX5700AP	MPX5700AP				
	Absolute, Axial	867E	MPX5700AS	MPX5700A				
	Absolute, Axial PC Mount	867F	MPX5700ASX	MPX5700A				

MPX5700 SERIES

INTEGRATED
PRESSURE SENSOR
0 to 700 kPa (0 to 101.5 psi)
15 to 700 kPa (2.18 to 101.5 psi)
0.2 to 4.7 V OUTPUT

PIN NUMBERS						
1	V _{out}	4	N/C			
2	GND	5	N/C			
3	V_S	6	N/C			

NOTE: Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

MPX5700

Table 1. Maximum Ratings⁽¹⁾

Parametrics	Symbol	Value	Unit
Maximum Pressure ⁽²⁾ (P2 ≤ 1 Atmosphere)	P1 _{max}	2800	kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

- 1. Maximum Ratings apply to Case 867 only. Extended exposure at the specified limits may cause permanent damage or degradation to the device.
- 2. This sensor is designed for applications where P1 is always greater than, or equal to P2. P2 maximum is 500 kPa.

Table 2. Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 4 required to meet electrical specifications.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾	Gauge, Differential: MPX5700D Absolute: MPX5700A	P _{OP}	0 15	_	700 700	kPa
Supply Voltage ⁽²⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		Io	_	7.0	10	mAdc
Zero Pressure Offset ⁽³⁾	Gauge, Differential (0 to 85°C) Absolute (0 to 85°C)	V _{off}	0.088 0.184	0.2 —	0.313 0.409	Vdc
Full Scale Output ⁽⁴⁾	(0 to 85°C)	V _{FSO}	4.587	4.7	4.813	Vdc
Full Scale Span ⁽⁵⁾	(0 to 85°C)	V _{FSS}	_	4.5	_	Vdc
Accuracy ⁽⁶⁾	(0 to 85°C)	_	_	_	±2.5	%V _{FSS}
Sensitivity		V/P	_	6.4		mV/kPa
Response Time ⁽⁷⁾		t _R	_	1.0		ms
Output Source Current at Full Scale Output		I _{O+}	_	0.1		mAdc
Warm-Up Time ⁽⁸⁾		_	_	20		ms

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is

cycled to and from the minimum or maximum operating temperature points, with zero differential

pressure applied.

Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from

the minimum or maximum rated pressure, at 25°C.

TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.

TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C,

relative to 25°C.

- Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at 25°C.
- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the device to meet the specified output voltage after the pressure has been stabilized.

Table 3. Mechanical Characteristics

Characteristics	Тур	Unit
Weight, Basic Element (Case 867)	4.0	grams

ON-CHIP TEMPERATURE COMPENSATION, CALIBRATION AND SIGNAL CONDITIONING

Figure 3 illustrates both the Differential/Gauge and the Absolute Sensing Chip in the basic chip carrier (Case 867). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. (For use of the MPX5700D in a high-pressure cyclic application, consult the factory.)

The MPX5700 series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media, other than dry air, may have adverse effects on sensor

performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Figure 2 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0° to 85°C using the decoupling circuit shown in Figure 4. The output will saturate outside of the specified pressure range.

Figure 4 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

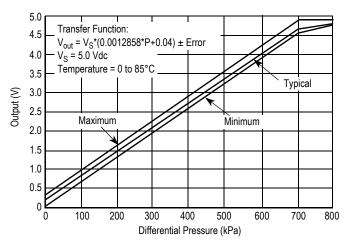


Figure 2. Output versus Pressure Differential

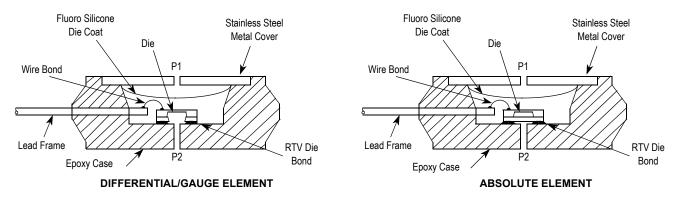


Figure 3. Cross-Sectional Diagrams (not to scale)

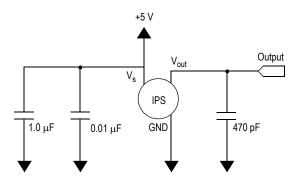


Figure 4. Recommended Power Supply Decoupling and Output Filtering (For additional output filtering, please refer to Application Note AN1646)

MPX5700

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluoro silicone gel which protects the die from harsh media. The Freescale MPX

pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the table below:

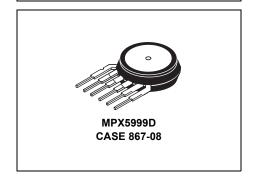
Part Number	Case Type	Pressure (P1) Side Identifier
MPX5700D, MPX5700A	867	Stainless Steel Cap
MPX5700DP	867C	Side with Part Marking
MPX5700GP, MPX5700AP	867B	Side with Port Attached
MPX5700GS, MPX5700AS	867E	Side with Port Attached
MPX5700ASX	867F	Side with Port Attached

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPX5999D piezoresistive transducer is a state-of-the-art pressure sensor designed for a wide range of applications, but particularly for those employing a microcontroller or microprocessor with A/D inputs. This patented, single element transducer combines advanced micromachining techniques, thin-film metallization and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on the stand-alone sensing chip.

Features


- Temperature Compensated Over 0 to 85°C
- · Ideally Suited for Microprocessor or Microcontroller-Based Systems
- · Patented Silicon Shear Stress Strain Gauge
- Durable Epoxy Unibody Element

ORDERING INFORMATION ⁽¹⁾						
Device	Device Case MPX Series					
Type	Options	Type	Order Number	Device Marking		
Basic Element	Differential	867	MPX5999D	MPX5999D		

^{1.} The MPX5999D pressure sensor is available as an element only.

MPX5999D SERIES

INTEGRATED
PRESSURE SENSOR
0 to 1000 kPa (0 to 150 psi)
0.2 to 4.7 V OUTPUT

PIN NUMBERS					
1	V_{out}	4	N/C		
2	GND	5	N/C		
3	V _S	6	N/C		

NOTE: Pins 4, 5, and 6 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

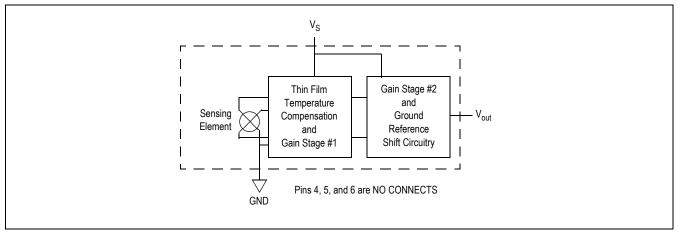


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure ⁽²⁾ (P2 \leq 1 Atmosphere)	P1 _{max}	4000	kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

- 1. Extended exposure at the specified limits may cause permanent damage or degradation to the device.
- 2. This sensor is designed for applications where P1 is always greater than, or equal to P2. P2 maximum is 500 kPa.

Table 2. Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 4 required to meet electrical specifications.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾		P _{OP}	0	_	1000	kPa
Supply Voltage ⁽²⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		Io	_	7.0	10	mAdc
Zero Pressure Offset ⁽³⁾	(0 to 85°C)	V _{off}	0.088	0.2	0.313	Vdc
Full Scale Output ⁽⁴⁾	(0 to 85°C)	V_{FSO}	4.587	4.7	4.813	Vdc
Full Scale Span ⁽⁵⁾	(0 to 85°C)	V_{FSS}	_	4.5	_	Vdc
Sensitivity		V/P	_	4.5	_	mV/kPa
Accuracy ⁽⁶⁾	(0 to 85°C)	_	_	_	±2.5	%V _{FSS}
Response Time ⁽⁷⁾		t _R	_	1.0	_	ms
Output Source Current at Full Scale Output		I _{O+}	_	0.1	_	mAdc
Warm-Up Time ⁽⁸⁾		_	_	20	_	ms

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset ($V_{\mbox{\scriptsize off}}$) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{ESO}) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to

and from the minimum or maximum operating temperature points, with zero differential pressure applied.

• Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the

minimum or maximum rated pressure, at 25°C.

• TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.

• TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.

- $\bullet \ \ \text{Variation from Nominal:} \ \ \text{The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at $25^{\circ}C$.}$
- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the device to meet the specified output voltage after the pressure has been stabilized.

Table 3. Mechanical Characteristics

Characteristics	Тур	Unit
Weight, Basic Element (Case 867)	4.0	grams

ON-CHIP TEMPERATURE COMPENSATION, CALIBRATION AND SIGNAL CONDITIONING

Figure 2 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0° to 85°C using the decoupling circuit shown in Figure 4. The output will saturate outside of the specified pressure range.

The performance over temperature is achieved by integrating the shear-stress strain gauge, temperature compensation, calibration and signal conditioning circuitry onto a single monolithic chip.

Figure 3 illustrates the differential or gauge configuration in the basic chip carrier (Case 867). A fluoro silicone gel isolates the die surface and wire bonds from harsh

environments, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPX5999D pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Figure 4 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

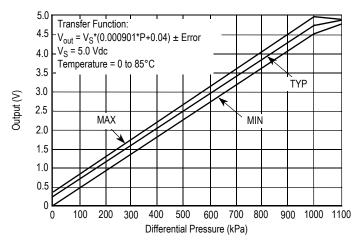


Figure 2. Output versus Pressure Differential

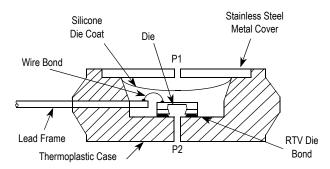


Figure 3. Cross-Sectional Diagrams (not to scale)

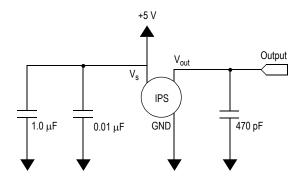


Figure 4. Recommended Power Supply Decoupling and Output Filtering (For additional output filtering, please refer to Application Note AN1646)

MPX5999D

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluoro silicone gel which protects the die from harsh media. The Freescale MPX pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the table below:

Part Number	Case Type	Pressure (P1) Side Identifier
MPX5999D	867	Stainless Steel Cap

High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPXA6115A/MPXH6115A series sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The small form factor and high reliability of on-chip integration make the pressure sensor a logical and economical choice for the system designer.

The MPXA6115A/MPXH6115A series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- · Improved Accuracy at High Temperature
- · Available in Small and Super Small Outline Packages
- 1.5% Maximum Error over 0° to 85°C
- Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated from -40° to +125°C
- Durable Thermoplastic (PPS) Surface Mount Package

Typical Applicationss

- Aviation Altimeters
- Industrial Controls
- Engine Control/Manifold Absolute Pressure (MAP)
- · Weather Station and Weather Reporting Device Barometers

	ORDERING INFORMATION						
Device Type	Options	Case No.	3		Device Marking		
SMALL OUT	LINE PACKAGE						
Basic Element	Absolute, Element Only	482	MPXA6115A6U	Rails	MPXA6115A		
Element	Absolute, Element Only	482	MPXA6115A6T1	Tape & Reel	MPXA6115A		
Ported Element	Absolute, Axial Port	482A	MPXA6115AC6U	Rails	MPXA6115A		
Element	Absolute, Axial Port	482A	MPXA6115AC6T1	Tape & Reel	MPXA6115A		
SUPER SMA	LL OUTLINE PACKAGE						
Basic Element	Absolute, Element Only	1317	MPXH6115A6U	Rails	MPXH6115A		
Element	Absolute, Element Only	1317	MPXH6115A6T1	Tape & Reel	MPXH6115A		
Ported Element	Absolute, Axial Port	1317A	MPXH6115AC6U	Rails	MPXH6115A		
Element	Absolute, Axial Port	1317A	MPXH6115AC6T1	Tape & Reel	MPXH6115A		

MPXA6115A MPXH6115A SERIES

INTEGRATED PRESSURE SENSOR 15 TO 115 kPA (2.2 TO 16.7 psi) 0.2 TO 4.8 V OUTPUT

SMALL OUTLINE PACKAGE

MPXA6115A6U/6T1 CASE 482-01

MPXA6115C6U/C6T1 CASE 482A-01

SMALL OUTLINE PACKAGE PIN NUMBERS ⁽¹⁾					
1	N/C	5	N/C		
2	Vs	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is denoted by the notch in the lead.

SUPER SMALL OUTLINE PACKAGE

MPXH6115A6U/6T1 CASE 1317-04

MPXH6115AC6U/C6T1 CASE 1317A-01

SUPER SMALL OUTLINE PACKAGE PIN NUMBERS ⁽¹⁾					
1 N/C 5 N/C					
2	Vs	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is denoted by the notch in the lead

MPXA6115A

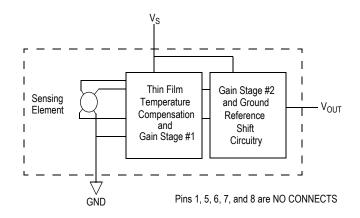


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Units
Maximum Pressure (P1 > P2)	P _{max}	400	kPa
Storage Temperature	T _{stg}	-40° to +125°	°C
Operating Temperature	T _A	-40° to +125°	°C
Output Source Current @ Full Scale Output ⁽²⁾	l _o +	0.5	mAdc
Output Sink Current @ Minimum Pressure Offset ⁽²⁾	I _o -	-0.5	mAdc

- 1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
- 2. Maximum Output Current is controlled by effective impedance from V_{out} to Gnd or V_{out} to V_S in the application circuit.

Table 2. Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range		P _{OP}	15	_	115	kPa
Supply Voltage ⁽¹⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		I _o	-	6.0	10	mAdc
Minimum Pressure Offset ⁽²⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{off}	0.133	0.200	0.268	Vdc
Full Scale Output ⁽³⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSO}	4.633	4.700	4.768	Vdc
Full Scale Span ⁽⁴⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSS}	4.433	4.500	4.568	Vdc
Accuracy ⁽⁵⁾	(0 to 85°C)	_	_	_	±1.5	%V _{FSS}
Sensitivity		V/P	_	45.9	_	mV/kPa
Response Time ⁽⁶⁾		t _R	_	1.0	_	ms
Warm-Up Time ⁽⁷⁾		_	_	20	_	ms
Offset Stability ⁽⁸⁾		_	_	±0.25	_	%V _{FSS}

- 1. Device is ratiometric within this specified excitation range.
- 2. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 3. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 4. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 5. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at 25°C due to all sources of error including the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure at 25°C.
 - TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the pressure has been stabilized.
- 8. Offset Stability is the product's output deviation when subjected to 1000 cycles of Pulsed Pressure, Temperature Cycling with Bias Test.

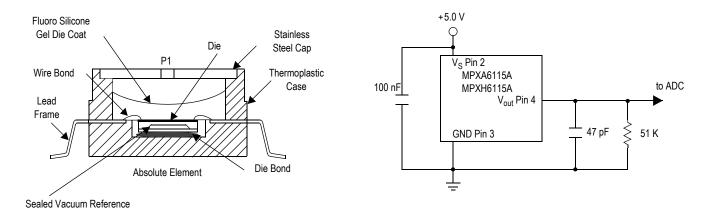


Figure 2. Cross Sectional Diagram SSOP (Not to Scale)

Figure 3. Typical Application Circuit (Output Source Current Operation)

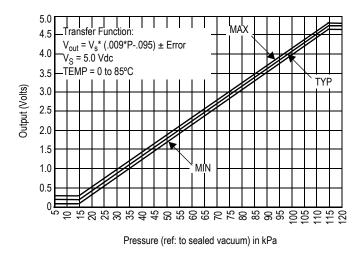
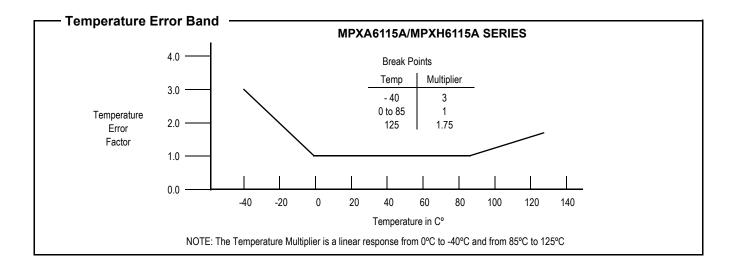


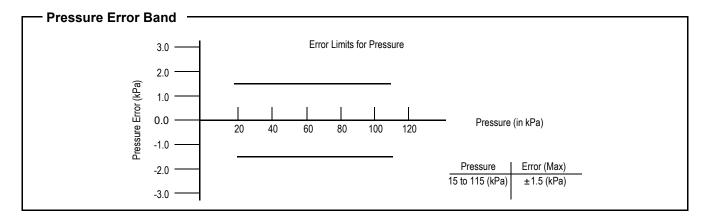
Figure 4. Output versus Absolute Pressure

Figure 2 illustrates the absolute sensing chip in the basic Super Small Outline chip carrier (Case 1317).

Figure 3 shows a typical application circuit (output source current operation).

Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over 0 to 85×C temperature range. The output will saturate outside of the rated pressure range.


A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm. The MPXA6115A/MPXH6115A series pressure sensor operating characteristics, internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.


- Transfer Function (MPXA6115A/MPXH6115A) -

Nominal Transfer Value: Vout = VS x (0.009 x P - 0.095)

± (Pressure Error x Temp. Factor x 0.009 x VS)

 $VS = 5.0 \pm 0.25 \text{ Vdc}$

MINIMUM RECOMMENDED FOOTPRINT FOR SMALL AND SUPER SMALL PACKAGES

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a

solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.

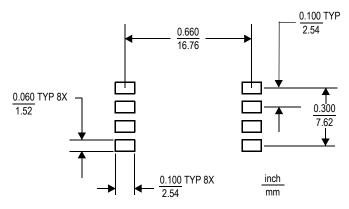


Figure 5. SOP Footprint (Case 482)

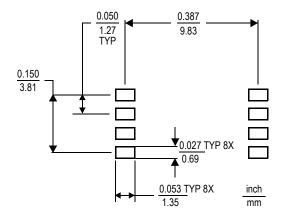


Figure 6. SSOP Footprint (Case 1317 and 1317A)

Integrated Silicon Pressure Sensor for Manifold Absolute Pressure Applications On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The Freescale MPXAZ4100A series Manifold Absolute Pressure (MAP) sensor for engine control is designed to sense absolute air pressure within the intake manifold. This measurement can be used to compute the amount of fuel required for each cylinder. The small form factor and high reliability of on-chip integration makes the Freescale MAP sensor a logical and economical choice for automotive system designers.

The MPXAZ4100A series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- · Resistant to high humidity and common automotive media
- 1.8% Maximum Error Over 0° to 85°C
- Specifically Designed for Intake Manifold Absolute Pressure Sensing in Engine Control Systems
- Ideally Suited for Microprocessor or Microcontroller Based Systems
- Temperature Compensated Over -40°C to +125°C
- · Durable Thermoplastic (PPS) Surface Mount Package

Typical Applications

- Manifold Sensing for Automotive Systems
- · Also Ideal for Non-Automotive Applications

	ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking		
SMALL O	SMALL OUTLINE PACKAGE (MPXAZ4100A SERIES)						
Basic Elements	Absolute, Element Only	482	MPXAZ4100A6U	Rails	MPXAZ4100A		
	Absolute, Element Only	482	MPXAZ4100A6T1	Tape & Reel	MPXAZ4100A		
Ported Elements	Absolute, Axial Port	482A	MPXAZ4100AC6U	Rails	MPXAZ4100A		
	Absolute, Axial Port	482A	MPXAZ4100AC6T1	Tape & Reel	MPXAZ4100A		

MPXAZ4100A SERIES

INTEGRATED
PRESSURE SENSOR
20 TO 105 kPA (2.9 TO 15.2 psi)
0.3 TO 4.9 V OUTPUT

SMALL OUTLINE PACKAGES

MPXA4100A6U/6T1 CASE 482-01

MPXA4100AC6U/AC6T1 CASE 482A-01

PIN NUMBER ⁽¹⁾					
1	N/C	5	N/C		
2	V _S	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

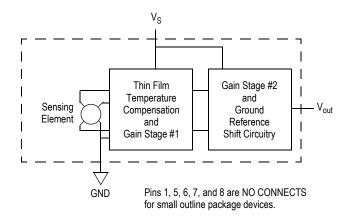


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	400	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 5.1 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 3 required to meet electrical specifications.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾		P _{OP}	20	_	105	kPa
Supply Voltage ⁽²⁾		V _S	4.85	5.1	5.35	Vdc
Supply Current		I _o	_	7.0	10	mAdc
Minimum Pressure Offset @ V _S = 5.1 Volts ⁽³⁾	(0 to 85°C)	V _{off}	0.225	0.306	0.388	Vdc
Full Scale Output @ V _S = 5.1 Volts ⁽⁴⁾	(0 to 85°C)	V _{FSO}	4.870	4.951	5.032	Vdc
Full Scale Span @ V _S = 5.1 Volts ⁽⁵⁾	(0 to 85°C)	V _{FSS}	_	4.59	_	Vdc
Accuracy ⁽⁶⁾	(0 to 85°C)	_	_	_	±1.8	%V _{FSS}
Sensitivity		V/P	_	54	_	mV/kPa
Response Time ⁽⁷⁾		t _R	_	1.0	_	ms
Output Source Current at Full Scale Output		I _{o+}	_	0.1	_	mAdc
Warm-Up Time ⁽⁸⁾		_	_	20	_	ms
Offset Stability ⁽⁹⁾		_	_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to
 - and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
 - minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
 - Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{ESS}, at 25°C.
- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Figure 2 illustrates an absolute sensing chip in the basic chip carrier (Case 482).

Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0° to 85°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range.

A gel die coat isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. The gel die coat and durable polymer package provide a media resistant barrier that allows the sensor to operate reliably in high humidity conditions as well as environments containing common automotive media. Contact the factory for more information regarding media compatibility in your specific application.

Figure 3 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

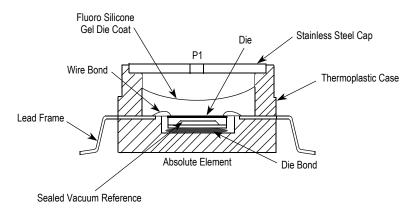


Figure 2. Cross Sectional Diagram SOP (not to scale)

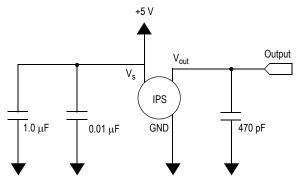
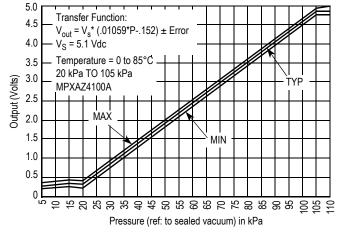
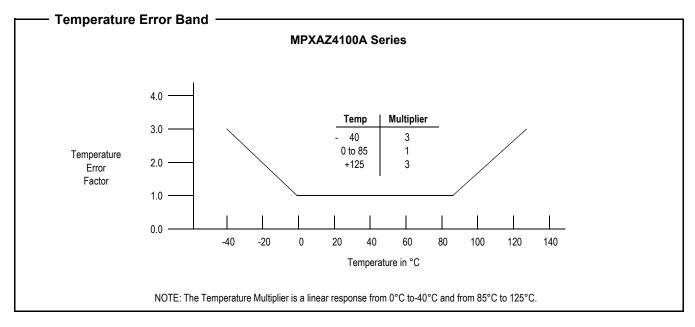
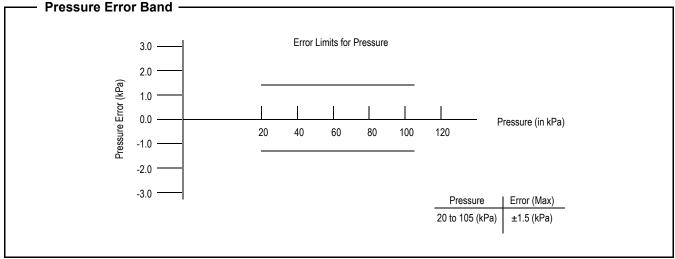


Figure 3. Recommended Power Supply Decoupling and Output Filtering (For additional output filtering, please refer to Application Note AN1646.)




Figure 4. Output versus Absolute Pressure


Transfer Function (MPXAZ4100A)

Nominal Transfer Value: $V_{out} = V_S (P \times 0.01059 - 0.1518)$

± (Pressure Error x Temp. Factor x 0.01059 x V_S)

 V_S = 5.1 V \pm 0.25 Vdc

INFORMATION FOR USING THE SMALL OUTLINE PACKAGE (CASE 482)

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

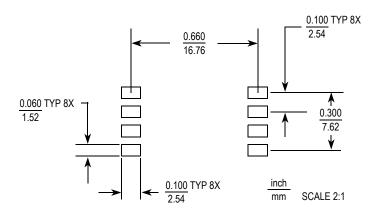


Figure 5. SOP Footprint (Case 482)

Media Resistant and High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPXAZ6115A series sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The sensor's packaging has been designed to provide resistance to high humidity conditions as well as common automotive media. The small form factor and high reliability of on-chip integration make the Freescale Semiconductor, Inc. pressure sensor a logical and economical choice for the system designer.

The MPXAZ6115A series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- Resistant to High Humidity and Common Automotive Media
- Improved Accuracy at High Temperature
- 1.5% Maximum Error over 0° to 85°C
- · Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated from -40° to +125°C
- · Durable Thermoplastic (PPS) Surface Mount Package

Features

- · Aviation Altimeters
- · Industrial Controls
- Engine Control/Manifold Absolute Pressure (MAP)
- · Weather Station and Weather Reporting Devices

	ORDERING INFORMATION					
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking	
SMALL OU	JTLINE PACKAGE					
Basic Element	Absolute, Element Only	482	MPXAZ6115A6U	Rails	MPXAZ6115A	
Element	Absolute, Element Only	482	MPXAZ6115A6T1	Tape & Reel	MPXAZ6115A	
Ported	Absolute, Axial Port	482A	MPXAZ6115AC6U	Rails	MPXAZ6115A	
Element	Absolute, Axial Port	482A	MPXAZ6115AC6T1	Tape & Reel	MPXAZ6115A	
SUPER SI	SUPER SMALL OUTLINE PACKAGE					
Basic Element	Absolute, Element Only	1317	MPXHZ6115A6U	Rails	MPXHZ6115A	
Element	Absolute, Element Only	1317	MPXHZ6115A6T1	Tape & Reel	MPXHZ6115A	
Ported Element	Absolute, Axial Port	1317A	MPXHZ6115AC6U	Rails	MPXHZ6115A	
Element	Absolute, Axial Port	1317A	MPXHZ6115AC6T1	Tape & Reel	MPXHZ6115A	

MPXAZ6115A MPXHZ6115A SERIES

INTEGRATED
PRESSURE SENSOR
15 TO 115 kPA (2.2 TO 16.7 psi)
0.2 TO 4.8 V OUTPUT

SMALL OUTLINE PACKAGE

MPXAZ6115A6U CASE 482-01

MPXAZ6115AC6U CASE 482A-01

SMALL OUTLINE PACKAGE PIN NUMBERS ⁽¹⁾						
1	1 N/C 5 N/C					
2	Vs	6	N/C			
3 GND 7 N/C						
4	V _{OUT}	8	N/C			

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is denoted by the notch in the lead.

SUPER SMALL OUTLINE PACKAGE

MPXHZ6115A6U CASE 1317-04

MPXHZ6115AC6U CASE 1317A-01

SMALL OUTLINE PACKAGE PIN NUMBERS ⁽¹⁾				
1	N/C	5	N/C	
2	Vs	6	N/C	
3	GND	7	N/C	
4	V _{OUT}	8	N/C	

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is denoted by the notch in the lead.

MPXAZ6115A

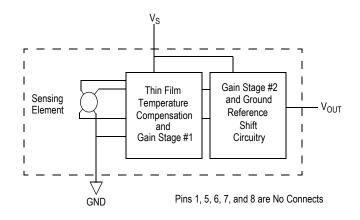


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Units
Maximum Pressure (P1 > P2)	P _{max}	400	kPa
Storage Temperature	T _{stg}	-40° to +125°	°C
Operating Temperature	T _A	-40° to +125°	°C
Output Source Current @ Full Scale Output ⁽²⁾	l _o +	0.5	mAdc
Output Sink Current @ Minimum Pressure Offset ⁽²⁾	I _o -	-0.5	mAdc

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

 $^{2. \ \ \}text{Maximum Output Current is controlled by effective impedance from } V_{out} \text{ to Gnd or } V_{out} \text{ to } V_S \text{ in the application circuit.}$

Table 2. Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2)

Characteri	stic	Symbol	Min	Тур	Max	Unit
Pressure Range		P _{OP}	15	_	115	kPa
Supply Voltage ⁽¹⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		Io	_	6.0	10	mAdc
Minimum Pressure Offset ⁽²⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{off}	0.133	0.200	0.268	Vdc
Full Scale Output ⁽³⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSO}	4.633	4.700	4.768	Vdc
Full Scale Span ⁽⁴⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSS}	4.433	4.500	4.568	Vdc
Accuracy ⁽⁵⁾	(0 to 85°C)	_	_	_	±1.5	%V _{FSS}
Sensitivity		V/P	_	45.9	_	mV/kPa
Response Time ⁽⁶⁾		t _R	_	1.0	_	ms
Warm-Up Time ⁽⁷⁾		_	_	20	_	ms
Offset Stability ⁽⁸⁾		_	_	±0.25	_	%V _{FSS}

- 1. Device is ratiometric within this specified excitation range.
- 2. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 3. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 4. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 5. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at 25°C due to all sources of error including the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure at 25°C.
 - TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the pressure has been stabilized.
- 8. Offset Stability is the product's output deviation when subjected to 1000 cycles of Pulsed Pressure, Temperature Cycling with Bias Test.

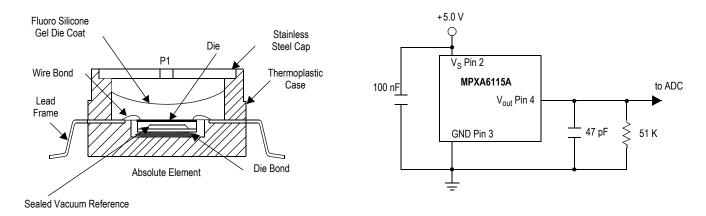


Figure 2. Cross Sectional Diagram SOP (Not to Scale)

Figure 3. Typical Application Circuit (Output Source Current Operation)

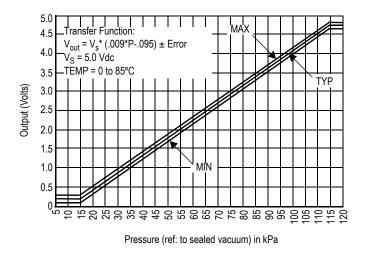
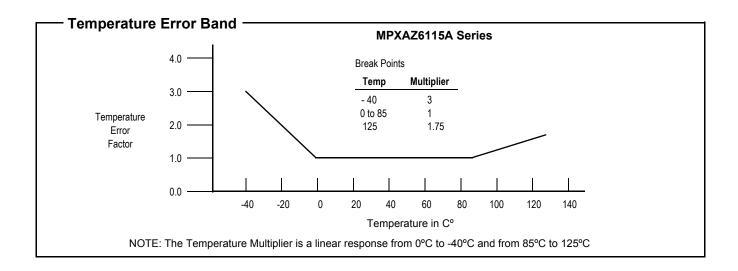
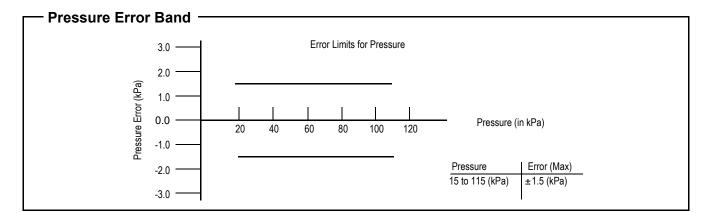


Figure 4. Output versus Absolute Pressure

Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over 0 to 85°C temperature range. The output will saturate outside of the rated pressure range.


A gel die coat isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. The gel die coat and durable polymer package provide a media resistant barrier that allows the sensor to operate reliably in high humidity conditions as well as environments containing common automotive media. Contact the factory for more information regarding media compatibility in your specific application.


Transfer Function (MPXAZ6115A

Nominal Transfer Value: $V_{out} = V_S x (0.009 x P - 0.095)$

± (Pressure Error x Temp. Factor x 0.009 x V_S)

 $V_{S} = 5.0 \pm 0.25 \text{ Vdc}$

MINIMUM RECOMMENDED FOOTPRINT FOR SMALL AND SUPER SMALL PACKAGES

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a

solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.

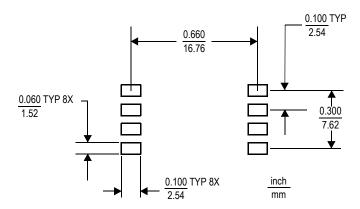


Figure 5. SOP Footprint (Case 482 and 482A)

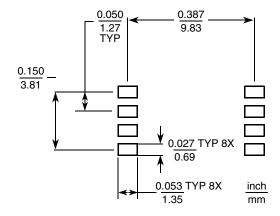


Figure 6. SSOP Footprint (Case 1317 and 1317A)

Technical Data

High Volume Sensor for Low Pressure Applications

Freescale Semiconductor has developed a low cost, high volume, miniature pressure sensor package which is ideal as a sub-module component or a disposable unit. The unique concept of the Chip Pak allows great flexibility in system design while allowing an economic solution for the designer. This new chip carrier package uses Freescale Semiconductor's unique sensor die with its piezoresistive technology, along with the added feature of on-chip, thin-film temperature compensation and calibration.

NOTE: Freescale Semiconductor is also offering the Chip Pak package in application-specific configurations, which will have an "SPX" prefix, followed by a four-digit number, unique to the specific customer

Features

- Low Cost
- · Integrated Temperature Compensation and Calibration
- · Ratiometric to Supply Voltage
- Polysulfone Case Material (Medical, Class V Approved)
- Provided in Easy-to-Use Tape and Reel

Typical Applications

- Respiratory Diagnostics
- · Air Movement Control
- Controllers
- Pressure Switching

NOTE: The die and wire bonds are exposed on the front side of the Chip Pak (pressure is applied to the backside of the device). Front side die and wire protection must be provided in the customer's housing. Use caution when handling the devices during all processes.

Freescale Semiconductor's MPXC2011DT1/ MPXC2012DT1 Pressure Sensor has been designed for medical usage by combining the performance of Freescale Semiconductor's shear stress pressure sensor design and the use of biomedically approved materials. Materials with a proven history in medical situations have been chosen to provide a sensor that can be used with confidence in applications, such as invasive blood pressure monitoring. It can be sterilized using ethylene oxide. The portions of the pressure sensor that are required to be biomedically approved are the rigid housing and the gel coating.

The rigid housing is molded from a white, medical grade polysulfone that has passed extensive biological testing including: tissue culture test, rabbit implant, hemolysis, intracutaneous test in rabbits, and system toxicity, USP.

The MPXC2011DT1 contains a silicone dielectric gel which covers the silicon piezoresistive sensing element. The gel is a nontoxic, nonallergenic elastomer system which meets all USP XX Biological Testing Class V requirements. The properties of the gel allow it to transmit pressure uniformly to the diaphragm surface, while isolating the internal electrical connections from the corrosive effects of fluids, such as saline solution. The gel provides electrical isolation sufficient to withstand defibrillation testing, as specified in the proposed Association for the Advancement of Medical Instrumentation (AAMI) Standard for blood pressure transducers. A biomedically approved opaque filler in the gel prevents bright operating room lights from affecting the performance of the sensor.

The MPXC2012DT1 is a no-gel option.

ORDERING INFORMATION				
Device Order No. Case No. Device Description Device Marking				
MPXC2011DT1	423A	Chip Pak, 1/3 Gel	Date Code, Lot ID	
MPXC2012DT1	423A	Chip Pak, No Gel	Date Code, Lot ID	

Packaging Information	Reel Size	Tape Width	Quantity
Tape and Reel	330 mm	24 mm	1000 pc/reel

MPXC2011DT1 MPXC2012DT1

PRESSURE SENSORS 0 to 75 mm HG (0 TO 10 kPA

CHIP PAK PACKAGE

MPXC2011DT1/MPXC2012DT1 CASE 423A-03

PIN NUMBER					
1	GND	3	V _S		
2	S+	4	S-		

MPXC2011DT1

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (Backside)	P _{max}	75	kPa
Storage Temperature	T _{stg}	-25 to +85	°C
Operating Temperature	T _A	+15 to +40	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 10 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾	P _{OP}	0	_	10	kPa
Supply Voltage ⁽²⁾	V _S	_	3	10	Vdc
Supply Current	Io	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	24	25	26	mV
Offset ⁽⁴⁾	V _{off}	-1.0	_	1.0	mV
Sensitivity	ΔV/ΔΡ	_	2.5	_	mV/kPa
Linearity ⁽⁵⁾	_	-1.0	_	1.0	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to 10 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (+15°C to +40°C)	_	_	±0.1	_	%V _{FSS}
Temperature Effect on Full Scale Span ⁽⁵⁾	TCV _{FSS}	-1.0	_	1.0	%V _{FSS}
Temperature Effect on Offset ⁽⁵⁾	TCV _{off}	-1.0	_	1.0	mV
Input Impedance	Z _{in}	1300	_	2550	W
Output Impedance	Z _{out}	1400	_	3000	W
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up	_	_	20	V	ms
Offset Stability ⁽⁷⁾			±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 4. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to
 - and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
 - minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The Freescale MPXH6250A series sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The small form factor and high reliability of on-chip integration make the Freescale MAP sensor a logical and economical choice for automotive system designers.

The MPXH6250A series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- · Improved Accuracy at High Temperature
- Available in Small and Super Small Outline Packages
- 1.5% Maximum Error over 0° to 85°C
- Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated from –40° to +125°C
- Durable Thermoplastic (PPS) Surface Mount Package

Typical Applications

- Industrial Controls
- Engine Control/Manifold Absolute Pressure (MAP)

ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking	
Basic Element	Absolute, Element Only	1317	MPXH6250A6U	Rails	MPXH6250A	
	Absolute, Element Only	1317	MPXH6250A6T1	Tape & Reel	MPXH6250A	
Ported Element	Absolute, Axial Port	1317A	MPXH6250AC6U	Rails	MPXH6250A	
	Absolute, Axial Port	1317A	MPXH6250AC6T1	Tape & Reel	MPXH6250A	

MPXH6250A SERIES

INTEGRATED
PRESSURE SENSOR
20 to 250 kPa (3.0 to 36 psi)
0.3 to 4.9 V OUTPUT

SUPER SMALL OUTLINE PACKAGES

MPXH6250A6U/6T1 CASE 1317-04

MPXH6250AC6U/C6T1 CASE 1317A-01

PIN NUMBERS ⁽¹⁾					
1	N/C	5	N/C		
2	V _S	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

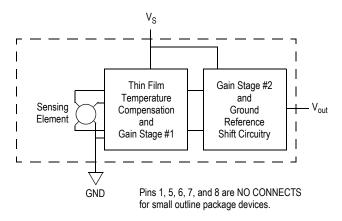


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	1000	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C
Output Source Current @ Full Scale Output(2)	l _o +	0.5	mAdc
Output Sink Current @ Minimum Pressure Offset ²	I _o -	-0.5	mAdc

- 1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
- 2. Maximum Output Current is controlled by effective impedance from V_{out} to GND or V_{out} to V_{S} in the application circuit.

Table 2. Operating Characteristics ($V_S = 5.1 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range		P _{OP}	20	_	250	kPa
Supply Voltage ⁽¹⁾		V _S	4.74	5.1	5.46	Vdc
Supply Current		Io	_	6.0	10	mAdc
Minimum Pressure Offset @ V _S = 5.1 Volts ⁽²⁾	(0 to 85°C)	V _{off}	0.133	0.204	0.274	Vdc
Full Scale Output @ V _S = 5.1 Volts ⁽³⁾	(0 to 85°C)	V _{FSO}	4.826	4.896	4.966	Vdc
Full Scale Span @ V _S = 5.1 Volts ⁽⁴⁾	(0 to 85°C)	V_{FSS}	4.552	4.692	4.833	Vdc
Accuracy ⁽⁵⁾	(0 to 85°C)	_	_	_	±1.5	%V _{FSS}
Sensitivity		V/P	_	20.4	_	mV/kPa
Response Time ⁽⁶⁾		t _R	_	1.0	_	ms
Warm-Up Time ⁽⁷⁾		_	_	20	_	ms
Offset Stability ⁽⁸⁾		_	_	±0.25	_	%V _{FSS}

- 1. Device is ratiometric within this specified excitation range.
- 2. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 3. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 4. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 5. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at 25°C due to all sources of error including the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the

minimum or maximum rated pressure, at 25°C.

- TcSpan: Output deviation over the temperature range of 0 to 85°C, relative to 25°C.
- TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
- Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at 25°C.
- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 8. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Figure 2 illustrates the absolute sensing chip in the basic Super Small Outline chip carrier (Case 1317). Figure 3 illustrates a typical application circuit (output source current operation).

Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over 0 to 85°C temperature range. The output will saturate outside of the rated pressure range.

A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm. The MPXH6250A series pressure sensor operating characteristics, internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

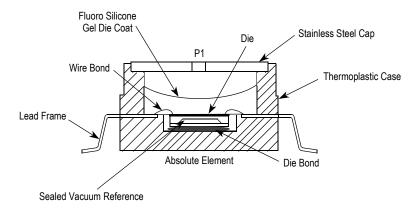


Figure 2. Cross Sectional Diagram SSOP (not to scale)

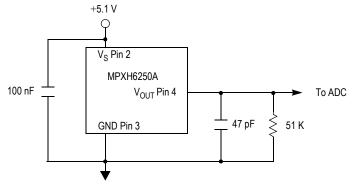
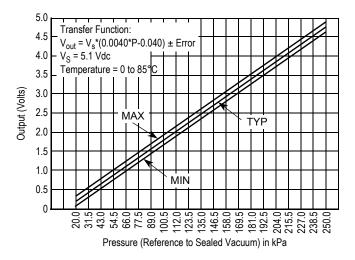
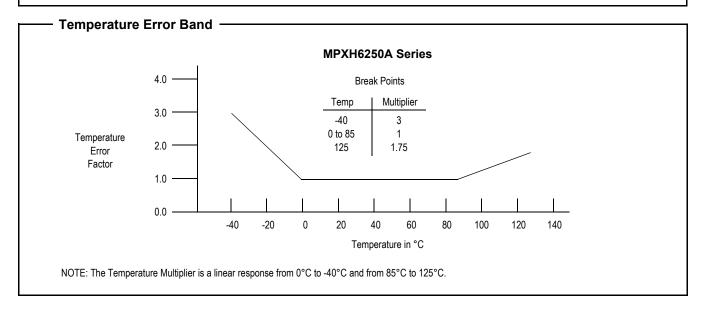
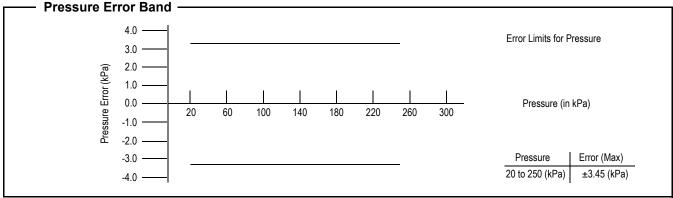


Figure 3. Typical Application Circuit (Output Source Current Operation)




Figure 4. Output versus Absolute Pressure


Transfer Function (MPXH6250A)

Nominal Transfer Value: $V_{out} = V_S x (0.004 x P - 0.040)$

± (Pressure Error x Temp Factor x 0.004 x V_S)

 $V_S = 5.1 \pm 0.36 \text{ Vdc}$

SURFACE MOUNTING INFORMATION

Minimum Recommended Footprint for Super Small Outline Packages

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.

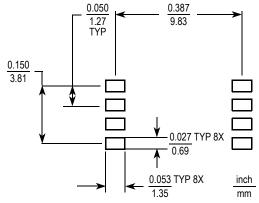


Figure 5. SSOP Footprint (Case 1317 and 1317A)

MPXH6250A

High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The Freescale MPXH6300A series sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The small form factor and high reliability of on-chip integration make the Freescale pressure sensor a logical and economical choice for the system designer.

The MPXH6300A series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- · Improved Accuracy at High Temperature
- Available in Small and Super Small Outline Packages
- 1.5% Maximum Error over 0° to 85°C
- · Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated from –40° to +125°C
- Durable Thermoplastic (PPS) Surface Mount Package

Application Examples

- Industrial Controls
- Engine Control/Manifold Absolute Pressure (MAP)

	ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking		
Basic Element	Absolute, Element Only	1317	MPXH63000A6U	Rails	MPXH6300A		
	Absolute, Element Only	1317	MPXH6300A6T1	Tape & Reel	MPXH6300A		
Ported Element	Absolute, Axial Port	1317A	MPXH6300AC6U	Rails	MPXH6300A		
	Absolute, Axial Port	1317A	MPXH300AC6T1	Tape & Reel	MPXH6300A		

MPXH6300A SERIES

INTEGRATED
PRESSURE SENSOR
20 to 304 kPa (3.0 to 42 psi)
0.3 to 4.9 V OUTPUT

SUPER SMALL OUTLINE PACKAGES

MPXH6300A6U/6T1 CASE 1317-04

MPXH6300AC6U/C6T1 CASE 1317A-01

PIN NUMBERS ⁽¹⁾					
1	N/C	5	N/C		
2	V _S	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

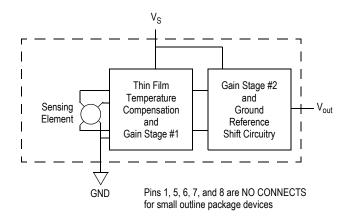


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	1200	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C
Output Source Current @ Full Scale Output(2)	l _o +	0.5	mAdc
Output Sink Current @ Minimum Pressure Offset ²	I _o –	-0.5	mAdc

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

 $^{2. \}quad \text{Maximum Output Current is controlled by effective impedance from V_{out} to GND or V_{out} to V_S in the application circuit.}\\$

Table 2. Operating Characteristics ($V_S = 5.1 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2.)

Characteristic	;	Symbol	Min	Тур	Max	Unit
Pressure Range		P _{OP}	20	_	304	kPa
Supply Voltage ⁽¹⁾		V _S	4.74	5.1	5.46	Vdc
Supply Current		I _o	_	6.0	10	mAdc
Minimum Pressure Offset @ V _S = 5.1 Volts ⁽²⁾	(0 to 85°C)	V _{off}	0.241	0.306	0.371	Vdc
Full Scale Output @ V _S = 5.1 Volts ⁽³⁾	(0 to 85°C)	V _{FSO}	4.847	4.912	4.977	Vdc
Full Scale Span @ V _S = 5.1 Volts ⁽⁴⁾	(0 to 85°C)	V _{FSS}	4.476	4.606	4.736	Vdc
Accuracy ⁽⁵⁾	(0 to 85°C)	_	_	_	±1.5	%V _{FSS}
Sensitivity		V/P	_	16.2	_	mV/kPa
Response Time ⁽⁶⁾		t _R	_	1.0	_	ms
Warm-Up Time ⁽⁷⁾		_	_	20	_	ms
Offset Stability ⁽⁸⁾		_	_	±0.25	_	%V _{FSS}

- 1. Device is ratiometric within this specified excitation range.
- 2. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 3. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 5. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at 25°C due to all sources of error including the following:

Linearity:Output deviation from a straight line relationship with pressure over the specified pressure range.

Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.

Pressure Hysteresis:Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C.

TcSpan:Output deviation over the temperature range of 0 to 85°C, relative to 25°C.

TcOffset:Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.

Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at 25°C.

- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 8. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Figure 2 illustrates the absolute sensing chip in the basic Super Small Outline chip carrier (Case 1317). Figure 3 illustrates a typical application circuit (output source current operation).

Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over 0 to 85°C temperature range. The output will saturate outside of the rated pressure range.

A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm. The MPXH6300A series pressure sensor operating characteristics, internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

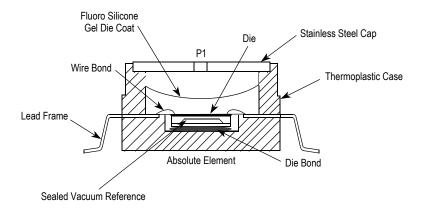


Figure 2. Cross Sectional Diagram SSOP (not to scale)

Figure 3. Typical Application Circuit (Output Source Current Operation)

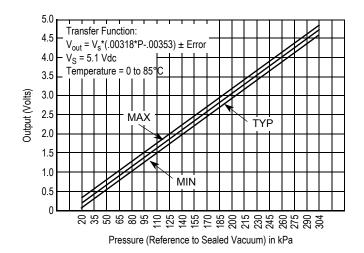
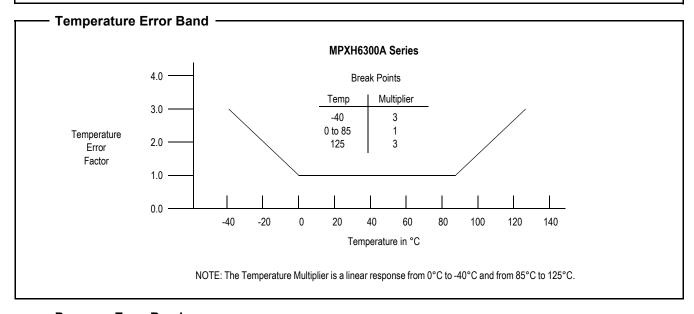
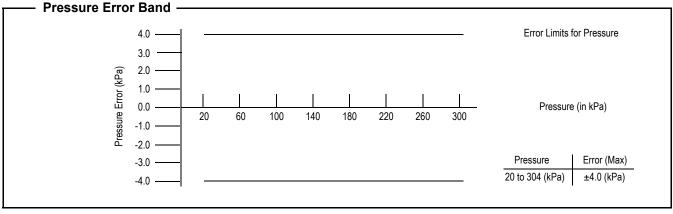


Figure 4. Output versus Absolute Pressure


MPXH6300A


Transfer Function (MPXH6300A)

Nominal Transfer Value: $V_{out} = V_S x (0.00318 x P - 0.00353)$

± (Pressure Error x Temp Factor x 0.00318 x V_S)

 V_S = 5.1 \pm 0.36 Vdc

SURFACE MOUNTING INFORMATION

Minimum Recommended Footprint for Super Small Outline Packages

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.

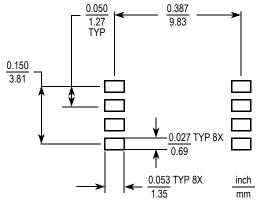


Figure 5. SSOP Footprint (Case 1317 and 1317A)

MPXH6300A

High Temperature Accuracy Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The Freescale MPXH6400A series sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The small form factor and high reliability of on-chip integration make the Freescale pressure sensor a logical and economical choice for the system designer.

The MPXH6400A series piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- · Improved Accuracy at High Temperature
- Available in Small and Super Small Outline Packages
- 1.5% Maximum Error over 0° to 85°C
- · Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated from -40° to +125°C
- · Durable Thermoplastic (PPS) Surface Mount Package

Typical Applications

- · Industrial Controls
- Engine Control/Manifold Absolute Pressure (MAP)

	ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking		
Basic Element	Absolute, Element Only	1317	MPXH6400A6U	Rails	MPXH6400A		
	Absolute, Element Only	1317	MPXH6400A6T1	Tape & Reel	MPXH6400A		
Ported Element	Absolute, Axial Port	1317A	MPXH6400AC6U	Rails	MPXH6400A		
	Absolute, Axial Port	1317A	MPXH6400AC6T1	Tape & Reel	MPXH6400A		

MPXH6400A SERIES

INTEGRATED
PRESSURE SENSOR
20 TO 400 kPA (3.0 TO 58 psi)
0.2 TO 4.8 V OUTPUT
(3.0 TO 58 psi)

SUPER SMALL OUTLINE PACKAGES

MPXH6400A6U/6T1 CASE 1317-04

MPXH6400AC6U/C6T1 CASE 1317A-01

PIN NUMBERS ⁽¹⁾					
1 N/C 5 N/C					
2	V _S	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

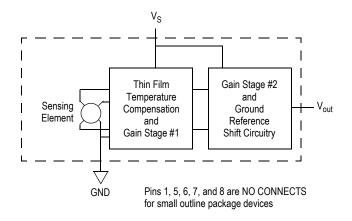


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	1600	kPa
Storage Temperature	T _{STG}	–40° to +125°	°C
Operating Temperature	T _A	–40° to +125°	°C
Output Source Current @ Full Scale Output(2)	I _o +	0.5	mAdc
Output Sink Current @ Minimum Pressure Offset ²	I _o –	-0.5	mAdc

- 1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
- 2. Maximum Output Current is controlled by effective impedance from V_{out} to GND or V_{out} to V_{S} in the application circuit.

Table 2. Operating Characteristics ($V_S = 5.1 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range		P _{OP}	20	_	400	kPa
Supply Voltage ⁽¹⁾		V _S	4.64	5.0	5.36	Vdc
Supply Current		I _o	_	6.0	10	mAdc
Minimum Pressure Offset @ V _S = 5.1 Volts ⁽²⁾	(0 to 85°C)	V _{off}	0.133	0.2	0.267	Vdc
Full Scale Output @ V _S = 5.1 Volts ⁽³⁾	(0 to 85°C)	V _{FSO}	4.733	4.8	4.866	Vdc
Full Scale Span @ V _S = 5.1 Volts ⁽⁴⁾	(0 to 85°C)	V _{FSS}	4.467	4.6	4.733	Vdc
Accuracy ⁽⁵⁾	(0 to 85°C)	_	_	_	±1.5	%V _{FSS}
Sensitivity		V/P	_	12.1	_	mV/kPa
Response Time ⁽⁶⁾		t _R	_	1.0	_	ms
Warm-Up Time ⁽⁷⁾		_	_	20	_	ms
Offset Stability ⁽⁸⁾			_	±0.25	_	%V _{FSS}

- 1. Device is ratiometric within this specified excitation range.
- 2. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 3. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 4. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 5. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at 25°C due to all sources of error including the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
 - minimum or maximum rated pressure, at 25°C.
 TcSpan: Output deviation over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
 - Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at 25°C.
- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 8. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Figure 2 illustrates the absolute sensing chip in the basic Super Small Outline chip carrier (Case 1317). Figure 3 illustrates a typical application circuit (output source current operation).

Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over 0 to 85°C temperature range. The output will saturate outside of the rated pressure range.

A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm. The MPXH6400A series pressure sensor operating characteristics, internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

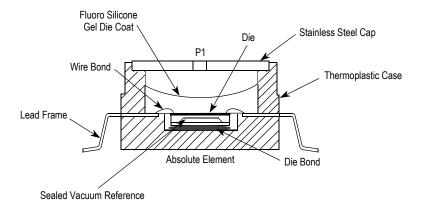


Figure 2. Cross Sectional Diagram SSOP (not to scale)

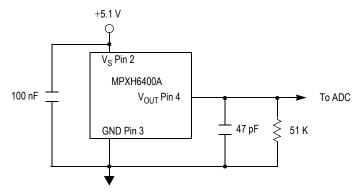
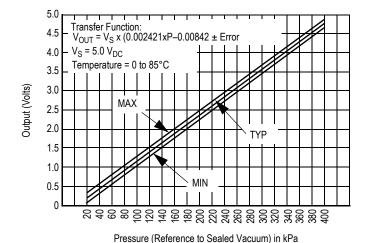
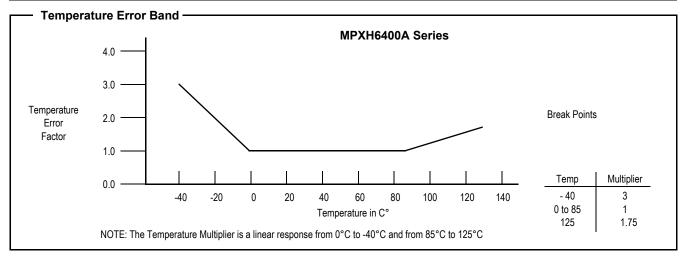
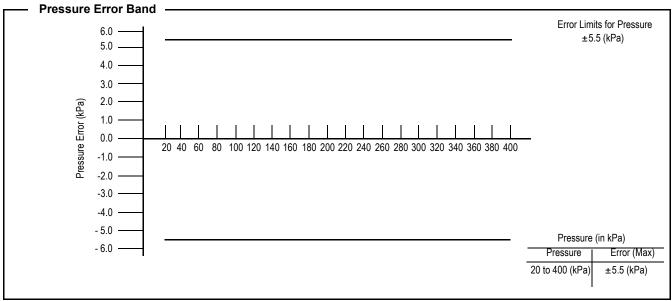


Figure 3. Typical Application Circuit (Output Source Current Operation)




Figure 4. Output versus Absolute Pressure


Transfer Function (MPXH6400A) -

Normal Transfer Value: $V_{OUT} = V_S x (0.002421 x P - 0.0.00842)$

 \pm Pressure Error x Temp. Factor x 0.002421 x V_S

 $V_S = 5.0 \pm 0.36 V_{DC}$

SURFACE MOUNTING INFORMATION

Minimum Recommended Footprint for Super Small Outline Packages

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.

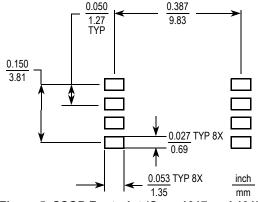


Figure 5. SSOP Footprint (Case 1317 and 1317A)

MPXH6400A

10 kPa On-Chip Temperature Compensated & Calibrated Silicon Pressure Sensors

The MPXM2010 device is a silicon piezoresistive pressure sensor providing a highly accurate and linear voltage output – directly proportional to the applied pressure. The sensor is a single, monolithic silicon diaphragm with the strain gauge and a thin-film resistor network integrated on-chip. The chip is laser trimmed for precise span and offset calibration and temperature compensation.

Features

- Temperature Compensated Over 0°C to +85°C
- Available in Easy-to-Use Tape & Reel
- · Ratiometric to Supply Voltage
- · Gauge Ported & Non Ported Options

Application Examples

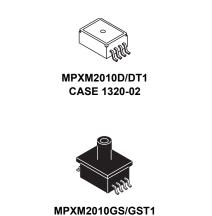

- Respiratory Diagnostics
- · Air Movement Control
- Controllers
- Pressure Switching

Figure 1 shows a block diagram of the internal circuitry on the stand-alone pressure sensor chip.

ORDERING INFORMATION				
Device Type/Order No.	Case No.			
MPXM2010D	Non-ported	1320		
MPXM2010DT1	Non-ported, Tape and Reel	1320		
MPXM2010GS	Ported	1320A		
MPXM2010GST1	Ported, Tape and Reel	1320A		

MPXM2010 SERIES

FREESCALE PREFERRED DEVICE 0 to 10 kPa (0 to 1.45 psi) 25 mV FULL SCALE SPAN (TYPICAL)

PIN NUMBERS						
1	GND	3	V _S			
2	+V _{out}	4	–V _{out}			

CASE 1320A-02

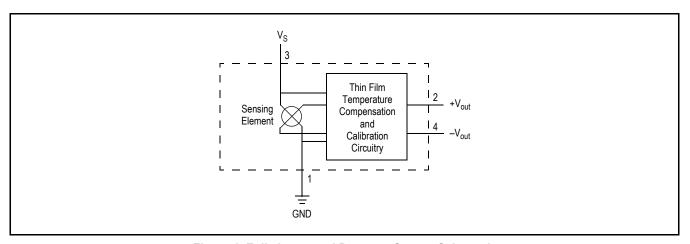


Figure 1. Fully Integrated Pressure Sensor Schematic

MPXM2010

VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE

The differential voltage output of the sensor is directly proportional to the differential pressure applied.

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output

voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).

NOTE: Preferred devices are Freescale recommended choices for future use and best overall value.

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	75	kPa
Storage Temperature	T _{STG}	-40° to +125°	°C
Operating Temperature	T _A	–40° to +125°	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 10 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾	P _{OP}	0	_	10	kPa
Supply Voltage ⁽²⁾	Vs	_	10	16	Vdc
Supply Current	Io	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	24	25	26	mV
Offset ⁽⁴⁾	V _{off}	-1.0	_	1.0	mV
Sensitivity	ΔV/ΔΡ	_	2.5	_	mV/kPa
Linearity ⁽⁵⁾	_	-1.0	_	1.0	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to 10 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁵ (—40°C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Effect on Full Scale Span ⁽⁵⁾	TCV _{FSS}	-1.0	_	1.0	%V _{FSS}
Temperature Effect on Offset ⁽⁵⁾	TCV _{off}	-1.0	_	1.0	mV
Input Impedance	Z _{in}	1000	_	2550	W
Output Impedance	Z _{out}	1400	_	3000	W
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up	_	_	20	_	ms
Offset Stability ⁽⁷⁾	_	_	±0.5		%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 4. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is

cycled to and from the minimum or maximum operating temperature points, with zero differential

pressure applied.

Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from

the minimum or maximum rated pressure, at 25°C.

TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.
 TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.

- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{out} = V_{off} + \text{sensitivity } \times P$ over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 2) or (2) a least squares best line fit. While a least squares fit gives the "best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the

calculations are more straightforward for the user.

Freescale's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

MPXM2010

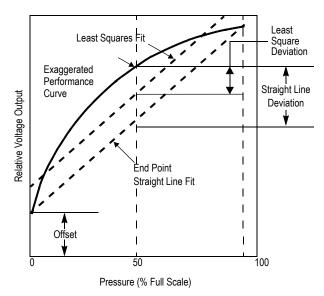


Figure 2. Linearity Specification Comparison

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

Figure 3 shows the minimum, maximum and typical output characteristics of the MPXM2010 series at 25°C. The output is directly proportional to the differential pressure and is essentially a straight line.

A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

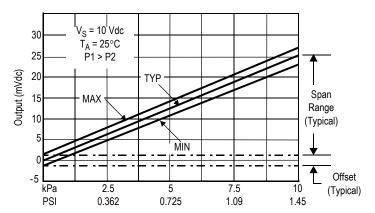


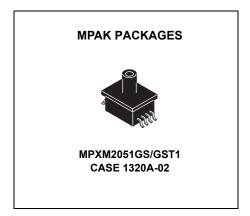
Figure 3. Output versus Pressure Differential

50 kPa On-Chip Temperature Compensated and Calibrated Silicon Pressure Sensors

The MPXM2051G device is a silicon piezoresistive pressure sensor providing a highly accurate and linear voltage output - directly proportional to the applied pressure. The sensor is a single, monolithic silicon diaphragm with the strain gauge and a thin-film resistor network integrated on-chip. The chip is laser trimmed for precise span and offset calibration and temperature compensation.

Features

- Temperature Compensated Over 0°C to +85°C
- · Available in Easy-to-Use Tape & Reel
- · Ratiometric to Supply Voltage
- Gauge Ported


Typical Applications

- · Pump/Motor Controllers
- · Robotics
- Level Indicators
- · Medical Diagnostics
- · Pressure Switching
- Non-Invasive Blood Pressure Measurement

	ORDERING INFORMATION							
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking			
Ported	Absolute, Axial Port	1320A	MPXM2051GS	Rails	MPXM2051G			
	Absolute, Element Only	1320A	MPXM2051GST1	Tape & Reel	MPXM2051G			

MPXM2051G SERIES

COMPENSATED AND CALIBRATED PRESSURE SENSOR 0 TO 50 kPA (0 TO 7.25 psi) 40 mV FULL SCALE SPAN (TYPICAL)

Pin Number					
1	Gnd	3	Vs		
2	+V _{out}	4	-V _{out}		

Figure 1 shows a block diagram of the internal circuitry on the stand-alone pressure sensor chip.

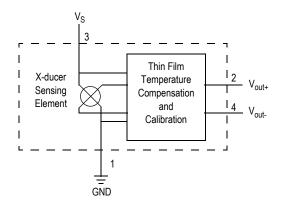


Figure 1. Temperature Compensated Pressure Sensor Schematic

VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE

The differential voltage output of the sensor is directly proportional to the differential pressure applied.

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).

Table 1. MAXIMUM RATINGS⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{max}	200	kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. OPERATING CHARACTERISTICS ($V_S = 10 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾	P _{OP}	0	_	50	kPa
Supply Voltage ⁽²⁾	V _S	_	10	16	Vdc
Supply Current	Io	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	38.5	40	41.5	mV
Offset ⁽⁴⁾	V _{off}	-1.0	_	1.0	mV
Sensitivity	ΔV/ΔΡ	_	0.8	_	mV/kPa
Linearity ⁽⁵⁾	_	-0.3	_	0.3	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to 50 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (-40°C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Effect on Full Scale Span ⁽⁵⁾	TCV _{FSS}	-1.0	_	1.0	%V _{FSS}
Temperature Effect on Offset ⁽⁵⁾	TCV _{off}	-1.0	_	1.0	mV
Input Impedance	Z _{in}	1000	_	2500	W
Output Impedance	Z _{out}	1400	_	3000	W
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up	_		20		ms
Offset Stability ⁽⁷⁾		_	±0.5	_	%V _{FSS}

^{1. 1.0} kPa (kiloPascal) equals 0.145 psi.

5. Accuracy (error budget) consists of the following:

Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified pressure range.

• Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to

and from the minimum or maximum operating temperature points, with zero differential pressure applied.

• Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the

minimum or maximum rated pressure, at 25°C.

• TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.

• TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative

to 25°C.

^{2.} Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.

Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the
minimum rated pressure.

^{4.} Offset (Voff) is defined as the output voltage at the minimum rated pressure.

^{6.} Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.

^{7.} Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{out} = V_{off} + \text{sensitivity } \times P$ over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 2) or (2) a least squares best line fit. While a least squares fit gives the

"best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. The specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

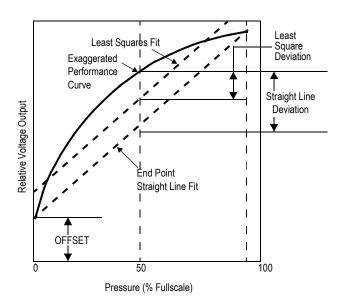


Figure 2. Linearity Specification Comparison

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

Figure 3 shows the minimum, maximum and typical output characteristics of the MPXM2051G series at 25°C. The

output is directly proportional to the differential pressure and is essentially a straight line.

A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

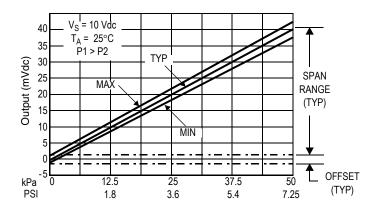


Figure 3. Output versus Pressure Differential

50 kPa On-Chip Temperature Compensated and Calibrated Silicon Pressure Sensors

The MPXM2053 device is a silicon piezoresistive pressure sensor providing a highly accurate and linear voltage output - directly proportional to the applied pressure. The sensor is a single, monolithic silicon diaphragm with the strain gauge and a thin-film resistor network integrated on-chip. The chip is laser trimmed for precise span and offset calibration and temperature compensation.

Features

- Temperature Compensated Over 0°C to +85°C
- · Available in Easy-to-Use Tape & Reel
- · Ratiometric to Supply Voltage
- Gauge Ported and Non Ported Options

Typical Applications

- Pump/Motor Controllers
- Robotics
- Level Indicators
- · Medical Diagnostics
- · Pressure Switching
- · Non-Invasive Blood Pressure Measurement

	ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking		
Non- ported	Absolute, Element Only	1320	MPXM2053D	Rails	MPXM2053D		
	Absolute, Axial Port	1320	MPXM2053DT1	Tape & Reel	MPXM2053D		
Ported	Absolute, Axial Port	1320A	MPXM2053GS	Rails	MPXM2053G		
	Absolute, Element Only	1320A	MPXM2053GST1	Tape & Reel	MPXM2053G		

MPXM2053 SERIES

COMPENSATED AND CALIBRATED PRESSURE SENSOR 0 TO 50 kPA (0 TO 1.45 psi) 25 mV FULL SCALE SPAN (TYPICAL)

MPAK PACKAGES

MPXM2053D/DT CASE 1320-02

MPXM2053GS/GST1 CASE 1320A-02

Pin Number					
1	Gnd	3	Vs		
2	+V _{out}	4	-V _{out}		

Figure 1 shows a block diagram of the internal circuitry on the stand-alone pressure sensor chip.

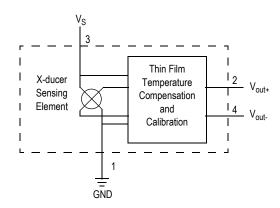


Figure 1. Temperature Compensated Pressure Sensor Schematic

VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE

The differential voltage output of the sensor is directly proportional to the differential pressure applied.

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).

Table 1. MAXIMUM RATINGS⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{max}	75	kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. OPERATING CHARACTERISTICS ($V_S = 10 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾	P _{OP}	0	_	50	kPa
Supply Voltage ⁽²⁾	V _S	_	10	16	Vdc
Supply Current	Io	_	6.0	_	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	38.5	40	41.5	mV
Offset ⁽⁴⁾	V _{off}	-1.0	_	1.0	mV
Sensitivity	ΔV/ΔΡ	_	0.8	_	mV/kPa
Linearity ⁽⁵⁾	_	-0.6	_	0.4	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to 50 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (-40°C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Effect on Full Scale Span ⁽⁵⁾	TCV _{FSS}	-2.0	_	2.0	%V _{FSS}
Temperature Effect on Offset ⁽⁵⁾	TCV _{off}	-1.0	_	1.0	mV
Input Impedance	Z _{in}	1000	_	2500	W
Output Impedance	Z _{out}	1400	_	3000	W
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up	_	_	20	_	ms
Offset Stability ⁽⁷⁾	_	_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 4. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to
 - and from the minimum or maximum operating temperature points, with zero differential pressure applied.

 Procesure Hydrogenic: Output deviation at any procesure within the specified range, when this procesure is excelled to and from the
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
 - minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative
 - to 25°C.
- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{out} = V_{off} + \text{sensitivity } \times P$ over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 2) or (2) a least squares best line fit. While a least squares fit gives the

"best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. The specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

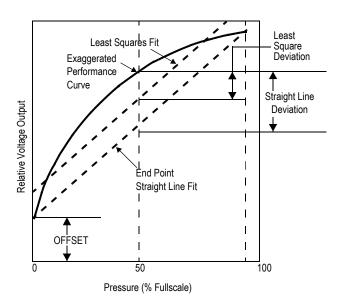


Figure 2. Linearity Specification Comparison

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

Figure 3 shows the minimum, maximum and typical output characteristics of the MPXM2010 series at 25 $^{\circ}$ C. The output

is directly proportional to the differential pressure and is essentially a straight line.

A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

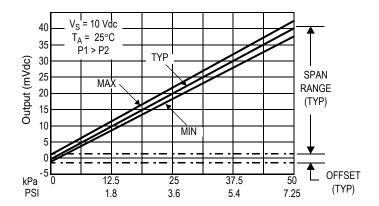


Figure 3. Output versus Pressure Differential

100 kPa On-Chip Temperature **Compensated & Calibrated** Silicon Pressure Sensors

The MPXM2102 device is a silicon piezoresistive pressure sensors providing a highly accurate and linear voltage output - directly proportional to the applied pressure. The sensor is a single, monolithic silicon diaphragm with the strain gauge and a thin-film resistor network integrated on-chip. The chip is laser trimmed for precise span and offset calibration and temperature compensation.

Features

- Temperature Compensated Over 0°C to +85°C
- Available in Easy-to-Use Tape & Reel
- Ratiometric to Supply Voltage
- Gauge Ported and Non Ported Options

Typical Applications

- Pump/Motor Controllers
- Robotics
- Level Indicators
- Medical Diagnostics
- Pressure Switching
- **Barometers**
- **Altimeters**

	ORDERING INFORMATION								
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking				
Non- ported	Absolute, Element Only	1320	MPXM2102D	Rails	MPXM2102D				
	Absolute, Element Only	1320	MPXM2102DT1	Tape & Reel	MPXM2102D				
	Absolute, Element Only	1320	MPXM2102A	Rails	MPXM2102A				
	Absolute, Element Only	1320	MPXM2102AT1	Tape & Reel	MPXM2102A				
Ported	Absolute, Axial Port	1320A	MPXM2102GS	Rails	MPXM2102G				
	Absolute, Axial Port	1320A	MPXM2102GST1	Tape & Reel	MPXM2102G				
	Absolute, Axial Port	1320A	MPXM2102AS	Rails	MPXM2102A				
	Absolute, Axial Port	1320A	MPXM2102AST1	Tape & Reel	MPXM2102A				

MPXM2102 SERIES

COMPENSATED AND CALIBRATED PRESSURE SENSOR 0 TO 100 kPA (0 TO 14.5 psi) 40 mV FULL SCALE SPAN (TYPICAL)

MPAK PACKAGES

MPXM2102D/A **CASE 1320-02**

MPXM2102GS/AS **CASE 1320A-02**

Pin Number				
1	Gnd	3	Vs	
2	+V _{out}	4	-V _{out}	

Figure 1 shows a block diagram of the internal circuitry on the stand-alone pressure sensor chip.

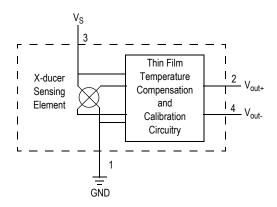


Figure 1. Temperature Compensated Pressure Sensor Schematic

VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE

The differential voltage output of the sensor is directly proportional to the differential pressure applied.

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).

Table 1. MAXIMUM RATINGS⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{max}	75	kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. OPERATING CHARACTERISTICS ($V_S = 10 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾	P _{OP}	0	_	100	kPa
Supply Voltage ⁽²⁾	V _S	_	10	16	Vdc
Supply Current	Io	_	6.0	-	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	38.5	40	41.5	mV
Offset ⁽⁴⁾ MPXM2102D/G Series MPXM2102A Series	V _{off}	-1.0 -2.0		1.0 2.0	mV
Sensitivity	ΔV/ΔΡ	_	0.4	_	mV/kPa
Linearity ⁽⁵⁾ MPXM2102D/G Series MPXM2102A Series		-0.6 -1.0		0.4 1.0	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to 100 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (-40°C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Effect on Full Scale Span ⁽⁵⁾	TCV _{FSS}	-2.0	_	2.0	%V _{FSS}
Temperature Effect on Offset ⁽⁵⁾	TCV _{off}	-1.0	_	1.0	mV
Input Impedance	Z _{in}	1000	_	2500	W
Output Impedance	Z _{out}	1400	_	3000	W
Response Time ⁽⁶⁾ (10% to 90%)	t _R	_	1.0	_	ms
Warm-Up	_	_	20	_	ms
Offset Stability ⁽⁷⁾	_	_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 4. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C.
 - TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.
- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{out} = V_{off} + \text{sensitivity } \times P$ over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 2) or (2) a least squares best line fit. While a least squares fit gives the

"best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. The specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

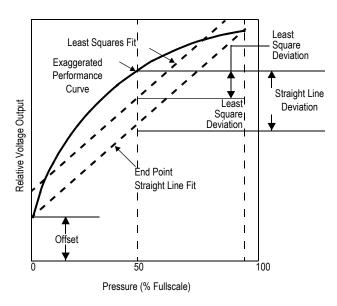


Figure 2. Linearity Specification Comparison

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

Figure 3 shows the minimum, maximum and typical output characteristics of the MPXM2120 series at 25°C. The output

is directly proportional to the differential pressure and is essentially a straight line.

A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

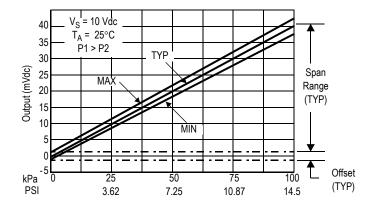


Figure 3. Output versus Pressure Differential

Technical Data

200 kPa On-Chip Temperature **Compensated and Calibrated Silicon Pressure Sensors**

The MPXM2202 device is a silicon piezoresistive pressure sensors providing a highly accurate and linear voltage output directly proportional to the applied pressure. The sensor is a single, monolithic silicon diaphragm with the strain gauge and a thin-film resistor network integrated on-chip. The chip is laser trimmed for precise span and offset calibration and temperature compensation.

Features

- Temperature Compensated Over 0°C to +85°C
- Available in Easy-to-Use Tape and Reel
- Ratiometric to Supply Voltage
- Gauge Ported and Non Ported Options

Typical Applications

- Pump/Motor Controllers
- Robotics
- Level Indicators
- **Medical Diagnostics**
- Pressure Switching
- **Barometers**
- **Altimeters**

ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking	
Non- ported	Absolute, Element Only	1320	MPXM2202D	Rails	MPXM2202D	
	Absolute, Element Only	1320	MPXM2202DT1	Tape & Reel	MPXM2202D	
	Absolute, Element Only	1320	MPXM2202A	Rails	MPXM2202A	
	Absolute, Element Only	1320	MPXM2202AT1	Tape & Reel	MPXM2202A	
Ported	Absolute, Axial Port	1320A	MPXM2202GS	Rails	MPXM2202G	
	Absolute, Axial Port	1320A	MPXM2202GST1	Tape & Reel	MPXM2202G	
	Absolute, Axial Port	1320A	MPXM2202AS	Rails	MPXM2202A	
	Absolute, Axial Port	1320A	MPXM2202AST1	Tape & Reel	MPXM2202A	

MPXM2202 SERIES

COMPENSATED AND CALIBRATED PRESSURE SENSOR 0 TO 200 kPA (0 TO 29 psi) 40 mV FULL SCALE SPAN (TYPICAL)

MPAK PACKAGE

MPXM2202D/A **CASE 1320-02**

MPXM2202GS/AS **CASE 1320A-02**

PIN NUMBER						
1	GND	3	V _S			
2	+V _{OUT}	4	-V _{OUT}			

Figure 1 shows a block diagram of the internal circuitry on the stand-alone pressure sensor chip.

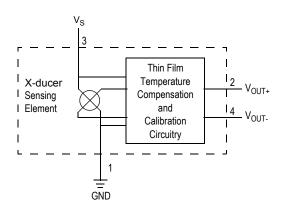


Figure 1. Temperature Compensated Pressure Sensor Schematic

VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE

The differential voltage output of the sensor is directly proportional to the differential pressure applied.

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1).

Table 1. MAXIMUM RATINGS⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{max}	400	kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. OPERATING CHARACTERISTICS (VS = 10 Vdc, TA = 25×C unless otherwise noted, P1 > P2)

	Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾		P _{OP}	0	_	200	kPa
Supply Voltage ⁽²⁾		V _S	_	10	16	Vdc
Supply Current		I _O	_	6.0	_	mAdc
Full Scale Span ⁽³⁾		V _{FSS}	38.5	40	41.5	mV
Offset ⁽⁴⁾	MPXM2202D/G Series MPXM2202A Series	V _{OFF}	-1.0 -2.0	_	1.0 2.0	mV
Sensitivity		ΔV/ΔΡ	_	0.2	_	mV/kPa
Linearity ⁽⁵⁾	MPXM2202D/G Series MPXM2202A Series		-0.6 -1.0	_	0.4 1.0	%V _{FSS}
Pressure Hysteresis ⁽⁵⁾ (0 to	100 kPa)	_	_	±0.1	_	%V _{FSS}
Temperature Hysteresis ⁽⁵⁾ (-	40°C to +125°C)	_	_	±0.5	_	%V _{FSS}
Temperature Effect on Full S	Scale Span ⁽⁵⁾	TCV _{FSS}	-2.0	_	2.0	%V _{FSS}
Temperature Effect on Offse	<u>t</u> (5)	TCV _{OFF}	-1.0	_	1.0	mV
Input Impedance		Z _{IN}	1000	_	2500	W
Output Impedance		Z _{OUT}	1400	_	3000	W
Response Time ⁽⁶⁾ (10% to 90%)		t _R	_	1.0	_	ms
Warm-Up			_	20	_	ms
Offset Stability ⁽⁷⁾		_	_	±0.5	_	%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 4. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified

pressure range.

• Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the

minimum or maximum rated pressure, at 25 $^{\circ}\text{C}.$

• Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to

and from the minimum or maximum operating temperature points, with zero differential pressure applied.

TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.

• TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.

- 6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{OUT} = V_{OFF} + \text{sensitivity } \times P$ over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 2) or (2) a least squares best line fit. While a least squares fit gives the

"best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. The specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

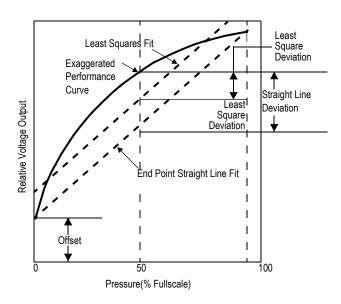


Figure 2. Linearity Specification Comparison

ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION

Figure 3 shows the minimum, maximum and typical output characteristics of the MPXM2202 series at 25°C. The output

is directly proportional to the differential pressure and is essentially a straight line.

A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

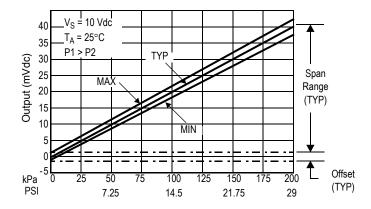


Figure 3. Output versus Pressure Differential

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPXV4006G series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This sensor combines a highly sensitive implanted strain gauge with advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.

Features

- Temperature Compensated over 10° to 60°C
- · Ideally Suited for Microprocessor or Microcontroller-Based Systems
- Available in Gauge Surface Mount (SMT) or Through-hole (DIP) Configurations
- Durable Thermoplastic (PPS) Package

MPXV4006G series pressure sensors are available in the basic element package or with pressure ports. Two packing options are offered for the 482 and 482A case configurations.

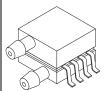
ORDERING INFORMATION					
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Marking
Basic	Element Only	482	MPXV4006G6U	Rails	MPXV4006G
Element	Element Only	482	MPXV4006G6T1	Tape & Reel	MPXV4006G
	Element Only	482B	MPXV4006G7U	Rails	MPXV4006G
Ported	Axial Port	482A	MPXV4006GC6U	Rails	MPXV4006G
Element	Axial Port	482A	MPXV4006GC6T1	Tape & Reel	MPXV4006G
	Axial Port	482C	MPXV4006GC7U	Rails	MPXV4006G
	Side Port	1369	MPXV4006GP	Trays	MPXV4006G
	Dual Port	1351	MPXV4006DP	Trays	MPXV4006G

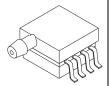
MPXV4006G

INTEGRATED
PRESSURE SENSOR
0 to 6 kPa (0 to 0.87 psi)
0.2 to 4.7 V OUTPUT

SMALL OUTLINE PACKAGE THROUGH-HOLE

MPXV4006G7U CASE 482B-03


MPXV4006GC7U CASE 482C-03


SMALL OUTLINE PACKAGE SURFACE MOUNT

MPXV4006G6U/6T1 MPXV4006GC6U/C6T1 CASE 482-01 CASE 482A-01

MPXV4006DP CASE 1351-01

MPXV4006GP CASE 1369-01

PIN NUMBERS ⁽¹⁾					
1	N/C	5	N/C		
2	Vs	6	N/C		
3	Gnd	7	N/C		
4	V _{out}	8	N/C		

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch i n the lead.

MPXV4006G

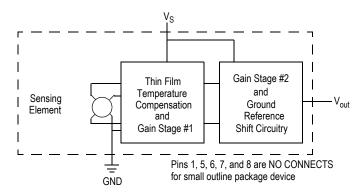


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Parametrics	Symbol	Value	Units
Maximum Pressure (P1 >P2)	P _{max}	24	kPa
Storage Temperature	T _{stg}	-30° to +100°	°C
Operating Temperature	T _A	-10° to +60°	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics

Ch	Symbol	Min	Тур	Max	Unit	
Pressure Range		P _{OP}	0	_	6.0	kPa
Supply Voltage ⁽¹⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		I _S	_	_	10	mAdc
Full Scale Output ⁽²⁾	$(RF = 51k\Omega)$	V _{FSS}	_	4.6	_	V
Offset ⁽³⁾⁽⁵⁾	(RF = 51kΩ)	V _{off}	0.100	0.225	0.430	V
Sensitivity		V/P	_	766	_	mV/kPa
Accuracy ⁽⁴⁾⁽⁵⁾	(10 to 60°C)	_	_	_	±5.0	%V _{FSS}

- 1. Device is ratiometric within this specified excitation range.
- 2. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 3. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.
- 4. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum
 - or maximum rated pressure, at 25°C.

 Offset Stability: Output deviation, after 1000 temperature cycles, -30 to 100°C, and 1.5 million pressure cycles, with
 - minimum rated pressure applied.
 - TcSpan: Output deviation over the temperature range of 10° to 60°C, relative to 25°C.
 - TcOffset: Output deviation with minimum pressure applied, over the temperature range of 10° to 60°C, relative to 25°C.
- 5. Auto Zero at Factory Installation: Due to the sensitivity of the MPXV4006G, external mechanical stresses and mounting position can affect the zero pressure output reading. To obtain the 5% FSS accuracy, the device output must be "autozeroed" after installation. Autozeroing is defined as storing the zero pressure output reading and subtracting this from the device's output during normal operations.

MPXV4006G

ON-CHIP TEMPERATURE COMPENSATION, CALIBRATION, AND SIGNAL CONDITIONING

The performance over temperature is achieved by integrating the shear-stress strain gauge, temperature compensation, calibration and signal conditioning circuitry onto a single monolithic chip.

Figure 2 illustrates the gauge configuration in the basic chip carrier (Case 482). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPXV4006G series sensor operating characteristics are based on use of dry air as pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Internal reliability and qualification test for dry air, and other media, are available

from the factory. Contact the factory for information regarding media tolerance in your application.

Figure 3 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum and maximum output curves are shown for operation over a temperature range of 10°C to 60°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range.

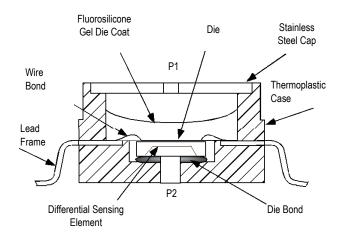


Figure 2. Cross Sectional Diagram SOP (Not to Scale)

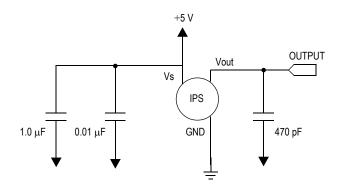


Figure 3. Recommended Power Supply Decoupling and Output Filtering Recommendations (For additional output filtering, please refer to Application Note AN1646.)

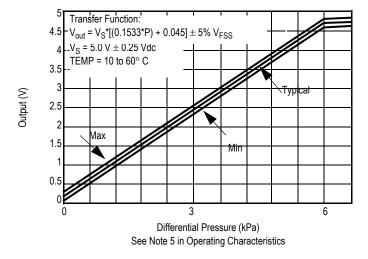


Figure 4. Output versus Pressure Differential

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The pressure sensor is

designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the table below:

Table 3. Pressure (P1)/Vacuum (P2) Side Identification Table

Part Number	Case Type	Pressure (P1) Side Identifier	
MPXV4006G6U/T1	482	Stainless Steel Cap	
MPXV4006GC6U/T1	482A	Side with Port Attached	
MPXV4006G7U	482B	Stainless Steel Cap	
MPXV4006GC7U	482C	Side with Port Attached	
MPXV4006GP	1369	Side with Port Attached	
MPXV4006DP	1351	Side with Part Marking	

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

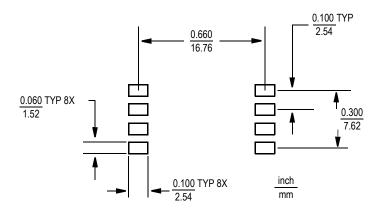


Figure 5. SOP Footprint (Case 482)

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated, and Calibrated

The MPXV4115V series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, particularly those employing a microcontroller with A/D inputs. This transducer combines advanced micromachining techniques, thin-film metallization and bipolar processing to provide an accurate, high-level analog output signal that is proportional to the applied pressure/vacuum. The small form factor and high reliability of on-chip integration make the sensor a logical and economical choice for the automotive system designer. Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- 1.5% Maximum error over 0° to 85°C
- Temperature Compensated from –40° + 125°C
- · Ideally Suited for Microprocessor or Microcontroller-Based Systems
- · Durable Thermoplastic (PPS) Surface Mount Package

Typical Applications

- Vacuum Pump Monitoring
- · Brake Booster Monitoring

The MPXV4115V series pressure sensors are available in the basic element package or with a pressure port. Two packing options are also offered.

ORDERING INFORMATION							
Device Type	Case No.	Case No. MPX Series Order No.		Device Marking			
SMALL OUTLI	SMALL OUTLINE PACKAGE (MPXV4115V SERIES)						
Basic	482	MPXV4115V6U	Rails	MPXV4115V			
Elements	482	MPXV4115V6T1	Tape & Reel	MPXV4115V			
Ported Elements	482A	MPXV4115VC6U	Rails	MPXV4115V			

MPXV4115V SERIES

INTEGRATED
PRESSURE SENSOR
-115 to 0 kPa (-16.7 to 2.2 psi)
0.2 to 4.6 V OUTPUT

SMALL OUTLINE PACKAGE

MPXV4115V6U/6T1 CASE 482-01

MPXV4115VC6U CASE 482A-01

PIN NUMBER ⁽¹⁾					
1	N/C	5	N/C		
2	V_S	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

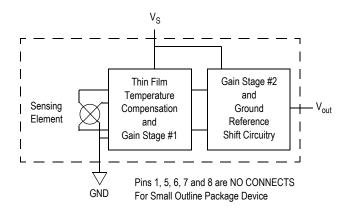


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure	P _{max}	400	kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 5 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted. Decoupling circuit shown in Figure 3 required to meet electrical specifications.)

	Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range (Differential mo	Pressure Range (Differential mode, Vacuum on metal cap side, Atmospheric pressure on back side)		-115	_	0	kPa
Supply Voltage ⁽¹⁾		Vs	4.75	5.0	5.25	Vdc
Supply Current		Io	_	6.0	10	mAdc
Full Scale Output ⁽²⁾ (Pdiff = 0 kPa) ²	(0 to 85°C)	V _{FSO}	4.535	4.6	4.665	Vdc
Full Scale Span ⁽³⁾ @ V _S = 5.0 V	(0 to 85°C)	V _{FSS}	_	4.4	_	Vdc
Accuracy ⁽⁴⁾	(0 to 85°C)	_	_	_	1.5%	%V _{FSS}
Sensitivity		V/P	_	38.26	_	mV/kPa
Response Time ⁽⁵⁾		t _R	_	1.0	_	ms
Output Source Current at Full So	cale Output	Io	_	0.1	_	mAdc
Warm-Up Time ⁽⁶⁾		_	_	20	_	ms
Offset Stability ⁽⁷⁾		_	_	±0.5	_	%V _{FSS}

- 1. Device is ratiometric within this specified excitation range.
- 2. Full Scale Output is defined as the output voltage at the maximum or full-rated pressure.
- 3. Full Scale Span is defined as the algebraic difference between the output voltage at full-rated pressure and the output voltage at the minimum-rated pressure.
- 4. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at 25°C due to all sources of errors, including the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure at 25°C.
 - TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
- 5. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 6. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 7. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

ON-CHIP TEMPERATURE COMPENSATION, CALIBRATION, AND SIGNAL CONDITIONING

The performance over temperature is achieved by integrating the shear-stress strain gauge, temperature compensation, calibration and signal conditioning circuitry onto a single monolithic chip.

Figure 2 illustrates the gauge configuration in the basic chip carrier (Case 482). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPXV4115V series sensor operating characteristics are based on use of dry air as pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Internal reliability and qualification test for dry air, and other media, are available

from the factory. Contact the factory for information regarding media tolerance in your application.

Figure 3 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

Figure 4 shows the sensor output signal relative to differential pressure input. Typical, minimum and maximum output curves are shown for operation over a temperature range of 0°C to 85°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range.

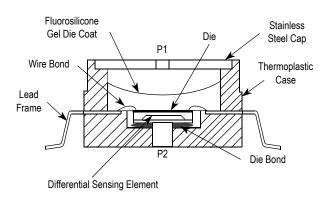


Figure 2. Cross-Sectional Diagram (not to scale)

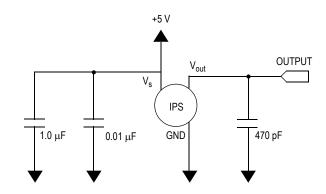


Figure 3. Recommended Power Supply Decoupling and Output Filtering

(For additional output filtering, please refer to Application Note AN1646.)

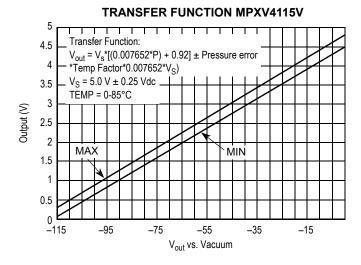
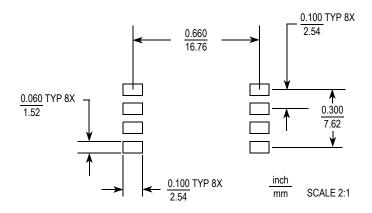


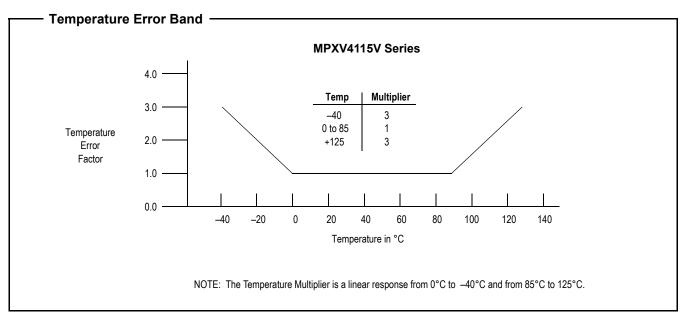
Figure 4. Applied Vacuum in kPa (below atmospheric pressure)

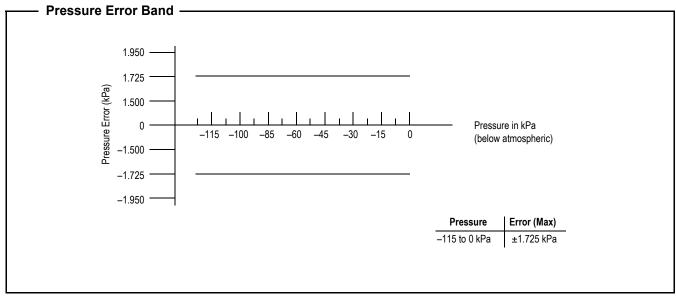
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.




Figure 5. SOP Footprint (Case 482)


Transfer Function

Nominal Transfer Value: $V_{out} = V_{S} (P \times 0.007652) + 0.92)$

 \pm (Pressure Error x Temp. Factor x 0.007652 x V_S)

 V_S = 5 V \pm 0.25 Vdc

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned01, Temperature Compensated and Calibrated

The MPXV5004G series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This sensor combines a highly sensitive implanted strain gauge with advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.

Features

- Temperature Compensated over 10° to 60°C
- Available in Gauge Surface Mount (SMT) or Through-Hole (DIP) Configurations
- · Durable Thermoplastic (PPS) Package

Typical Applications

- Washing Machine Water Level
- Ideally Suited for Microprocessor or Microcontroller-Based Systems

ORDERING INFORMATION ⁽¹⁾							
Device Type	Case No.	MPXV Series Order No.	Packing Options	Device Marking			
Through-	482B	MPXV5004G7U	Rails	MPXV5004G			
Hole	482C	MPXV5004GC7U	Rails	MPXV5004G			
Surface	482	MPXV5004G6U	Rails	MPXV5004G			
Mount	482	MPXV5004G6T1	Tape & Reel	MPXV5004G			
	482A	MPXV5004GC6U	Rails	MPXV5004G			
	482A	MPXV5004GC6T1	Tape & Reel	MPXV5004G			
	1351	MPXV5004DP	Trays	MPXV5004G			
	1368	MPXV5004GVP	Trays	MPXV5004G			
	1369	MPXV5004GP	Trays	MPXV5004G			

 MPXV5004G series pressure sensors are available in the basic element package or with a pressure port. Two packing options are offered for the surface mount configuration.

MPXV5004G SERIES

INTEGRATED
PRESSURE SENSOR
0 TO 3.92 kPA
(0 TO 400 mm H₂O)
1.0 TO 4.9 V OUTPUT

SMALL OUTLINE PACKAGES THROUGH-HOLE

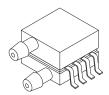
MPXV5004G

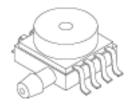
MPXV5004G7U CASE 482B-03

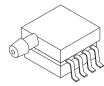
MPXV5004GC7U CASE 482C-03

PIN NUMBERS ⁽¹⁾					
1	N/C	5	N/C		
2	Vs	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.


SMALL OUTLINE PACKAGES SURFACE MOUNT


MPXV5004G6U CASE 482-01


MPXV5004GC6U CASE 482A-01

MPXV5004DP CASE 1351-01

MPXV5004GVP CASE 1368-01

MPXV5004GP CASE 1369-01

MPXV5004G

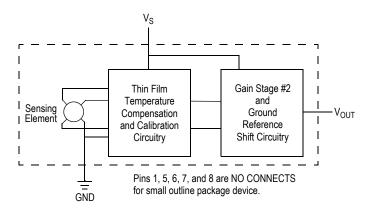


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	16	kPa
Storage Temperature	T _{STG}	-30 to +100	°C
Operating Temperature	T _A	0 to +65	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 10 V_{DC}$, $T_A = 25^{\circ}C$ unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Units
Pressure Range	P _{OP}	0	_	3.92 400	kPa mm H ₂ O
Supply Voltage ⁽¹⁾	V _S	4.75	5.0	5.25	V _{DC}
Supply Current	I _S	_	_	10	mAdc
Span at 306 mm H ₂ O (3 kPa) ⁽²⁾	V _{FSS}	_	3.0	_	V
Offset ^{(3) (4)}	V _{OFF}	0.75	1.0	1.25	mV
Sensitivity	V/P	_	1.0 9.8	_	V/kPa mV/mm H ₂ O
Accuracy ⁽⁵⁾	_	_	_	±1.5 ±2.5	%V _{FSS} %V _{FSS}

- 1. Device is ratiometric within this specified excitation range.
- 2. Span is defined as the algebraic difference between the output voltage at specified pressure and the output voltage at the minimum rated pressure.
- 3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 4. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to
 and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the

minimum or maximum rated pressure, at 25°C.

Offset Stability: Output deviation, after 1000 temperature cycles, *30 to 100°C, and 1.5 million pressure cycles, with minimum

rated pressure applied.

• TcSpan: Output deviation over the temperature range of 10 to 60°C, relative to 25°C.

TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 10 to 60°C, relative to 25°C.

- Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at 25°C.
- 5. Auto Zero at Factory Installation: Due to the sensitivity of the MPXV5004G, external mechanical stresses and mounting position can affect the zero pressure output reading. Autozeroing is defined as storing the zero pressure output reading and subtracting this from the device's output during normal operations. Reference AN1636 for specific information. The specified accuracy assumes a maximum temperature change of ± 5°C between autozero and measurement.

MPXV5004G

ON-CHIP TEMPERATURE COMPENSATION, CALIBRATION AND SIGNAL CONDITIONING

The performance over temperature is achieved by integrating the shear-stress strain gauge, temperature compensation, calibration and signal conditioning circuitry onto a single monolithic chip.

Figure 2 illustrates the gauge configuration in the basic chip carrier (Case 482). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPXV5004G series sensor operating characteristics are based on use of dry air as pressure media. Media, other than dry air, may have adverse effects on sensor performance and long-term reliability. Internal reliability and qualification test for dry air, and other media, are available

from the factory. Contact the factory for information regarding media tolerance in your application.

Figure 3 shows the recommended decoupling circuit for interfacing the output of the MPXV5004G to the A/D input of the microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum and maximum output curves are shown for operation over a temperature range of 10°C to 60°C using the decoupling circuit shown in Figure 3 The output will saturate outside of the specified pressure range.

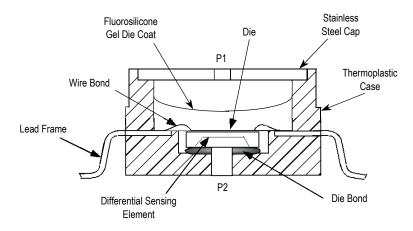


Figure 2. Cross-Sectional Diagram (Not to Scale)

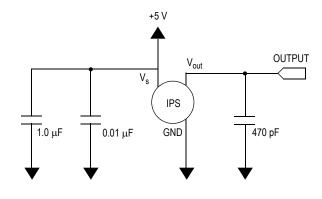


Figure 3. Recommended Power Supply Decoupling and Output Filtering.

(For additional output filtering, please refer to Application Note AN1646.)

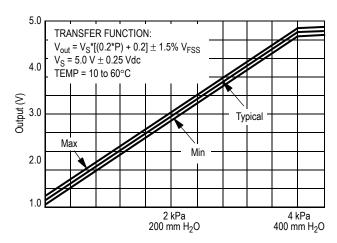


Figure 4. Output versus Pressure Differential (See Note 5 in Operating Characteristics)

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale Semiconductor designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The

Freescale Semiconductor pressure sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the table below.

Part Number	Case Type	Pressure (P1) Side Identifier
MPXV5004GC6U/T1	482A	Side with Port Attached
MPXV5004G6U/T1	482	Stainless Steel Cap
MPXV5004GC7U	482C	Side with Port Attached
MPXV5004G7U	482B	Stainless Steel Cap
MPXV5004GP	1369	Side with Port Attached
MPXV5004DP	1351	Side with Port Marking
MPXV5004GVP	1368	Stainless Steel Cap

INFORMATION FOR USING THE SMALL OUTLINE PACKAGE (CASE 482)

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface

between the board and the package. With the correct footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

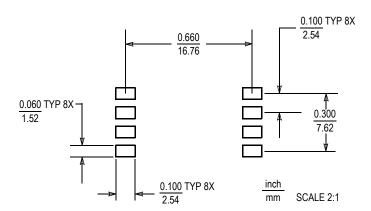


Figure 5. SOP Footprint (Case 482)

High Temperature Accuracy Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPXV5050VC6T1 sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The small form factor and high reliability of on-chip integration make the Freescale Semiconductor, Inc. pressure sensor a logical and economical choice for the system designer.

The MPXV5050VC6T1 piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- 2.5% Maximum Error over 0° to 85°C
- Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated from Over -40° to +125°C
- Patented Silicon Shear Stress Strain Gauge
- Durable Thermoplastic (PPS) Surface Mount Package
- Easy-to-Use Chip Carrier Option
- Ideal for Automotive and Non-Automotive Applications

Typical Applications

Vacuum Pump Monitoring

	ORDERING INFORMATION							
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking			
Ported Element	Vacuum, Axial Port	482A	MPXV5050VC6T1	Tape & Reel	MPXV5050VC6T1			

MPXV5050VC6T1

INTEGRATED PRESSURE SENSOR -50 to 0 kPa (-7.25 to 0 psi) 0.1 to 4.6 Volts Output

SMALL OUTLINE PACKAGE

CASE 482A-01	

PIN NUMBER ⁽¹⁾					
1	N/C	5	N/C		
2	V _S	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

1. Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

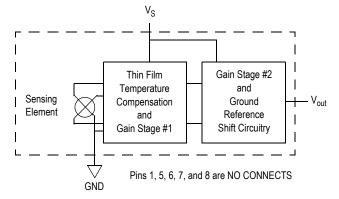
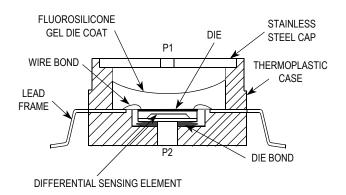


Figure 1. Fully Integrated Pressure Sensor Schematic

MPXV5050VC6T1

Table 1. Maximum Ratings⁽¹⁾


Rating	Symbol	Value	Units
Maximum Pressure (P1 > P2)	P _{max}	200	kPa
Storage Temperature	T _{stg}	–40° to +125°	°C
Operating Temperature	T _A	–40° to +125°	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2.)

	Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range		P _{OP}	-50	_	0	kPa
Supply Voltage ⁽¹⁾		Vs	4.75	5.0	5.25	Vdc
Supply Current		I _o	_	7.0	10	mAdc
Full Scale Output ⁽²⁾ @ V _S = 5.0 Volts	(0 to 85°C) (P _{diff} = 0 kPa)	V _{FSO}	4.488	4.6	4.713	Vdc
Full Scale Span ⁽³⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSS}	_	4.5	_	Vdc
Accuracy ⁽⁴⁾	(0 to 85°C)	_	_	_	±2.5	%V _{FSS}
Sensitivity		V/P	_	90		mV/kPa
Response Time ⁽⁵⁾		t _R	_	1.0		ms
Warm-Up Time ⁽⁶⁾		_	_	20		ms
Offset Stability ⁽⁷⁾		_	_	±0.5		%V _{FSS}
Pressure Offset ⁽⁸⁾	(0 to 85°C)	V _{off}	0	0.1	0.213	Vdc

- 1. Device is ratiometric within this specified excitation range.
- 2. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 4. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at 25°C due to all sources of errors, including the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure at 25°C.
 - TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
- 5. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 6. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the pressure has been stabilized.
- 7. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.
- 8. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.

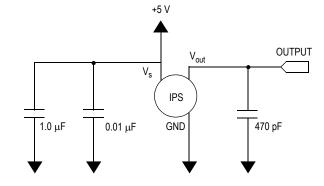


Figure 2. Cross-Sectional Diagram (not to scale)

Figure 3. Typical Application Circuit (Output Source Current Operation)

TRANSFER FUNCTION MPXV5050VC6T1

Transfer Function MPXV5050VC Series

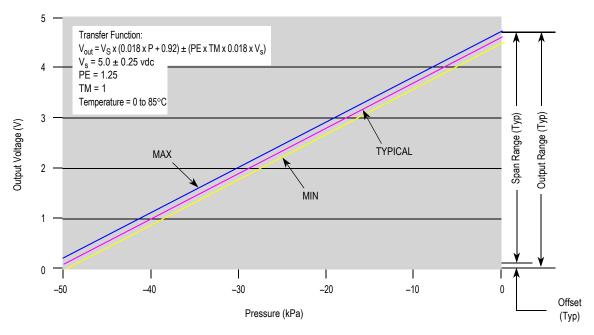
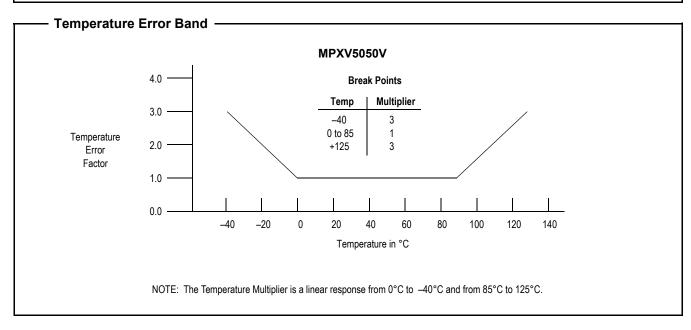
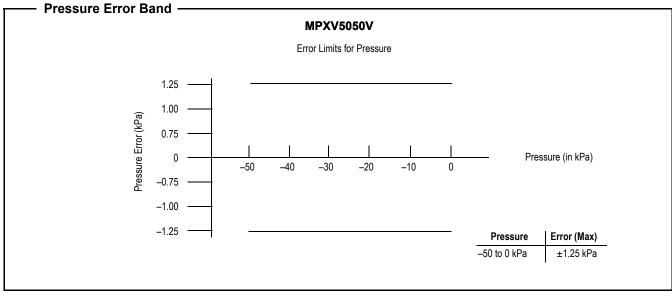


Figure 4. Output versus Absolute Pressure

Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over 0 to 85°C temperature range. The output will saturate outside of the rated pressure range.


A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to


be transmitted to the silicon diaphragm. The MPXV5050VC6T1 pressure sensor operating characteristics, internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Transfer Function (MPXV5050VC6T1 -

Nominal Transfer Value: $V_{out} = V_S x (0.018 x P + 0.92)$ $\pm (Pressure Error x Temp Multi x 0.018 x V_S)$

 V_S = 5.0 \pm 0.25 V

MINIMUM RECOMMENDED FOOTPRINT FOR SMALL OUTLINE PACKAGE

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a

solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.

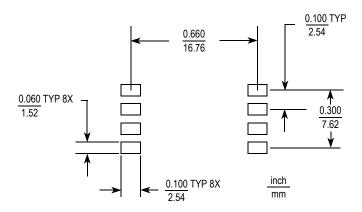


Figure 5. SOP Footprint (Case 482A)

Technical Data

High Temperature Accuracy Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPXV6115VC6U sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The small form factor and high reliability of on-chip integration make the Freescale Semiconductor, Inc. pressure sensor a logical and economical choice for the system designer.

The MPXV6115VC6U piezoresistive transducer is a state-of-the-art, monolithic, signal conditioned, silicon pressure sensor. This sensor combines advanced micromachining techniques, thin film metallization, and bipolar semiconductor processing to provide an accurate, high level analog output signal that is proportional to applied pressure.

Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip.

Features

- Improved Accuracy at High Temperature
- 1.5% Maximum Error over 0° to 85°C
- · Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated from -40° to +125°C
- Durable Thermoplastic (PPS) Surface Mount Package

Typical Applications

- · Vacuum Pump Monitoring
- · Brake Booster Monitoring

ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking	
Ported Element	Vacuum, Axial Port	482A	MPXV6115VC6U	Rails	MPXV6115V	

MPXV6115VC6U

INTEGRATED
PRESSURE SENSOR
-115 TO 0 kPA (-16.7 TO 2.2 psi)
0.2 TO 4.6 VOLTS OUTPUT

SMALL OUTLINE PACKAGE

MPXV6115VC6U CASE 482A-01

PIN NUMBER ⁽¹⁾					
1	N/C	5	N/C		
2	V _S	6	N/C		
3	GND	7	N/C		
4	V _{OUT}	8	N/C		

 Pins 1, 5, 6, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is denoted by the notch in the lead.

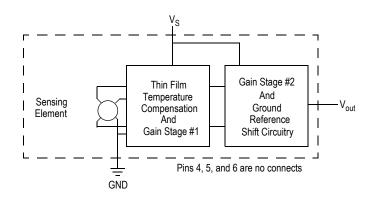


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Units
Maximum Pressure (P1 >P2)	P _{max}	400	kPa
Storage Temperature	T _{stg}	-40° to +125°	°C
Operating Temperature	T _A	-40° to +125°	°C
Output Source Current @ Full Scale Output(2)	I _o +	0.5	mAdc
Output Sink Current @ Minimum Pressure Offset ⁽²⁾	l _o -	-0.5	mAdc

- 1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.
- 2. Maximum Output Current is controlled by effective impedance from Vout to Gnd or Vout to VS in the application circuit.

Table 2. Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2)

C	haracteristic	Symbol	Min	Тур	Max	Unit
Pressure Range		P _{OP}	-115	_	0	kPa
Supply Voltage ⁽¹⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		I _o	_	6.0	10	mAdc
Full Scale Output ⁽²⁾ @ V _S = 5.0 Volts	(0 to 85°C) (P _{diff} = 0 kPa)	V _{FSO}	4.534	4.6	4.665	Vdc
Full Scale Span ⁽³⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSS}	_	4.4	_	Vdc
Accuracy ⁽⁴⁾	(0 to 85°C)	_	_	_	±1.5	%V _{FSS}
Sensitivity		V/P	_	38.26	_	mV/kPa
Response Time ⁽⁵⁾		t _R	_	1.0	_	ms
Warm-Up Time ⁽⁶⁾		_	_	20	_	ms
Offset Stability ⁽⁷⁾		_	_	±0.5	_	%V _{FSS}

- 1. Device is ratiometric within this specified excitation range.
- 2. Full Scale Output (VFSO) is defined as the output voltage at the maximum or full rated pressure.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 4. Accuracy is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of span at 25°C due to all sources of error including the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure at 25°C.
 - TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
- 5. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 6. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the pressure has been stabilized.
- 7. Offset Stability is the product's output deviation when subjected to 1000 cycles of Pulsed Pressure, Temperature Cycling with Bias Test.

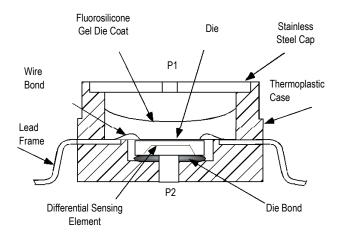


Figure 2. Cross Sectional Diagram SOP (Not to Scale)

Figure 2 illustrates the absolute sensing chip in the basic Small Outline chip carrier (Case 482).

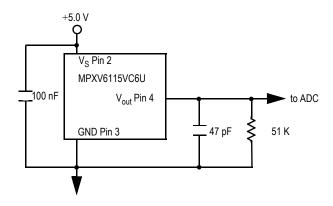


Figure 3. Typical Application Circuit (Output Source Current Operation)

Figure 3 shows a typical application circuit (output source current operation).

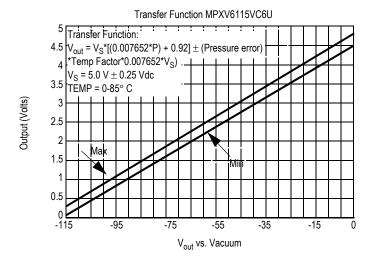
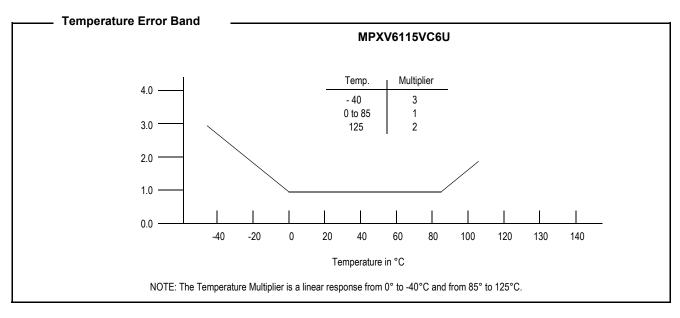
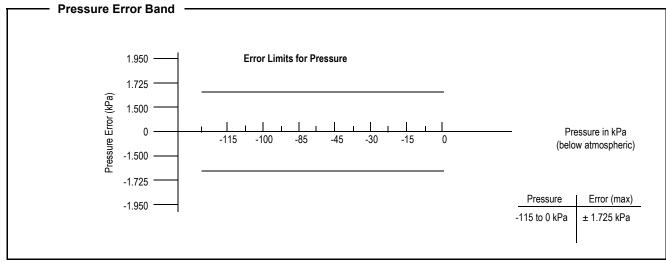


Figure 4. Output versus Absolute Pressure

Figure 4 shows the sensor output signal relative to pressure input. Typical minimum and maximum output curves are shown for operation over 0 to 85°C temperature range. The output will saturate outside of the rated pressure range.

A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to


be transmitted to the silicon diaphragm. The MPXV6115VC6U pressure sensor operating characteristics, internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.


- Transfer Function (MPXV6115VC6U) -

Nominal Transfer Value: $V_{out} = V_S \times (0.007652 \times P + 0.92)$

 \pm (Pressure Error x Temp. Factor x 0.007652 x V_S)

 $V_S = 5.0 \pm 0.25 \, \text{Vdc}$

SURFACE MOUNTING INFORMATION

MINIMUM RECOMMENDED FOOTPRINT FOR SMALL OUTLINE PACKAGE

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a

solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts.

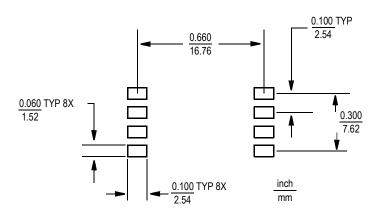


Figure 5. SOP Footprint (Case 482A)

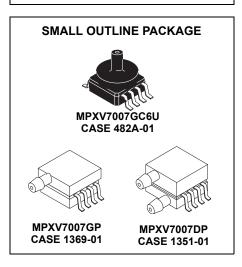
Technical Data

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPXV7007G series piezoresistive transducers are state-of-the-art monolithic silicon pressure sensors designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.

Features

- 5.0% Maximum Error over 0° to 85°C
- Ideally Suited for Microprocessor or Microcontroller-Based Systems
- Durable Epoxy Unibody and Thermoplastic (PPS) Surface Mount Package
- Temperature Compensated over –40° to +125°C
- Patented Silicon Shear Stress Strain Gauge
- Available in Differential and Gauge Configurations
- · Available in Surface Mount (SMT)


Typical Applications

- Hospital Beds
- HVAC
- · Respiratory Systems
- · Process Control

	ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking		
SMALL O	SMALL OUTLINE PACKAGE (MPXV7007G SERIES)						
Ported	Gauge, Axial Port, SMT	482A	MPXV7007GC6U	Rails	MPXV7007G		
Elements	Gauge, Axial Port, SMT	482A	MPXV7007GC6T1	Tape & Reel	MPXV7007G		
	Gauge, Side Port, SMT	1369	MPXV7007GP	Trays	MPXV7007G		
	Gauge, Dual Port, SMT	1351	MPXV7007DP	Trays	MPXV7007G		

MPXV7007G SERIES

INTEGRATED
PRESSURE SENSOR
-7 to 7 kPa (-1 to 1 psi)
0.5 to 4.5 V OUTPUT

SMALL OUTLINE PACKAGE PIN NUMBERS ⁽¹⁾					
1 N/C 5 N/C					
2	V _S	6	N/C		
3	Gnd	7	N/C		
4	V _{out}	8	N/C		

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

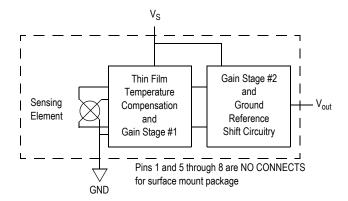


Figure 1. Fully Integrated Pressure Sensor Schematic

MPXV7007G

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{max}	75	kPa
Storage Temperature	T _{stg}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 3 required to meet specification.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾		P _{OP}	-7	_	+7	kPa
Supply Voltage ⁽²⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		Io	_	7.0	10	mAdc
Minimum Pressure Offset ⁽³⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{off}	0.32	0.5	0.67	Vdc
Full Scale Output ⁽⁴⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSO}	4.3	4.5	4.7	Vdc
Full Scale Span ⁽⁵⁾ @ V _S = 5.0 Volts	(0 to 85°C)	V _{FSS}	_	4.0	_	Vdc
Accuracy ⁽⁶⁾	(0 to 85°C)	_	_	_	±5.0	%V _{FSS}
Sensitivity		V/P	_	286		mV/kPa
Response Time ⁽⁷⁾		t _R	_	1.0		ms
Output Source Current at Full Scale Output		I _{O+}	_	0.1		mAdc
Warm-Up Time ⁽⁸⁾		_	_	20		ms
Offset Stability ⁽⁹⁾		_	_	±0.5		%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output ($V_{\mbox{FSO}}$) is defined as the output voltage at the maximum or full rated pressure.
- Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to

and from the minimum or maximum operating temperature points, with zero differential pressure applied.

• Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the

minimum or maximum rated pressure, at 25°C.

• TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.

• TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to

25°C.

- $\bullet \ \ \text{Variation from Nominal:} \ \ \text{The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS}, at $25^{\circ}C$.}$
- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

ON-CHIP TEMPERATURE COMPENSATION, CALIBRATION AND SIGNAL CONDITIONING

The performance over temperature is achieved by integrating the shear-stress strain gauge, temperature compensation, calibration and signal conditioning circuitry onto a single monolithic chip.

Figure 2 illustrates the Differential or Gauge configuration in the basic chip carrier (Case 482). A fluorosilicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm.

The MPXV7007G series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media,

other than dry air, may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

Figure 3 shows the recommended decoupling circuit for interfacing the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

Figure 4 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0° to 85°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range.

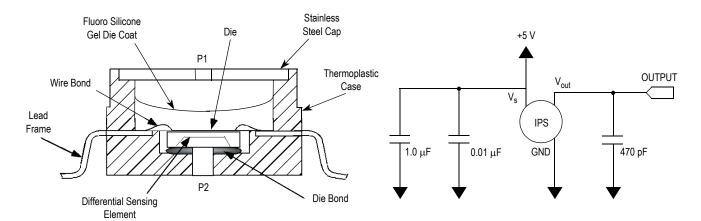
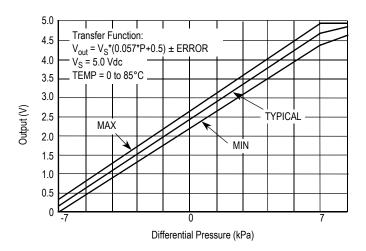
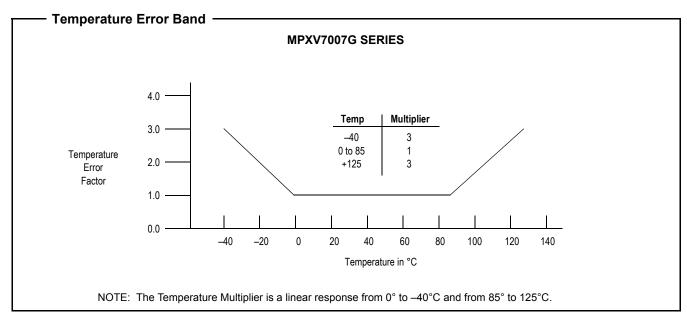
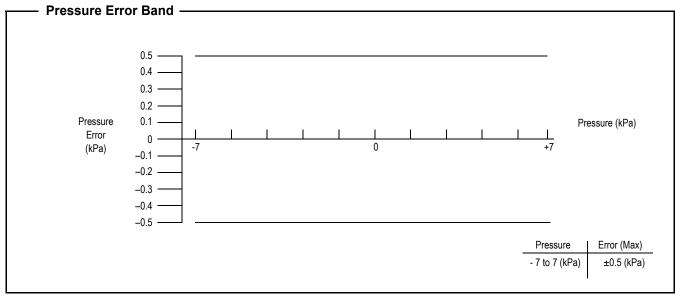



Figure 2. Cross-Sectional Diagram SOP (not to scale)

Figure 3. Recommended Power Supply Decoupling and Output Filtering

(For additional output filtering, please refer to Application Note AN1646.)


Figure 4. Output versus Pressure Differential


Transfer Function (MPXV7007G)

Nominal Transfer Value: $V_{out} = V_S x (0.057 x P + 0.5)$

 \pm (Pressure Error x Temp. Factor x 0.057 x V_S)

 V_S = 5.0 V \pm 0.25 Vdc

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluorosilicone gel which protects the die from harsh media. The MPX pressure

sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the table below:

Part Number	Case Type	Pressure (P1) Side Identifier
MPXV7007GC6U/C6T1	482A	Side with Port Attached
MPXV7007GP	1369	Side with Port Attached
MPXV7007DP	1351	Side with Part Marking

MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the surface mount packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct

footprint, the packages will self align when subjected to a solder reflow process. It is always recommended to design boards with a solder mask layer to avoid bridging and shorting between solder pads.

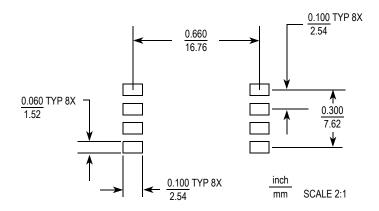
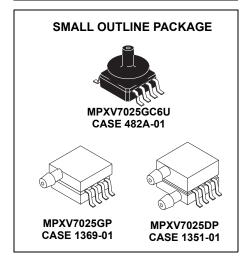


Figure 5. SOP Footprint (Case 482A)

Integrated Silicon Pressure Sensor On-Chip Signal Conditioned, Temperature Compensated and Calibrated

The MPXV7025G series piezoresistive transducer is a state-of-the-art monolithic silicon pressure sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This patented, single element transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure.


Features

- 2.5% Maximum Error over 0° to 85°C
- Ideally suited for Microprocessor or Microcontroller-Based Systems
- Temperature Compensated Over –40° to +125°C
- Patented Silicon Shear Stress Strain Gauge
- Durable Epoxy Unibody Element
- · Easy-to-Use Chip Carrier Option

	ORDERING INFORMATION						
Device Type	Options	Case No.	MPX Series Order No.	Packing Options	Device Marking		
SMALL O	SMALL OUTLINE PACKAGE (MPXV7025G SERIES)						
Ported Elements	Gauge, Axial Port, SMT	482A	MPXV7025GC6U	Rails	MPXV7025G		
Elements	Gauge, Axial Port, SMT	482A	MPXV7025GC6T1	Tape & Reel	MPXV7025G		
	Gauge, Side Port, SMT	1369	MPXV7025GP	Trays	MPXV7025G		
	Gauge, Dual Port, SMT	1351	MPXV7025DP	Trays	MPXV7025G		

MPXV7025G SERIES

INTEGRATED
PRESSURE SENSOR
-25 to 25 kPa (-3.6 to 3.6 psi)
0.2 to 4.7 V OUTPUT

SMALL OUTLINE PACKAGE PIN NUMBERS ⁽¹⁾							
1	1 N/C 5 N/C						
2	V _S	6	N/C				
3	Gnd	7	N/C				
4	V _{out}	8	N/C				

 Pins 1, 5, 6, 7, and 8 are internal device connections. Do not connect to external circuitry or ground. Pin 1 is noted by the notch in the lead.

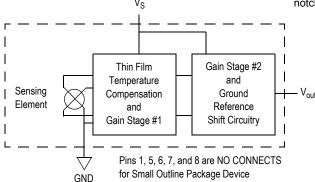


Figure 1. Fully Integrated Pressure Sensor Schematic

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{max}	200	kPa
Storage Temperature	T _{stg}	–40° to +125°	°C
Operating Temperature	T _A	–40° to +125°	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Table 2. Operating Characteristics ($V_S = 5.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2. Decoupling circuit shown in Figure 3 required to meet electrical specifications.)

Characteristic		Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾		P _{OP}	-25	_	25	kPa
Supply Voltage ⁽²⁾		V _S	4.75	5.0	5.25	Vdc
Supply Current		Ι _ο	_	7.0	10	mAdc
Minimum Pressure Offset ⁽³⁾ (0 $ V_S = 5.0 $ Volts	to 85°C)	V _{off}	0.115	0.25	0.384	Vdc
Full Scale Output ⁽⁴⁾ (0	to 85°C)	V _{FSO}	4.610	4.75	4.890	Vdc
Full Scale Span ⁽⁵⁾ (0 $\mathbb{Q} \setminus \mathbb{Q} = 5.0 \text{ Volts}$	to 85°C)	V _{FSS}	_	4.5	_	Vdc
Accuracy ⁽⁶⁾ (C	to 85°C)	_	_	_	±5.0	%V _{FSS}
Sensitivity		V/P	_	90		mV/kPa
Response Time ⁽⁷⁾		t _R	_	1.0		ms
Output Source Current at Full Scale Output		I _{o+}	_	0.1		mAdc
Warm-Up Time ⁽⁸⁾		_	_	20		ms
Offset Stability ⁽⁹⁾		_	_	±0.5		%V _{FSS}

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range.
- 3. Offset (Voff) is defined as the output voltage at the minimum rated pressure.
- 4. Full Scale Output (V_{FSO}) is defined as the output voltage at the maximum or full rated pressure.
- 5. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.
- 6. Accuracy (error budget) consists of the following:
 - Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range.
 - Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.
 - Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the
 - minimum or maximum rated pressure at 25°C.
 - TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C.
 - TcOffset: Output deviation with minimum pressure applied, over the temperature range of 0° to 85°C, relative to 25°C.
 - $\bullet \ \ \text{Variation from Nominal:} \ \ \text{The variation from nominal values, for Offset or Full Scale Span, as a percent of V_{FSS} at $25^{\circ}C$.}$
- 7. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 8. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the Pressure has been stabilized.
- 9. Offset Stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

The MPXV7025G series pressure sensor operating characteristics, and internal reliability and qualification tests are based on use of dry air as the pressure media. Media,

other than dry air, may have adverse effects on sensor performance and long-term reliability. Contact the factory for information regarding media compatibility in your application.

MPXV7025G

Figure 2 shows the sensor output signal relative to pressure input. Typical, minimum, and maximum output curves are shown for operation over a temperature range of 0° to 85°C using the decoupling circuit shown in Figure 3. The output will saturate outside of the specified pressure range.

Figure 3 shows the recommended decoupling circuit for interfacing the output of the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended.

Figure 2. Output versus Pressure Differential

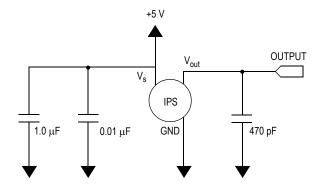
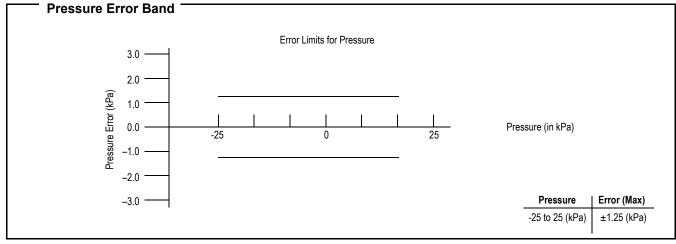



Figure 3. Recommended Power Supply Decoupling and Output Filtering


(For additional output filtering, please refer to Application Note AN1646.)

- Transfer Function

Nominal Transfer Value: $V_{out} = V_S (P \times 0.018 + 0.05)$ $\pm (Pressure Error \times Temp. Factor \times 0.018 \times V_S)$

 V_S = 5.0 V \pm 0.25 Vdc

PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing fluorosilicone gel which protects the die from harsh media. The MPX pressure

sensor is designed to operate with positive differential pressure applied, P1 > P2.

The Pressure (P1) side may be identified by using the table below:

Part Number	Case Type	Pressure (P1) Side Identifier
MPX7025GC6U/C6T1	482A	Gauge, Axial Port, SMT
MPXV7025GP	1369	Side with Port Attached
MPXV7025DP	1351	Side with Part Marking

Tire Pressure Monitoring Sensor Temperature Compensated and Calibrated, Fully Integrated, Digital Output

The Freescale Semiconductor MPXY8000 series sensor is an 8-pin tire monitoring sensor which is comprised of a variable capacitance pressure sensing element, a temperature sensing element, and an interface circuit (with a wake-up feature) all on a single chip. It is housed in a Super-Small Outline Package (SSOP), which includes a media protection filter. Specifically designed for the low power consumption requirements of tire pressure monitoring systems, it can combine with a Freescale Semiconductor remote keyless entry (RKE) system to facilitate a low-cost, highly integrated system.

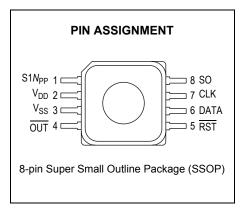
DETAILED DESCRIPTION

The block diagram of the MPXY8000 series sensor is shown in Figure 1. The pressure sensor is a capacitive transducer constructed using surface micromachining, the temperature sensor is constructed using a diffused resistor, and the interface circuit is integrated onto the same die as the sensors using a standard silicon CMOS process.

The conditioning of the pressure signal begins with a capacitance to voltage conversion (C to V) followed by a switched capacitor amplifier. This amplifier has adjustable offset and gain trimming. The offset and gain are factory calibrated, with calibration values stored in the EEPROM trim register. This amplifier also has temperature compensation circuits for both sensitivity and offset, which also are factory adjusted using the EEPROM trim register.

The pressure is monitored by a voltage comparator, which compares the measured value against an 8-bit threshold adjusted by a serial input. By adjusting the threshold and monitoring the state of the OUT pin the external device can check whether a low-pressure threshold has been crossed, or perform up to 8-bit A/D conversions.

The temperature is measured by a diffused resistor with a positive temperature coefficient driven by a current source, thereby creating a voltage. The room temperature value of this voltage is factory calibrated using the EEPROM trim register. A two-channel multiplexer can route either the pressure or temperature signal to a sampling capacitor that is monitored by a voltage comparator with variable threshold adjust, providing a digital output for temperature.


An internal low frequency, low power 5.4 kHz oscillator with a 14-stage divider provides a periodic pulse to the OUT pin (divide by 16384 for 3 seconds). This pulse can be used to wake up an external MCU to begin an interface with the device. An additional 10-stage divider will provide a pulse every 52 minutes which can be used to reset an external MCU.

The power consumption can be controlled by several operational modes selected by external pins.

MPXY8020A MPXY8040A

TIRE PRESSURE
MONITORING SENSOR
MPXY8020A:
OPTIMIZED FOR 250 kPa – 450 kPa
MPXY8040A:
OPTIMIZED FOR 500 kPa – 900 kPa

ORDERING INFORMATION				
Shipped in Tape & Reel				
MPXY8020A6U MPXY8040A6U	MPXY8020A6T1 MPXY8040A6T1			

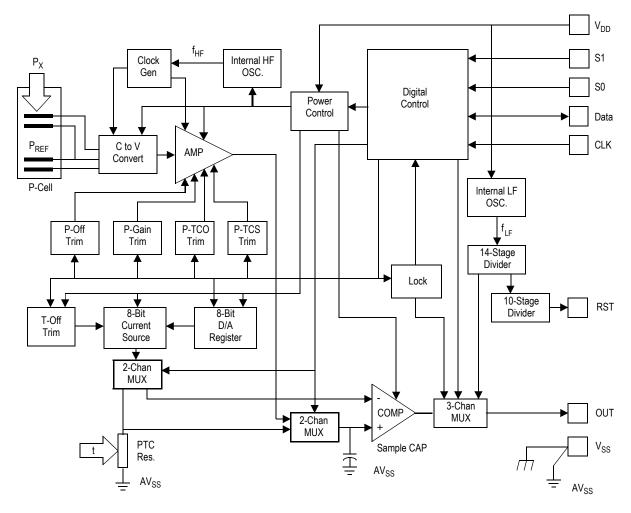


Figure 1. MPXY8000 Series Sensor Block Diagram

OPERATING MODES

The device has several operating modes dependent on the applied voltages to the S1 and S0 pins as shown in Table 1. In all the modes listed the channel multiplexers, D/A Register, LFO, and the output pulse dividers will always be powered up as long as there is a voltage source connected to the $V_{\rm DD}$ pin.

When only the S0 pin is at a logic one the pressure measuring circuit in the device is powered up and the pressure output signal is connected to the sample capacitor through a multiplexer. When the S0 pin returns to the low state the multiplexer will first turn off to store the signal on the sample capacitor before powering down the measuring circuitry.

When only the S1 pin is at a logic one the temperature measuring circuit in the device is powered up and the temperature output signal is connected to the sample capacitor through a multiplexer. When the S1 pin returns to the low state the multiplexer will first turn off to store the signal

on the sample capacitor before powering down the measuring circuitry.

NOTE: All of the EEPROM trim bits will be powered up regardless of whether the pressure or temperature measuring circuitry is activated.

NOTE: If the voltage on the S1 pin exceeds 2.5 times the voltage on the V_{DD} pin the device will be placed into its Trim/Test Mode.

NOTE: If the V_{DD} supply source is switched off in order to reduce current consumption, it is important that all input pins be driven LOW to avoid powering up the device.

If any input pin (S1, S0, DATA, or CLK) is driven HIGH while the V_{DD} supply is switched off, the device may be powered up through an ESD protection diode. In such a case, the effective V_{DD} voltage will be about 0.3 V less than the voltage applied to the input pin, and the full device I_{DD} current will be drawn from the device driving input.

Table 1. Operating Modes

S1	S0	Operating Mode	Pressure Measure System	Temp Measure System	A/D Output Comp.	LFO Oscill.	Serial Data Counter
0	0	Standby/Reset	OFF	OFF	OFF	ON	ACTIVE
0	1	Measure Pressure	ON	OFF	OFF	ON	RESET
1	0	Measure Temperature	OFF	ON	OFF	ON	RESET
1	1	Output Read	OFF	OFF	ON	ON	ACTIVE

PIN FUNCTIONS

The following paragraphs give a description of the general function of each pin.

V_{DD} and V_{SS} Pins

Power is supplied to the control IC through V_{DD} and V_{SS} . V_{DD} is the positive supply and V_{SS} is the digital and analog

ground. The control IC operates from a single power supply. Therefore, the conductors to the power supply should be connected to the V_{DD} and V_{SS} pins and locally decoupled as shown in Figure 2.

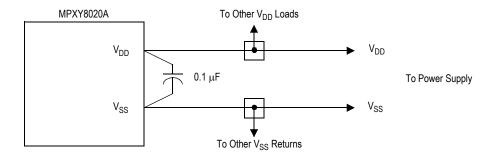


Figure 2. Recommended Power Supply Connections

OUT Pin

The OUT pin normally provides a digital signal related to the voltage applied to the voltage comparator and the threshold level shifted into an 8-bit register from an external device. When the device is placed in the standby mode the

OUT pin is driven high and will be clocked low when an overflow is detected from a clock divider (divide by 16384) driven by the LFO. This allows the OUT pin to wake up an external device such as an MCU.

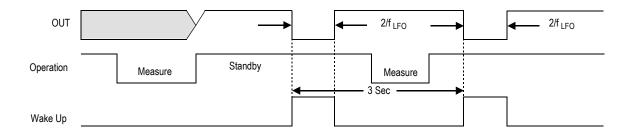


Figure 3. Pulse on OUT Pin During Standby Mode

RST Pin

The RST pin is normally driven high and will be clocked low when an overflow is detected from total clock divider

(divide by 16,777,216) driven by the LFO. This allows the RST pin to reset an external device such as an MCU. This pulse will appear on the RST pin approximately every

MPXY8000

3-223

52 minutes regardless of the operating mode of the device. The pulse lasts for two cycles of the LFO oscillator as shown in Figure 4. Since the RST pin is clocked from the same

divider string as the $\overline{\text{OUT}}$ pin, there will also be a pulse on the $\overline{\text{OUT}}$ pin when the $\overline{\text{RST}}$ pin pulses every 52 minutes.

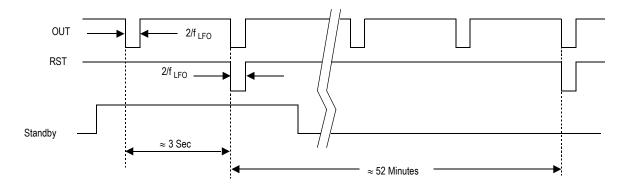


Figure 4. Pulse on RST Pin

S0 Pin

The S0 pin is used to select the mode of operation as shown in Table 1.

The S0 pin contains an internal Schmitt trigger as part of its input to improve noise immunity. The S0 pin has an internal pull-down device in order to provide a low level when the pin is left unconnected.

S1 Pin

The S1 pin is used to select the mode of operation, as shown in Table 1.

The S1 pin contains an internal Schmitt trigger as part of its input to improve noise immunity. This pin has an internal pull-down device to provide a low level when the pin is left unconnected.

The S1 pin also serves the purpose of enabling factory trim and test of the device.

The higher $V_{\mbox{\tiny PP}}$ programming voltage for the internal EEPROM trim register is also supplied through the S1 pin.

DATA Pin

The DATA pin is the serial data in (SDI) function for setting the threshold of the voltage comparator.

The DATA pin contains an internal Schmitt trigger as part of its input to improve noise immunity. This pin has an internal pull-down device to provide a low level when the pin is left unconnected.

CLK Pin

The CLK pin is used to provide a clock used for loading and shifting data into the DATA pin. The data on the DATA pin is clocked into a shift register on the rising edge of the CLK pin signal. The data is transferred to the D/A Register on the eighth falling edge of the CLK pin. This protocol may be handled by the SPI or SIOP serial I/O function found on some MCU devices.

The CLK pin contains an internal Schmitt trigger as part of its input to improve noise immunity. The CLK pin has an internal pull-down device to provide a low level when the pin is left unconnected.

Output Threshold Adjust

The state of the OUT pin is driven by a voltage comparator whose output state depends on the level of the input voltage on the sample capacitor and the level of an adjustable 8-bit threshold voltage. The threshold is adjusted by shifting data bits into the D/A Register (DAR) via the DATA pin while clocking the CLK pin. The timing of this data is shown in Figure 4. Data is transferred into the serial shift register on the rising edge of the CLK pin. On the falling edge of the 8^{th} clock the data in the serial shift register is latched into the parallel DAR register. The DAR remains powered up whenever $V_{\rm DD}$ is present. The serial data is clocked into the DATA pin starting with the MSB first. This sequence of threshold select bits is shown in Table 2.

Table 2. D/A Threshold Bit Assignment

Function		Bit Weight	Data Bit
	LSB	1	D0
		2	D1
		4	D2
Voltage Comparator Threshold Adjust (8 bits)		8	D3
		16	D4
		32	D5
		64	D6
	MSB	128	D7

MPXY8000

An analog to digital (A/D) conversion can be accomplished with eight (8) different threshold levels in a successive approximation algorithm; or the OUT pin can be set to trip at some alarm level. The voltage on the sample capacitor will maintain long enough for a single 8-bit conversion, but may need to be refreshed with a new measured reading if the read interval is longer than the specified hold time, $t_{\rm SH}$.

The counter that determines the number of clock pulses into the device is reset whenever the device is placed into the Measure Pressure or Measure Temperature Modes. This provides a means to reset the data transfer count in case the

clock stream is corrupted during a transmission. In these two modes the DATA and CLK pins should not be clocked to reduce noise in the captured pressure or temperature data. Any change in the DAR contents should be done during the Standby or Output Read Modes.

Both the serial bit counter and the state of the DAR are undefined following power up of the device. The serial bit counter can be reset by cycling either the SO pin or the S1/VPP pin to a high level and then back low. The DAR can then be reset to the lowest level by holding the DATA pin low while bursting the CLK pin with eight (8) clock pulses.

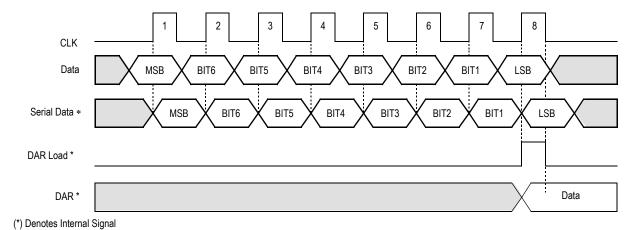


Figure 5. Serial Data Timing

Pressure Sensor Output

The pressure channel compares the output of its analog measurement circuit to the D/A reference voltage. The device is calibrated at two different nominal values depending on the calibration option.

Temperature Sensor Output

The temperature channel compares the output of a positive temperature coefficient (PTC) resistor driven by a switched current source. The current source is only active when the temperature channel is selected.

APPLICATIONS

Suggested application example is shown in Figure 6.

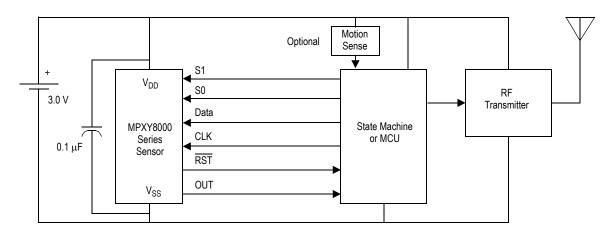


Figure 6. Application Example

ELECTRICAL SPECIFICATIONS

Maximum ratings are the extreme limits to which the device can be exposed without permanently damaging it. The device contains circuitry to protect the inputs against damage from high static voltages; however, do not apply voltages

higher than those shown in the table below. Keep V_{IN} and V_{OUT} within the range $V_{SS} \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{DD}$.

MPXY8000

Freescale Semiconductor

Table 3. Maximum Ratings

Rating	Symbol	Value	Unit
Supply Voltage	V _{DD}	-0.3 to +4.0	V
Short Circuit Capability (all pins excluding V _{DD} and V _{SS}) Maximum High Voltage for 5 minutes Minimum Low Voltage for 5 minutes	V _{SC}	V _{DD} V _{SS}	V V
Substrate Current Injection Current from any pin to V _{SS} –0.3 VDC)	I _{SUB}	600	μА
Electrostatic Discharge Human Body Model (HBM) Charged Device Model (CDM) Machine Model (MM)	V _{ESD} V _{ESD} V _{ESD}	±1000 ±1000 ±200	V V V
Storage Temperature Range Standard Temperature Range	T _{stg}	-40 to +150	°C

ELECTRO STATIC DISCHARGE (ESD)

WARNING: This device is sensitive to electrostatic discharge.

Extra precaution must be taken by the user to protect the chip from ESD. A charge of over 1000 volts can accumulate on the human body or associated test equipment. A charge of this magnitude can alter the performance or cause failure

of the chip. When handling the pressure sensor, proper ESD precautions should be followed to avoid exposing the device to discharges which may be detrimental to its performance.

OPERATING RANGE

These are the limits normally expected in the application which define range of operation.

Table 4. Operating Range

Characteristic	Symbol	Min	Тур	Max	Units
Supply Voltage	V _{DD}	2.1	3.0	3.6	V
Operating Temperature Range Standard Temperature Range	T _A	T _L -40	_	T _H +125	°C
Supply Current Drain Standby Mode -40°C to +85°C +85°C to +100°C +100°C to +125°C	I _{STBY} I _{STBY} I _{STBY}		0.6 0.8 1.5	0.9 1.2 2.2	μΑ μΑ μΑ
Read Mode -40°C to +125°C	I _{READ}	_	400	600	μΑ
Measure Temperature Mode -40°C to +125°C	I _{TEMP}	_	400	600	μΑ
Measure Pressure Mode -40°C to +10°C +10°C to +60°C +60°C to +125°C	I _{PRESS} I _{PRESS} I _{PRESS}	_ _ _	1400 1300 1200	1800 1700 1700	μΑ μΑ μΑ

Table 5. Electrical Characteristics

+2.1 V \leq V $_{DD} \leq$ +3.6 V, T $_{L} \leq$ T $_{A} \leq$ T $_{H},$ unless otherwise specified.

Characteristic	Symbol	Min	Тур	Max	Units
Output High Voltage DATA, OUT, RST (I _{Load} = 100 μA)	V _{OH}	V _{DD} -0.8	_	_	V
Output Low Voltage DATA, OUT, RST (I _{Load} = -100 μA)	V _{OL}	_	_	0.4	V
Input High Voltage S0, S1, DATA, CLK	V _{IH}	0.7 x V _{DD}	_	_	V
Input Low Voltage S0, S1, DATA, CLK	V _{IL}	V _{SS}	_	0.3 x V _{DD}	V
Input Hysteresis (V _{IH} — V _{IL}) S0, S1, DATA, CLK	V _{HYS}	100	200	_	mV
Input Low Current (at V _{IL}) S0, S1, DATA, CLK	I _{IL}	-5	-25	-100	μА
Input High Current (at V _{IH}) S0, S1, DATA, CLK	I _{IH}	-5	-35	-140	μA ⁽²⁾
Temperature Measurement (+2.5 V ≤ V _{DD} ≤ 3.0 V) D/A Conversion Code at −40°C D/A Conversion Code at −20°C D/A Conversion Code at 25°C D/A Conversion Code at 70°C D/A Conversion Code at 100°C D/A Conversion Code at 120°C D/A Conversion Code at 125°C	T_{-40} T_{-20} T_{25} T_{70} T_{100} T_{120} T_{125}	36 52 97 155 204 241 249	42 57 102 163 214 252 255	47 62 107 171 224 255 255	counts counts counts counts counts counts counts counts
Temperature Measurement (+2.1 V ≤ V _{DD} ≤ 3.6 V) D/A Conversion Code at −40°C D/A Conversion Code at −20°C D/A Conversion Code at 25°C D/A Conversion Code at 70°C D/A Conversion Code at 100°C D/A Conversion Code at 120°C D/A Conversion Code at 125°C	T ₋₄₀ T ₋₂₀ T ₂₅ T ₇₀ T ₁₀₀ T ₁₂₀ T ₁₂₅	36 52 97 154 203 240 249	42 57 102 163 214 252 255	49 64 107 172 225 255 255	counts counts counts counts counts counts
Temperature Sensitivity at 25°C		_	0.80		°C/bit
Approximate Temperature Output Response	OUT =	OUT = 74.7461 + 0.9752 x Ta + 0.0041 x Ta^2			

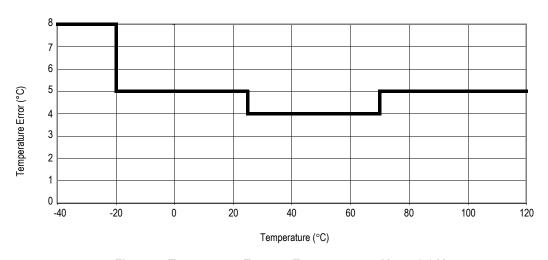


Figure 7. Temperature Error vs Temperature at V_{DD} = 3.0 V

MPXY8000

Table 6. Control Timing +2.1 V \leq V $_{DD}$ \leq +3.6 V, T $_{L}$ \leq T $_{A}$ \leq T $_{H},$ unless otherwise specified.

Characteristic	Symbol	Min	Тур	Max	Units
HFO Measurement Clock Frequency	f _{HF}	100	135	150	kHz
LFO Wake Up Clock Frequency $ Ta = -40^{\circ}C, +2.1V \le V_{DD} \le +3.6 $ $ Ta = +25^{\circ}C, +2.1V \le V_{DD} \le +3.6 $ $ Ta = +125^{\circ}C, +2.1V \le V_{DD} \le +3.6 $	f _{LF} f _{LF}	3300 3900 3800	5400 5400 5300	8000 7700 7000	Hz Hz Hz
Wake Up Pulse Pulse Timing Pulse Width	t _{WAKE}	_	16384 2	_	LFO clocks LFO clocks
Reset Pulse Pulse Timing Pulse Width	t _{RESET}		16,777,216 2		LFO clocks LFO clocks
Minimum Setup Time (DATA edge to CLK rise)	t _{SETUP}	100	_	_	nSec
Minimum Hold Time (CLK rise to DATA change)	t _{HOLD}	100	_	_	nSec
Measurement Response Time Recommended time to hold device in measurement mode Temperature Pressure	t _{TMEAS}	=	200 500	=	μSec μSec
Read Response Time (see Figure 8) From 90% V_{DD} on S0 to OUT less than V_{OL} or greater than V_{OH}	t _{READ}	_	50	100	μSec
Sample Capacitor Discharge Time From initial full scale D/A count (255) to drop 2 counts (253)	t _{SH}	20	_	_	mSec

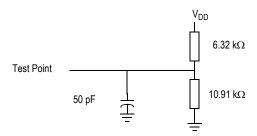


Figure 8. Control Timing Test Load for OUT and RST Pins

SENSOR CHARACTERISTICS (MPXY8020A)

Pressure Transfer Function

kPa = 2.5 x Output ± (Pressure Error)

Output = 8-bit digital pressure measurement (between 0-255)

Pressure Error (\pm kPa): 50 kPa \leq P < 250 kPa

T[°C] \ V _{DD} [V]	2.1	2.5	2.7	3.0	3.3	3.6
-40	72.5	72.5	32.5	32.5	32.5	35.0
-20	57.5	57.5	25.0	25.0	25.0	27.5
0	57.5	57.5	25.0	25.0	25.0	27.5
25	57.5	57.5	25.0	25.0	25.0	27.5
70	57.5	57.5	27.5	25.0	25.0	27.5
100	72.5	72.5	37.5	37.5	37.5	37.5
125	95.0	92.5	57.5	47.5	47.5	47.5

Pressure Error (±kPa): 250 kPa ≤ P ≤ 450 kPa

T[°C] \ V _{DD} [V]	2.1	2.5	2.7	3.0	3.3	3.6
-40	40.0	40.0	25.0	25.0	25.0	30.0
-20	32.5	25.0	15.0	15.0	15.0	20.0
0	30.0	25.0	10.0	10.0	10.0	15.0
25	30.0	25.0	7.5	7.5	7.5	15.0
70	35.0	25.0	10.0	7.5	7.5	15.0
100	40.0	40.0	25.0	25.0	25.0	30.0
125	62.5	60.0	35.0	35.0	35.0	35.0

Pressure Error (±kPa): 450 kPa < P ≤ 600 kPa

T[°C] \ V _{DD} [V]	2.1	2.5	2.7	3.0	3.3	3.6
-40	70.0	70.0	37.5	37.5	37.5	40.0
-20	55.0	55.0	25.0	25.0	25.0	35.0
0	55.0	55.0	22.5	22.5	22.5	35.0
25	55.0	55.0	22.5	22.5	22.5	35.0
70	55.0	55.0	25.0	25.0	25.0	35.0
100	70.0	70.0	32.5	32.5	32.5	40.0
125	90.0	90.0	47.5	47.5	47.5	52.5

Areas marked in grey indicate the typical operating range.

SENSOR CHARACTERISTICS (MPXY8020A)

Pressure Error

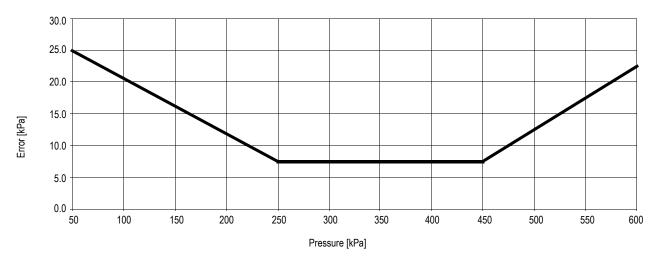


Figure 9. Pressure Error vs Pressure at T = 25°C, 2.7 V \leq V $_{DD} \leq$ 3.3 V

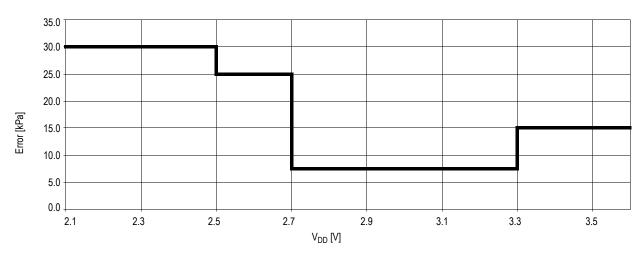


Figure 10. Pressure Error vs V_{DD} at T = 25°C, 250 kPa \leq P \leq 450 kPa

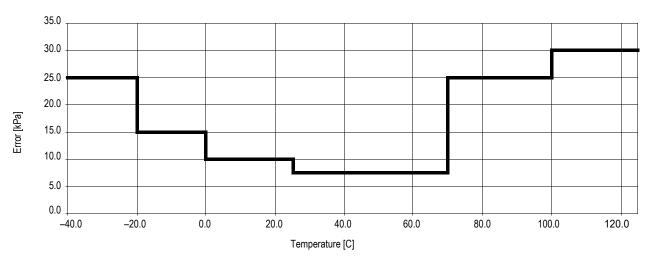


Figure 11. Pressure Error vs Temperature at V_{DD} = 3.0 V, 250 kPa $\leq P \leq 450$ kPa

SENSOR CHARACTERISTICS (MPXY8040A)

Pressure Transfer Function

kPa = 5.0 x Output ± (Pressure Error)

Output = 8-bit digital pressure measurement (between 0-255)

Pressure	Frror	[+kPal:	50 kPa	a < P <	< 500 kPa

T[°C] \ V _{DD} [V]	2.1	2.3	2.5	2.7	3.0	3.3	3.6
-40	80	75	70	70	70	70	75
-20	70	60	55	55	55	55	60
0	60	50	45	45	45	45	55
25	55	45	40	40	40	45	50
70	70	55	50	50	50	50	55
100	80	70	65	65	65	65	70
125	90	85	80	80	80	80	80
	Pres	sure Erro	r [±kPa]: 5	00 kPa ≤ P ·	< 900 kPa		
T[°C] \ V _{DD} [V]	2.1	2.3	2.5	2.7	3.0	3.3	3.6
-4 0	75	65	60	60	60	60	65
-20	50	35	25	25	25	40	50
0	40	30	20	20	20	25	35

Pressure Error [±kPa]: 900 kPa < P < 1000 kPa

T[°C] \ V _{DD} [V]	2.1	2.3	2.5	2.7	3.0	3.3	3.6
-40	120	110	110	100	100	110	120
-20	100	80	80	60	60	80	100
0	90	60	60	40	40	60	90
25	90	60	60	40	40	60	90
70	90	75	75	60	60	75	90
100	90	90	90	75	75	90	90
125	130	120	120	110	110	120	130

Pressure Error [±kPa]: 1000 kPa ≤ P < 1100 kPa

T[°C] \ V _{DD} [V]	2.1	2.3	2.5	2.7	3.0	3.3	3.6
-40	130	120	120	100	100	120	130
-20	110	90	90	60	70	90	110
0	90	80	80	50	50	80	90
25	90	80	80	50	50	80	90
70	90	75	75	60	60	75	90
100	130	110	110	100	100	110	130
125	140	130	130	120	120	130	140

Pressure Error [±kPa]: 1100 kPa ≤ P ≤1275 kPa

T[°C] \ V _{DD} [V]	2.1	2.3	2.5	2.7	3.0	3.3	3.6
-40	150	140	140	120	120	140	150
-20	120	100	100	80	80	100	120
0	110	90	90	80	80	90	110
25	110	90	90	80	80	90	110
70	120	120	120	120	120	130	150
100	160	140	140	140	140	160	160
125	210	200	200	200	200	210	210

Areas marked in grey indicate the typical operating range.

^(*) Output will max out (255 counts) at 1,275 kPa or higher.

Pressure values beyond 900 kPa are from characterization only. Pressure readings above 900 kPa are not tested in production

SENSOR CHARACTERISTICS (MPXY8040A)

Pressure Error

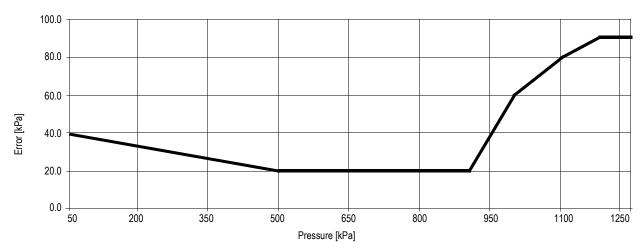


Figure 12. Pressure Error vs Pressure at T= 25°C, 2.5 V \leq V $_{DD} \leq$ 3.0 V

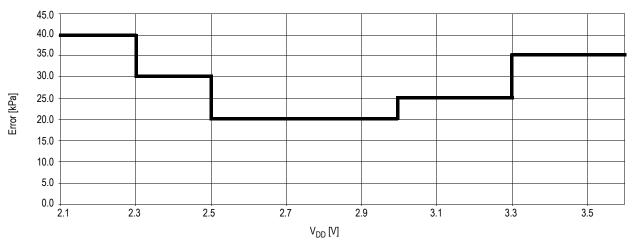


Figure 13. Pressure Error vs V_{DD} at T = 25°C, 500 kPa $\leq P \leq 900 kPa$

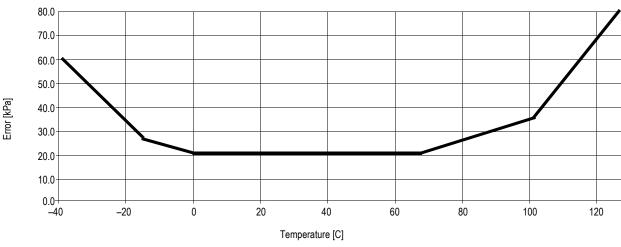


Figure 14. Pressure Error vs Temperature at V_{DD} = 3.0 V, 500 kPa $\leq P \leq 900 kPa$

MECHANICAL SPECIFICATIONS

Maximum ratings are the extreme limits to which the device can be exposed without permanently damaging it.

Keep V_{IN} and V_{OUT} within the range $V_{SS} \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{DD}.$

Table 7. Maximum Ratings

Rating	Symbol	Value	Unit
Maximum Pressure ⁽¹⁾	p _{max}	1400	kPa ⁽¹⁾
Centrifugal Force Effects (3 axis) Pressure measurement change less than 1% FSS	9cent	2000	g
Unpowered Shock (three sides, 0.5 mSec duration)	9 _{shock}	2000	g

^{1.} Tested for 5 minutes at 25°C.

MEDIA COMPATIBILITY

Media compatibility is as specified in Freescale Semiconductor document "SPD TPM Media Test."

Tire Pressure Monitoring Sensor Temperature Compensated and Calibrated, Fully Integrated, Digital Output

The Freescale Semiconductor, Inc. MPXY8021A sensor is an 8-pin tire monitoring sensor which is comprised of a variable capacitance pressure sensing element, a temperature sensing element, and an interface circuit (with a wake-up feature) all on a single chip. It is housed in a Super-Small Outline Package (SSOP), which includes a media protection filter. Specifically designed for the low power consumption requirements of tire pressure monitoring systems, it can combine with a Freescale remote keyless entry (RKE) system to facilitate a low-cost, highly integrated system.

DETAILED DESCRIPTION

The block diagram of the MPXY8021A sensor is shown in Figure 1. The pressure sensor is a capacitive transducer constructed using surface micromachining, the temperature sensor is constructed using a diffused resistor, and the interface circuit is integrated onto the same die as the sensors using a standard silicon CMOS process.

The conditioning of the pressure signal begins with a capacitance to voltage conversion (C to V) followed by a switched capacitor amplifier. This amplifier has adjustable offset and gain trimming. The offset and gain are factory calibrated, with calibration values stored in the EEPROM trim register. This amplifier also has temperature compensation circuits for both sensitivity and offset, which also are factory adjusted using the EEPROM trim register.

The pressure is monitored by a voltage comparator, which compares the measured value against an 8-bit threshold adjusted by a serial input. By adjusting the threshold and monitoring the state of the OUT pin the external device can check whether a low-pressure threshold has been crossed, or perform up to 8-bit A/D conversions.

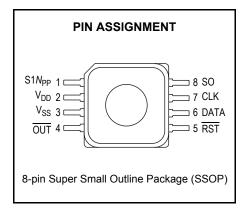
The temperature is measured by a diffused resistor with a positive temperature coefficient driven by a current source, thereby creating a voltage. The room temperature value of this voltage is factory calibrated using the EEPROM trim register. A two-channel multiplexer can route either the pressure or temperature signal to a sampling capacitor that is monitored by a voltage comparator with variable threshold adjust, providing a digital output for temperature.

An internal low frequency, low power 5.4 kHz oscillator with a 14-stage divider provides a periodic pulse to the OUT pin (divide by 16384 for 3 seconds). This pulse can be used to wake up an external MCU to begin an interface with the device. An additional 10-stage divider will provide a pulse every 52 minutes which can be used to reset an external MCU.

The power consumption can be controlled by several operational modes selected by external pins.

MPXY8021A

TIRE PRESSURE


MONITORING SENSOR

MPXY8021A:

OPTIMIZED FOR 250 kPA – 450 kPA

SUPER SMALL OUTLINE PACKAGE CASE 1352-03

ORDERING INFORMATION				
Shipped In Rails	Shipped in Tape & Reel			
MPXY8021A6U	MPXY8021A6T1			

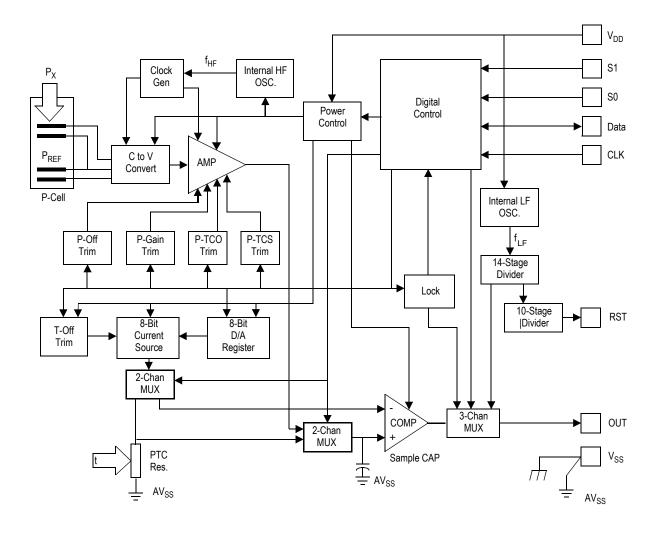


Figure 1. MPXY8021A Sensor Block Diagram

OPERATING MODES

The device has several operating modes dependent on the applied voltages to the S1 and S0 pins as shown in Table 1. In all the modes listed the channel multiplexers, D/A Register, LFO, and the output pulse dividers will always be powered up as long as there is a voltage source connected to the V_{DD} pin.

When only the S0 pin is at a logic one the pressure measuring circuit in the device is powered up and the pressure output signal is connected to the sample capacitor through a multiplexer. When the S0 pin returns to the low state the multiplexer will first turn off to store the signal on the sample capacitor before powering down the measuring circuitry.

When only the S1 pin is at a logic one the temperature measuring circuit in the device is powered up and the temperature output signal is connected to the sample capacitor through a multiplexer. When the S1 pin returns to the low state the multiplexer will first turn off to store the signal on the sample capacitor before powering down the measuring circuitry.

NOTE: All of the EEPROM trim bits will be powered up regardless of whether the pressure or temperature measuring circuitry is activated.

NOTE: If the voltage on the S1 pin exceeds 2.5 times the voltage on the V_{DD} pin the device will be placed into its Trim/Test Mode.

NOTE: If the V_{DD} supply source is switched off in order to reduce current consumption, it is important that all input pins be driven LOW to avoid powering up the device.

If any input pin (S1, S0, DATA, or CLK) is driven HIGH while the V_{DD} supply is switched off, the device may be powered up through an ESD protection diode. In such a case, the effective V_{DD} voltage will be about 0.3 V less than the voltage applied to the input pin, and the full device I_{DD} current will be drawn from the device driving input.

Table 1. Operating Modes

				Circuitry Powered				
S1	S0	Operating Mode	Pressure Measure System	Temp Measure System	A/D Output Comp.	LFO Oscill.	Serial Data Counter	
0	0	Standby/Reset	OFF	OFF	OFF	ON	ACTIVE	
0	1	Measure Pressure	ON	OFF	OFF	ON	RESET	
1	0	Measure Temperature	OFF	ON	OFF	ON	RESET	
1	1	Output Read	OFF	OFF	ON	ON	ACTIVE	

PIN FUNCTIONS

The following paragraphs give a description of the general function of each pin.

V_{DD} and V_{SS} Pins

Power is supplied to the control IC through V_{DD} and V_{SS} . V_{DD} is the positive supply and V_{SS} is the digital and analog

ground. The control IC operates from a single power supply. Therefore, the conductors to the power supply should be connected to the V_{DD} and V_{SS} pins and locally decoupled as shown in Figure 2.

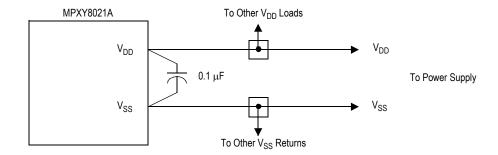


Figure 2. Recommended Power Supply Connections

OUT Pin

The OUT pin normally provides a digital signal related to the voltage applied to the voltage comparator and the threshold level shifted into an 8-bit register from an external device. When the device is placed in the standby mode the

OUT pin is driven high and will be clocked low when an overflow is detected from a clock divider (divide by 16384) driven by the LFO. This allows the OUT pin to wake up an external device such as an MCU.

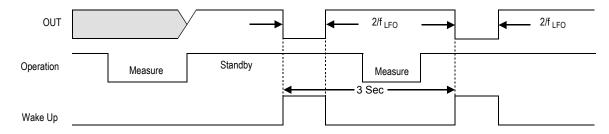


Figure 3. Pulse on OUT Pin During Standby Mode

RST Pin

The $\overline{\text{RST}}$ pin is normally driven high and will be clocked low when an overflow is detected from total clock divider (divide by 16,777,216) driven by the LFO. This allows the $\overline{\text{RST}}$ pin to reset an external device such as an MCU. This pulse will appear on the $\overline{\text{RST}}$ pin approximately every 52

minutes regardless of the operating mode of the device. The pulse lasts for two cycles of the LFO oscillator as shown in Figure 4. Since the RST pin is clocked from the same divider string as the \underbrace{OUT}_{pin} , there will also be a pulse on the \underbrace{OUT}_{pin} when the \underbrace{RST}_{pin} pulses every 52 minutes.

MPXY8021A

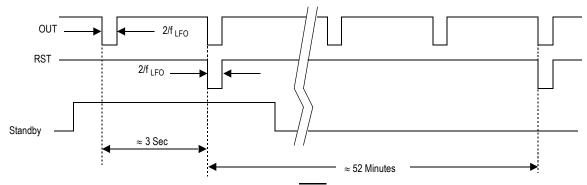


Figure 4. Pulse on RST Pin

S0 Pin

The S0 pin is used to select the mode of operation as shown in Table 1.

The S0 pin contains an internal Schmitt trigger as part of its input to improve noise immunity. The S0 pin has an internal pull-down device in order to provide a low level when the pin is left unconnected.

S1 Pin

The S1 pin is used to select the mode of operation, as shown in Table 1.

The S1 pin contains an internal Schmitt trigger as part of its input to improve noise immunity. This pin has an internal pull-down device to provide a low level when the pin is left unconnected.

The S1 pin also serves the purpose of enabling factory trim and test of the device.

The higher V_{PP} programming voltage for the internal EEPROM trim register is also supplied through the S1 pin.

DATA Pin

The DATA pin is the serial data in (SDI) function for setting the threshold of the voltage comparator.

The DATA pin contains an internal Schmitt trigger as part of its input to improve noise immunity. This pin has an internal pull-down device to provide a low level when the pin is left unconnected.

CLK Pin

The CLK pin is used to provide a clock used for loading and shifting data into the DATA pin. The data on the DATA pin is clocked into a shift register on the rising edge of the CLK pin signal. The data is transferred to the D/A Register on the eighth falling edge of the CLK pin. This protocol may be handled by the SPI or SIOP serial I/O function found on some MCU devices.

The CLK pin contains an internal Schmitt trigger as part of its input to improve noise immunity. The CLK pin has an internal pull-down device to provide a low level when the pin is left unconnected.

Output Threshold Adjust

The state of the OUT pin is driven by a voltage comparator whose output state depends on the level of the input voltage on the sample capacitor and the level of an adjustable 8-bit threshold voltage. The threshold is adjusted by shifting data bits into the D/A Register (DAR) via the DATA pin while clocking the CLK pin. The timing of this data is shown in Figure 5. Data is transferred into the serial shift register on the rising edge of the CLK pin. On the falling edge of the 8^{th} clock the data in the serial shift register is latched into the parallel DAR register. The DAR remains powered up whenever V_{DD} is present. The serial data is clocked into the DATA pin starting with the MSB first. This sequence of threshold select bits is shown in Table 2.

Table 2. D/A Threshold Bit Assignment

Function		Bit Weight	Data Bit
	LSB	1	D0
		2	D1
		4	D2
Voltage Comparator Threshold Adjust (8 bits)		8	D3
		16	D4
		32	D5
		64	D6
	MSB	128	D7

An analog to digital (A/D) conversion can be accomplished with eight (8) different threshold levels in a successive approximation algorithm; or the OUT pin can be set to trip at some alarm level. The voltage on the sample capacitor will maintain long enough for a single 8-bit conversion, but may need to be refreshed with a new measured reading if the read interval is longer than the specified hold time, t_{SH}.

The counter that determines the number of clock pulses into the device is reset whenever the device is placed into the Measure Pressure or Measure Temperature Modes. This provides a means to reset the data transfer count in case the

clock stream is corrupted during a transmission. In these two modes the DATA and CLK pins should not be clocked to reduce noise in the captured pressure or temperature data. Any change in the DAR contents should be done during the Standby or Output Read Modes.

Both the serial bit counter and the state of the DAR are undefined following power up of the device. The serial bit counter can be reset by cycling either the SO pin or the S1/VPP pin to a high level and then back low. The DAR can then be reset to the lowest level by holding the DATA pin low while bursting the CLK pin with eight (8) clock pulses.

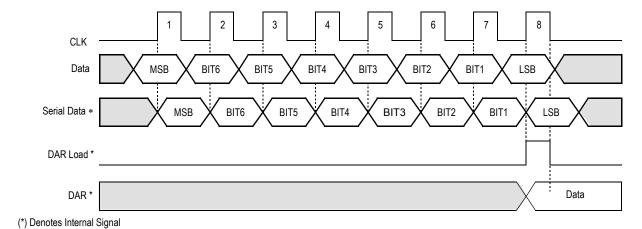


Figure 5. Serial Data Timing

Pressure Sensor Output

The pressure channel compares the output of its analog measurement circuit to the D/A reference voltage. The device is calibrated at two different nominal values depending on the calibration option.

Temperature Sensor Output

The temperature channel compares the output of a positive temperature coefficient (PTC) resistor driven by a switched current source. The current source is only active when the temperature channel is selected.

APPLICATIONS

Suggested application example is shown in Figure 6.

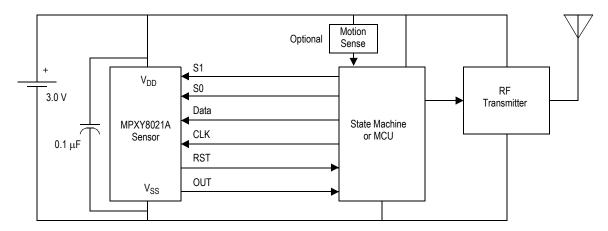


Figure 6. Application Example

ELECTRICAL SPECIFICATIONS

Maximum ratings are the extreme limits to which the device can be exposed without permanently damaging it. The device contains circuitry to protect the inputs against damage

from high static voltages; however, do not apply voltages higher than those shown in the table below. Keep V_{IN} and V_{OUT} within the range $V_{SS} \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{DD}.$

MPXY8021A

Table 3. Maximum Ratings

Rating	Symbol	Value	Unit
Supply Voltage	V_{DD}	-0.3 to +4.0	V
Short Circuit Capability (all pins excluding V _{DD} and V _{SS}) Maximum High Voltage for 5 minutes Minimum Low Voltage for 5 minutes	V _{SC}	V _{DD} V _{SS}	V
Substrate Current Injection Current from any pin to V _{SS} –0.3 VDC)	I _{SUB}	600	μА
Electrostatic Discharge Human Body Model (HBM) Charged Device Model (CDM) Machine Model (MM)	V _{ESD} V _{ESD} V _{ESD}	±1000 ±1000 ±200	V V V
Storage Temperature Range Standard Temperature Range	T _{stg}	-40 to +150	°C

OPERATING RANGE

The limits normally expected in the application which define range of operation.

Table 4. Operating Range

Characteristic	Symbol	Min	Тур	Max	Units
Supply Voltage	V _{DD}	2.1	3.0	3.3	V
Operating Temperature Range Standard Temperature Range	T _A	T _L -40	_	T _H +125	°C
Pressure Operating Range MPXY8021A	P _{637.5}	50	_	637.5	kPa
Supply Current Drain Standby Mode -40°C to +85°C +85°C to +100°C +100°C to +125°C	I _{STBY} I _{STBY} I _{STBY}	_ _ _	0.6 0.8 1.5	0.9 1.2 2.2	μΑ μΑ μΑ
Read Mode -40°C to +125°C	I _{READ}	_	400	600	μА
Measure Temperature Mode -40°C to +125°C	I _{TEMP}	_	400	600	μА
Measure Pressure Mode -40°C to +10°C +10°C to +60°C +60°C to +125°C	I _{PRESS} I _{PRESS} I _{PRESS}	_ _ _	1400 1300 1200	1800 1700 1700	μΑ μΑ μΑ

Table 5. Electrical Characteristics

+2.1 V \leq VDD \leq +3.6 V, TL \leq TA \leq TH, unless otherwise specified

Characteristic	Symbol	Min	Тур	Max	Units
Output High Vo <u>ltage</u> DATA, OUT, RST (I _{Load} = 100 μA)	V _{OH}	V _{DD} -0.8	_	_	V
Output Low Voltage DATA, OUT, RST (I _{Load} = -100 μA)	V _{OL}	_	_	0.4	V
Input High Voltage S0, S1, DATA, CLK	V _{IH}	0.7 x V _{DD}	_	_	V
Input Low Voltage S0, S1, DATA, CLK	V _{IL}	V _{SS}	_	0.3 x V _{DD}	V
Input Hysteresis (V _{IH} — V _{IL}) S0, S1, DATA, CLK	V _{HYS}	100	200	_	mV
Input Low Current (at V _{IL}) S0, S1, DATA, CLK	I _{IL}	-5	-25	-100	μА
Input High Current (at V _{IH}) S0, S1, DATA, CLK	I _{IH}	-5	-35	-140	μΑ ⁽²⁾
Temperature Measurement (+2.1 V \leq V _{DD} $<$ +2.5 V) D/A Conversion Code at -40°C D/A Conversion Code at -20°C D/A Conversion Code at 25°C D/A Conversion Code at 70°C D/A Conversion Code at 100°C D/A Conversion Code at 120°C D/A Conversion Code at 125°C	T ₋₄₀ T ₋₂₀ T ₂₅ T ₇₀ T ₁₀₀ T ₁₂₀	34 52 97 154 203 240 249	42 57 102 163 214 252 255	51 67 107 172 225 255 255	counts counts counts counts counts counts counts counts
Temperature Measurement (+2.5 V ≤ V _{DD} ≤ +3.0 V) D/A Conversion Code at -40°C D/A Conversion Code at -20°C D/A Conversion Code at 25°C D/A Conversion Code at 70°C D/A Conversion Code at 100°C D/A Conversion Code at 120°C D/A Conversion Code at 125°C	T ₋₄₀ T ₋₂₀ T ₂₅ T ₇₀ T ₁₀₀ T ₁₂₀	36 52 97 155 204 241 249	42 57 102 163 214 252 255	50 64 107 171 224 255 255	counts counts counts counts counts counts counts counts
Temperature Measurement (+3.0 V < V _{DD} ≤ +3.6 V) D/A Conversion Code at -40°C D/A Conversion Code at -20°C D/A Conversion Code at 25°C D/A Conversion Code at 70°C D/A Conversion Code at 100°C D/A Conversion Code at 120°C D/A Conversion Code at 125°C	T ₋₄₀ T ₋₂₀ T ₂₅ T ₇₀ T ₁₀₀ T ₁₂₀ T ₁₂₅	36 52 97 154 203 240 249	42 57 102 163 214 252 255	49 64 107 172 225 255 255	counts counts counts counts counts counts counts counts
Temperature Sensitivity at 25°C		_	0.80		°C/bit
Approximate Temperature Output Response	OUT =	74.7461 + 0.975	52 x Ta + 0.0041	x Ta^2	counts

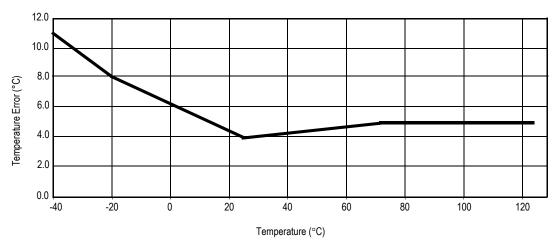


Figure 7. Temperature Error vs Temperature at V_{DD} = 3.0 V

Table 6. Control Timing +2.1 V \leq V $_{DD} \leq$ +3.6 V, T $_{L} \leq$ T $_{A} \leq$ T $_{H},$ unless otherwise specified.

Characteristic	Symbol	Min	Тур	Max	Units
HFO Measurement Clock Frequency	f _{HF}	100	135	150	kHz
LFO Wake Up Clock Frequency $ Ta = -40^{\circ}C, +2.1V \le V_{DD} \le +3.6 $ $ Ta = +25^{\circ}C, +2.1V \le V_{DD} \le +3.6 $ $ Ta = +125^{\circ}C, +2.1V \le V_{DD} \le +3.6 $	f _{LF} f _{LF}	3300 3900 3800	5400 5400 5300	8000 7700 7000	Hz Hz Hz
Wake Up Pulse Pulse Timing Pulse Width	t _{WAKE} t _{WPW}		16384 2	1 1	LFO clocks LFO clocks
Reset Pulse Pulse Timing Pulse Width	t _{RESET}	_	16,777,216 2	1 1	LFO clocks LFO clocks
Minimum Setup Time (DATA edge to CLK rise)	t _{SETUP}	100	_	_	nSec
Minimum Hold Time (CLK rise to DATA change)	t _{HOLD}	100	_	_	nSec
Measurement Response Time Recommended time to hold device in measurement mode Temperature Pressure	t _{TMEAS}	_ _	200 500		μSec μSec
Read Response Time (see Figure 8) From 90% V_{DD} on S0 to OUT less than V_{OL} or greater than V_{OH}	t _{READ}	_	50	100	μSec
Sample Capacitor Discharge Time From initial full scale D/A count (255) to drop 2 counts (253)	t _{SH}	20	_	_	mSec

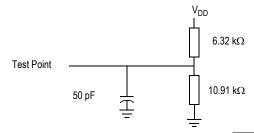


Figure 8. Control Timing Test Load for OUT and RST Pins

MPXY8021A

SENSOR CHARACTERISTICS (MPXY8021A)

PRESSURE TRANSFER FUNCTION

kPa = 2.5 x Output ± (Pressure Error) Output = 8-bit digital pressure measurement (between 0-255)

Pressure Error (±kPa): 50 kPa ≤ P < 250 kPa

T[°C] \ V _{DD} [V]	2.1	2.5	2.7	3.0	3.3	3.6
-40	72.5	72.5	35.0	35.0	35.0	37.5
-20	57.5	57.5	30.0	30.0	30.0	35.0
0	57.5	57.5	25.0	25.0	25.0	27.5
25	57.5	57.5	25.0	25.0	25.0	27.5
70	57.5	57.5	27.5	25.0	25.0	27.5
100	72.5	72.5	37.5	37.5	37.5	37.5
125	95.0	92.5	57.5	47.5	47.5	47.5

Pressure Error (\pm kPa): 250 kPa \leq P \leq 450 kPa

T[°C] \ V _{DD} [V]	2.1	2.5	2.7	3.0	3.3	3.6
-40	40.0	40.0	30.0	30.0	30.0	35.0
-20	32.5	25.0	20.0	20.0	20.0	25.0
0	30.0	25.0	10.0	10.0	10.0	15.0
25	30.0	25.0	7.5	7.5	7.5	15.0
70	35.0	25.0	10.0	7.5	7.5	15.0
100	40.0	40.0	25.0	25.0	25.0	30.0
125	62.5	60.0	35.0	35.0	35.0	35.0

Pressure Error (±kPa): 450 kPa < P ≤ 637.5 kPa

T[°C] \ V _{DD} [V]	2.1	2.5	2.7	3.0	3.3	3.6
-40	70.0	70.0	40.0	40.0	40.0	40.0
-20	55.0	55.0	30.0	30.0	30.0	35.0
0	55.0	55.0	22.5	22.5	22.5	35.0
25	55.0	55.0	22.5	22.5	22.5	35.0
70	55.0	55.0	25.0	25.0	25.0	35.0
100	70.0	70.0	32.5	32.5	32.5	40.0
125	90.0	90.0	47.5	47.5	47.5	52.5

Areas marked in grey indicate the typical operating range.

PRESSURE ERROR

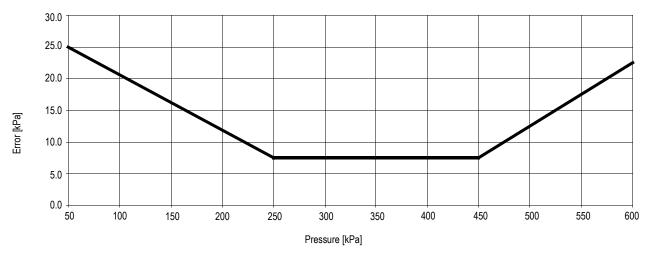


Figure 9. Pressure Error vs Pressure at T = 25°C, 2.7 V \leq $V_{DD} \leq$ 3.3 V

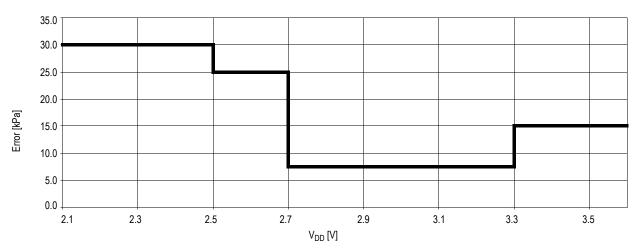


Figure 10. Pressure Error vs V_{DD} at T = 25°C, 250 kPa $\leq P \leq 450$ kPa

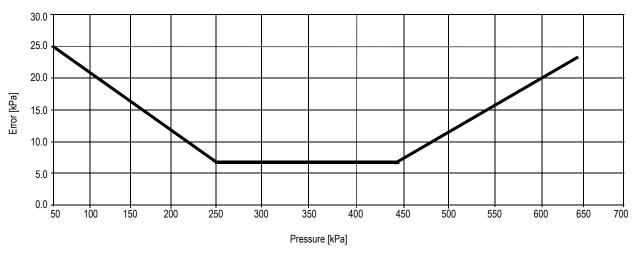


Figure 11. Pressure Error vs Temperature at V_{DD} = 3.0 V, 250 kPa $\leq P \leq 450$ kPa

MECHANICAL SPECIFICATIONS

MAXIMUM RATINGS

Maximum ratings are the extreme limits to which the device can be exposed without permanently damaging it.

 $\begin{aligned} & \text{Keep V}_{IN} \text{ and V}_{OUT} \text{ within the range:} \\ & \text{V}_{SS} \leq (\text{V}_{IN} \text{ or V}_{OUT}) \leq \text{V}_{DD}. \end{aligned}$

Table 7. Maximum Ratings

Rating	Symbol	Value	Unit
Maximum Pressure ⁽¹⁾	p _{max}	1400	kPa ⁽¹⁾
Centrifugal Force Effects (3 axis) Pressure measurement change less than 1% FSS	9 _{CENT}	2000	g
Unpowered Shock (three sides, 0.5 mSec duration)	9 _{shock}	2000	g

^{1.} Tested for 5 minutes at 25°C.

MEDIA COMPATIBILITY

Media compatibility is as specified in the Freescale document "SPD TPM Media Test."

Compensating for Nonlinearity in the MPX10 Series Pressure Transducer

by: Carl Demington
Design Engineering

INTRODUCTION

This application note describes a technique to improve the linearity of the Freescale Semiconductor, Inc. MPX10 series (i.e., MPX10, MPXV10, and MPX12 pressure sensors) pressure transducers when they are interfaced to a microprocessor system. The linearization technique allows the user to obtain both high sensitivity and good linearity in a cost effective system.

The MPX10, MPXV10 and MPX12 pressure transducers are semiconductor devices which give an electrical output signal proportional to the applied pressure over the pressure range of 0-10 kPa (0-75 mm Hg). These devices use a unique transverse voltage-diffused silicon strain-gauge which is sensitive to stress produced by pressure applied to a thin silicon diaphragm.

One of the primary considerations when using a pressure transducer is the linearity of the transfer function, since this parameter has a direct effect on the total accuracy of the system, and compensating for nonlinearities with peripheral circuits is extremely complicated and expensive. The purpose of this document is to outline the causes of nonlinearity, the trade-offs that can be made for increased system accuracy, and a relatively simple technique that can be utilized to maintain system performance, as well as system accuracy.

ORIGINS OF NONLINEARITY

Nonlinearity in semiconductor strain-gauges is a topic that has been the target of many experiments and much discussion. Parameters such as resistor size and orientation, surface impurity levels, oxide passivation thickness and growth temperatures, diaphragm size and thickness are all contributors to nonlinear behavior in silicon pressure transducers. The Freescale X-ducer was designed to minimize these effects. This goal was certainly accomplished in the MPX2000 series which have a maximum nonlinearity of 0.1percent FS. However, to obtain the higher sensitivity of the MPX10 series, a maximum nonlinearity of ±1percent FS has to be allowed. The primary cause of the additional nonlinearity in the MPX10 series is due to the stress induced in the diaphragm by applied pressure being no longer linear.

One of the basic assumptions in using semiconductor strain-gauges as pressure sensors is that the deflection of the diaphragm when pressure is applied is small compared to the thickness of the diaphragm. With devices that are very sensitive in the low pressure ranges, this assumption is no longer valid. The deflection of the diaphragm is a considerable percentage of the diaphragm thickness, especially in devices with higher sensitivities (thinner diaphragms). The resulting stresses do not vary linearly with applied pressure. This behavior can be reduced somewhat by increasing the area of the diaphragm and consequently thickening the diaphragm. Due to the constraint, the device is required to have high sensitivity over a fairly small pressure range, and the nonlinearity cannot be eliminated. Much care was given in the design of the MPX10 series to minimize the nonlinear behavior. However, for systems which require greater accuracy, external techniques must be used to account for this behavior.

PERFORMANCE OF AN MPX DEVICE

The output versus pressure of a typical MPX12 along with an end-point straight line is shown in Figure 1. All nonlinearity errors are referenced to the end-point straight line (see data sheet). Notice there is an appreciable deviation from the end-point straight line at midscale pressure. This shape of curve is consistent with MPX10 and MPXV10, as well as MPX12 devices, with the differences between the parts being the magnitude of the deviation from the end-point line. The major tradeoff that can be made in the total device performance is sensitivity versus linearity.

Figure 2 shows the relationship between full scale span and nonlinearity error for the MPX10 series of devices. The data shows the primary contribution to nonlinearity is nonproportional stress with pressure, while assembly and packaging stress (scatter of the data about the line) is fairly small and well controlled. It can be seen that relatively good accuracies (<0.5% FS) can be achieved at the expense of reduced sensitivity, and for high sensitivity the nonlinearity errors increase rapidly. The data shown in Figure 2 was taken at room temperature with a constant voltage excitation of 3.0 volts.

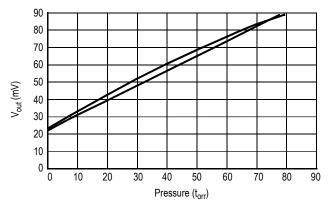


Figure 1. MPX12 Linearity Analysis Raw Data

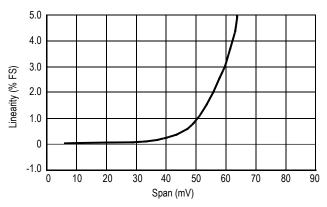


Figure 2. MPX10 Series Span versus Linearity

Compensation for Nonlinearity

The nonlinearity error shown in Figure 1 arises from the assumption that the output voltage changes with respect to pressure in the following manner:

It is obvious that the true output does not follow this simple straight line equation. Therefore, if an expression could be determined with additional higher order terms that more closely described the output behavior, increased accuracies would be possible. The output expression would then become

$$V_{\text{out}} = V_{\text{off}} + (B_0 + B_1 * P + B_2 * P^2 + B_3 * P^3 + ...)$$
 (2)

where B_0 , B_1 , B_2 , B_3 , etc. are sensitivity coefficients. In order to determine the sensitivity coefficients given in equation (2) for the MPX10 series of pressure transducers, a polynomial regression analysis was performed on data taken from 139 devices with full scale spans ranging from 30 to 730 mV. It was found that second order terms are sufficient to give excellent agreement with experimental data. The calculated regression coefficients were typically 0.99999+ with the worst case being 0.99999. However, these sensitivity coefficients demonstrated a strong correlation with the full scale span of the device for which they were calculated. The correlation of B_0 , B_1 , and B_2 with full scale span is shown in Figure 3 through Figure 5.

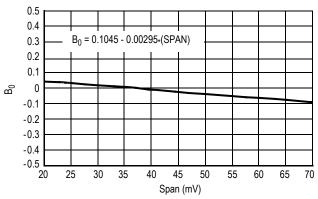


Figure 3. MPX10 Linearity Analysis — Correlation of $B_0 V_{out} = B_0 + B_1 (P) + B_2 (P)^2$

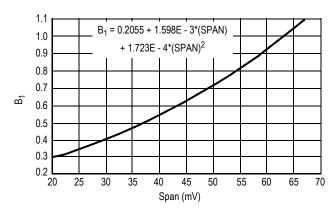


Figure 4. MPX10 Linearity Analysis — Correlation of $B_1 V_{out} = B_0 + B_1 (P) + B_2 (P)^2$

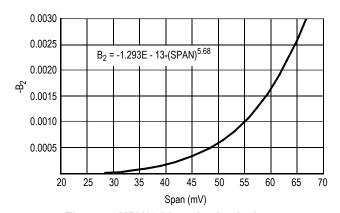


Figure 5. MPX10 Linearity Analysis — Correlation of $B_2 V_{out} = B_0 + B_1 (P) + B_2 (P)^2$

In order to simplify the determination of these coefficients for the user, further regression analysis was performed so that expressions could be given for each coefficient as a function of full scale span. This would then allow the user to do a single pressure measurement, a series of calculations, and analytically arrive at the equation of the line that describes the output behavior of the transducer. Nonlinearity errors were then calculated by comparing experimental data with the values

calculated using equation [2] and the sensitivity coefficients given by the regression analysis. The resulting errors are shown in Figure 6 through Figure 9 at various pressure points. While using this technique has been successful in reducing the

errors due to nonlinearity, the considerable spread and large number of devices that showed errors >1percent indicate this technique was not as successful as desired.

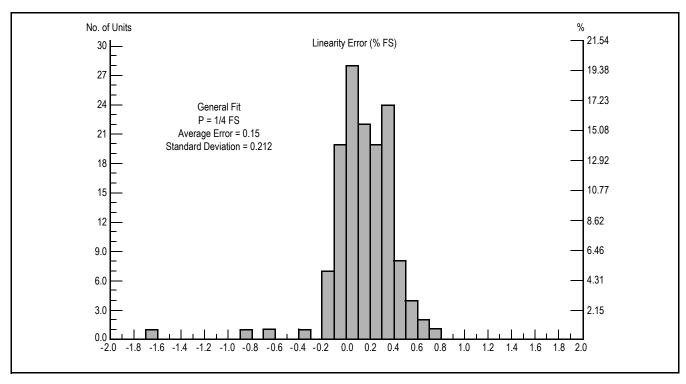


Figure 6. Linearity Error of General Fit Equation at 1/4 FS

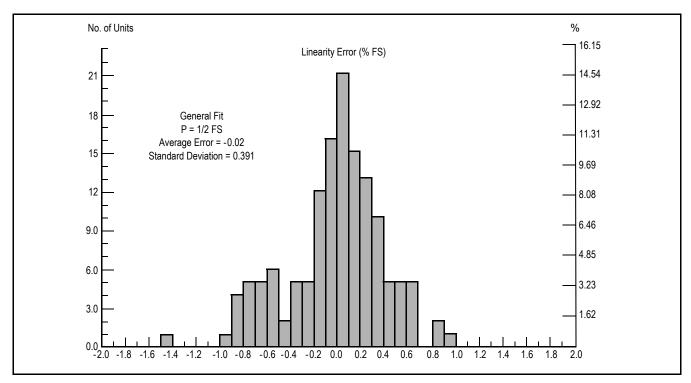


Figure 7. Linearity Error of General Fit Equation at 1/2 FS

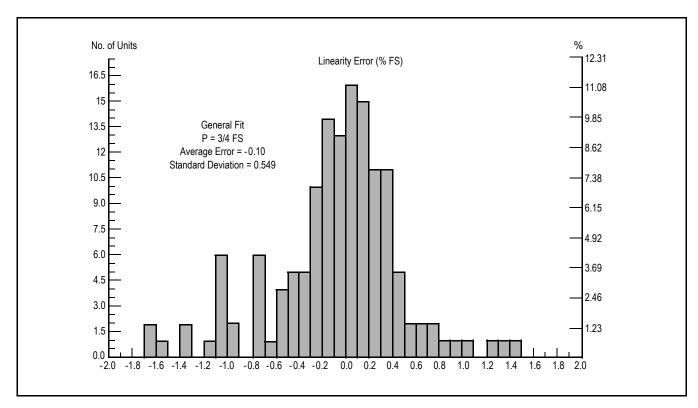


Figure 8. Linearity Error of General Fit Equation at 3/4 FS

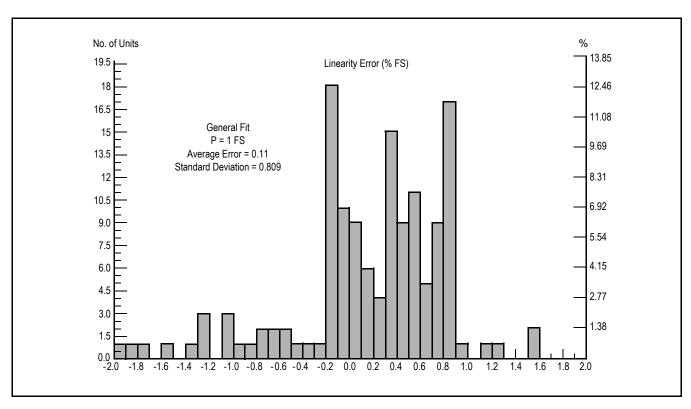


Figure 9. Linearity Error of General Fit Equation at FS

A second technique that still uses a single pressure measurement as the input was investigated. In this method, the sensitivity coefficients are calculated using a piece-wise linearization technique where the total span variation is divided into four windows of 10 mV (i.e., 30-39.99, 40-49.99, etc.) and coefficients calculated for each window. The errors that arise out of using this method are shown in Figure 10 through Figure 13. This method results in a large majority of the devices

having errors <0.5%, while only one of the devices was >1%. The sensitivity coefficients that are substituted into equation [2] for the different techniques are given in Table 1. It is important to note that for either technique the only measurement that is required by the user in order to clearly determine the sensitivity coefficients is the determination of the full scale span of the particular pressure transducer.

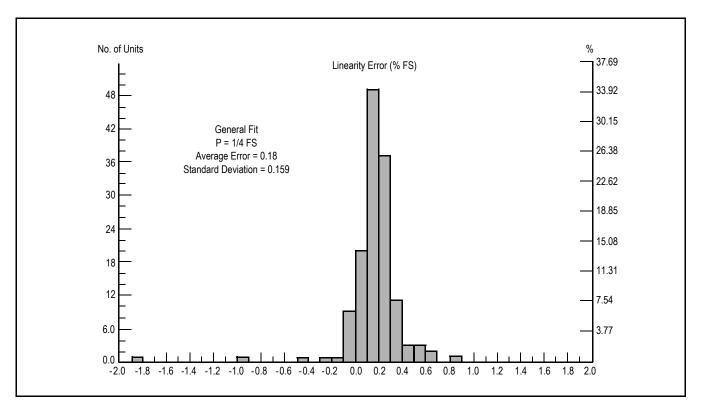


Figure 10. Linearity Error of Piece-Wise Linear Fit at 1/4 FS

Table 1. Comparison of Linearization Methods

Span Window	В ₀	B ₁	B ₂		
	General Fit				
	0.1045 + 2.95E - 3X	0.2055 + 1.598E - 3X + 1.723E - 4X ²	1.293E - 13X ^{5.681}		
	Piece-Wise Linear Fit				
30-39.99	0.08209 - 2.246E - 3X	0.02433 = 1.430E - 2X	-1.961E - 4 + 8.816E - 6X		
40-49.99	0.1803 - 4.67E - 3X	-0.119 + 1.655E - 2X	-1.572E - 3 + 4.247E - 5X		
50-59.99	0.1055 - 3.051E - 3X	-0.355 + 2.126E - 2X	-5.0813 - 3 + 1.116E - 4X		
60-69.99	-0.288 + 3.473E - 3X	-0.361 + 2.145E - 2X	-5.928E - 3 + 1.259E - 4X		

X = Full Scale Span

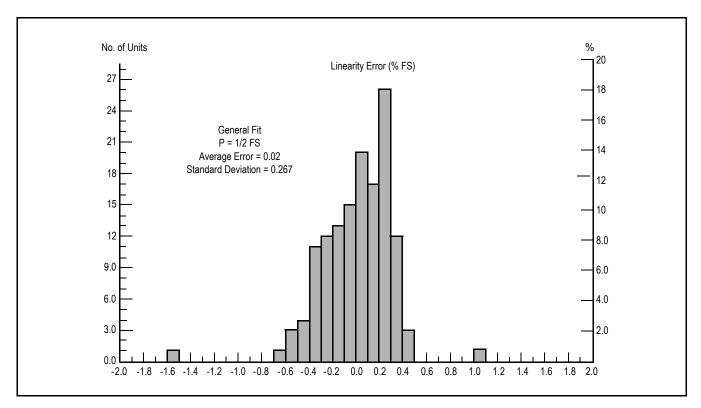


Figure 11. Linearity Error of Piece-Wise Linear Fit at 1/2 FS

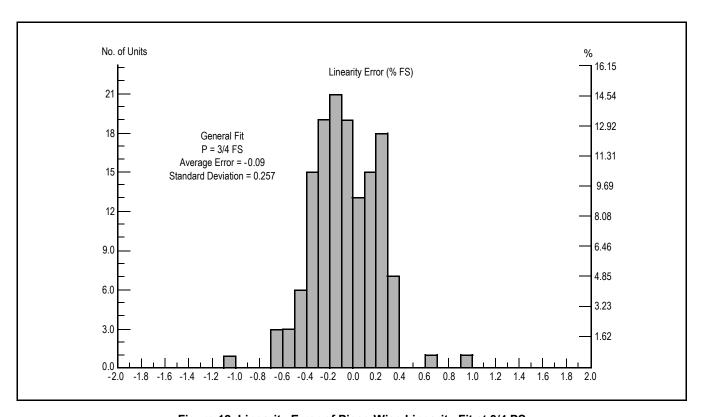


Figure 12. Linearity Error of Piece-Wise Linearity Fit at 3/4 PS

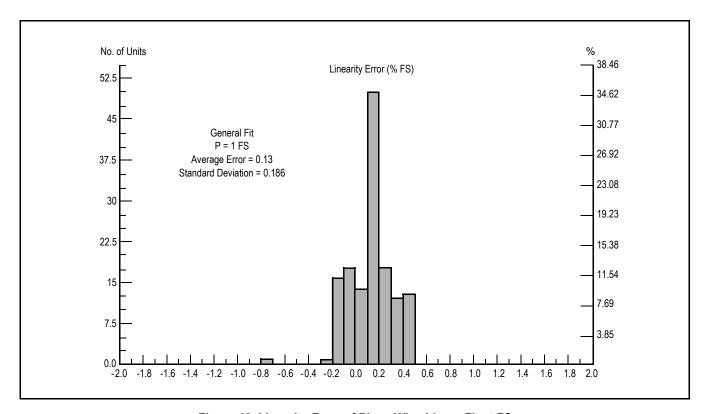


Figure 13. Linearity Error of Piece-Wise Linear Fit at FS

Once the sensitivity coefficients have been determined, a system can then be built that provides an accurate output function with pressure. The system shown in Figure 14 consists of a pressure transducer, a temperature compensation and amplification stage, an A/D converter, a microprocessor, and a display. The display block can be replaced with a control function if required. The A/D converter simply transforms the voltage signal to an input signal for the microprocessor, in which resides the look-up table of the transfer function generated from the previously determined sensitivity coefficients. The microprocessor can then drive a display or control circuit using standard techniques.

SUMMARY

While at first glance this technique appears to be fairly complicated, it can be a very cost effective method of building a high-accuracy, high-sensitivity pressure-monitoring system for low-pressure ranges.

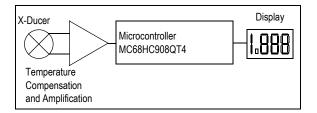


Figure 14. Linearization System Block Diagram

Mounting Techniques, Lead Forming, and Testing of the MPX Series Pressure Sensors

by: Randy Frank

INTRODUCTION

The Freescale Semiconductor, Inc. MPX series pressure sensors are silicon piezoresistive strain-gauges offered in a chip-carrier package (see Figure 1). The exclusive chip-carrier package was developed to realize the advantages of high-speed, automated assembly and testing. In addition to high volume availability and low cost, the chip-carrier package offers users a number of packaging options. This application note describes several mounting techniques, offers lead forming recommendations, and suggests means of testing the MPX series of pressure sensors.

Figure 1. MPX Pressure Sensor in Chip Carrier Package Shown with Port Options

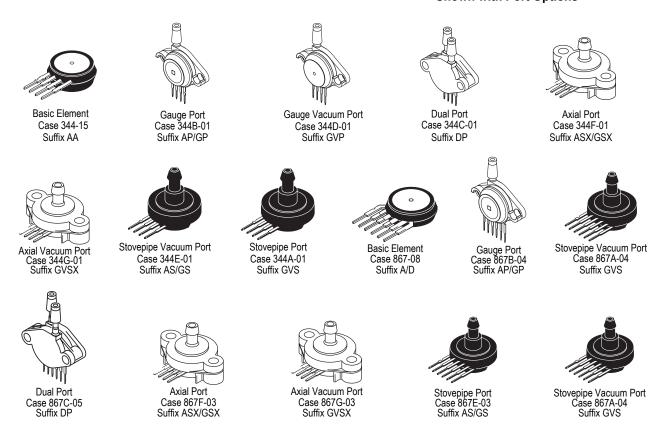


Figure 2. Chip Carrier and Available Ported Packages

PORT ADAPTERS

Available Packages

Freescale's chip-carrier package and available ports for attachment of 1/8ŏ I.D. hose are made from a high temperature thermoplastic that can withstand temperature extremes from -50°C to 150°C (see Figure 2). The port adapters were designed for rivet or 5/32" screw attachment to panels, printed circuit boards, or chassis mounting.

Custom Port Adaptor Installation Techniques

The MPX silicon pressure sensor is available in a basic chip carrier cell which is adaptable for attachment to customer-specific housings/ports (Case 344 for 4-pin devices and Case 867 for 6-pin devices). The basic cell has chamfered shoulders on both sides which will accept an O-ring such as Parker Seal's silicone O-ring (p/n#2-015-S-469-40). Refer to Figure 3 for the recommended O-ring to sensor cell interface dimensions.

The sensor cell may also be glued directly to a custom housing or port using many commercial grade epoxies or RTV adhesives which adhere to grade Valox 420, 30 percent glass reinforced polyester resin plastic or Union Carbide's Udel® polysulfone (MPX2300DT1 only). Freescale recommends using Thermoset EP530 epoxy or an equivalent. The epoxy should be dispensed in a continuous bead around the caseto-port interface shoulder. Refer to Figure 4. Care must be taken to avoid gaps or voids in the adhesive bead to help ensure that a complete seal is made when the cell is joined to the port. The recommended cure conditions for Thermoset EP539 are 15 minutes at 150°C. After cure, a simple test for gross leaks should be performed to ensure the integrity of the cell to port bond. Submerging the device in water for five seconds with full rated pressure applied to the port nozzle and checking for air bubbles will provide a good indication.

TESTING MPX SERIES PRESSURE SENSORS

Pressure Connection

Testing of pressure sensing elements in the chip carrier package can be performed easily by using a clamping fixture which has an O-ring seal to attach to the beveled surface. Figure 8 shows a diagram of the fixture that Freescale uses to apply pressure or vacuum to unported elements.

When performing tests on packages with ports, a high durometer tubing is necessary to minimize leaks, especially in higher pressure range sensors. Removal of tubing must be parallel to the port since large forces can be generated to the pressure port which can break the nozzle if applied at an

angle. Whether sensors are tested with or without ports, care must be exercised so that force is not applied to the back metal cap or offset errors can result.

STANDARD PORT ATTACH CONNECTION

Freescale also offers standard port options designed to accept readily available silicone, vinyl, nylon, or polyethylene tubing for the pressure connection. The inside dimension of the tubing selected should provide a snug fit over the port nozzle. Installation and removal of tubing from the port nozzle must be parallel to the nozzle to avoid undue stress which may break the nozzle from the port base. Whether sensors are used with Freescale's standard ports or customer specific housings, care must be taken to ensure that force is uniformly distributed to the package or offset errors may be induced.

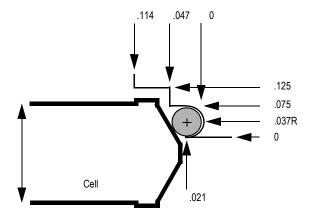


Figure 3. Examples of Sensors in Custom Housings

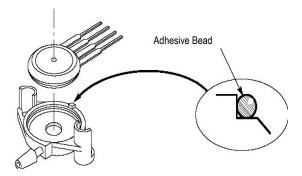


Figure 4. Case to Port Interface

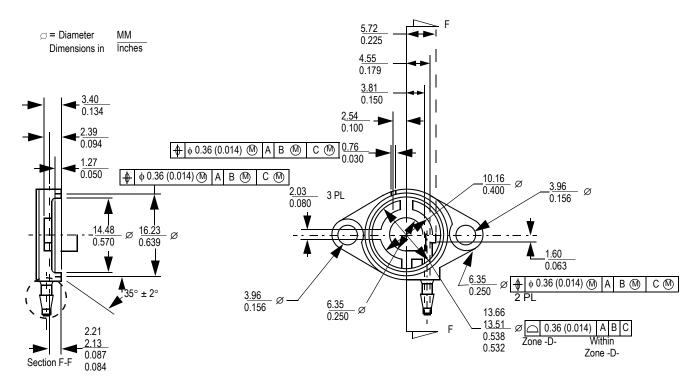
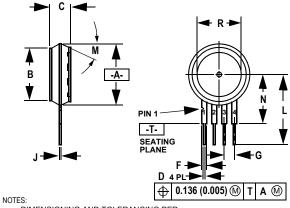
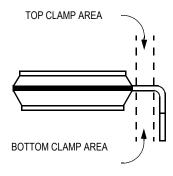



Figure 5. Port Adapter Dimensions


DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: INCH. DIMENSION -A- IS INCLUSIVE OF THE MOLD STOP RING. MOLD STOP RING NOT TO EXCEED 16.00 (0.630).

STYLE 1: PIN 1.GROUND 2.+ OUTPUT 3.+ SUPPLY 4.- OUTPUT

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.595	0.630	15.11	16.00
В	0.514	0.534	13.06	13.56
O	0.200	0.220	5.08	5.59
D	0.016	0.020	0.41	0.51
Æ	0.048	0.064	1.22	1.63
G	0.100	BSC	2.54 BSC	
7	0.014	0.016	0.36	0.40
۲	0.695	0.725	17.65	18.42
М	30	NOM	30	MOM
Z	0.475	0.495	12.07	12.57
R	0.430	0.450	10.92	11.43

Case 344-15 All seals to be made on pressure sealing surface.

Figure 6. Chip-Carrier Package

Leads should be securely clamped top and bottom in the area between the plastic body and the form being sure that no stress is being put on plastic body. The area between dotted lines represents surfaces to be clamped.

Figure 7. Leadforming

Electrical Connection

The MPX series pressure sensor is designed to be installed on a printed circuit board (standard 0.100" lead spacing) or to accept an appropriate connector if installed on a baseplate. The leads of the sensor may be formed at right angles for assembly to the circuit board, but one must ensure that proper leadform techniques and tools are employed. Hand or "needlenose" pliers should never be used for leadforming unless they are specifically designed for that purpose. Refer to Figure 7 for the recommended leadform technique. It is also important that once the leads are formed, they should not be

straightened and reformed without expecting reduced durability. The recommended connector for off-circuit board applications may be supplied by JST Corp. (1-800-292-4243) in Mount Prospect, IL. The part numbers for the housing and pins are listed below.

CONCLUSION

Freescale's MPX series pressure sensors in the chip carrier package provide the design engineer several packaging alternatives. They can easily be tested with or without pressure ports using the information provided.

CONNECTORS FOR CHIP CARRIER PACKAGES

MFG/Address/Phone	Connector	Pin
J. S. Terminal Cop.	4 Pin Housing: SMP-04V-BCS	SHF-001T-0.8SS
1200 Business Center Dr.	6 Pin Housing: SMP-06V-BC	SHF-01T-0.8SS
Mount Prospect, IL 60056		
(800) 292-4243	Hand Crimper YC-12 Recommended	
Methode Electronics, Inc.	1300-004	1400-213
Rollling Meadows, IL 60008		1402-213
(312) 392-3500	Requires Hand Crimper	1402-214 Reel

TERMINAL BLOCKS

Molex	22-18-2043
2222 Wellington Court	22-16-2041
Lisle, IL 60532	
(312) 969-4550	

 Samtec
 SSW-104-02-G-S-RA

 P.O. Box 1147
 SSW-104-02-G-S

 New Albany, IN 47150
 (812) 944-6733

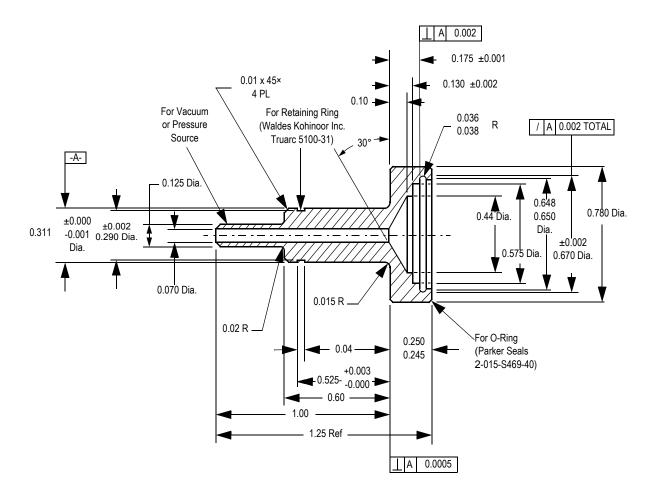


Figure 8. O-Ring Test Fixture

Simple Design for a 4-20 mA Transmitter Interface Using a Pressure Sensor

by: Jean Claude Hamelain
Toulouse Application Lab Manager

INTRODUCTION

Pressure is a very important parameter in most industrial applications such as air conditioning, liquid level sensing and flow control.

In most cases, the sensor is located close to the measured source in a very noisy environment, far away from the receiver (recorder, computer, automatic controller, etc.)

The transmission line can be as long as a few hundred meters and is subject to electromagnetic noise when the signal is transmitted as voltage. If the signal is transmitted as a current it is easier to recover at the receiving end and is less affected by the length of the transmission line.

The purpose of this note is to describe a simple circuit which can achieve high performance, using standard pressure sensors, operational amplifiers and discrete devices.

PERFORMANCES

The following performances have been achieved using an MPXV2102DP pressure sensor and an MC33079 quad operational amplifier. The MPXV2102DP is a 100 kPa temperature compensated differential pressure sensor. The load is a 150 ohm resistor at the end of a 50 meter telephone line. The 15 volt power supply is connected at the receiver end.

Power Supply	+15 Vdc, 30 mA
Connecting Line	3 wire telephone cable
Load Resistance	150 to 400 Ohms
Temperature Range	-40 to +85°C (up to +125°C with special hardware)
Pressure Range	0 to 100 kPa
Total Maximum Error	Better than 2% full scale

Basic Circuit

The MPXV2102DP pressure sensor is a very high performance piezoresistive pressure sensor. Manufacturing technologies include standard bipolar processing techniques with state of the art metallization and on-chip laser trim for offset and temperature compensation.

This unique design, coupled with computer laser trimming, gives this device excellent performance at competitive cost for demanding applications such as automotive, industrial or healthcare.

MC33078, 79 operational amplifiers are specially designed for very low input voltage, a high output voltage swing and very good stability versus temperature changes.

First Stage

The MPXV2102 and the operational amplifier are directly powered by the 15 Vdc source. The first stage is a simple true differential amplifier made with both of the operational amplifiers in the MC33078. The potentiometer, R_{G} , provides adjustment for the output.

Current Generator

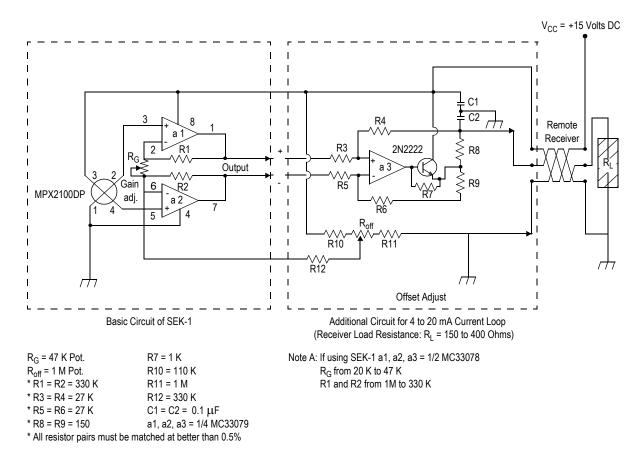
The voltage to current conversion is made with a unity gain differential amplifier, one of the four operational amplifiers in an MC33079. The two output connections from the first stage are connected to the input of this amplifier through R3 and R5. Good linearity is achieved by the matching between R3, R4, R5 and R6, providing a good common mode rejection. For the same reason, a good match between resistors R8 and R9 is needed

The MC33078 or MC33079 has a limited current output; therefore, a 2N2222 general purpose transistor is connected as the actual output current source to provide a 20 mA output.

To achieve good performance with a very long transmission line it may be necessary to place some capacitors (C1, C2) between the power supply and output to prevent oscillations.

Calibration

The circuit is electrically connected to the 15 Vdc power supply and to the load resistor (receiver).


The high pressure is connected to the pressure port and the low pressure (if using a differential pressure sensor), is connected to the vacuum port.

It is important to perform the calibration with the actual transmission line connected.

The circuit needs only two adjustments to achieve the 4-20mA output current.

AN1082

- With no pressure (zero differential pressure), adjust R_{off} to read exactly 4 mA on the receiver.
- Under the full scale pressure, adjust R_G to exactly read 20 mA on the receiver. The calibration is now complete.

NOTE: The pressure sensor output is ratiometric to the power supply voltage. The output will change with the same ratio as voltage change.

Figure 1. Demo Kit with 4-20 mA Current Loop

The output is ratiometric to the power supply voltage. For example, if the receiver reads 18 mA at 80 kPa and 15 V power supply, the receiver should read 16.8 mA under the same pressure with 14 V power supply.

For best results it is mandatory to use a regulated power supply. If that is not possible, the circuit must be modified by inserting a 12 V regulator to provide a constant supply to the pressure sensor.

When using a MC78L12AC voltage regulator, the circuit can be used with power voltage variation from 14 to 30 volts.

The following results have been achieved using an MPX2100DP and two MC33078s. The resistors were regular

carbon resistors, but pairs were matched at $\pm 0.3\%$ and capacitors were 0.1 μ F. The load was 150 ohms and the transmission line was a two pair telephone line with the ± 15 Vdc power supply connected on the remote receiver side.

Note: Best performances in temperature can be achieved using metal film resistors. The two potentiometers must be chosen for high temperatures up to 125°C.

The complete circuit with pressure sensor is available under reference TZA120 and can be ordered as a regular product for evaluation.

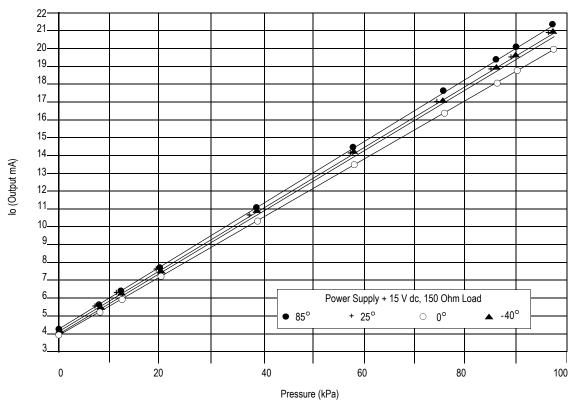


Figure 2. Output versus Pressure

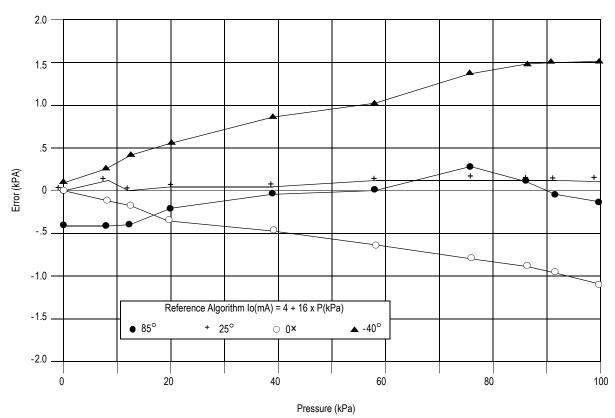


Figure 3. Absolute Error Reference to Algorithm

Calibration-Free Pressure Sensor System

by: Michel Burri, Senior System Engineer Geneva, Switzerland

INTRODUCTION

The MPX2000 series pressure transducers are semiconductor devices which give an electrical output signal proportional to the applied pressure. The sensors are a single monolithic silicon diaphragm with strain gauge and thin-film resistor networks on the chip. Each chip is laser trimmed for full scale output, offset, and temperature compensation.

The purpose of this document is to describe another method of measurement which should facilitate the life of the design. The MPX2000 series sensors are available both as unported elements and as ported assemblies suitable for pressure, vacuum and differential pressure measurements in the range of 10 kPa through 200 kPa.

The use of the on-chip A/D converter of the MC68HC05B6 HCMOS MCU makes possible the design of an accurate and reliable pressure measurement system.

SYSTEM ANALYSIS

The measurement system is made up of the pressure sensor, the amplifiers, and the MCU. Each element in the chain has its own device-to-device variations and temperature effects which should be analyzed separately. For instance, the 8-bit A/D converter has a quantization error of about ± 0.2 percent. This error should be subtracted from the maximum error specified for the system to find the available error for the rest of elements in the chain. The MPX2000 series pressure sensors are designed to provide an output sensitivity of 4.0 mV/V excitation voltage with full-scale pressure applied or 20 mV at the excitation voltage of 5.0 $V_{\rm DC}$.

An interesting property must be considered to define the configuration of the system: the ratiometric function of both the A/D converter and the pressure sensor device. The ratiometric function of these elements makes all voltage variations from the power supply rejected by the system. With this advantage, it is possible to design a chain of amplification where the signal is conditioned in a different way.

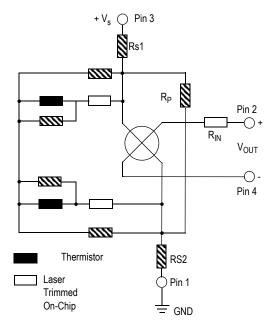


Figure 1. Seven Laser-Trimmed Resistors and Two Thermistors Calibrate the Sensor for Offset, Span, Symmetry and Temperature Compensation

The op amp configuration should have a good common-mode rejection ratio to cancel the DC component voltage of the pressure sensor element which is about half the excitation voltage value $V_{\rm S}$. Also, the op amp configuration is important when the designer's objective is to minimize the calibration procedures which cost time and money and often don't allow the unit-to-unit replacement of devices or modules.

One other aspect is that most of the applications are not affected by inaccuracy in the region from 0 kPa to 40 kPa. Therefore, the goal is to obtain an acceptable tolerance of the system from 40 kPa through 100 kPa, thus minimizing the inherent offset voltage of the pressure sensor.

PRESSURE SENSOR CHARACTERISTICS

Figure 2 shows the differential output voltage of the MPX2100 series at +25°C. The dispersion of the output voltage determines the best tolerance that the system may

achieve without undertaking a calibration procedure, if any other elements or parameters in the chain do not introduce additional errors.

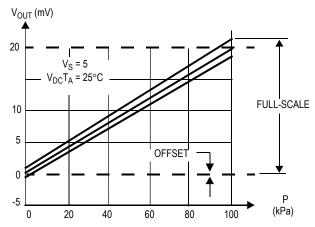


Figure 2. Spread of the Output Voltage versus the Applied Pressure at 25°C

The effects of temperature on the full scale output and offset are shown in Figure 3. It is interesting to notice that the offset variation is greater than the full scale output and both have a positive temperature coefficient respectively of +8.0 μV /degree and +5.0 μV excitation voltage. That means that the full scale variation may be compensated by modifying the gain somewhere in the chain amplifier by components arranged to produce a negative T $_{\text{C}}$ of 250 PPM/°C. The dark area of Figure 3 shows the trend of the compensation which improves the full scale value over the temperature range. In the area of 40 kPa, the compensation acts in the ratio of 40/100 of the value of the offset temperature coefficient.

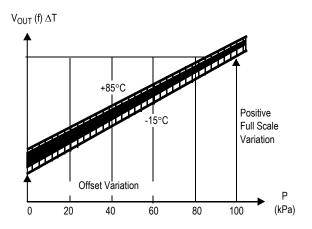


Figure 3. Output Voltage versus Temperature. The Dark Area Shows the Trend of the Compensation

OP AMP CHARACTERISTICS

For systems with only one power supply, the instrument amplifier configuration shown in Figure 4 is a good solution to monitor the output of a resistive transducer bridge.

The instrument amplifier does provide an excellent CMRR and a symmetrical buffered high input impedance at both non-inverting and inverting terminals. It minimizes the number of the external passive components used to set the gain of the amplifier. Also, it is easy to compensate the temperature variation of the Full Scale Output of the Pressure Sensor by implementing resistors "R_f" having a negative coefficient temperature of -250 PPM/°C.

The differential-mode voltage gain of the instrument amplifier is:

Avd =
$$\frac{V1-V2}{Vs2-Vs4} = \left(1 + \frac{2R_f}{R_g}\right)$$
 (1)

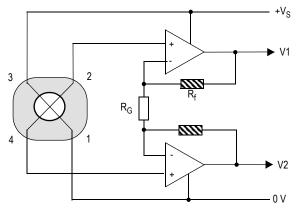


Figure 4. One Power Supply to Excite the Bridge and to Develop a Differential Output Voltage

The major source of errors introduced by the op amp is offset voltages which may be positive or negative, and the input bias current which develops a drop voltage ΔV through the feedback resistance $R_f.$ When the op amp input is composed of PNP transistors, the whole characteristic of the transfer function is shifted below the DC component voltage value set by the Pressure Sensor as shown in Figure 5.

The gain of the instrument amplifier is calculated carefully to avoid a saturation of the output voltage, and to provide the maximum of differential output voltage available for the A/D Converter. The maximum output swing voltage of the amplifiers is also dependent on the bias current which creates a ΔV voltage on the feedback resistance R_f and on the Full Scale output voltage of the pressure sensor.

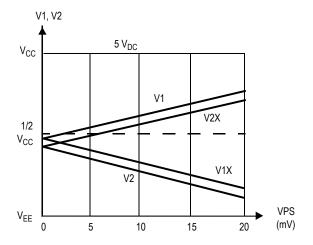


Figure 5. Instrument Amplifier Transfer Function with Spread of the Device to Device Offset Variation

Figure 5 shows the transfer function of different instrument amplifiers used in the same application. The same sort of random errors are generated by crossing the inputs of the instrument amplifier. The spread of the differential output voltage (V1-V2) and (V2x-V1x) is due to the unsigned voltage offset and its absolute value. Figure 6 and Figure 7 show the unit-to-unit variations of both the offset and the bias current of the dual op amp MC33078.

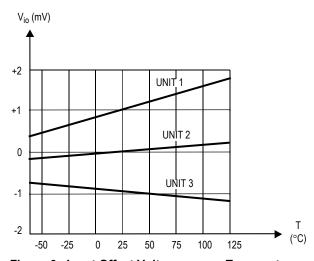


Figure 6. Input Offset Voltage versus Temperature

To realize such a system, the designer must provide a calibration procedure which is very time consuming. Some extra potentiometers must be implemented for setting both the offset and the Full Scale Output with a complex temperature compensation network circuit.

The new proposed solution will reduce or eliminate any calibration procedure.

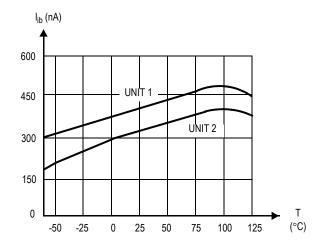


Figure 7. Input Bias Current versus Temperature

MCU CONTRIBUTION

As shown in Figure 5, crossing the instrument amplifier inputs generated their mutual differences which can be computed by the MCU.

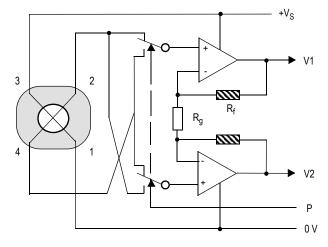


Figure 8. Crossing of the Instrument Amplifier Input Using a Port of the MCU

Figure 8 shows the analog switches on the front of the instrument amplifier and the total symmetry of the chain. The residual resistance $R_{DS(on)}$ of the switches does not introduce errors due to the high input impedance of the instrument amplifier.

With the aid of two analog switches, the MCU successively converts the output signals V1, V2.

Four conversions are necessary to compute the final result. First, two conversions of V1 and V2 are executed and stored in the registers R1, R2. Then, the analog switches are commuted in the opposite position and the two last conversions of V2 $_{x}$ and V1 $_{x}$ are executed and stored in the registers R2 $_{x}$ and R1 $_{x}$. Then, the MCU computes the following equation:

RESULT =
$$(R1-R2) + (R2x-R1x)$$
 (2)

The result is twice a differential conversion. As demonstrated below, all errors from the instrument amplifier

are cancelled. Other averaging techniques may be used to improve the result, but the appropriated algorithm is always determined by the maximum bandwidth of the input signal and the required accuracy of the system.

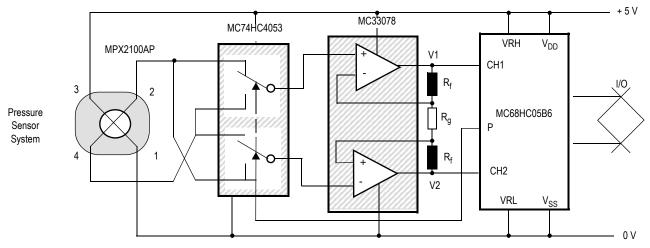


Figure 9. Two Channel Input and One Output Port Are Used by the MCU

SYSTEM CALCULATION

Sensor out 2 Sensor out 4 Vs2 = a (P) + of2 Vs4 = b (P) + of4

Amplifier out 1 Amplifier out 2 V1 = Avd (Vs2 + OF1) V2 = Avd (Vs4 + OF2)

Inverting of the amplifier input V1x = Avd (Vs4 + OF1) V2x = Avd (Vs2 + OF2)

Delta = V1-V2 1st differential result = Avd * (Vs2 of OF1) - Avd * (Vs4 + OF2)

Deltax = V2x-V1x 2nd differential result = Avd * (Vs2 + OF2) - Vdc * (Vs4 + OF1)

Adding of the two differential results

VoutV = Delta + Deltax

= Avd*Vs2 + Avd*OF2 + Avd*OF2 - Avd*OF1

+ Avd*OF1 - Avd*OF2 + Avd*OF2 - Avd*OF1

= 2 * Avd * (Vs2 -Vs4)

= 2 * Avd * [(a (P) + of2) - (b (P) + of4)]

= 2 * Avd * [V(P) + Voffset]

There is a full cancellation of the amplifier offset OF1 and OF2. The addition of the two differential results V1-V2 and V2x-V1X produce a virtual output voltage VoutV which becomes the applied input voltage to the A/D converter. The result of the conversion is expressed in the number of counts or bits by the ratiometric formula shown below:

count = VoutV
$$*\frac{255}{VRH-VRL}$$

255 is the maximum number of counts provided by the A/D converter and VRH-VRL is the reference voltage of the ratiometric A/D converter which is commonly tied to the 5.0 V supply voltage of the MCU.

When the tolerance of the full scale pressure has to be in the range of $\pm\,2.5$ percent, the offset of the pressure sensor may be neglected. That means the system does not require any calibration procedure.

The equation of the system transfer is then:

count = 2 * Avd * V(P) * 51/V where:

Avd is the differential-mode gain of the instrument amplifier which is calculated using the equation (1). Then with R_f = 510 $k\Omega$ and R_α = 9.1 $k\Omega$ Avd = $\underline{113}$.

The maximum counts available in the MCU register at the Full Scale Pressure is:

knowing that the MPX2100AP pressure sensor provides 20 mV at 5.0 excitation voltage and 100 kPa full scale pressure.

The system resolution is 100 kPa/230 that give 0.43 kPa per count.

AN1097

Figure 10. Full Scale Output Calibration Using the Reference Voltage VRH-VRL

When the tolerance of the system has to be in the range of ± 1 percent, the designer should provide only one calibration

procedure which sets the Full Scale Output (counts) at 25°C 100 kPa or under the local atmospheric pressure conditions.

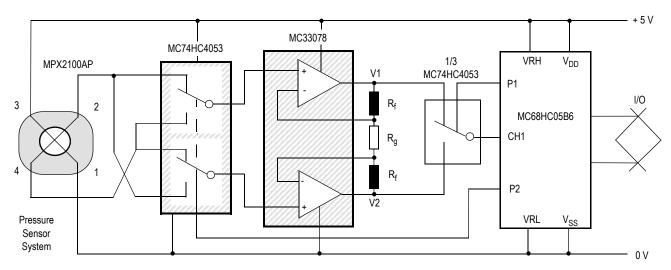


Figure 11. One Channel Input and Two Output Ports are used by the MCU

Due to the high impedance input of the A/D converter of the MC68HC05B6 MCU, another configuration may be implemented which uses only one channel input as shown in Figure 11. It is interesting to notice that practically any dual op amp may be used to do the job but a global consideration must be made to optimize the total cost of the system according to the requested specification.

When the Full Scale Pressure has to be sent with accuracy, the calibration procedure may be executed in different ways. For instance, the module may be calibrated directly using Up/Down push buttons.

The gain of the chain is set by changing the VRH voltage of the ratiometric A/D converter with the R/2R ladder network circuit which is directly driven by the ports of the MCU. (See Figure 12.) Using a communication bus, the calibration procedure may be executed from a host computer. In both cases, the setting value is stored in the EEPROM of the MCU.

The gain may be also set using a potentiometer in place of the resistor $R_{\rm f}$. But, this component is expensive, taking into account that it must be stable over the temperature range at long term.

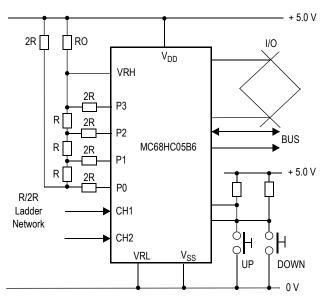


Figure 12. R/2R Ladder Network for an MCU

Table 1. Pressure Conversion Table

Unity	Pa	mbar	Torr	atm	at=kp/cm ²	mWS	psi
1 N/m2 = 1 Pascal	1	0.01	7.5 10-3	-	-	-	-
1 mbar	100	1	0.75	-	-	0.0102	0.014
1 Torr = 1 mmHg	133.32	1.333	.1	-	-	-	0.019
1 atm ⁽¹⁾	101325	1013.2	760	1	1.033	10.33	14.69
1 at = 1 kp/cm2 ⁽²⁾	98066.5	981	735.6	0.97	1	10	14.22
1 m of water	9806.65	98.1	73.56	0.097	0.1	1	1.422
1 lb/sqin = 1 psi	6894.8	68.95	51.71	0.068	-	-	1

NOTES:

- Normal atmosphere
 Technical atmosphere

Analog to Digital Converter Resolution Extension Using a Pressure Sensor

PURPOSE

This paper describes a simple method to gain more than 8-bits of resolution with an 8-bit A/D. The electronic design is relatively simple and uses standard components.

Principle

Consider a requirement to measure pressure up to 200 kPa. Using a pressure sensor and an amplifier, this pressure can be converted to an analog voltage output. This analog voltage can then be converted to a digital value and used by the microprocessor as shown in Figure 1.

If we assume for this circuit that 200 kPa results in a +4.5V output, the sensitivity of our system is:/

$$S = 4.5 \text{ V}/200\text{kPa}$$
 (1)
= 0.0225 V/kPa

or $S = 22.5 \,\text{mV/kPa}$

If an 8-bit A/D is used with 0 and 5 Volt low and high references, respectively, then the resolution would be:

$$S = 5 V/(2^8 - 1 = 5V/255)$$

= 0.01961 V (2)

or $R_v = 19.60 \text{ mV}$ per bit

This corresponds to a pressure resolution of:

$$R_p = 5 \text{ V}/(19.60 \text{ mV/bit}) / (22.5 \text{ mV/kPa})$$
 (3)
= 0.871 kPa per bit

= 0.67 i kPa pei bit

Assume a resolution of at least 0.1 kPa/bit is needed. This would require an A/D with at least 12 bits ($2^{12} = 4096$ steps).

One can artificially increase the A/D resolution as described below.

Refer to Figure 1 and assume a pressure of 124 kPa is to be measured. With this system, the input signal to the A/D should read (assuming no offset voltage error):

$$V_m$$
(measured) = 4.5 (Papp) × (S) (4)
= (124 kPa) × (22.5 mV/kPa)
= 2790 mV,

where Papp is the pressure applied to the sensor. Due to the resolution of the A/D, the microprocessor receives the following conversion:

The calculated voltage for this stored value is:

$$V_c$$
(calculated) = (142 count) × (19.60mV/count) (6)

= 2783 mV

The microprocessor will output the stored value M to the D/A. The corresponding voltage at the analog output of the D/A, for an 8-bit D/A with same references, will be 2783 mV.

The calculated pressure corresponding to this voltage would be:

$$P_c(calculated) = (2783 \text{ mV})/ (22.5 \text{ mV/kPa})$$
 (7)
= 123.7 kPa

Thus, the error would be:

$$E = Papp - Pc$$
= 124 kPa - 123.7 kPa
= 0.3 kPa

This is greater than the 0.1 kPa resolution requirement.

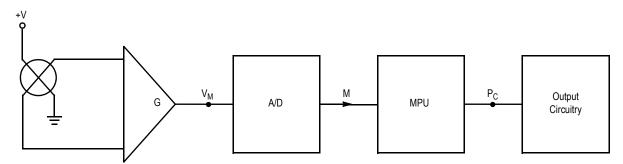


Figure 1. Figure Block Diagram

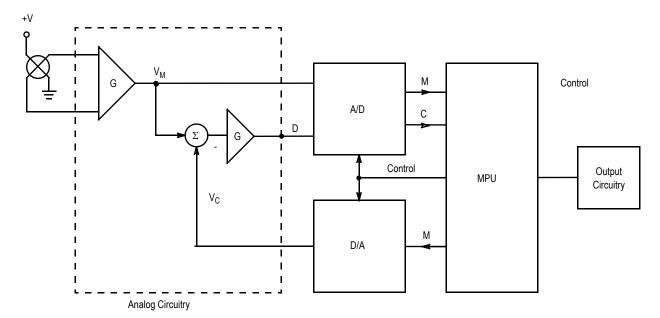


Figure 2. Expanded Block Diagram

Figure 2 shows the block diagram of a system that can be used to reduce the inaccuracies caused by the limited A/D resolution. The microprocessor would use the stored value M, as described above, to cause a D/A to output the corresponding voltage, Vc. Vc is subtracted from the measured voltage, Vm, using a differential amplifier, and the resulting voltage is amplified. Assuming a gain, G, of 10 for the amplifier, the output would be:

D =
$$(Vm-Vc) \times G$$
 (9)
= $(2790 \text{ mV} - 2783 \text{ mV}) \times 10$
= 70 mV

The microprocessor will receive the following count from the A/D:

The microprocessor then computes the actual pressure with the following equations:

Expanded Voltage =
$$Vc + ((C \times R)/G)$$
 (11)
= $2783 + ((3 \times 19.60)/10)$
= 2789 mV ,
NOTE: R is resolution of 8-bit d/A

Thus the error is:

Figure 3 and Figure 4 together provide a more detailed description of the analog portion of this system.

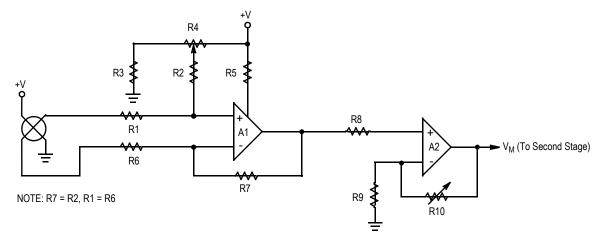


Figure 3. First Stage - Differential Amplifier, Offset Adjust and Gain Adjust

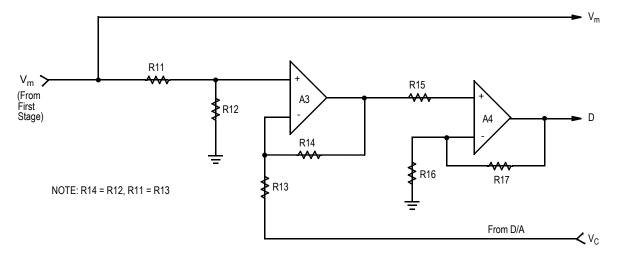


Figure 4. Second Stage - Difference Amplifier and Gains

FIRST STAGE (FIGURE 3)

The first stage consists of the pressure sensor; in this case the MPX2200 is used. This sensor typically gives a full scale span output of 40 mV at 200 kPa. The sensor output (V_S) is connected to the inputs of amplifier A1 (1/4 of the MC33079, a Quad Operational Amplifier). The gain, G1, of this amplifier is R7/R6. The sensor has a typical zero pressure offset voltage of 1 mV. Figure 3 shows offset compensation circuitry if it is needed. A1 output is fed to the non-inverting input of A2 amplifier (1/4 of a MC33079) whose gain, G2, is $1+R_{10}/R_9$. G2 should be set to yield 4.5 volts out with full-rated pressure.

THE SECOND STAGE (FIGURE 4)

The output from A2 (Vm = G1 x G2 x Vs) is connected to the non-inverting input of amplifier A3 (1/4 of a MC33079) and to the A/D where its corresponding (digital) value is stored by the microprocessor. The output of A3 is the amplified difference between Vm, and the digitized/calculated voltage Vc. Amplifier A4 (1/4 of a MC33079) provides additional gain for an amplified difference output for the desired resolution. This difference output, D, is given by:

D =
$$(Vm V_c) \times G3$$

G3 = $(R14/R13) \left(1 + \frac{R17}{R16}\right)$

where G3 is the gain associated with amplifiers A3 and A4.

The theoretical resolution is limited only by the accuracy of the programmable power supply. The microprocessor used has an integrated A/D. The accuracy of this A/D is directly related to the reference voltage source stability, which can be self-calibrated by the microprocessor. V_{expanded} is the system output that is the sum of the voltage due to the count and the voltage due to the difference between the count voltage and the measured voltage. This is given by the following relation:

$$V_{expanded} = V_c + D/G3$$

therefore, $PV_{expanded} = V_{expanded}/S$.

P_{expanded} is the value of pressure (in units of kPa) that results from this improved-resolution system. This value can be output to a display or used for further processing in a control system.

CONCLUSION

This circuit provides an easy way to have high resolution using inexpensive microprocessors and converters.

A Simple 4-20 mA Pressure Transducer Evaluation Board

by: Denise Williams
Discrete Applications Engineering

INTRODUCTION

The two wire 4-20 mA current loop is one of the most widely utilized transmission signals for use with transducers in industrial applications. A two wire transmitter allows signal and power to be supplied on a single wire-pair. Because the information is transmitted as current, the signal is relatively immune to voltage drops from long runs and noise from motors, relays, switches and industrial equipment. The use of additional power sources is not desirable because the usefulness of this system is greatest when a signal has to be transmitted over a long distance with the sensor at a remote location. Therefore, the 4 mA minimum current in the loop is

the maximum usable current to power the entire control circuitry.

Figure 1 is a block diagram of a typical 4-20 mA current loop system which illustrates a simple two chip solution to converting pressure to a 4-20 mA signal. This system is designed to be powered with a 24 Vdc supply. Pressure is converted to a differential voltage by the MPX5100 pressure sensor. The voltage signal proportional to the monitored pressure is then converted to the 4-20 mA current signal with the Burr-Brown XTR101 Precision Two-Wire Transmitter. The current signal can be monitored by a meter in series with the supply or by measuring the voltage drop across $R_{\rm L}$. A key advantage to this system is that circuit performance is not affected by a long transmission line.

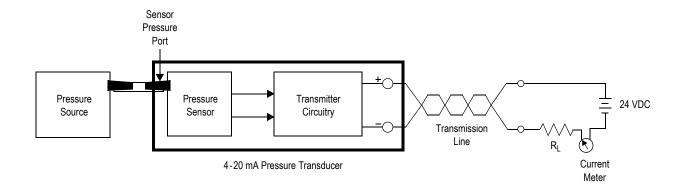


Figure 1. System Block Diagram

INPUT TERMINALS

A schematic of the 4-20 mA Pressure Transducer topology is shown in Figure 2. Connections to this topology are made at the terminals labeled (+) and (-). Because this system utilizes a current signal, the power supply, the load and any current meter must be put in series with the (+) to (-) terminals as indicated in the block diagram. The load for this type of system is typically a few hundred ohms. As described above, a typical use of a 4-20 mA current transmission signal is the

transfer of information over long distances. Therefore, a long transmission line can be connected between the (+) and (-) terminals on the evaluation board and the power supply/load.

AN1303

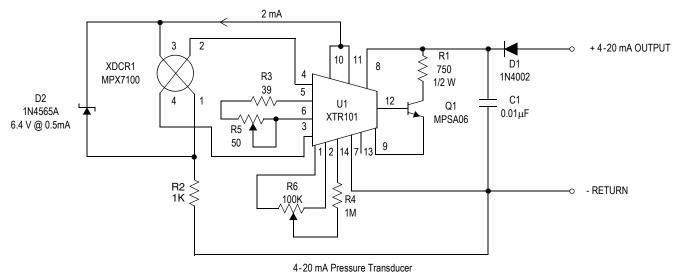


Figure 2. Schematic Diagram

PRESSURE INPUT

The device supplied on this topology is an MPX5100DP, which provides two ports. P1, the positive pressure port, is on top of the sensor and P2, the vacuum port, is on the bottom of the sensor. The system can be supplied up to 15 PSI of positive pressure to P1 or up to 15 PSI of vacuum to P2 or a differential pressure up to 15 PSI between P1 and P2. Any of these pressure applications will create the same results at the sensor output.

Circuit Description

The XTR101 current transmitter provides two one-milliamp current sources for sensor excitation when its bias voltage is between 12 V and 40 V. The MPX5100 series sensors are constant voltage devices, so a zener, D2, is placed in parallel with the sensor input terminals. Because the MPX5100 series parts have a high impedance the zener and sensor combination can be biased with just the two milliamps available from the XTR101.

The offset adjustment is composed of R4 and R6. They are used to remove the offset voltage at the differential inputs to the XTR101. R6 is set so a zero input pressure will result in the desired output of 4 mA.

R3 and R5 are used to provide the full scale current span of 16 mA. R5 is set such that a 15 PSI input pressure results in the desired output of 20 mA. Thus the current signal will span

16 mA from the zero pressure output of 4 mA to the full scale output of 20 mA. To calculate the resistor required to set the full scale output span, the input voltage span must be defined. The full scale output span of the sensor is 24.8 mV and is ΔV_{IN} to the XTR101. Burr-Brown specifies the following equation for R_{span} . The 40 and 16 m Ω values are parameters of the XTR101.

Rspan =
$$40 / [(16 \text{ mA} / \Delta \text{Vin}) - 0.016 \text{ mhos}]$$

= 64 O

The XTR101 requires that the differential input voltage at pins 3 and 4, V2 - V1 be less than 1V and that V2 (pin 4) always be greater than V1 (pin 3). Furthermore, this differential voltage is required to have a common mode of 4-6 volts above the reference (pin 7). The sensor produces the differential output with a common mode of approximately 3.1 volts above its reference pin 1. Because the current of both 1 mA sources will go through R2, a total common mode voltage of about 5.1 volts (1 k Ω x 2 mA + 3.1 volts = 5.1 volts) is provided.

CONCLUSION

This circuit is an example of how the MPX5000 series sensors can be utilized in an industrial application. It provides a simple design alternative where remote pressure sensing is required.

Table 1. Parts List for 4-20 mA Pressure Transducer Evaluation Board

Designator	Quantity	Description	Rating	Manufacturer	Part Number
	1	PC Board		Freescale	DEVB126
	1	Input/Output Terminals		PHX CONT	#1727010
	4	1/2" standoffs, Nylon threaded			
	4	1/2" screws, Nylon			
	2	5/8" screws, Nylon			
	2	4-40 nuts, Nylon			
		Capacitor			
C1	1	0.01 μF	50 V		
		Diodes			
D1	1	100 V Diode	1 A		1N4002
D2	1	6.4 V Zener			1N4565A
		Transistor			
Q1	1	NPN Bipolar		Freescale	MPSA06
		Resistors, Fixed			
R1	1	750 Ω	1/2 W		
R2	1	1 kΩ			
R3	1	39 Ω			
R4	1	1 ΜΩ			
		Resistors, Variable			
R5	1	50 Ω , one turn		Bourns	#3386P-1-500
R6	1	100 KΩ, one turn		Bourns	#3386P-1-104
		Integrated Circuit			
U1	1	Two wire current transmitter		Burr-Brown	XTR101
		Sensor			
XDCR1	1	High Impedance	15 PSI	Freescale	MPX5100DP

NOTE: All resistors are 1/4 W with a tolerance of 5% unless otherwise noted. All capacitors are 100 volt, ceramic capacitors with a tolerance of 10% unless otherwise noted.

Integrated Sensor Simplifies Bar Graph Pressure Gauge

by: Warren Schultz
Discrete Applications Engineering

INTRODUCTION

Integrated semiconductor pressure sensors such as the MPX5100 greatly simplify electronic measurement of pressure. These devices translate pressure into a 0.5 to 4.5 volt output range that is designed to be directly compatible

with microcomputer A/D inputs. The 0.5 to 4.5 volt range also facilitates interface with ICs such as the LM3914, making Bar Graph Pressure Gauges relatively simple. A description of a Bar Graph Pressure Sensor Evaluation Board and its design considerations are presented here.

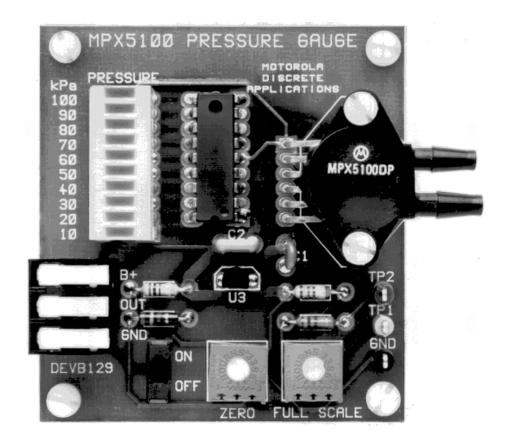


Figure 1. DEVB129 MPX5100 Bar Graph Pressure Gauge (Board No Longer Available)

EVALUATION BOARD DESCRIPTION

A summary of the information required to use evaluation board number DEVB129 is presented as follows. A discussion of the design appears under the heading Design Considerations.

Function

The evaluation board shown in Figure 1 is designed to provide a 100 kPa full scale pressure measurement. It has two input ports. P1, the pressure port is on the top side of the MPX5100 sensor, and P2, a vacuum port, is on the bottom side. These ports can be supplied up to 100 kPa (15 psi)¹ of pressure on P1 or up to 100 kPa of vacuum on P2, or a differential pressure up to 100 kPa between P1 and P2. Any of these sources will produce the same output.

The primary output is a 10 segment LED bar graph, which is labeled in increments of 10 kPa. If full scale pressure is adjusted for a value other than 100 kPa the bar graph may be read as a percent of full scale. An analog output is also provided. It nominally supplies 0.5 volts at zero pressure and 4.5 volts at 100 kPa. Zero and full scale adjustments are made with potentiometers so labeled at the bottom of the board. Both adjustments are independent of each other.

Electrical Characteristics

The following electrical characteristics are included to describe evaluation board operation. They are not specifications in the usual sense and are intended only as a guide to operation.

Characteristic	Symbol	MIn	Тур	Max	Units
Power Supply Voltage	B+	6.8	_	13.2	Volts
Full Scale Pressure	PFS	_	_	100	kPa
Overpressure	PMAX	_	_	700	kPa
Analog Full Scale	VFS	_	4.5	_	Volts
Analog Zero Pressure Offset	VOFF	_	0.5	_	Volts
Analog Sensitivity	SAOUT	_	40	_	mV/kPa
Quiescent Current	ICC	_	20	_	mA
Full Scale Current	IFS	_	140	_	mA

Content

Board contents are described in the following parts list, schematic, and silk screen plot. A pin-by-pin circuit description follows in the next section.

Pin-by-Pin Description

B+

Input power is supplied at the B+ terminal. Minimum input voltage is 6.8 volts and maximum is 13.2 volts. The upper limit is based upon power dissipation in the LM3914 assuming all 10 LED's are lit and ambient temperature is 25°C. The board will survive input transients up to 25 volts provided that power dissipation in the LM3914 does not exceed 1.3 watts.

OUT

An analog output is supplied at the OUT terminal. The signal it provides is nominally 0.5 volts at zero pressure and 4.5 volts at 100 kPa. This output is capable of sourcing 100 μ A at full scale output.

GND

There are two ground connections. The ground terminal on the left side of the board is intended for use as the power supply return. On the right side of the board, one of the test point terminals is also connected to ground. It provides a convenient place to connect instrumentation grounds.

TP

Test point 1 is connected to the zero pressure reference voltage and can be used for zero pressure calibration. To calibrate for zero pressure, this voltage is adjusted with R6 to match the zero pressure voltage that is measured at the analog output (OUT) terminal.

TP2

Test point 2 performs a similar function at full scale. It is connected to the LM3914's reference voltage which sets the trip point for the uppermost LED segment. This voltage is adjusted via R5 to set full scale pressure.

P1, P2

Pressure and Vacuum ports P1 & P2 protrude from the MPX5100 sensor on the right side of the board. Pressure port P1 is on the top and vacuum port P2 is on the bottom. Neither is labeled. Either one or a differential pressure applied to both can be used to obtain full scale readings up to 100 kPa (15 psi). Maximum safe pressure is 700 kPa.

DESIGN CONSIDERATIONS

In this type of an application the design challenge is how to interface a sensor with the bar graph output. MPX5100 Sensors and LM3914 Bar Graph Display drivers fit together so cleanly that having selected these two devices the rest of the design is quite straight forward.

A block diagram that appears in Figure 4 shows the LM3914's internal architecture. Since the lower resistor in the input comparator chain is pinned out at R_{LO} , it is a simple matter to tie this pin to a voltage that is approximately equal to the MPX5100's zero pressure output voltage. In Figure 2, this is accomplished by dividing down the 5 volt regulator's output voltage through R1, R4, and adjustment pot R6. The voltage

AN1304

^{1. 100} kPa = 14.7 psi, 15 psi is used throughout the text for convenience.

generated at the wiper of R6 is then fed into R_{LO} which matches the sensor's zero pressure voltage and zeros the bar graph.

The full scale measurement is set by adjusting the upper comparator's reference voltage to match the sensor's output at full pressure. An internal regulator on the LM3914 sets this voltage with the aid of resistors R2, R3, and adjustment pot R5 that are shown in Figure 2.

The MPX5100 requires 5 volt regulated power that is supplied by an MC78L05. The LED's are powered directly from LM3914 outputs, which are set up as current sources. Output current to each LED is approximately 10 times the reference current that flows from pin 7 through R2, R5, and R3 to ground. In this design it is nominally (4.5 V/4.9K)10 = 9.2 mA.

Over a zero to 85°C temperature range accuracy for both the sensor and driver IC are $\pm 2.5\%$, totaling $\pm 5\%$. Given a 10 segment display total accuracy is approximately $\pm (10 \text{ kPa} + 5\%)$.

CONCLUSION

Perhaps the most noteworthy aspect to the bar graph pressure gauge described here is how easy it is to design. The interface between an MPX5100 sensor, LM3914 display driver, and bar graph output is direct and straight forward. The result is a simple circuit that is capable of measuring pressure, vacuum, or differential pressure; and will also send an analog signal to other control circuitry.

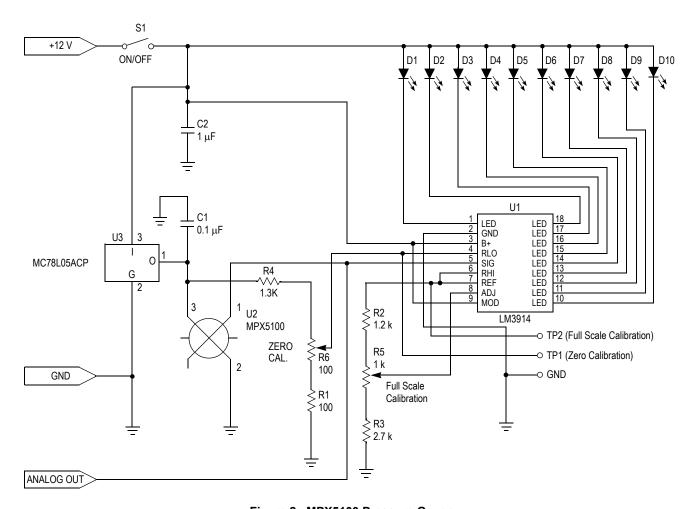


Figure 2. MPX5100 Pressure Gauge

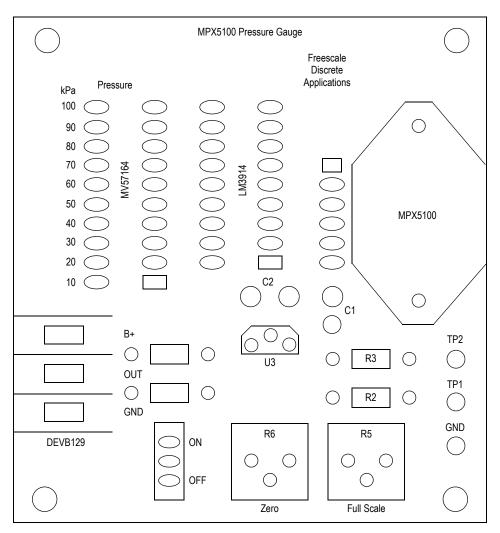


Figure 3. Silk Screen 2X

Table 1. Parts List

Designators	Quant.	Description	Rating	Manufacturer	Part Number
C1	1	Ceramic Cap	0.1 μF		
C2	1	Ceramic Cap	1 μF		
D1-D10	1	Bar Graph LED		GI	MV57164
R1	1	1/4 W Film Resistor	100		
R2	1	1/4 W Film Resistor	1.2K		
R3	1	1/4 W Film Resistor	2.7K		
R4	1	1/4 W Film Resistor	1.3K		
R5	1	Trimpot	1K	Bourns	
R6	1	Trimpot	100	Bourns	
S1	1	On/Off Switch		NKK	12SDP2
U1	1	Bar Graph IC		National	LM3914
U2	1	Pressure Sensor		Freescale	MPX5100
U3	1	Voltage Regulator		Freescale	MC78L05ACP
_	1	Terminal Block		Augat	25V03
_	3	Test Point Terminal		Components Corp.	TP1040104
_	4	Nylon Spacer	3/8"		
,—	4	4-40 Nylon Screw	1/4"		

Notes: All resistors have a tolerance of 5% unless otherwise noted.

All capacitors are 50 volt ceramic capacitors with a tolerance of 10% unless otherwise noted.

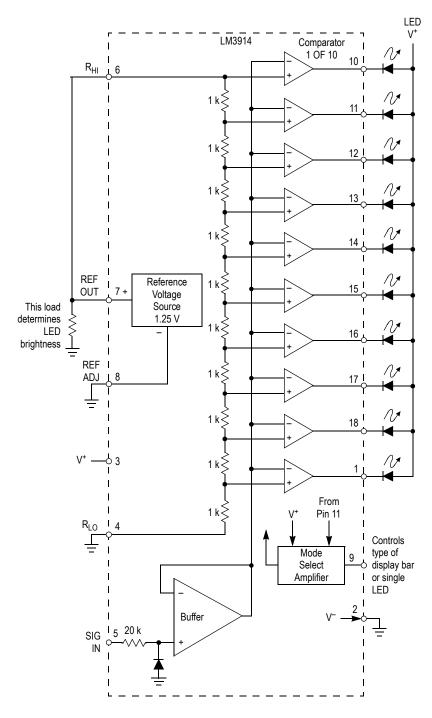


Figure 4. LM3914 Block Diagram

An Evaluation System for Direct Interface of the MPX5100 Pressure Sensor with a Microprocessor

by: Bill Lucas

Discrete Applications Engineering

INTRODUCTION

Interfacing pressure sensors to analog-to-digital converters or microprocessors with on-chip A/D converters has been a challenge that most engineers do not enjoy accepting. Recent design advances in pressure sensing technology have allowed the engineer to directly interface a pressure sensor to

an A/D converter with no additional active components. This has been made possible by integrating a temperature compensated pressure sensor element and active linear circuitry on the same die. A description of an evaluation board that shows the ease of interfacing a signal conditioned pressure sensor to an A/D converter is presented here.

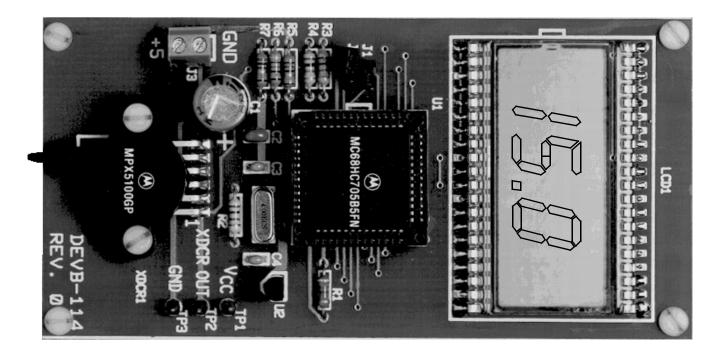


Figure 1. DEVB-114 MPX5100 Evaluation Module (Board No Longer Available)

PURPOSE

This evaluation system shown in Figure 1 demonstrates the ease of operation and interfacing of the Freescale Semiconductor, Inc. MPX5100 series pressure sensors with on-chip temperature compensation, calibration and amplification. The board may be used to evaluate the sensor's suitability for a specific application.

DESCRIPTION

The DEVB-114 evaluation board is constructed on a small printed circuit board. It is powered from a single +5 Vdc regulated power supply. The system will display the pressure applied to the MPX5100 sensor in pounds per square inch. The range is 0 PSI through 15 PSI, resolved to 0.1 PSI. No potentiometers are used in the system to adjust the span and offset. The sensor's zero offset voltage with no pressure

applied to the sensor is empirically computed each time power is applied to the system and stored in RAM. The sensitivity of the MPX5100 is repeatable from unit to unit. There is a facility for a small "rubbering" of the slope constant built into the program. It is accomplished with jumpers J1 and J2, and is explained in the Operation section. The board contents are further described in the schematic, silk screen plot, and parts list that appear in Figure 2, Figure 3, and Table 1.

BASIC CIRCUIT

The evaluation board consists of three basic subsystems: an MPX5100GP pressure sensor, a four digit liquid crystal display (only three digits and a decimal are used) and a programmed microprocessor with the necessary external circuitry to support the operation of the microprocessor.

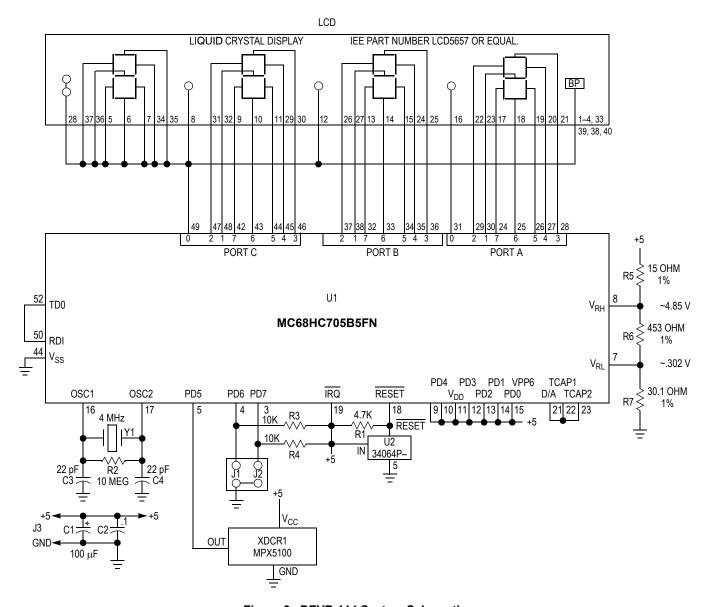


Figure 2. DEVB-114 System Schematic

Table 1. DEVB-114 Parts List

Designators	Quant.	Description	Rating	Manufacturer	Part Number
C1	1	100 μF Electrolytic Capacitor	25 Vdc	Sprague	513D107M025BB4
C2	1	0.1 μF Ceramic Capacitor	50 Vdc	Sprague	1C105Z5U104M050B
C3, C4	2	22 pF Ceramic Capacitor	100 Vdc	Mepco/Centralab	CN15A220K
J1, J2	1	Dual Row Straight .025 Pins Arranged On .1" Grid		Molex	10-89-1043
LCD	1	Liquid Crystal Display		AMPEREX	LTD226R-12
R1	1	4.7 k Ohm Resistor			
R2	1	10 Meg Ohm Resistor			
R3, R4	2	10 k Ohm Resistor			
R5	1	15 Ohm 1% 1/4 W Resistor			
R6	1	453 Ohm 1% 1/4 W Resistor			
R7	1	30.1 Ohm 1% 1/4 W Resistor			
XDCR1	1	Pressure Sensor		Freescale	MPX5100GP
U1	1	Microprocessor		Freescale Freescale	MC68HC705B5FN or XC68HC705B5FN
U2	1	Under Voltage Detector		Freescale	MC34064P-5
Y1	1	Crystal (Low Profile)	4.0 MHz	ECS	ECS-40-S-4
No Designator	1	52 Pin PLCC Socket		AMP	821-575-1
No Designator	2	Jumpers For J1 and J2		Molex	15-29-1025
No Designator	1	Bare Printed Circuit Board			

Notes: All resistors are 1/4 W resistors with a tolerance of 5% unless otherwise noted.

All capacitors are 100 volt, ceramic capacitors with a tolerance of 10% unless otherwise noted.

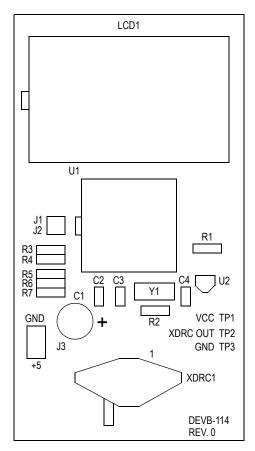


Figure 3. Silk Screen

Theory of Operation

Referring to the schematic, Figure 2, the MPX5100 pressure sensor is connected to PORT D bit 5 of the microprocessor. This port is an input to the on-chip 8 bit analog to digital converter. The pressure sensor provides a signal output to the microprocessor of approximately 0.5 Vdc at 0 psi to 4.5 Vdc at 15 psi of applied pressure as shown in Figure 4. The input range of the A to D converter is set at approximately 0.3 Vdc to 4.85 Vdc. This compresses the range of the A to D converter around the output range of the sensor to maximize the A to D converter. VRH and VRL are the reference voltage inputs to the A to D converter. The resolution is defined by the following:

Analog-to-digital converter count =

$$[(V_{xdcr}\text{-}V_{RL})/(V_{RH}\text{-}V_{RL})] \cdot 255$$

The count at 0 psi = $[(.5-.302)/(4.85-.302)] \cdot 255 \approx 11$ The count at 15 psi = $[(4.5-.302)/(4.85-.302)] \cdot 255 \approx 235$ Therefore the resolution = count @ 15 psi - count @ 0 psi or the resolution is (235-11) = 224 counts. This translates to a system that will resolve to 0.1 psi.

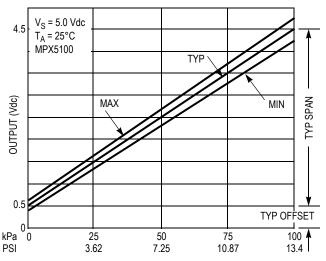


Figure 4. MPX5100 Output versus Pressure Input

The voltage divider consisting of R5 through R7 is connected to the +5 volts powering the system. The output of the pressure sensor is ratiometric to the voltage applied to it. The pressure sensor and the voltage divider are connected to a common supply; this yields a system that is ratiometric. By nature of this ratiometric system, variations in the voltage of the power supplied to the system will have no effect on the system accuracy.

The liquid crystal display is directly driven from I/O ports A, B, and C on the microprocessor. The operation of a liquid crystal display requires that the data and backplane pins must be driven by an alternating signal. This function is provided by a software routine that toggles the data and backplane at approximately a 30 Hz rate.

The microprocessor section of the system requires certain support hardware to allow it to function. The MC34064P-5 (U2) provides an under voltage sense function which is used

to reset the microprocessor at system power-up. The 4 MHz crystal (Y1) provides the external portion of the oscillator function for clocking the microprocessor and provides a stable base for time based functions. Jumpers J1 and J2 are examined by the software and are used to "rubber" the slope constant.

OPERATION

The system must be connected to a 5 Vdc regulated power supply. Note the polarity marked on the power terminal J3. Jumpers J1 and J2 must either both be installed or both be removed for the normal slope constant to be used. The pressure port on the MPX5100 sensor must be left open to atmosphere anytime the board is powered-up. As previously stated, the sensor's voltage offset with zero pressure applied is computed at power-up.

You will need to apply power to the system. The LCD will display CAL for approximately 5 seconds. After that time, the LCD will then start displaying pressure.

To improve upon the accuracy of the system, you can change the constant used by the program that constitutes the span of the sensor. You will need an accurate test gauge to measure the pressure applied to the sensor. Anytime after the display has completed the zero calculation (after CAL is no longer displayed), apply 15.0 PSI to the sensor. Make sure that jumpers J1 and J2 are either both installed or both removed. Referring to Table 2, you can increase the displayed value by installing J1 and removing J2. Conversely, you can decrease the displayed value by installing J2 and removing J1.

Table 2. J1/J2 Installation

J1	J2	Action
IN	IN	Use Normal Span Constant
OUT	OUT	Use Normal Span Constant
OUT	IN	Decrease Span Constant Approximately 1.5%
IN	OUT	Increase Span Constant Approximately 1.5%

SOFTWARE

The source code, compiler listing, and S-record output for the software used in this system are available on the Freescale Freeware Bulletin Board Service in the MCU directory under the filename DEVB-114.ARC. To access the bulletin board you must have a telephone line, a 300, 1200 or 2400 baud modem and a terminal or personal computer. The modem must be compatible with the Bell 212A standard. Call 1-512-891-3733 to access the Bulletin Board Service.

The software for the system consists of several modules. Their functions provide the capability for system calibration as well as displaying the pressure input to the MPX5100 transducer.

Figure 5 is a flowchart for the program that controls the system.

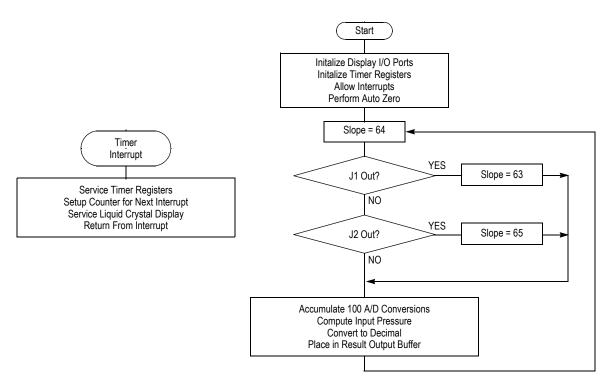


Figure 5. DEVB-114 Software Flowchart

The compiler used in this project was provided by BYTE CRAFT LTD. (519) 888-6911. A compiler listing of the program is included at the end of this document. The following is a brief explanation of the routines:

delay() Used to provide approximately a 20 ms loop.

read_a2d() Performs one hundred reads on the analog to digital converter on multiplexer channel 5 and returns the accumulation.

fixcompare() Services the internal timer for 30 ms timer compare interrupts.

TIMERCMP() Alternates the data and backplane for the liquid crystal display.

initio() Sets up the microcomputer's I/O ports, timer, allows processor interrupts, and calls adzero().

adzero() This routine is necessary at power-up time because it delays the power supply and allows the transducer to

stabilize. It then calls 'read_atod()' and saves the returned value as the sensors output voltage with zero pressure applied.

cvt_bin_dec(unsigned long arg) This routine converts the unsigned binary argument passed in 'arg' to a five digit decimal number in an array called 'digit'. It then uses the decimal results for each digit as an index into a table that converts the decimal number into a segment pattern for the display. It is then output to the display.

display_psi() This routine is called from 'main()'. The analog to digital converter routine is called, the pressure is calculated, and the pressure applied to the sensor is displayed. The loop then repeats.

main() This is the main routine called from reset. It calls 'initio()' to set up the system's I/O. 'display_psi()' is called to compute and display the pressure applied to the sensor.

SOFTWARE SOURCE/ASSEMBLY PROGRAM CODE

#pragma option v ;

```
rev 1.1 code rewritten to use the MC68HC705B5 instead of the
                                  MC68HC805B6. WLL 6/17/91
                                  THE FOLLOWING 'C' SOURCE CODE IS WRITTEN FOR THE DEVB-114 DEMONSTRATION
                                  BOARD. IT WAS COMPILED WITH A COMPILER COURTESY OF:
                                                                 BYTE CRAFT LTD.
                                                                 421 KING ST.
                                                                 WATERLOO, ONTARIO
                                                                 CANADA N2J 4E4
                                                                 (519) 888-6911
                                  SOME SOURCE CODE CHANGES MAY BE NECESSARY FOR COMPILATION WITH OTHER
                                  COMPTLERS
                                                                  BILL LUCAS 8/5/90
                                                                                               */
                                                                  FREESCALE, SPS
0800 1700
                                  #pragma memory ROMPROG [5888] @ 0x0800;
0050 0096
                                  #pragma memory RAMPAGE0 [150]
                                                                    @ 0x0050 ;
                                           Vector assignments
                                                                  */
                                  #pragma vector __RESET @ 0x1ffe ;
#pragma vector __SWI @ 0x1ffc ;
1FFE
1 FFC
                                  #pragma vector IRQ
1FFA
                                                             @ 0x1ffa ;
1 FF8
                                  #pragma vector TIMERCAP @ 0x1ff8 ;
1FF6
                                  #pragma vector TIMERCMP @ 0x1ff6 ;
                                  #pragma vector TIMEROV @ 0x1ff4 ;
1FF4
1 FF2
                                  #pragma vector SCI
                                                             @ 0x1ff2 ;
                                  #pragma has STOP ;
                                  #pragma has WAIT ;
                                  #pragma has MUL ;
                                           Register assignments for the 68HC705B5 microcontroller
0000
                                  #pragma portrw porta @ 0x00; /*
0001
                                                          @ 0x01; /*
                                  #pragma portrw portb
0002
                                  #pragma portrw portc
                                                          @ 0x02; /*
                                  #pragma portrw portd @ 0x03; /* in ,- ,SS ,SCK ,MOSI,MISO,TxD,RxD
0003
                                  #pragma portrw ddra @ 0x04; /* Data direction, Port A
#pragma portrw ddrb @ 0x05; /* Data direction, Port B
#pragma portrw ddrc @ 0x06; /* Data direction, Port C (all output)
0004
0005
0006
0007
                                  #pragma portrw eeclk @ 0x07; /* eeprom/eclk cntl */
                                  #pragma portrw addata @ 0x08; /* a/d data register */
8000
                                  #pragma portrw adstat @ 0x09; /* a/d stat/control */
0009
                                  #pragma portrw plma @ 0x0a; /* pulse length modulation a */
000A
                                  #pragma portrw plmb @ 0x0b; /* pulse length modulation b */
#pragma portrw misc @ 0x0c; /* miscellaneous register */
000B
000C
                                  #pragma portrw scibaud @ 0x0d; /* sci baud rate register */
000D
                                  #pragma portrw scicntl1 @ 0x0e; /* sci control 1 */
000E
                                  #pragma portrw scientl2 @ 0x0f; /* sci control 2 */
000F
                                  #pragma portrw scistat @ 0x10; /* sci status reg */
0010
```

```
0011
                               #pragma portrw scidata @ 0x11; /* SCI Data */
0012
                               #pragma portrw tcr
                                                        @ 0x12; /* ICIE,OCIE,TOIE,0;0,0,IEGE,OLVL
0013
                                                        @ 0x13; /* ICF,OCF,TOF,0; 0,0,0,0
                               #pragma portrw tsr
                               #pragma portrw icaphi1 @ 0x14; /* Input Capture Reg (Hi-0x14, Lo-0x15) */
0014
0015
                               #pragma portrw icaplo1 @ 0x15; /* Input Capture Reg (Hi-0x14, Lo-0x15) */
0016
                               #pragma portrw ocmphi1 @ 0x16; /* Output Compare Reg (Hi-0x16, Lo-0x17)*/
                               #pragma portrw ocmplo1 @ 0x17; /* Output Compare Reg (Hi-0x16, Lo-0x17)*/
0017
                               #pragma portrw tcnthi @ 0x18; /* Timer Count Reg (Hi-0x18, Lo-0x19) */
0018
0019
                               #pragma portrw tcntlo @ 0x19; /* Timer Count Reg (Hi-0x18, Lo-0x19)
                               #pragma portrw acnthi @ 0x1A; /* Alternate Count Reg (Hi-$1A, Lo-$1B) */
#pragma portrw acntlo @ 0x1B; /* Alternate Count Reg (Hi-$1A, Lo-$1B) */
001A
001B
                               #pragma portrw icaphi2 @ 0x1c; /* Input Capture Reg (Hi-0x1c, Lo-0x1d) */
001C
001D
                               #pragma portrw icaplo2 @ 0x1d; /* Input Capture Reg (Hi-0x1c, Lo-0x1d) */
                               #pragma portrw ocmphi2 @ 0xle; /* Output Compare Reg (Hi-0xle, Lo-0xlf)*/
#pragma portrw ocmplo2 @ 0xlf; /* Output Compare Reg (Hi-0xle, Lo-0xlf)*/
001E
001F
                                  /* put constants and variables here...they must be global */
                               1EFE 74
                               #pragma mor @ 0x1EFE = 0x74;/*this disables the watchdog counter and does not
                      add pull-down resistors on ports B and C */
0800 FC 30 DA 7A 36 6E E6 38 FE const char lcdtab[]={0xfc,0x30,0xda,0x7a,0x36,0x6e,0x6e,0x38,0xfe,0x3e};
                                 /* lcd pattern table 0
                                                           1
                                                                 2
                                                                                5
080A 27 10 03 E8 00 64 00 0A
                                 const long dectable[] = { 10000, 1000, 100, 10 };
0050 0005
                                 unsigned int digit[5]; /* buffer to hold results from cvt_bin_dec functio*/
0000
                                 registera ac;
                                                    /* processor's A register */
0055
                                 long atodtemp:
                                                    /* temp to accumulate 100 a/d readings for smoothing */
0059
                                 long slope;
                                                    /* multiplier for adc to engineering units conversion */
005B
                                 int adont:
                                                    /* a/d converter loop counter */
                                 long xdcr_offset; /* initial xdcr offset */
005C
                                 unsigned long i,j; /* counter for loops */
005E 0060
0062
                                 int k;
                                                     /* misc variable */
                                 struct bothbytes
                                    { int hi;
                                        int lo;
                                    union isboth
                                         { long 1;
                                         struct bothbytes b;
                                         };
0063 0002
                                    union isboth q; /* used for timer set-up */
```

```
/* code starts here */
                           /* these interrupts are not used...give them a graceful return if for
                             some reason one occurs */
                           __SWI(){}
1FFC 08 12
0812 80
             RTI
1FFA 08 13
                           IRQ(){}
0813 80
             RTI
1FF8 08 14
                           TIMERCAP() { }
0814 80
             RTI
1FF4 08 15
                           TIMEROV() {}
0815 80
             RTI
1FF2 08 16
                           SCI(){}
0816 80
             RTI
                           void delay(void) /* just hang around for a while */
0817 4F
            CLRA
                           for (i=0; i<20000; ++i);
0818 3F 57
            CLR
                   $57
081A B7 58
            STA
                   $58
081C B6 57
             LDA
                   $57
081E B7 5E
            STA
                   $5E
0820 B6 58
            LDA
                   $58
0822 B7 5F
             STA
                   $5F
0824 B6 5F
             LDA
                   $5F
0826 A0 20
             SUB
                   #$20
0828 B6 5E
             LDA
                   $5E
082A A2 4E
             SBC
                   #$4E
082C 24 08
             BCC
                   $0836
082E 3C 5F
            INC
                   $5F
0830 26 02
             BNE
                   $0834
0832 3C 5E
            INC
                   $5E
0834 20 EE
             BRA
                   $0824
0836 81
             RTS
                   }
             read a2d(void)
                           /* read the a/d converter on channel 5 and accumulate the result
                             in atodtemp */
0837 3F 56
             CLR
                   $56
                           atodtemp=0; /* zero for accumulation */
0839 3F 55
             CLR
                   $55
083B 4F
                             for ( adcnt = 0 ; adcnt<100; ++adcnt) /* do 100 a/d conversions */
             CLRA
083C B7 5B
             STA
                   $5B
083E B6 5B
                   $5B
             LDA
0840 A8 80
             EOR
                   #$80
0842 A1 E4
             CMP
                   #$E4
0844 24 21
                   $0867
             BCC
```

```
{
0846 A6 25
            LDA
                   #$25
                                    adstat = 0x25; /* convert on channel 5 */
0848 B7 09
            STA
                   $09
084A OF 09 FD BRCLR 7,$09,$084A
                                    while (!(adstat & 0x80)); /* wait for a/d to complete */
084D B6 08
            LDA
                   $08
                                    atodtemp = addata + atodtemp;
084F 3F 57
            CLR
                   $57
0851 B7 58
            STA
                   $58
0853 BB 56
                   $56
            ADD
0855 B7 58
            STA
                   $58
0857 B6 57
            LDA
                   $57
0859 B9 55
             ADC
                   $55
085B B7 57
             STA
                   $57
085D B7 55
             STA
                   $55
085F B6 58
             LDA
                   $58
0861 B7 56
             STA
                   $56
0863 3C 5B
             INC
                   $5B
0865 20 D7
             BRA
                   $083E
0867 B6 56
            LDA
                   $56
                                atodtemp = atodtemp/100;
0869 B7 58
            STA
                   $58
086B B6 55
                   $55
            LDA
086D B7 57
                   $57
            STA
086F 3F 66
            CLR
0871 A6 64
                   #$64
            LDA
0873 B7 67
             STA
                   $67
0875 CD 0A 5E JSR
                   $0A5E
0878 CD 0A 8F JSR
                   $0A8F
087B BF 55
             STX
                   $55
087D B7 56
            STA
                   $56
087F 81
             RTS
                                return atodtemp;
                              void fixcompare (void) /* sets-up the timer compare for the next interrup */
                                {
0880 B6 18
             LDA
                   $18
                             q.b.hi =tcnthi;
0882 B7 63
            STA
                   $63
0884 B6 19
            LDA
                   $19
                                 q.b.lo = tcntlo;
0886 B7 64
             STA
                   $64
0888 AB 4C
                                  q.1 +=7500; /* ((4mhz xtal/2)/4) = counter period = 2us.*7500 = 15ms.*/
                   #$4C
            ADD
088A B7 64
             STA
                   $64
088C B6 63
                   $63
            LDA
088E A9 1D
             ADC
                   #$1D
0890 B7 63
             STA
                   $63
0892 B7 16
             STA
                   $16
                                 ocmphi1 = q.b.hi;
0894 B6 13
             LDA
                   $13
                                  ac=tsr;
0896 B6 64
             LDA
                   $64
                                  ocmplo1 = q.b.lo;
0898 B7 17
             STA
                   $17
089A 81
             RTS
                                  }
                               void TIMERCMP (void)
                                                  /* timer service module */
1FF6 08 9B
                                 {
```

```
089B 33 02
                   $02
            COM
                                       portc =~ portc;
                                                           /* service the lcd */
089D 33 01
            COM
                   $01
                                       portb =~ portb;
089F 33 00
            COM
                   $00
                                       porta =~ porta;
08A1 AD DD
            BSR
                   $0880
                                       fixcompare();
08A3 80
            RTI
                                  }
                                void adzero(void) /* called by initio() to save initial xdcr's zero
                                                   pressure offset voltage output */
08A4 4F
             CLRA
                                 for ( j=0; j<20; ++j) /* give the sensor time to "warm-up" and the
08A5 3F 57
             CLR
                    $57
08A7 B7 58
                    $58
             STA
08A9 B6 57
                    $57
             LDA
08AB B7 60
             STA
                    $60
08AD B6 58
             LDA
                    $58
08AF B7 61
                    $61
             STA
08B1 B6 61
             LDA
                    $61
08B3 A0 14
                    #$14
             SUB
08B5 B6 60
                    $60
             LDA
08B7 A2 00
             SBC
                    #$00
08B9 24 0B
             BCC
                    $08C6
                                                         power supply time to settle down */
08BB CD 08 17 JSR
                    $0817
                                    delay();
08BE 3C 61
             INC
                    $61
08C0 26 02
             BNE
                    $08C4
08C2 3C 60
             INC
                    $60
08C4 20 EB
             BRA
                    $08B1
08C6 CD 08 37 JSR
                    $0837
                                     xdcr_offset = read_a2d();
08C9 3F 5C
             CLR
                    $5C
08CB B7 5D
             STA
                    $5D
08CD 81
             RTS
                    }
                    void initio (void)
                                        /* setup the I/O */
08CE A6 20
             LDA
                    #$20
                                   adstat = 0x20; /* power-up the A/D */
08D0 B7 09
             STA
                    $09
08D2 3F 02
             CLR
                    $02
                                   porta = portb = portc = 0;
08D4 3F 01
                    $01
             CLR
08D6 3F 00
             CLR
                    $00
08D8 A6 FF
             LDA
                    #$FF
                                   ddra = ddrb = ddrc = 0xff;
08DA B7 06
             STA
                    $06
08DC B7 05
             STA
                    $05
08DE B7 04
                    $04
             STA
08E0 B6 13
             LDA
                    $13
                                   ac=tsr; /* dummy read */
08E2 3F 1E
             CLR
                    $1E
                                   ocmphi1 = ocmphi2 = 0;
08E4 3F 16
             CLR
                    $16
08E6 B6 1F
             LDA
                    $1F
                                   ac = ocmplo2; /* clear out output compare 2 if it happens to be set */
08E8 AD 96
                                   fixcompare(); /* set-up for the first timer interrupt */
                    $0880
             BSR
```

```
tcr = 0x40;
08EA A6 40
                      #$40
              LDA
08EC B7 12
               STA
                      $12
08EE 9A
               CLI
                                       CLI; /* let the interrupts begin ! */
                                   /* write CAL to the display */
                                       portc = 0xcc; /* C */
08EF A6 CC
              LDA
                      #$CC
08F1 B7 02
               STA
                      $02
08F3 A6 BE
              LDA
                      #$BE
                                      portb = 0xbe; /* A */
08F5 B7 01
              STA
                      $01
08F7 A6 C4
              LDA
                      #$C4
                                       porta = 0xc4; /* L */
08F9 B7 00
              STA
                      $00
08FB AD A7
              BSR
                      $08A4
                                       adzero();
08FD 81
              RTS
                                  void cvt_bin_dec(unsigned long arg)
                                  /* First converts the argument to a five digit decimal value. The msd is in
                                  the lowest address. Then leading zero suppresses the value and writes it to
                                  the display ports.
                                     The argument value range is 0..65535 decimal. */
0069
08FE BF 69
               STX
                      $69
0900 B7 6A
               STA
                      $6A
006B
                                  char i;
006C
                                  unsigned long 1;
0902 4F
              CLRA
                                   for ( i=0; i < 5; ++i )
0903 B7 6B
               STA
                      $6В
0905 B6 6B
                      $6B
              LDA
0907 A1 05
               CMP
                      #$05
0909 24 07
               BCC
                      $0912
                                        digit[i] = 0x0; /* put blanks in all digit positions */
090B 97
               TAX
090C 6F 50
               CLR
                      $50,X
                                      }
090E 3C 6B
              TNC
                      $6B
0910 20 F3
               BRA
                      $0905
0912 4F
               CLRA
                                         for (i=0; i < 4; ++i)
0913 B7 6B
               STA
                      $6B
0915 B6 6B
              LDA
                      $6В
0917 A1 04
               CMP
                      #$04
0919 24 70
               BCC
                      $098B
091B 97
               TAX
                                               if ( arg >= dectable [i] )
091C 58
               LSLX
091D D6 08 0B LDA
                      $080B,X
0920 B1 6A
               CMP
                      $6A
0922 26 07
                      $092B
               BNE
0924 D6 08 0A LDA
                      $080A,X
0927 B1 69
               CMP
                      $69
0929 27 5C
              BEQ
                      $0987
                                                    1 = dectable[i];
092B BE 6B
               LDX
                      $6B
092D 58
              LSLX
092E D6 08 0A LDA
                      $080A.X
```

```
0933 D6 08 0B LDA
                      $080B,X
0936 B7 6D
               STA
                      $6D
0938 B6 6A
                                                       digit[i] = arg / 1;
               LDA
                      $6A
093A B7 58
               STA
                      $58
093C B6 69
               LDA
                      $69
093E B7 57
               STA
                      $57
0940 B6 6C
                      $6C
               LDA
0942 B7 66
                      $66
               STA
0944 B6 6D
               LDA
                      $6D
0946 B7 67
               STA
                      $67
0948 CD 0A 5E JSR
                      $0A5E
094B CD 0A 8F JSR
                      $0A8F
094E BF 57
               STX
                      $57
0950 B7 58
               STA
                      $58
0952 BE 6B
                      $6B
               LDX
0954 E7 50
               STA
                      $50,X
0956 BE 6B
               LDX
                      $6B
                                                       arg = arg-(digit[i] * 1);
0958 E6 50
               LDA
                      $50,X
095A 3F 57
                      $57
               CLR
095C B7 58
               STA
                      $58
095E B6 6C
                      $6C
               LDA
0960 B7 66
                      $66
               STA
0962 B6 6D
               LDA
                      $6D
0964 B7 67
                      $67
               STA
0966 CD 0A 3F JSR
                      $0A3F
0969 BF 57
                      $57
               STX
096B B7 58
                      $58
               STA
096D 33 57
               COM
                      $57
096F 30 58
                      $58
               NEG
0971 26 02
               BNE
                      $0975
0973 3C 57
               INC
                      $57
0975 B6 58
               LDA
                      $58
0977 BB 6A
               ADD
                      $6A
0979 B7 58
               STA
                      $58
097B B6 57
                      $57
               LDA
097D B9 69
               ADC
                      $69
097F B7 57
               STA
                      $57
0981 B7 69
               STA
                      $69
0983 B6 58
               LDA
                      $58
0985 B7 6A
               STA
                      $6A
0987 3C 6B
               INC
                      $6B
0989 20 8A
               BRA
                      $0915
                                    digit[i] = arg;
098B B6 6A
               LDA
                      $6A
098D B7 58
               STA
                      $58
098F B6 69
               LDA
                      $69
0991 B7 57
               STA
                      $57
0993 BE 6B
               LDX
                      $6В
0995 B6 58
               LDA
                      $58
0997 E7 50
               STA
                      $50,X
                                    /* now zero suppress and send the lcd pattern to the display */
0999 9в
               SET
                                SET:
```

```
099A 3D 50
                     $50
                                  if ( digit[0] == 0 ) /* leading zero suppression */
              TST
099C 26 04
              BNE
                     $09A2
099E 3F 02
                     $02
              CLR
                                   portc = 0:
09A0 20 07
              BRA
                     $09A9
                                      else
09A2 BE 50
              LDX
                     $50
                                      portc = ( lcdtab[digit[0]] );
                                                                     /* 100's digit */
09A4 D6 08 00 LDA
                     $0800.X
09A7 B7 02
              STA
                     $02
09A9 3D 50
                                       if ( digit[0] == 0 && digit[1] == 0 )
                     $50
              TST
09AB 26 08
              BNE
                     $09B5
09AD 3D 51
              TST
                     $51
09AF 26 04
              BNE
                     $09B5
09B1 3F 01
              CLR
                     $01
                                         portb=0;
09B3 20 07
              BRA
                     $09BC
                                            else
09B5 BE 51
              LDX
                     $51
                                             portb = ( lcdtab[digit[1]] );
                                                                             /* 10's digit */
09B7 D6 08 00 LDA
                     $0800,X
09BA B7 01
                     $01
              STA
09BC BE 52
              LDX
                     $52
                                             porta = ( lcdtab[digit[2]]+1 ); /* 1's digit + decimal point */
09BE D6 08 00 LDA
                     $0800,X
09C1 4C
              INCA
09C2 B7 00
              STA
                     $00
09C4 9A
              CLI
                                  CLI;
09C5 CD 08 17 JSR
                     $0817
                                             delay();
09C8 81
              RTS
                                  void display_psi(void)
                                  /* At power-up it is assumed that the pressure port of the sensor
                                     is open to atmosphere. The code in initio() delays for the
                                     sensor and power to stabilize. One hundred A/D conversions are
                                     averaged and divided by 100. The result is called xdcr offset.
                                     This routine calls the A/D routine which performs one hundred
                                     conversions, divides the result by 100 and returns the value.
                                     If the value returned is less than or equal to the xdcr_offset,
                                     the value of xdcr_offset is substituted. If the value returned
                                     is greater than xdcr_offset, xdcr_offset is subtracted from the
                                     returned value. That result is multiplied by a constant to yield
                                     pressure in PSI * 10 to yield a "decimal point".
                                  {
                                   while(1)
                                  slope = 64;
09C9 3F 59
              CLR
                     $59
09CB A6 40
                     #$40
              LDA
09CD B7 5A
              STA
                     $5A
09CF B6 03
              LDA
                     $03
                                      k = portd & 0xc0; /* this lets us "rubber" the slope to closer fit
09D1 A4 C0
              AND
                     #$C0
09D3 B7 62
              STA
                     $62
                                                            the slope of the sensor */
09D5 A1 80
                     #$80
                                       if (k == 0x80)
                                                           /* J2 removed, J1 installed */
              CMP
09D7 26 06
              BNE
                     $09DF
09D9 3F 59
              CLR
                     $59
                                         slope = 65:
09DB A6 41
              LDA
                     #$41
09DD B7 5A
              STA
                     $5A
                                          if ( k == 0x40 ) /* J1 removed, J2 installed */
09DF B6 62
              LDA
                     $62
```

```
09E1 A1 40
                     #$40
              CMP
09E3 26 06
              BNE
                     $09EB
09E5 3F 59
              CLR
                     $59
                                             slope = 63:
09E7 A6 3F
              LDA
                     #$3F
09E9 B7 5A
              STA
                     $5A
                                   /* else both jumpers are removed or installed... don't change the slope */
09EB CD 08 37 JSR
                     $0837
                                       atodtemp = read_a2d(); /* atodtemp = raw a/d ( 0..255 ) */
09EE 3F 55
                     $55
              CLR
09F0 B7 56
              STA
                     $56
                                         if ( atodtemp <= xdcr_offset )</pre>
09F2 B0 5D
              SUB
                     $5D
09F4 B7 58
              STA
                     $58
09F6 B6 5C
              LDA
                     $5C
09F8 A8 80
              EOR
                     #$80
09FA B7 57
              STA
                     $57
09FC B6 55
                     $55
              LDA
09FE A8 80
                     #$80
0A00 B2 57
              SBC
                     $57
0A02 BA 58
              ORA
                     $58
0A04 22 08
                     $0A0E
              BHI
0A06 B6 5C
              LDA
                     $5C
                                           atodtemp = xdcr_offset;
0A08 B7 55
                     $55
              STA
0A0A B6 5D
                     $5D
              LDA
0A0C B7 56
              STA
                     $56
0A0E B6 56
                                         atodtemp -= xdcr_offset; /* remove the offset */
              LDA
                     $56
0A10 B0 5D
              SUB
                     $5D
0A12 B7 56
              STA
                     $56
0A14 B6 55
                     $55
              LDA
0A16 B2 5C
              SBC
                     $5C
0A18 B7 55
              STA
                     $55
0A1A B6 56
              LDA
                     $56
                                       atodtemp *= slope; /* convert to psi */
0A1C B7 58
              STA
                     $58
0A1E B6 55
              LDA
                     $55
0A20 B7 57
              STA
                     $57
0A22 B6 59
              LDA
                     $59
0A24 B7 66
              STA
                     $66
0A26 B6 5A
              LDA
                     $5A
0A28 B7 67
              STA
                     $67
OA2A CD OA 3F JSR
                     $0A3F
0A2D BF 55
              STX
                     $55
0A2F B7 56
              STA
                     $56
                     $08FE
0A31 CD 08 FE JSR
                                       cvt_bin_dec( atodtemp ); /* convert to decimal and display */
0A34 20 93
              BRA
                     $09C9
0A36 81
              RTS
                                main()
                                   initio(); /* set-up the processor's i/o */
0A37 CD 08 CE JSR
                     $08CE
OA3A AD 8D
              BSR
                     $09C9
                                   display_psi();
0A3C 20 FE
              BRA
                     $0A3C
                                    while(1); /* should never get here */
0A3E 81
              RTS
0A3F BE 58
              T-DX
                     $58
0A41 B6 67
              LDA
                     $67
```

0 A4 3	42		MUL	
0A44	в7	70	STA	\$70
0 A4 6	BF	71	STX	\$71
0A48	BE	57	LDX	\$57
0A4A	в6	67	LDA	\$67
0A4C	42		MUL	
0A4D	вв	71	ADD	\$71
OA4F	в7	71	STA	\$71
0A51	ΒE	58	LDX	\$58
0A53	в6	66	LDA	\$66
0A55	42		MUL	
0A56	вв	71	ADD	\$71
0A58	в7	71	STA	\$71
0A5A	97		TAX	
0A5B	в6	70	LDA	\$70
0A5D	81		RTS	
0A5E	3 F	70	CLR	\$70
0A60	5F		CLRX	
0A61	3 F	6E	CLR	\$6E
0A63	3 F	6F	CLR	\$6F
0A65	5C		INCX	
0A66	38	58	LSL	\$58
0A68	39	57	ROL	\$57
0A6A	39	6E	ROL	\$6E
0A6C	39	6F	ROL	\$6F
0A6E	в6	6E	LDA	\$6E
0A70	во	67	SUB	\$67
0A72	в7	6E	STA	\$6E
0A74	в6	6F	LDA	\$6F
0A76	в2	66	SBC	\$66
0A78	в7	6F	STA	\$6F
0 A 7 A	24	0D	BCC	\$0A89
0A7C	В6	67	LDA	\$67
0A7E	вв	6E	ADD	\$6E
08A0	в7	6E	STA	\$6E
0A82	в6	66	LDA	\$66
0A84	в9	6F	ADC	\$6F
0A86	в7	6F	STA	\$6F
88A0	99		SEC	
0A89	59		ROLX	
A8A0	39	70	ROL	\$70
0A8C	24	D8	BCC	\$0A66
0A8E	81		RTS	
0A8F	53		COMX	
0 A 90	9F		TXA	
0A91	BE	70	LDX	\$70
0A93	53		COMX	
0A94	81		RTS	
1FFE	0A	37		

Freescale Semiconductor

SYMBOL TABLE

LABEL	VALUE	LABEL	VALUE	LABEL	VALUE	LABEL	VALUE
IRQ	0813	SCI	0816	TIMERCAP	0814	TIMERCMP	089B
TIMEROV	0815	rdia	OA5E	LongIX	0066	MUL	0000
MUL16x16	0A3F	RDIV	0A8F	RESET	1FFE	STARTUP	0000
STOP	0000	swi	0812	WAIT	0000	longAC	0057
acnthi	001A	acntlo	001B	adcnt	005B	addata	8000
adstat	0009	adzero	08A4	arg	0069	atodtemp	0055
b	0000	bothbytes	0002	cvt_bin_dec	08FE	ddra	0004
ddrb	0005	ddrc	0006	dectable	080A	delay	0817
digit	0050 J	display_psi	09C9	eeclk	0007	fixcompare	0880
hi	0000	i	005E	icaphi1	0014	icaphi2	001C
icaplo1	0015	icaplo2	001D	initio	08CE	isboth	0002
j	0060	k	0062	1	0000	lcdtab	0800
lo	0001	main	0A37	misc	000C	ocmphi1	0016
ocmphi2	001E	ocmplo1	0017	ocmplo2	001F	plma	A000
plmb	000B	porta	0000	portb	0001	portc	0002
portd	0003	q	0063	read_a2d	0837	scibaud	000D
scicntl1	000E	scicnt12	000F	scidata	0011	scistat	0010
slope	0059	tcnthi	0018	tcntlo	0019	tcr	0012
tsr	0013	xdcr_offset	005C				
		_					
MEMORY USAGE	E MAP ('	X' = Used, '-	' = Unu	sed)			
0140 :							
0180 :							

	•				
	•				
01C0	:				X-
0800	:	xxxxxxxxxxxxxxx	xxxxxxxxxxxxxxx	xxxxxxxxxxxxxxx	XXXXXXXXXXXXX
0840	:	xxxxxxxxxxxxxx	xxxxxxxxxxxxxx	xxxxxxxxxxxxx	XXXXXXXXXXXXX
0880	:	xxxxxxxxxxxxxxx	xxxxxxxxxxxxxxx	xxxxxxxxxxxxxxx	XXXXXXXXXXXXX
08C0	:	xxxxxxxxxxxxxx	xxxxxxxxxxxxxx	xxxxxxxxxxxxxx	XXXXXXXXXXXXX
0900	:	xxxxxxxxxxxxxxx	xxxxxxxxxxxxxxx	xxxxxxxxxxxxxx	XXXXXXXXXXXXX
0940	:	xxxxxxxxxxxxxxx	xxxxxxxxxxxxxxx	xxxxxxxxxxxxxx	XXXXXXXXXXXXX
0980	:	xxxxxxxxxxxx	xxxxxxxxxxx	xxxxxxxxxxx	XXXXXXXXXXXXX
09C0	:	xxxxxxxxxxxx	xxxxxxxxxxx	xxxxxxxxxxx	XXXXXXXXXXXXX
00A0	:	xxxxxxxxxxxx	xxxxxxxxxxxx	xxxxxxxxxxx	XXXXXXXXXXXX
0A40	:	xxxxxxxxxxxx	xxxxxxxxxxx	xxxxxxxxxxx	XXXXXXXXXXXXX
		xxxxxxxxxxxx			
0AC0	:				
1F80	:				

All other memory blocks unused.
Errors : 0
Warnings : 0

Compensated Sensor Bar Graph Pressure Gauge

by: Warren Schultz
Discrete Applications Engineering

INTRODUCTION

Compensated semiconductor pressure sensors such as the MPX2000 family are relatively easy to interface with digital systems. With these sensors and the circuitry described herein, pressure is translated into a 0.5 to 4.5 volt output range that is directly compatible with Microcomputer A/D inputs. The 0.5 to 4.5 volt range also facilitates interface with an LM3914, making Bar Graph Pressure Gauges relatively simple.

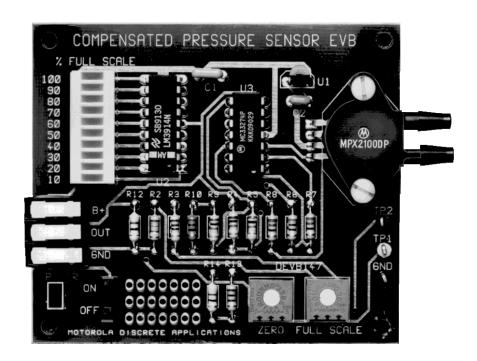


Figure 1. DEVB147 Compensated Pressure Sensor Evaluation Board (Board No Longer Available)

EVALUATION BOARD DESCRIPTION

The information required to use evaluation board number DEVB147 follows, and a discussion of the design appears in the DESIGN CONSIDERATIONS section.

Function

The evaluation board shown in Figure 1 is supplied with an MPX2100DP sensor and provides a 100 kPa full scale pressure measurement. It has two input ports. P1, the pressure port, is on the top side of the sensor and P2, a vacuum port, is on the bottom side. These ports can be supplied up to 100 kPa (15 psi) of pressure on P1 or up to 100 kPa of vacuum on P2, or a differential pressure up to 100 kPa between P1 and P2. Any of these sources will produce the same output.

The primary output is a 10 segment LED bar graph, which is labeled in increments of 10% of full scale, or 10 kPa with the MPX2100 sensor. An analog output is also provided. It nominally supplies 0.5 volts at zero pressure and 4.5 volts at full scale. Zero and full scale adjustments are made with potentiometers so labeled at the bottom of the board. Both adjustments are independent of one another.

ELECTRICAL CHARACTERISTICS

The following electrical characteristics are included as a quide to operation.

Characteristic	Symbol	MIn	Тур	Max	Units
Power Supply Voltage	B+	6.8	_	13.2	dc Volts
Full Scale Pressure	PFS	_	_	100	kPa
Overpressure	PMAX	_	_	700	kPa
Analog Full Scale	VFS	_	4.5	_	Volts
Analog Zero Pressure Offset	VOFF	_	0.5	_	Volts
Analog Sensitivity	SAOUT	_	40	_	mV/kPa
Quiescent Current	ICC	_	40	_	mA
Full Scale Current	IFS	_	160	_	mA

Content

Board contents are described in the parts list shown in Table 1. A schematic and silk screen plot are shown in Figure 2 and Figure 6. A pin by pin circuit description follows.

Pin-by-Pin Description

B+

Input power is supplied at the B+ terminal. Minimum input voltage is 6.8 volts and maximum is 13.2 volts. The upper limit is based upon power dissipation in the LM3914 assuming all 10 LED's are lit and ambient temperature is 25°C. The board will survive input transients up to 25 volts provided that average power dissipation in the LM3914 does not exceed 1.3 watts.

OUT

An analog output is supplied at the OUT terminal. The signal it provides is nominally 0.5 volts at zero pressure and 4.5 volts at full scale. Zero pressure voltage is adjustable and set with R11. This output is designed to be directly connected to a microcomputer A/D channel, such as one of the E ports on an MC68HC11.

GND

There are two ground connections. The ground terminal on the left side of the board is intended for use as the power supply return. On the right side of the board one of the test point terminals is also connected to ground. It provides a convenient place to connect instrumentation grounds.

TP1

Test point 1 is connected to the LM3914's full scale reference voltage which sets the trip point for the uppermost LED segment. This voltage is adjusted via R1 to set full scale pressure.

TP2

Test point 2 is connected to the +5.0 volt regulator output. It can be used to verify that supply voltage is within its 4.75 to 5.25 volt tolerance.

P1, P2

Pressure and Vacuum ports P1 and P2 protrude from the sensor on the right side of the board. Pressure port P1 is on the top and vacuum port P2 is on the bottom. Neither port is labeled. Maximum safe pressure is 700 kPa.

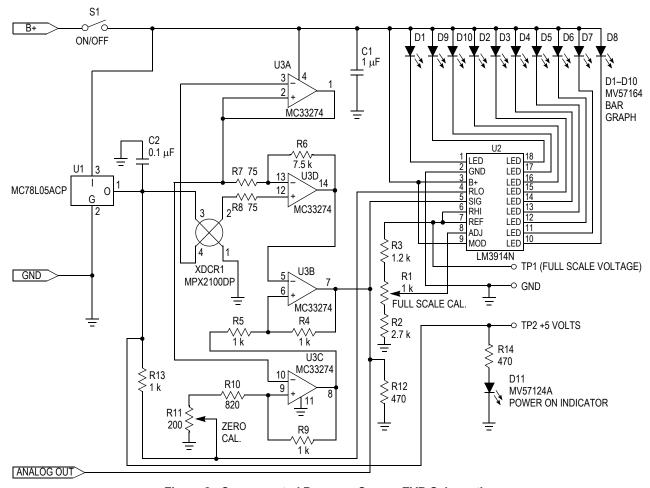


Figure 2. Compensated Pressure Sensor EVB Schematic

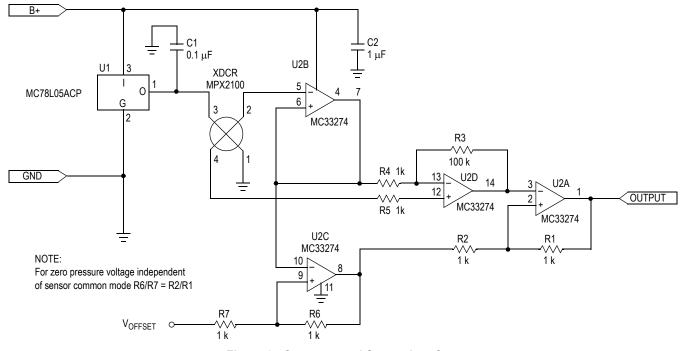


Figure 3. Compensated Sensor Interface

AN1309

DESIGN CONSIDERATIONS

In this type of application the design challenge is how to take a relatively small DC coupled differential signal and produce a ground referenced output that is suitable for driving microcomputer A/D inputs. A user friendly interface circuit that will do this job is shown in Figure 3. It uses one quad op amp and several resistors to amplify and level shift the sensor's output. Most of the amplification is done in U2D which is configured as a differential amplifier. It is isolated from the sensor's positive output by U2B. The purpose of U2B is to prevent feedback current that flows through R3 and R4 from flowing into the sensor. At zero pressure the voltage from pin 2 to pin 4 on the sensor is zero volts. For example with the common mode voltage at 2.5 volts, the zero pressure output voltage at pin 14 of U2D is then 2.5 volts, since any other voltage would be coupled back to pin 13 via R3 and create a nonzero bias across U2D's differential inputs. This 2.5 volt zero pressure DC output voltage is then level translated to the desired zero pressure offset voltage (VOFFSET) by U2C and U2A. To see how the level translation works, assume 0.5 volts at (V_{OFFSET}). With 2.5 volts at pin 10, pin 9 is also at 2.5 volts. This leaves 2.5 - 0.5 = 2.0 volts across R7. Since no current flows into pin 9, the same current flows through R6, producing 2.0 volts across R6 also. Adding the voltages (0.5 + 2.0 + 2.0)yields 4.5 volts at pin 8. Similarly 2.5 volts at pin 3 implies 2.5 volts at pin 2, and the drop across R2 is 4.5 V - 2.5 V = 2.0volts. Again 2.0 volts across R2 implies an equal drop across R1, and the voltage at pin 1 is 2.5 V - 2.0 V = 0.5 volts. For this DC output voltage to be independent of the sensor's common mode voltage it is necessary to satisfy the condition that R6/R7 = R2/R1.

Gain is close but not exactly equal to R3/R4(R1/R2+1), which predicts 200.0 for the values shown in Figure 3. A more exact calculation can be performed by doing a nodal analysis, which yields 199.9. Cascading the gains of U2D and U2A using standard op amp gain equations does not give an exact result, because the sensor's negative going differential signal at pin 4 subtracts from the DC level that is amplified by U2A.

The resulting 0.5 V to 4.5 V output from U2A is directly compatible with microprocessor A/D inputs. Tying this output to an LM3914 for a bar graph readout is also very straight forward. The block diagram that appears in Figure 4 shows the LM3914's internal architecture. Since the lower resistor in the input comparator chain is pinned out at R_{LO} , it is a simple matter to tie this pin to a voltage that is approximately equal to the interface circuit's 0.5 volt zero pressure output voltage. In

Figure 2, this is accomplished by dividing down the 5.0 volt regulator's output voltage through R13 and adjustment pot R11. The voltage generated at R11's wiper is the offset voltage identified as V_{OFFSET} in Figure 3. Its source impedance is chosen to keep the total input impedance to U3C at approximately 1K. The wiper of R11 is also fed into R_{LO} for zeroing the bar graph.

The full scale measurement is set by adjusting the upper comparator's reference voltage to match the sensor's output at full pressure. An internal regulator on the LM3914 sets this voltage with the aid of resistors R2, R3, and adjustment pot R1 that are shown in Figure 2.

Five volt regulated power is supplied by an MC78L05. The LED's are powered directly from LM3914 outputs, which are set up as current sources. Output current to each LED is approximately 10 times the reference current that flows from pin 7 through R3, R1, and R2 to ground. In this design it is nominally (4.5 V/4.9K)10 = 9.2 mA.

Over a zero to 50°C temperature range combined accuracy for the sensor, interface and driver IC are +/- 10%. Given a 10 segment display total accuracy for the bar graph readout is approximately +/- (10 kPa +10%).

APPLICATION

Using the analog output to provide pressure information to a microcomputer is very straightforward. The output voltage range, which goes from 0.5 volts at zero pressure to 4.5 volts at full scale, is designed to make optimum use of microcomputer A/D inputs. A direct connection from the evaluation board analog output to an A/D input is all that is required. Using the MC68HC11 as an example, the output is connected to any of the E ports, such as port E0 as shown in Figure 5. To get maximum accuracy from the A/D conversion, $V_{\mbox{\scriptsize REFH}}$ is tied to 4.85 volts and $V_{\mbox{\scriptsize REFL}}$ is tied to 0.3 volts by dividing down a 5.0 volt reference with 1% resistors.

CONCLUSION

Perhaps the most noteworthy aspect to the bar graph pressure gauge described here is the ease with which it can be designed. The interface between an MPX2000 series sensor and LM3914 bar graph display driver consists of one quad op amp and a few resistors. The result is a simple and inexpensive circuit that is capable of measuring pressure, vacuum, or differential pressure with an output that is directly compatible to a microprocessor.

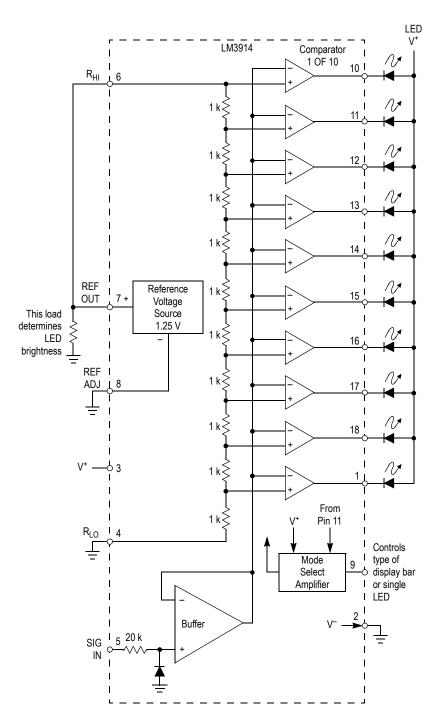


Figure 4. LM3914 Block Diagram

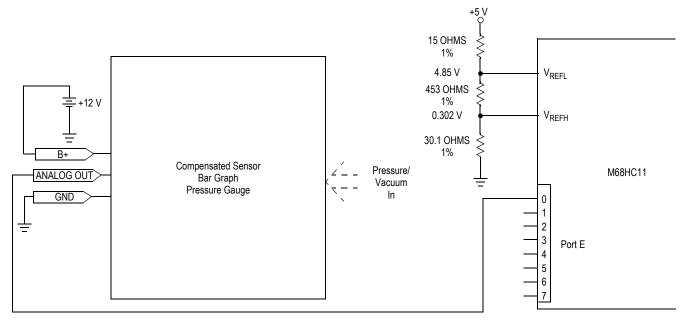


Figure 5. Application Example

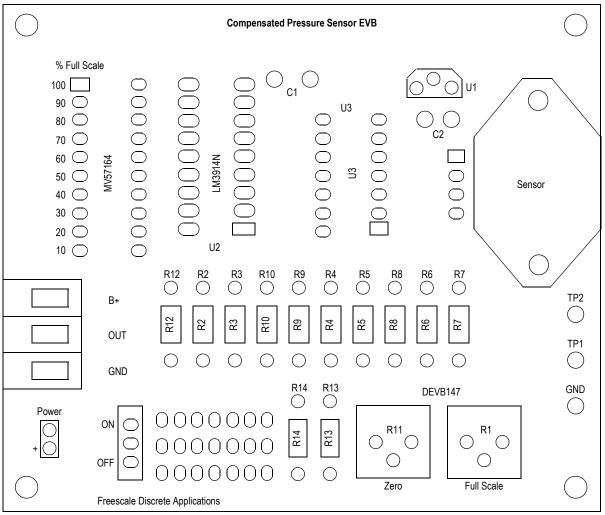


Figure 6. Silk Screen

Table 1. Parts List

Designators	Quant.	Description	Rating	Manufacturer	Part Number
C1	1	Ceramic Capacitor	1.0 μF		
C2	1	Ceramic Capacitor	0.1 μF		
D1-D10	1	Bar Graph LED		GI	MV57164
D11	1	LED		GI	MV57124A
R2	1	1/4 Watt Film Resistor	2.7K		
R3	1	1/4 Watt Film Resistor	1.2K		
R4, R5, R9, R13	4	1/4 Watt Film Resistor	1.0K		
R6	1	1/4 Watt Film Resistor	7.5K		
R7, R8	2	1/4 Watt Film Resistor	75		
R10	1	1/4 Watt Film Resistor	820		
R12, R14	2	1/4 Watt Film Resistor	470		
R1	1	Trimpot	1.0K	Bourns	3386P-1-102
R11	1	Trimpot	200	Bourns	3386P-1-201
S1	1	Switch		NKK	12SDP2
U1	1	5.0 V Regulator		Freescale	MC78L05ACP
U2	1	Bar Graph IC		National	LM3914N
U3	1	Op Amp		Freescale	MC33274P
XDCR1	1	Pressure Sensor		Freescale	MPX2100DP
_	1	Terminal Block		Augat	2SV03
_	1	Test Point Terminal (Black)		Components Corp.	TP1040100
_	1	Test Point Terminal (Red)		Components Corp.	TP1040102
_	1	Test Point Terminal (Yellow)		Components Corp.	TP1040104

An Evaluation System Interfacing the MPX2000 Series Pressure Sensors to a Microprocessor

by: Bill Lucas

Discrete Applications Engineering

INTRODUCTION

Outputs from compensated and calibrated semiconductor pressure sensors such as the MPX2000 series devices are easily amplified and interfaced to a microprocessor. Design considerations and the description of an evaluation board using a simple analog interface connected to a microprocessor is presented here.

PURPOSE

The evaluation system shown in Figure 1 shows the ease of operating and interfacing the Freescale Semiconductor, Inc. MPX2000 series pressure sensors to a quad operational amplifier, which amplifies the sensor's output to an acceptable level for an analog-to-digital converter. The output of the op amp is connected to the A/D converter of the microprocessor and that analog value is then converted to engineering units and displayed on a liquid crystal display (LCD). This system may be used to evaluate any of the MPX2000 series pressure sensors for your specific application.

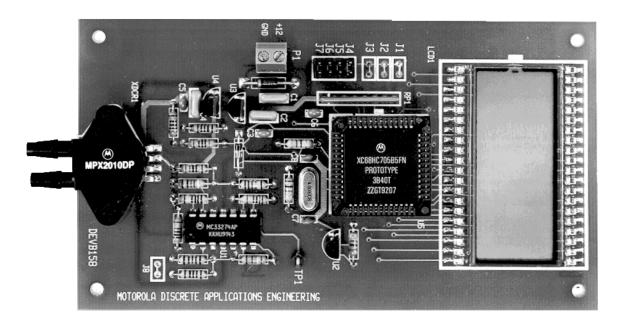


Figure 1. DEVB158 2000 Series LCD Pressure Gauge EVB (Board No Longer Available)

DESCRIPTION

The DEVB158 evaluation system is constructed on a small printed circuit board. Designed to be powered from a 12 Vdc power supply, the system will display the pressure applied to the MPX2000 series sensor in pounds per square inch (PSI) on the liquid crystal display. Table 1 shows the pressure sensors that may be used with the system and the pressure range associated with that particular sensor as well as the jumper configuration required to support that sensor. These jumpers are installed at assembly time to correspond with the supplied sensor. Should the user chose to evaluate a different sensor other than that supplied with the board, the jumpers must be changed to correspond to Table 1 for the new sensor. The displayed pressure is scaled to the full scale (PSI) range of the installed pressure sensor. No potentiometers are used in the system to adjust its span and offset. This function is performed by software.

Table 1. Missing Table Head

Sensor Type	Input Pressure	Jumpers			
Selisor Type	PSI	J8	J3	J2	J1
MPX2010	0-1.5	IN	IN	IN	IN
MPX2050	0-7.5	OUT	IN	IN	OUT
MPX2100	0-15.0	OUT	IN	OUT	IN
MPX2200	0-30	OUT	IN	OUT	OUT

The signal conditioned sensor's zero pressure offset voltage with no pressure applied to the sensor is empirically computed each time power is applied to the system and stored in RAM. The sensitivity of the MPX2000 series pressure sensors is quite repeatable from unit to unit. There is a facility for a small adjustment of the slope constant built into the program. It is accomplished via jumpers J4 through J7, and will be explained in the OPERATION section.

Figure 2 shows the printed circuit silkscreen and Figure 3 and Figure 4show the schematic for the system.

The analog section of the system can be broken down into two subsections. These sections are the power supply and the amplification section. The power supply section consists of a diode, used to protect the system from input voltage reversal, and two fixed voltage regulators. The 5 volt regulator (U3) is used to power the microprocessor and display. The 8 volt regulator (U4) is used to power the pressure sensor, voltage references and a voltage offset source.

The microprocessor section (U5) requires minimal support hardware to function. The MC34064P-5 (U2) provides an under voltage sense function and is used to reset the microprocessor at system power-up. The 4.0 MHz crystal (Y1) provides the external portion of the oscillator function for clocking the microprocessor and providing a stable base for timing functions.

The analog section of the system can be broken down into two subsections. These sections are the power supply and the amplification section. The power supply section consists of a diode, used to protect the system from input voltage reversal, and two fixed voltage regulators. The 5 volt regulator (U3) is used to power the microprocessor and display. The 8 volt regulator (U4) is used to power the pressure sensor, voltage references and a voltage offset source.

The microprocessor section (U5) requires minimal support hardware to function. The MC34064P-5 (U2) provides an under voltage sense function and is used to reset the microprocessor at system power-up. The 4.0 MHz crystal (Y1) provides the external portion of the oscillator function for clocking the microprocessor and providing a stable base for timing functions.

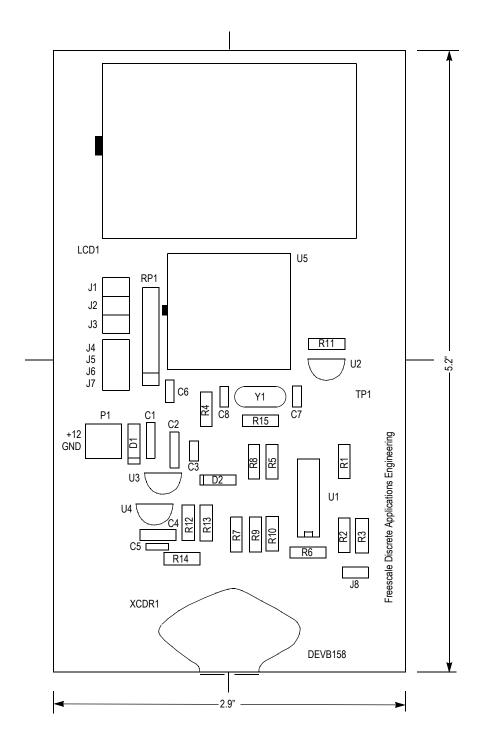


Figure 2. Printed Circuit Silkscreen

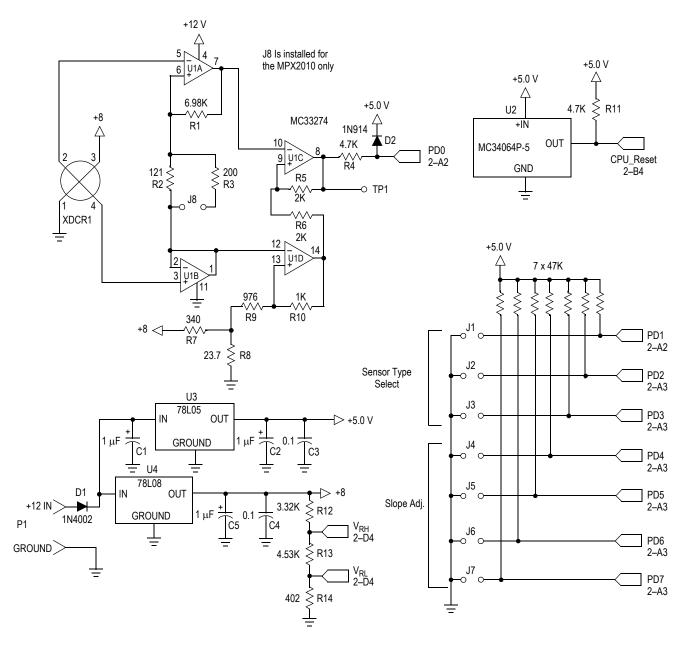


Figure 3. Schematic A

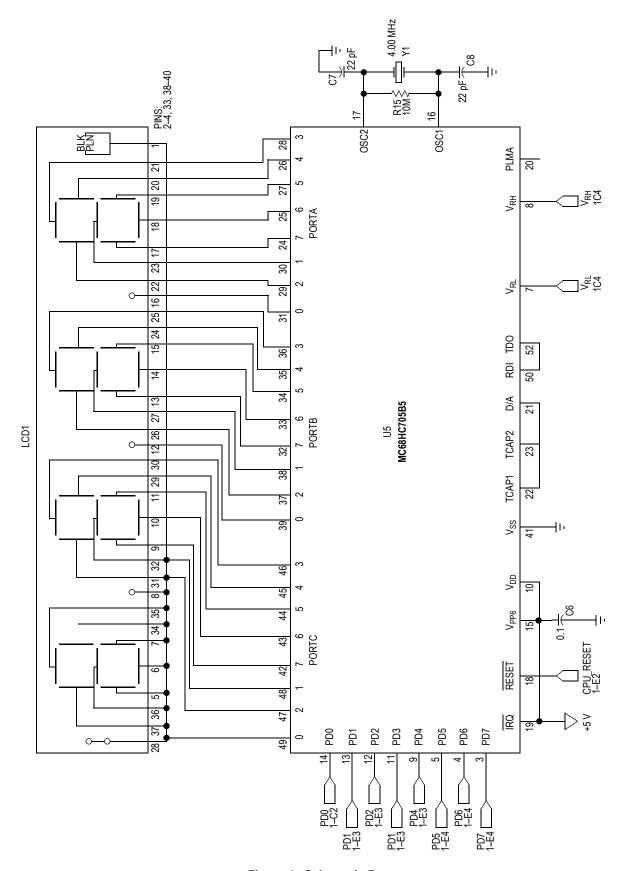


Figure 4. Schematic B

Table 2. Parts List

Designators	Quant.	Description	Rating	Manufacturer	Part Number
C3, C4, C6	3	0.1 μF Ceramic Cap.	50 Vdc	Sprague	1C105Z5U104M050B
C1, C2, C5	3	1 μF Ceramic Cap.	50 Vdc	muRATA ERIE	RPE123Z5U105M050V
C7, C8	2	22 pF Ceramic Cap.	100 Vdc	Mepco/Centralab	CN15A220K
J1-J3, J8	3 OR 4	#22 or #24 AWG Tined Copper		As Required	
J4-J7	1	Dual Row Straight 4 Pos. Arranged On 0.1" Grid		AMP	87227-2
LCD1	1	Liquid Crystal Display		IEE	LCD5657
P1	1	Power Connector		Phoenix Contact	MKDS 1/2-3.81
R1	1	6.98K Ohm resistor 1%			
R2	1	121 Ohm Resistor 1%			
R3	1	200 Ohm Resistor 1%			
R4, R11	2	4.7K Ohm Resistor			
R7	1	340 Ohm Resistor 1%			
R5, R6	2	2.0K Ohm Resistor 1%			
R8	1	23.7 Ohm Resistor 1%			
R9	1	976 Ohm Resistor 1%			
R10	1	1K Ohm Resistor 1%			
R12	1	3.32K Ohm Resistor 1%			
R13	1	4.53K Ohm Resistor 1%			
R14	1	402 Ohm Resistor 1%			
R15	1	10 Meg Ohm Resistor			
RP1	1	47K Ohm x 7 SIP Resistor 2%		CTS	770 Series
TP1	1	Test Point	Red	Components Corp.	TP-104-01-02
U1	1	Quad Operational Amplifier		Freescale	MC33274P
U2	1	Under Voltage Detector		Freescale	MC34064P-5
U3	1	5 Volt Fixed Voltage Regulator		Freescale	MC78L05ACP
U4	1	8 Volt Fixed Voltage Regulator		Freescale	MC78L08ACP
U5	1	Microprocessor		Freescale Freescale	MC68HC705B5FN or XC68HC705B5FN
XDCR	1	Pressure Sensor		Freescale	MPX2xxxDP
Y1	1	Crystal (Low Profile)	4.0 MHz	CTS	ATS040SLV
No Designator	1	52 Pin PLCC Socket for U5		AMP	821-575-1
No Designator	4	Jumpers For J4 thru J7		Molex	15-29-1025
No Designator	1	Bare Printed Circuit Board			
No Designator	4	Self Sticking Feet		Fastex	5033-01-00-5001

Notes: All resistors are 1/4 W resistors with a tolerance of 5% unless otherwise noted.

All capacitors are 100 volt, ceramic capacitors with a tolerance of 10% unless otherwise noted.

OPERATIONAL CHARACTERISTICS

The following operational characteristics are included as a guide to operation.

Characteristic	Symbol	Min	Max	Unit
Power Supply Voltage	+12	10.75	16	Volts
Operating Current	I _{CC}		75	mA
Full Scale Pressure	P _{fs}			
MPX2010			1.5	PSI
MPX2050			7.5	PSI
MPX2100			15	PSI
MPX2200			30	PSI

Pin-by-Pin Description

+12

Input power is supplied at the +12 terminal. The minimum operating voltage is 10.75 Vdc and the maximum operating voltage is 16 Vdc.

GND

The ground terminal is the power supply return for the system.

TP1

Test point 1 is connected to the final op amp stage. It is the voltage that is applied to the microprocessor's A/D converter.

There are two ports on the pressure sensor located at the bottom center of the printed circuit board. The pressure port is on the top left and the vacuum port is on the bottom right of the sensor.

OPERATION

Connect the system to a 12 Vdc regulated power supply. (Note the polarity marked on the power terminal P1.)

Depending on the particular pressure sensor being used with the system, wire jumpers J1 through J3 and J8 must be installed at board assembly time. If at some later time it is desirable to change the type of sensor that is installed on the board, jumpers J1 through J3 and J8, must be reconfigured for the system to function properly (see Table 1). If an invalid J1 through J3 jumper combination (i.e., not listed in Table 1) is used the LCD will display "SE" to indicate that condition. These jumpers are read by the software and are used to determine which sensor is installed on the board. Wire jumper J8 is installed only when an MPX2010DP pressure sensor is used on the system. The purpose of wire jumper J8 will be explained later in the text. Jumpers J4 through J7 are read by

the software to allow the user to adjust the slope constant used for the engineering units calculation (see Table 3). The pressure and vacuum ports on the sensor must be left open to atmosphere anytime the board is powered-up. This is because the zero pressure offset voltage is computed at power-up.

When you apply power to the system, the LCD will display CAL for approximately 5 seconds. After that time, pressure or vacuum may be applied to the sensor. The system will then start displaying the applied pressure in PSI.

Table 3. Slope Constants

J7	J6	J5	J4	Action
IN	IN	IN	IN	Normal Slope
IN	IN	IN	OUT	Decrease the Slope Approximately 7%
IN	IN	OUT	IN	Decrease the Slope Approximately 6%
IN	IN	OUT	OUT	Decrease the Slope Approximately 5%
IN	OUT	IN	IN	Decrease the Slope Approximately 4%
IN	OUT	IN	OUT	Decrease the Slope Approximately 3%
IN	OUT	OUT	IN	Decrease the Slope Approximately 2%
IN	OUT	OUT	OUT	Decrease the Slope Approximately 1%
OUT	IN	IN	IN	Increase the Slope Approximately 1%
OUT	IN	IN	OUT	Increase the Slope Approximately 2%
OUT	IN	OUT	IN	Increase the Slope Approximately 3%
OUT	IN	OUT	OUT	Increase the Slope Approximately 4%
OUT	OUT	IN	IN	Increase the Slope Approximately 5%
OUT	OUT	IN	OUT	Increase the Slope Approximately 6%
OUT	OUT	OUT	IN	Increase the Slope Approximately 7%
OUT	OUT	OUT	OUT	Normal Slope

To improve the accuracy of the system, you can change the constant used by the program that determines the span of the sensor and amplifier. You will need an accurate test gauge (using PSI as the reference) to measure the pressure applied to the sensor. Anytime after the display has completed the zero calculation, (after CAL is no longer displayed) apply the sensor's full scale pressure (see Table 1), to the sensor. Make sure that jumpers J4 through J7 are in the "normal" configuration (see Table 3). Referring to Table 3, you can better "calibrate" the system by changing the configuration of J4 through J7. To "calibrate" the system, compare the display reading against that of the test gauge (with J4 through J7 in the "normal slope" configuration). Change the configuration of J4 through J7 according to Table 3 to obtain the best results. The calibration jumpers may be changed while the system is powered up as they are read by the software before each display update.

DESIGN CONSIDERATIONS

To build a system that will show how to interface an MPX2000 series pressure sensor to a microprocessor, there are two main challenges. The first is to take a small differential signal produced by the sensor and produce a ground referenced signal of sufficient amplitude to drive a microprocessor's A/D input. The second challenge is to understand the microprocessor's operation and to write software that makes the system function.

From a hardware point of view, the microprocessor portion of the system is straight forward. The microprocessor needs power, a clock source (crystal Y1, two capacitors and a resistor), and a reset signal to make it function. As for the A/D converter, external references are required to make it function. In this case, the power source for the sensor is divided to produce the voltage references for the A/D converter. Accurate results will be achieved since the output from the sensor and the A/D references are ratiometric to its power supply voltage.

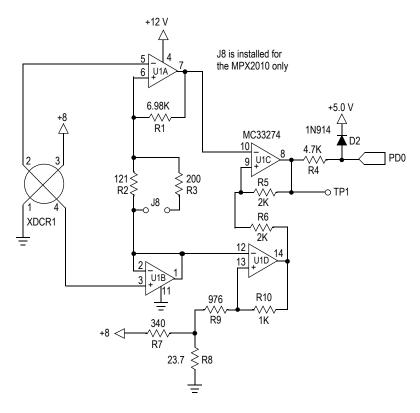


Figure 5. Analog Interface

The liquid crystal display is driven by Ports A, B and C of the microprocessor. There are enough I/O lines on these ports to provide drive for three full digits, the backplane and two decimal points. Software routines provide the AC waveform necessary to drive the display.

The analog portion of the system consists of the pressure sensor, a quad operational amplifier and the voltage references for the microprocessor's A/D converter and signal conditioning circuitry. Figure 5 shows an interface circuit that will provide a single ended signal with sufficient amplitude to drive the microprocessor's A/D input. It uses a quad operational amplifier and several resistors to amplify and level shift the sensor's output. It is necessary to level shift the output from the final amplifier into the A/D. Using single power supplied op amps, the $\rm V_{CE}$ saturation of the output from an op amp cannot be guaranteed to pull down to zero volts. The analog design shown here will provide a signal to the A/D

converter with a span of approximately 4 volts when zero to full-scale pressure is applied to the sensor. The final amplifier's output is level shifted to approximately 0.7 volts. This will provide a signal that will swing between approximately 0.7 volts and 4.7 volts. The offset of 0.7 volts in this implementation does not have to be trimmed to an exact point. The software will sample the voltage applied to the A/D converter at initial power up time and call that value "zero". The important thing to remember is that the span of the signal will be approximately 4 volts when zero to full scale pressure is applied to the sensor. The 4 volt swing in signal may vary slightly from sensor to sensor and can also vary due to resistor tolerances in the analog circuitry. Jumpers J4 through J7 may be placed in various configurations to compensate for these variations (see Table 3).

Referring to Figure 5, most of the amplification of the voltage from the pressure sensor is provided by U1A which is

configured as a differential amplifier. U1B serves as a unity gain buffer in order to keep any current that flows through R2 (and R3) from being fed back into the sensor's negative output. With zero pressure applied to the sensor, the differential voltage from pin 2 to pin 4 of the sensor is zero or very close to zero volts. The common mode, or the voltage measured between pins 2 or 4 to ground, is equal to approximately one

half of the voltage applied to the sensor, or 4 volts. The zero pressure output voltage at pin 7 of U1A will then be 4 volts because pin 1 of U1B is also at 4 volts, creating a zero bias between pins 5 and 6 of U1A. The four volt zero pressure output will then be level shifted to the desired zero pressure offset voltage (approximately 0.7 volts) by U1C and U1D.

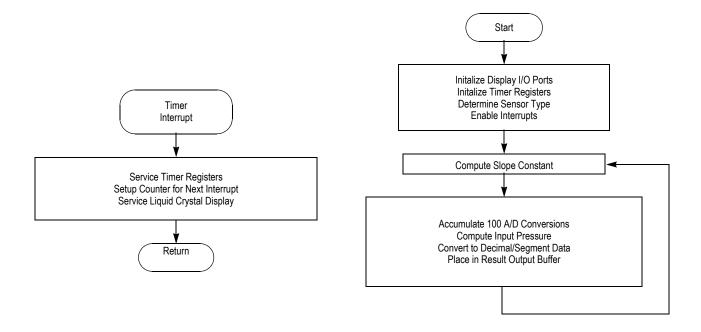


Figure 6. DEVB-158 Software Flowchart

To further explain the operation of the level shifting circuitry, refer again to Figure 5. Assuming zero pressure is applied to the sensor and the common mode voltage from the sensor is 4 volts, the voltage applied to pin 12 of U1D will be 4 volts. implying pin 13 will be at 4 volts. The gain of amplifier U1D will be (R10/(R8+R9)) +1 or a gain of 2. R7 will inject a Voffset (0.7 volts) into amplifier U1D, thus causing the output at U1D pin 14 to be 7.3 = (4 volts @ U1D pin 12×2) - 0.7 volts. The gain of U1C is also set at 2 ((R5/R6)+1). With 4 volts applied to pin 10 of U1C, its output at U1C pin 8 will be 0.7 = ((4 volts @ U1C pin 10×2) - 7.3 volts). For this scheme to work properly, amplifiers U1C and U1D must have a gain of 2 and the output of U1D must be shifted down by the Voffset provided by R7. In this system, the 0.7 volts V_{offset} was arbitrarily picked and could have been any voltage greater than the V_{sat} of the op amp being used. The system software will take in account any variations of Voffset as it assumes no pressure is applied to the sensor at system power up.

The gain of the analog circuit is approximately 117. With the values shown in Figure 5, the gain of 117 will provide a span of approximately 4 volts on U1C pin 8 when the pressure sensor and the 8 volt fixed voltage regulator are at their maximum output voltage tolerance. All of the sensors listed in Table 1 with the exception of the MPX2010DP output approximately 33 mV when full scale pressure is applied.

When the MPX2010DP sensor is used, its full scale sensor differential output is approximately 20 mV. J8 must be installed to increase the gain of the analog circuit to still provide the 4 volts span out of U1C pin 8 with a 20 mV differential from the sensor.

Diode D2 is used to protect the microprocessor's A/D input if the output from U1C exceeds 5.6 volts. R4 is used to provide current limiting into D4 under failure or overvoltage conditions.

SOFTWARE

The source code, compiled listing, and S-record output for the software used in this system are available on the Freescale Freeware Bulletin Board Service in the MCU directory under the filename DEVB158.ARC. To access the bulletin board, you must have a telephone line, a 300, 1200 or 2400 baud modem and a personal computer. The modem must be compatible with the Bell 212A standard. Call (512) 891-3733 to access the Bulletin Board Service.

Figure 6 is a flowchart for the program that controls the system. The software for the system consists of a number of modules. Their functions provide the capability for system calibration as well as displaying the pressure input to the MPX2000 series pressure sensor.

The "C" compiler used in this project was provided by BYTE CRAFT LTD. (519) 888-6911. A compiler listing of the program is included at the end of this document. The following is a brief explanation of the routines:

- delay() Used to provide a software loop delay.
- read_a2d() Performs 100 reads on the A/D converter on multiplexer channel 0 and returns the accumulation.
- **fixcompare()** Services the internal timer for 15 ms. timer compare interrupts.
- **TIMERCMP()** Alternates the data and backplane inputs to the liquid crystal display.
- initio() Sets up the microprocessor's I/O ports, timer and enables processor interrupts.
- adzero() This routine is called at powerup time. It delays to let the power supply and the transducer stabilize. It then calls "read_atod()" and saves the returned value as the sensors output voltage with zero pressure applied.
- cvt_bin_dec(unsigned long arg This routine converts the unsigned binary argument passed in "arg" to a five digit

- decimal number in an array called "digit." It then uses the decimal results for each digit as an index into a table that converts the decimal number into a segment pattern for the display. This is then output to the display.
- display_psi() This routine is called from "main()" never to return. The A/D converter routine is called, the pressure is calculated based on the type sensor detected and the pressure applied to the sensor is displayed. The loop then repeats.
- **sensor_type()** This routine determines the type of sensor from reading J1 to J3, setting the full scale pressure for that particular sensor in a variable for use by display psi().
- **sensor_slope()** This routine determines the slope constant to be used by display psi() for engineering units output.
- main() This is the main routine called from reset. It calls "initio()" to setup the system's I/O. "display_psi()" is called to compute and display the pressure applied to the sensor.

```
#pragma portrw ocmphi2 @ 0xle; /* Output Compare Reg (Hi-0xle, Lo-0xlf) */
001E
001F
                               #pragma portrw ocmplo2 @ 0x1f; /* Output Compare Reg (Hi-0x1e, Lo-0x1f) */
                               #pragma mor @ 0xlefe = 0x74; /* this disables the watchdog counter and does
1EFE 74
                                                            not add pull-down resistors on ports B and C \star/
                                     /* put constants and variables here...they must be global */
0800 FC 30 DA 7A 36 6E E6 38 FE const char lcdtab[]={0xfc,0x30,0xda,0x7a,0x36,0x6e,0xe6,0x38,0xfe,0x3e};
0809 3E
                                 /* lcd pattern table 0
                                                        1
080A 27 10 03 E8 00 64 00 0A
                               const long dectable[] = { 10000, 1000, 100, 10 };
0050 0005
                               unsigned int digit[5]; /* buffer to hold results from cvt_bin_dec function */
0812 00 96 00 4B 00 96 00 1E 00
                               const long type[] = { 150,
                                                             75,
                                                                     150,
                                                                             30,
                                                                                      103 };
                                                    MPX2010 MPX2050 MPX2100 MPX2200 MPX2700
                                 The table above will cause the final results of the pressure to
                                 engineering units to display the 1.5, 7.3 and 15.0 devices with a
                                 decimal place in the tens position. The 30 and 103 psi devices will
                                 display in integer units.
                                 */
                                 081C 01 C2 01 A2 01 A7 01 AB 01
                                                         463,468,472,477,481,450 };
0825 B0 01 B4 01 B9 01 BD 01 C6
082E 01 CB 01 CF 01 D4 01 D8 01
0837 DD 01 E1 01 C2
0000
                                                 /* processor's A register */
                               registera areg;
0055
                               long atodtemp;
                                                 /* temp to accumulate 100 a/d readings for smoothing */
0059
                               long slope;
                                                 /* multiplier for adc to engineering units conversion */
005B
                               int adcnt;
                                                 /* a/d converter loop counter */
                               long xdcr_offset; /* initial xdcr offset */
005C
005E
                               long sensor_model; /* installed sensor based on J1..J3 */
0060
                               int sensor_index; /* determine the location of the decimal pt. */
0061 0063
                               unsigned long i,j; /* counter for loops */
0065
                               unsigned int k; /* misc variable */
                                 struct bothbytes
                                    { int hi;
                                      int lo:
                                   };
                                    union isboth
                                      { long 1;
                                       struct bothbytes b;
0066 0002
                                      union isboth q; /* used for timer set-up */
                                 /* variables for add32 */
                               unsigned long SUM[2]; /*
0068 0004
                                                             result
0060 0004
                               unsigned long ADDEND[2]; /*
                                                                          */
                                                             one input
0070 0004
                               unsigned long AUGEND[2]; /*
                                                            second input */
                               /* variables for sub32 */
0074 0004
                               unsigned long MINUE[2]; /*
                                                            minuend
                                                                          */
```

```
0078 0004
                               unsigned long SUBTRA[2]; /*
                                                             subtrahend
007C 0004
                               unsigned long DIFF[2]; /*
                                                             difference
                               /* variables for mul32 */
                                                             multiplier */
0080 0004
                               unsigned long MULTP[2]; /*
                                                             high order 4 bytes at return */
0084 0004
                               unsigned long MTEMP[2]; /*
0088 0004
                               unsigned long MULCAN[2]; /*
                                                             multiplicand at input, low 4 bytes at return */
                                 /* variables for div32 */
008C 0004
                               unsigned long DVDND[2]; /*
                                                             Dividend
0090 0004
                               unsigned long DVSOR[2]; /*
                                                                          */
                                                             Divisor
0094 0004
                               unsigned long QUO[2];
                                                             Quotient
                                                                          */
0098
                               unsigned int CNT;
                                                             Loop counter */
                                                   /* The code starts here */
                                 void add32()
                                  #asm
                    * Add two 32-bit values.
                        Inputs:
                           ADDEND: ADDEND[0..3] HIGH ORDER BYTE IS ADDEND+0
                           AUGEND: AUGEND[0..3] HIGH ORDER BYTE IS AUGEND+0
                        Output:
                          SUM: SUM[0..3] HIGH ORDER BYTE IS SUM+0
083C B6 6F
                             LDA ADDEND+3 low byte
083E BB 73
                             ADD AUGEND+3
0840 B7 6B
                             STA SUM+3
0842 B6 6E
                             LDA ADDEND+2
                                           medium low byte
0844 B9 72
                             ADC AUGEND+2
0846 B7 6A
                             STA SUM+2
0848 B6 6D
                             LDA ADDEND+1 medium high byte
084A B9 71
                             ADC AUGEND+1
084C B7 69
                             STA SUM+1
084E B6 6C
                             LDA ADDEND
                                            high byte
0850 B9 70
                             ADC AUGEND
0852 B7 68
                             STA SUM
0854 81
                             RTS
                                            done
                               #endasm
0855 81
             RTS
                                 void sub32()
                                 #asm
                    * Subtract two 32-bit values.
                        Input:
                           Minuend: MINUE[0..3]
                           Subtrahend: SUBTRA[0..3]
                        Output:
                           Difference: DIFF[1..0]
0856 B6 77
                             LDA MINUE+3
                                            low byte
0858 B0 7
                             SUB SUBTRA+3
085A B7 7F
                             STA DIFF+3
085C B6 76
                             LDA MINUE+2
                                            medium low byte
085E B2 7A
                             SBC SUBTRA+2
0860 B7 7E
                             STA DIFF+2
0862 B6 75
                             LDA MINUE+1
                                            medium high byte
0864 B2 79
                             SBC SUBTRA+1
0866 B7 7D
                             STA DIFF+1
0868 B6 74
                                            high byte
                             LDA MINUE
086A B2 78
                             SBC SUBTRA
086C B7 7C
                             STA DIFF
```

```
086E 81
                              RTS
                                             done
                                #endasm
086F 81
             RTS
                                     void mul32()
                                     #asm
                                                 -----*
                    * Multiply 32-bit value by a 32-bit value
                         Input:
                            Multiplier:
                                          MULTP[0..3]
                            Multiplicand: MULCAN[0..3]
                         Output:
                                          MTEMP[0..3] AND MULCAN[0..3] MTEMP[0] IS THE HIGH
                            Product:
                                              ORDER BYTE AND MULCAN[3] IS THE LOW ORDER BYTE
                        THIS ROUTINE DOES NOT USE THE MUL INSTRUCTION FOR THE SAKE OF USERS NOT
                        USING THE HC(7)05 SERIES PROCESSORS.
0870 AE 20
                              LDX #32
                                             loop counter
0872 3F 84
                              CLR MTEMP
                                             clean-up for result
0874 3F 85
                              CLR MTEMP+1
0876 3F 86
                              CLR MTEMP+2
0878 3F 87
                              CLR MTEMP+3
                              ROR MULCAN
087A 36 88
                                             low but to carry, the rest one to the right
087C 36 89
                              ROR MULCAN+1
087E 36 8A
                              ROR MULCAN+2
0880 36 8B
                              ROR MULCAN+3
0882 24 18
                    MNEXT
                              BCC ROTATE
                                             if carry is set, do the add
0884 B6 87
                              LDA MTEMP+3
0886 BB 83
                              ADD MULTP+3
0888 B7 87
                              STA MTEMP+3
088A B6 86
                              LDA MTEMP+2
088C B9 82
                              ADC MULTP+2
088E B7 86
                              STA MTEMP+2
0890 B6 85
                              LDA MTEMP+1
0892 B9 81
                              ADC MULTP+1
0894 B7 85
                              STA MTEMP+1
0896 B6 84
                              LDA MTEMP
0898 B9 80
                              ADC MULTP
089A B7 84
                              STA MTEMP
089C 36 84
                    ROTATE
                              ROR MTEMP
                                            else: shift low bit to carry, the rest to the right
089E 36 85
                              ROR MTEMP+1
08A0 36 86
                              ROR MTEMP+2
08A2 36 87
                              ROR MTEMP+3
08A4 36 88
                              ROR MULCAN
08A6 36 89
                              ROR MULCAN+1
08A8 36 8A
                              ROR MULCAN+2
08AA 36 8B
                              ROR MULCAN+3
08AC 5A
                              DEX
                                             bump the counter down
08AD 26 D3
                              BNE MNEXT
                                             done yet ?
08AF 81
                              RTS
                                             done
                                #endasm
08B0 81
             RTS
                                }
                                  void div32()
                                  #asm
                     * Divide 32 bit by 32 bit unsigned integer routine
                          Input:
                             Dividend: DVDND [+0..+3] HIGH ORDER BYTE IS DVND+0
                            Divisor: DVSOR [+0..+3] HIGH ORDER BYTE IS DVSOR+0
                          Output:
```

```
Quotient: QUO [+0..+3] HIGH ORDER BYTE IS QUO+0
08B1 3F 94
                             CLR QUOzero result registers
08B3 3F 95
                             CLR QUO+1
08B5 3F 96
                             CLR OUO+2
08B7 3F 97
                             CLR QUO+3
08B9 A6 01
                             LDA #1
                                             initial loop count
08BB 3D 90
                             TST DVSOR
                                             if the high order bit is set..no need to shift DVSOR
08BD 2B 0F
                              BMI DIV153
08BF 4C
                    DIV151 INCA
                                           bump the loop counter
08C0 38 93
                    ASL DVSOR+3
                                   now shift the divisor until the high order bit = 1
08C2 39 92
                             ROL DVSOR+2
08C4 39 91
                              ROL DVSOR+1
08C6 39 90
                             ROL DVSOR
08C8 2B 04
                     BMI DIV153
                                   done if high order bit = 1
08CA A1 21
                             CMP #33
                                            have we shifted all possible bits in the DVSOR yet ?
08CC 26 F1
                             BNE DIV151
                                             no
08CE B7 9
                    DIV153
                             STA CNT
                                             save the loop counter so we can do the divide
08D0 B6 8F
                    DIV163
                             LDA DVDND+3
                                             sub 32 bit divisor from dividend
08D2 B0 93
                             SUB DVSOR+3
08D4 B7 8F
                              STA DVDND+3
08D6 B6 8E
                             LDA DVDND+2
08D8 B2 92
                             SBC DVSOR+2
                              STA DVDND+2
08DA B7 8E
08DC B6 8D
                             LDA DVDND+1
08DE B2 91
                              SBC DVSOR+1
08E0 B7 8D
                             STA DVDND+1
08E2 B6 8C
                             LDA DVDND
08E4 B2 90
                             SBC DVSOR
08E6 B7 8C
                             STA DVDND
08E8 24 1B
                             BCC DIV165
                                             carry is clear if DVSOR was larger than DVDND
08EA B6 8F
                                             add the divisor back...was larger than the dividend
                             LDA DVDND+3
08EC BB 93
                             ADD DVSOR+3
08EE B7 8F
                             STA DVDND+3
08F0 B6 8E
                             LDA DVDND+2
08F2 B9 92
                             ADC DVSOR+2
08F4 B7 8E
                             STA DVDND+2
08F6 B6 8D
                             LDA
                                  DVDND+1
08F8 B9 91
                             ADC DVSOR+1
08FA B7 8D
                              STA DVDND+1
08FC B6 8C
                             LDA
                                  DVDND
08FE B9 90
                             ADC DVSOR
0900 B7 8C
                              STA DVDND
0902 98
                             CLC
                                             this will clear the respective bit in QUO due to
                                               the need to add DVSOR back to DVND
0903 20 01
                              BRA DIV167
0905 99
                    DIV165
                             SEC
                                             this will set the respective bit in QUO
0906 39 97
                    DIV167
                             ROL QUO+3
                                             set or clear the low order bit in QUO based on above
0908 39 96
                             ROL QUO+2
090A 39 95
                             ROL QUO+1
090C 39 94
                              ROL QUO
090E 34 90
                             LSR DVSOR
                                            divide the divisor by 2
0910 36 91
                              ROR DVSOR+1
0912 36 92
                             ROR DVSOR+2
0914 36 93
                             ROR DVSOR+3
0916 3A 98
                             DEC CNT
                                             bump the loop counter down
0918 26 B6
                             BNE DIV163
                                             finished vet ?
091A 81
                             RTSyes
                                #endasm
091B 81
             RTS
                                  /* These interrupts are not used...give them a graceful return if for
                                    some reason one occurs */
```

```
1FFC 09 1C
                             __SWI(){}
091C 80
            RTI
1FFA 09 1D
                             IRQ() { }
091D 80
            RTI
1FF8 09 1E
                             TIMERCAP(){}
091E 80
            RTI
1FF4 09 1F
                             TIMEROV(){}
091F 80
            RTI
1FF2 09 20
                             SCI() { }
0920 80
            RTI
                               void sensor_type()
0921 B6 03
                  $03
                             k = portd & 0x0e; /* we only care about bits 1..3 */
            LDA
0923 A4 0E
            AND
                  #$0E
0925 B7 65
                  $65
            STA
0927 34 65
                  $65
                             k = k >> 1; /* right justify the variable */
            LSR
0929 B6 65
            LDA
                  $65
                              if (k > 4)
                  #$04
092B A1 04
            CMP
092D 23 0C
            BLS
                  $093B
                                  { /* we have a set-up error in wire jumpers J1 - J3 */
                                 portc = 0; /* */
portb = 0x6e; /* S */
092F 3F 02
            CLR
                  $02
0931 A6 6E
            LDA
                  #$6E
0933 B7 01
            STA
                  $01
0935 A6 CE
                                  porta = 0xce; /* E */
            LDA
                  #$CE
0937 B7 00
            STA
                  $00
0939 20 FE
                  $0939
                                    while(1);
            BRA
093B B6 65
            LDA
                  $65
                             sensor index = k;
093D B7 60
            STA
                  $60
093F 97
            TAX
                             sensor_model = type[k];
0940 58
            LSLX
0941 D6 08 12 LDA
                  $0812,X
0944 B7 5E
            STA
                  $5E
                  $0813,X
0946 D6 08 13 LDA
0949 B7 5F
            STA
                  $5F
094B 81
            RTS
                               void sensor_slope()
                               {
094C B6 03
                             k=portd \& 0xf0; /* we only care about bits 4..7 */
            T.DA
                  $03
094E A4 F0
            AND
                  #$F0
0950 B7 65
            STA
                  $65
                               k = k >> 4; /* right justify the variable */
0952 34 65
            LSR
                  $65
0954 34 65
            LSR
                  $65
0956 34 65
                  $65
            LSR
0958 34 65
            LSR
                  $65
095A BE 65
            LDX
                  $65
                             slope = slope_const[k];
095C 58
            T.ST.X
095D D6 08 1C LDA
                  $081C,X
0960 B7 59
            STA
                  $59
0962 D6 08 1D LDA
                  $081D,X
0965 B7 5A STA
                  $5A
0967 81
            RTS
                             }
                               void delay(void) /* just hang around for a while */
0968 3F 62
            CLR
                  $62
                             for (i=0; i<20000; ++i);
096A 3F 61
            CLR
                  $61
096C B6 62
            LDA
                  $62
096E A0 20
            SUB
                  #$20
0970 B6 61
            LDA
                  $61
0972 A2 4E
            SBC
                  #$4E
0974 24 08
            BCC
                  $097E
0976 3C 62
                  $62
            INC
0978 26 0
            BNE
                  $097C
097A 3C 61
            IN
                  $61
```

```
097C 20 EE
                   $096C
            BRA
097E 81
             RTS
                                 read_a2d(void)
                                 /* read the a/d converter on channel 5 and accumulate the result
                                 in atodtemp */
097F 3F 56
             CLR
                   $56
                               atodtemp=0; /* zero for accumulation */
0981 3F 55
            CLR
                   $55
0983 3F 5B
                   $5B
                                 for (adcnt = 0; adcnt<100; ++adcnt) /* do 100 a/d conversions */
            CLR
0985 B6 5B
            LDA
                   $5B
0987 A8 80
            EOR
                   #$80
0989 A1 E4
            CMP
                   #$E4
098B 24 21
            BCC
                   $09AE
098D A6 20
            LDA
                   #$20
                                    adstat = 0x20; /* convert on channel 0 */
098F B7 09
             STA
                    $09
                                    while (!(adstat & 0x80)); /* wait for a/d to complete */
0991 OF 09 FD BRCLR 7,$09,$0991
0994 B6 08
            LDA
                   $08
                                      atodtemp = addata + atodtemp;
0996 3F 57
            CLR
                   $57
0998 B7 58
             STA
                   $58
099A BB 56
            ADD
                   $56
099C B7 58
             STA
                   $58
099E B6 57
            LDA
                   $57
09A0 B9 55
                   $55
            ADC
09A2 B7 57
             STA
                   $57
09A4 B7 55
            STA
                   $55
09A6 B6 58
            T.DA
                   $58
09A8 B7 56
             STA
                   $56
                                      }
09AA 3C 5B
            INC
                   $5B
09AC 20 D7
            BRA
                   $0985
09AE B6 56
            LDA
                   $56
                                 atodtemp = atodtemp/100;
09B0 B7 58
             STA
                   $58
09B2 B6 55
                   $55
            LDA
09B4 B7 57
             STA
                   $57
09B6 3F 9A
            CLR
                   $9A
09B8 A6 64
            LDA
                   #$64
09BA B7 9B
             STA
                   $9В
09BC CD 0B F1 JSR
                   $0BF1
09BF CD 0C 22 JSR
                   $0C22
09C2 BF 55
            STX
                   $55
09C4 B7 56
            STA
                   $56
09C6 81
            RTS
                                 return atodtemp;
                                 void fixcompare (void) /* sets-up the timer compare for the next interrupt */
09C7 B6 18
                                 q.b.hi =tcnthi;
            LDA
                   $18
09C9 B7 66
             STA
                   $66
09CB B6 19
            LDA
                   $19
                                   q.b.lo = tcntlo;
09CD B7 67
             STA
                   $67
09CF AB 4C
             ADD
                   #$4C
                                    q.1 +=7500; /* ((4mhz xtal/2)/4) = counter period = 2us.*7500 = 15ms. */
09D1 B7 67
                   $67
             STA
09D3 B6 66
            LDA
                   $66
09D5 A9 1D
            ADC
                   #$1D
09D7 B7 66
                   $66
            STA
09D9 B7 16
             STA
                   $16
                                    ocmphi1 = q.b.hi;
09DB B6 13
                                   areg=tsr; /* dummy read */
                   $13
            LDA
09DD B6 67
            LDA
                   $67
                                 ocmplo1 = q.b.lo;
09DF B7 17
            STA
                   $17
09E1 81
            RTS
                                 void TIMERCMP (void)
                                                      /* timer service module */
1FF6 09 E2
09E2 33 02
             COM
                   $02
                                    portc =~ portc;
                                                     /* service the lcd by inverting the ports */
```

```
09E4 33 01
                   $01
                                   portb =~ portb;
             COM
09E6 33 00
             COM
                   $00
                                   porta =~ porta;
09E8 AD DD
            BSR
                   $09C7
                                fixcompare();
09EA 80
             RTI
                                 void adzero(void) /* called by initio() to save initial xdcr's zero
                                                      pressure offset voltage output */
09EB 3F 64
             CLR
                   $64
                                 for ( j=0; j<20; ++j) /* give the sensor time to "warm-up" and the
09ED 3F 63
                   $63
            CLR
09EF B6 64
            LDA
                   $64
                   #$14
09F1 A0 14
            UB
09F3 B6 63
            LDA
                   $63
09F5 A2 00
                   #$00
            SBC
09F7 24 0B
            BCC
                   $0A04
                                                        power supply time to settle down */
09F9 CD 09 68 JSR
                   $0968
                                   delay();
09FC 3C 64
             INC
                   $64
09FE 26 02
             BNE
                   $0A02
0A00 3C 63
             INC
                   $63
0A02 20 EB
            BRA
                   $09EF
0A04 CD 09 7F JSR
                   $097F
                                   xdcr_offset = read_a2d();
0A07 3F 5C
                   $5C
            CLR
0A09 B7 5D
             STA
                   $5D
0A0B 81
                              }
                                 void initio (void)
                                                     /* setup the I/O */
0A0C A6 20
                                   adstat = 0x20; /* power-up the A/D */
                   #$20
            LDA
0A0E B7 09
             STA
                   $09
0A10 3F 02
             CLR
                   $02
                                   porta = portb = portc = 0;
0A12 3F 01
                   $01
             CLR
0A14 3F 00
             CLR
                   $00
0A16 A6 FF
                   #$FF
                                   ddra = ddrb = ddrc = 0xff;
            LDA
0A18 B7 06
             STA
                   $06
0A1A B7 05
             STA
                   $05
0A1C B7 04
            STA
                   $04
0A1E B6 13
             LDA
                   $13
                                   areg=tsr; /* dummy read */
0A20 3F 1E
            CLR
                   $1E
                                   ocmphi1 = ocmphi2 = 0;
0A22 3F 16
            CLR
                   $16
0A24 B6 1F
            LDA
                   $1F
                                   areg = ocmplo2; /* clear out output compare 2 if it happens to be set */
0A26 AD 9F
                   $09C7
                                   fixcompare(); /* set-up for the first timer interrupt */
            BSR
0A28 A6 40
            LDA
                   #$40
                                   tcr = 0x40;
0A2A B7 12
            STA
                   $12
0A2C 9A
                                   CLI; /* let the interrupts begin ! */
            CLI
                                 /* write CAL to the display */
0A2D A6 CC
                   #$CC
                                   portc = 0xcc; /* C */
            LDA
0A2F B7 02
             STA
                   $02
0A31 A6 BE
             LDA
                   #$BE
                                   portb = 0xbe; /* A */
0A33 B7 01
             STA
                   $01
0A35 A6 C4
             LDA
                   #$C4
                                   porta = 0xc4; /* L */
0A37 B7 00
             STA
                   $00
0A39 CD 09 21 JSR
                   $0921
                                   sensor\_type(); /* get the model of the sensor based on J1..J3 */
OA3C AD AD
            BSR
                   $09EB
                                   adzero(); /* auto zero */
0A3E 81
            RTS
                                 void cvt_bin_dec(unsigned long arg)
                                 /\star First converts the argument to a five digit decimal value. The msd is in
                                 the lowest address. Then leading zero suppress the value and write it to the
                                 display ports.
                                   The argument value is 0..65535 decimal. */
```

```
009D
                                 {
OA3F BF 9D
               STX
                      $9D
0A41 B7 9E
              STA
                      $9E
009F
                                 char i;
00A0
                                 unsigned long 1;
0A43 3F 9F
                                   for (i=0; i < 5; ++i)
                      $9F
              CLR
0A45 B6 9F
              LDA
                      $9F
0A47 A1 05
              CMP
                      #$05
0A49 24 07
                      $0A52
              BCC
0A4B 97
                                        digit[i] = 0x0; /* put blanks in all digit positions */
              TAX
0A4C 6F 50
              \mathtt{CL}
                      $50,X
0A4E 3C 9F
              INC
                      $9F
0A50 20 F3
               BRA
                      $0A45
0A52 3F 9F
              CLR
                      $9F
                                          for ( i=0; i < 4; ++i )
0A54 B6 9F
               LDA
                      $9F
0A56 A1 04
              CMP
                      #$04
0A58 24 7A
              BCC
                      $0AD4
0A5A 97
              TAX
                                               if ( arg >= dectable [i] )
0A5B 58
              LSLX
0A5C D6 08 0B LDA
                      $080B,X
0A5F B0 9E
                      Ś9E
              SUB
0A61 B7 58
               STA
                      $58
0A63 B6 9D
              LDA
                      $9D
0A65 A8 80
              EOR
                      #$80
0A67 B7 57
                      $57
              STA
0A69 D6 08 0A LDA
                      $080A,X
0A6C A8 80
              EOR
                      #$80
0A6E B2 57
              SBC
                      $57
0A70 BA 58
               ORA
                       $58
0A72 22 5C
               BHI
                       $0AD0
0A74 BE 9F
                                                     1 = dectable[i];
               LDX
                       $9F
0A76 58
               LSLX
                      $080A,X
0A77 D6 08 0A LDA
0A7A B7 A0
               STA
                       $A0
                       $080B,X
0A7C D6 08 0B
               LDA
0A7F B7 A1
               STA
                       $A1
0A81 B6 9E
                       $9E
                                                     digit[i] = arg / 1;
               LDA
0A83 B7 58
               STA
                       $58
0A85 B6 9D
               LDA
                       $9D
0A87 B7 57
               STA
                       $57
0A89 B6 A0
               T.DA
                       SAO
0A8B B7 9A
               STA
                       $9A
0A8D B6 A1
                       $A1
               LDA
0A8F B7 9B
               STA
                       $9B
0A91 CD 0B F1 JSR
                       $0BF1
0A94 CD 0C 22 JSR
                      $0C22
0A97 BF 57
               STX
                       $57
0A99 B7 58
               STA
                       $58
OA9B BE 9F
               LDX
                       $9F
0A9D E7 50
                       $50,X
               STA
OA9F BE 9F
               LDX
                      $9F
                                                     arg = arg-(digit[i] * 1);
0AA1 E6 50
               LDA
                       $50,X
0AA3 3F 57
                       $57
               CLR
0AA5 B7 58
               STA
                       $58
0AA7 B6 A0
               LDA
                       $A0
0AA9 B7 9A
               STA
                       $9A
OAAB B6 A1
               LDA
                       $A1
0AAD B7 9B
               STA
                       $9В
OAAF CD OB D2 JSR
                      $0BD2
0AB2 BF 57
               STX
                       $57
0AB4 B7 58
               STA
                       $58
0AB6 33 57
               COM
                       $57
0AB8 30 58
               NEG
                       $58
0ABA 26 02
               BNE
                      $0ABE
0ABC 3C 57
               INC
                       $57
OABE B6 58
               LDA
                      $58
OACO BB 9E
               ADD
                       $9E
0AC2 B7 58
               STA
                       $58
0AC4 B6 57
               LDA
                      $57
```

```
0AC6 B9 9D
                     $9D
              ADC
0AC8 B7 57
                     $57
               STA
0ACA B7 9D
              STA
                     $9D
0ACC B6 58
              LDA
                     $58
0ACE B7 9E
                                                      }
0AD0 3C 9F
              INC
                     $9F
0AD2 20 80
              BRA
                     $0A54
0AD4 B6 9E
                     $9E
                                 digit[i] = arg;
              LDA
0AD6 B7 58
                     $58
              STA
0AD8 B6 9D
              LDA
                     $9D
0ADA B7 57
              STA
                     $57
OADC BE 9F
              LDX
                     $9F
OADE B6 58
              LDA
                     $58
OAE0 E7 50
              STA
                     $50.X
                                   /* now zero suppress and send the lcd pattern to the display */
0AE2 9B
                                 SEI;
              SEI
0AE3 3D 52
              TST
                     $52
                                 if (digit[2] == 0 ) /* leading zero suppression */
0AE5 26 04
              BNE
                     $0AEB
0AE7 3F 02
              CLR
                     $02
                                   portc = 0;
0AE9 20 07
                     $0AF2
              BRA
                                     else
OAEB BE 52
               LDX
                     $52
                                      portc = ( lcdtab[digit[2]] );
                                                                       /* 100's digit */
OAED D6 08 00
              LDA
                     $0800,X
0AF0 B7 02
              STA
                     $02
0AF2 3D 52
              TST
                     $52
                                       if ( digit[2] == 0 && digit[3] == 0 )
OAF4 26 08
                     SOAFE
              BNE
0AF6 3D 53
              TST
                     $53
0AF8 26 04
              BNE
                     $0AFE
0AFA 3F 01
                                         portb=0;
              CLR
                     $01
0AFC 20 07
                     $0В05
              BRA
                                           else
OAFE BE 53
              LDX
                     $53
                                             portb = ( lcdtab[digit[3]] );    /* 10's digit */
0B00 D6 08 00 LDA
                     $0800,X
0B03 B7 01
              STA
                     $01
0B05 BE 54
                                               porta = ( lcdtab[digit[4]] ); /* 1's digit */
              LDX
                     $54
0B07 D6 08 00 LDA
                     $0800,X
0B0A B7 00
              STA
                     $00
                                   /* place the decimal point only if the sensor is 15 psi or 7.5 psi */
0B0C B6 60
                     $60
                                     if ( sensor_index < 3 )</pre>
              LDA
OBOE A8 80
              EOR
                     #$80
0B10 A1 83
              CMP
                     #$83
0B12 24 08
              BCC
                     $0B1C
0B14 BE 54
                                      porta = ( lcdtab[digit[4]]+1 ); /* add the decimal point to the lsd */
              LDX
                     $54
0B16 D6 08 00 LDA
                     $0800,X
0B19 4C
              INCA
0B1A B7 00
              STA
                     $00
0B1C 3D 60
              TST
                     $60
                                       if(sensor index ==0) /* special case */
OB1E 26 OF
                     $0B2F
              BNE
0B20 BE 54
              LDX
                     $54
                                          porta = ( lcdtab[digit[4]] ); /* get rid of the decimal at lsd */
0B22 D6 08 00 LDA
                     $0800,X
0B25 B7 00
                     $00
              STA
0B27 BE 53
                                          portb = ( lcdtab[digit[3]]+1 ); /* decimal point at middle digit */
              LDX
                     $53
0B29 D6 08 00 LDA
                     $0800,X
0B2C 4C
              INCA
0B2D B7 01
              STA
                     $01
0B2F 9A
                                 CLI:
              CLI
0B30 CD 09 68 JSR
                     $0968
                                             delay();
0B33 81
              RTS
                                   void display_psi(void)
                                     At power-up it is assumed that the pressure or vacuum port of
                                     the sensor is open to atmosphere. The code in initio() delays
                                     for the sensor and power supply to stabilize. One hundred A/D
                                     conversions are averaged. That result is called xdcr\_offset.
                                     This routine calls the A/D routine which performs one hundred
                                     conversions, divides the result by 100 and returns the value.
```

```
the value of xdcr_offset is substituted. If the value returned
                                       is greater than xdcr_offset, xdcr_offset is subtracted from the
                                       returned value.
                                   {
                                     while (1)
0B34 CD 09 7F JSR
                      $097F
                                        atodtemp = read_a2d();  /* atodtemp = raw a/d ( 0..255 ) */
0B37 3F 55
               CLR
                      $55
0B39 B7 56
               STA
                      $56
0B3B B0 5D
               SUB
                      $5D
                                         if ( atodtemp <= xdcr_offset )</pre>
0B3D B7 58
               STA
                      $58
0B3F B6 5C
                      $5C
               LDA
0B41 A8 80
               EOR
                      #$80
0B43 B7 57
               STA
                      $57
0B45 B6 55
               LDA
                      $55
0B47 A8 80
                      #$80
               EOR
0B49 B2 57
               SBC
                      $57
OB4B BA 58
               ORA
                      $58
0B4D 22 08
               BHI
                      $0B57
0B4F B6 5C
               LDA
                      $5C
                                            atodtemp = xdcr_offset;
0B51 B7 55
               STA
                      $55
0B53 B6 5D
               LDA
                      $5D
0B55 B7 56
               STA
                      $56
0B57 B6 56
               LDA
                      $56
                                          atodtemp -= xdcr offset; /* remove the offset */
0B59 B0 5D
               SUB
                      $5D
0B5B B7 56
               STA
                      $56
0B5D B6 55
               LDA
                      $55
0B5F B2 5C
               SBC
                      $5C
0B61 B7 55
               STA
                      $55
0B63 CD 09 4C JSR
                      $094C
                                             sensor_slope(); /* establish the slope constant for this output */
0B66 B6 56
               LDA
                      $56
                                          atodtemp *= sensor_model;
0в68 в7 58
               STA
                      $58
0B6A B6 55
               LDA
                      $55
0B6C B7 57
               STA
                      $57
0B6E B6 5E
               LDA
                      $5E
0B70 B7 9A
               STA
                      $9A
0B72 B6 5F
                      $5F
               LDA
0B74 B7 9B
               STA
                      $9B
0B76 CD 0B D2 JSR
                      $0BD2
0B79 BF 55
               STX
                      $55
0B7B B7 56
                      $56
               STA
0B7D 3F 89
               CLR
                      $89
                                           MULTP[0] = MULCAN[0] = 0;
OB7F 3F 88
               CLR
                      $88
0B81 3F 81
               CLR
                      $81
0B83 3F 80
               CLR
                      $80
                                            MULTP[1] = atodtemp;
0B85 9F
               TXA
0B86 B7 82
               STA
                      $82
0B88 B6 56
               LDA
                      $56
0B8A B7 83
               STA
                      $83
0B8C B6 59
                      $59
                                             MULCAN[1] = slope;
               LDA
0B8E B7 8A
               STA
                      $8A
0B90 B6 5A
               LDA
                      $5A
0B92 B7 8B
               STA
                      $8B
                                              mul32(); /* analog value * slope based on J1 through J3 */
0B94 CD 08 70 JSR
                      $0870
0B97 3F 90
               CLR
                      $90
                                               DVSOR[0] = 1; /* now divide by 100000 */
                      #$01
0B99 A6 01
               LDA
0B9B B7 91
               STA
                      $91
                                                DVSOR[1] = 0x86a0;
0B9D A6 86
                      #$86
               LDA
0B9F B7 92
               STA
                      $92
                      #$A0
0BA1 A6 A0
               LDA
0BA3 B7 93
               STA
                      $93
0BA5 B6 88
               LDA
                      $88
                                                 DVDND[0] = MULCAN[0];
0BA7 B7 8C
               STA
                      $8C
OBA9 B6 89
               T.DA
                      $89
0BAB B7 8D
               STA
                      $8D
0BAD B6 8A
                      $8A
                                                  DVDND[1] = MULCAN[1];
               LDA
OBAF B7 8E
               STA
                      SSE.
0BB1 B6 8B
               LDA
                      $8B
0BB3 B7 8F
               STA
                      $8F
```

If the value returned is less than or equal to the xdcr_offset,

```
0BB5 CD 08 B1 JSR
                     $08B1
                                                div32();
0BB8 B6 96
                     $96
                                               atodtemp = QUO[1]; /* convert to psi */
0BBA B7 55
              STA
                     $55
0BBC B6 97
              LDA
                     $97
0BBE B7 56
              STA
0BC0 BE 55
                     $55
                                     cvt_bin_dec( atodtemp ); /* convert to decimal and display */
              LDX
OBC2 CD OA 3F JSR
                     $0A3F
0BC5 CC 0B 34 JMP
                     $0B34
0BC8 81
              RTS
                                   void main()
                                  {
OBC9 CD OA OC JSR
                     $0A0C
                                 initio(); /* set-up the processor's i/o */
OBCC CD OB 34 JSR
                     $0B34
                                  display_psi();
OBCF 20 FE
                     $0BCF
                                   while(1);  /* should never get back to here */
              BRA
0BD1 81
              RTS
0BD2 BE 58
              LDX
                     $58
0BD4 B6 9B
              LDA
                     $9В
0BD6 42
              MUL
0BD7 B7 A4
                     SA4
              STA
OBD9 BF A5
              STX
                     $A5
0BDB BE 57
                     $57
              LDX
0BDD B6 9B
              LDA
                     $9B
0BDF 42
              MUL
OBEO BB A5
              ADD
                     $A5
0BE2 B7 A5
              STA
                     $A5
OBE4 BE 58
              LDX
                     $58
0BE6 B6 9A
              LDA
                     $9A
0BE8 42
              MUL
OBE9 BB A5
                     $A5
              ADD
0BEB B7 A5
              STA
                     $A5
0BED 97
              TAX
OBEE B6 A4
              LDA
                     $A4
0BF0 81
              RTS
0BF1 3F A4
              CLR
                     $A4
0BF3 5F
              CLRX
0BF4 3F A2
              CLR
                     $A2
0BF6 3F A3
              CLR
                     $A3
0BF8 5C
              INCX
OBF9 38 58
              LSL
                     $58
0BFB 39 57
              ROL
                     $57
0BFD 39 A2
              ROL
                     $A2
OBFF 39 A3
              ROL
                     $A3
0C01 B6 A2
              LDA
                     $A2
0С03 в0 9в
              SUB
                     $9B
0C05 B7 A2
              STA
                     $A2
0C07 B6 A3
              LDA
                     $A3
0C09 B2 9A
              SBC
                     $9A
0C0B B7 A3
              STA
                     $A3
                     $0C1C
0C0D 24 0D
              BCC
0C0F B6 9B
              LDA
                     $9В
0C11 BB A2
              ADD
                     $A2
0C13 B7 A2
              STA
                     $A2
0C15 B6 9A
              LDA
                     $9A
0C17 B9 A3
              ADC
                     $A3
0C19 B7 A3
              STA
                     $A3
0C1B 99
              SEC
0C1C 59
              ROLX
0C1D 39 A4
              ROL
                     $A4
0C1F 24 D8
              BCC
                     $0BF9
0C21 81
              RTS
0C22 53
              COMX
0C23 9F
              TXA
0C24 BE A4
              LDX
                     $A4
0C26 53
              COMX
0C27 81
              RTS
1FFE OB C9
SYMBOL TABLE
```

LABEL	VALUE	LABEL	VALUE	LABEL	VALUE	LABEL	VALUE
ADDEND	0066 1	AUGEND	0070	CNT	0008	DIFF	007C
DIV151		DIV153		DIV163		DIV165	0905
DIV167	0906			DVSOR		IRQ	091D
MINUE	0074	MNEXT	0882	MTEMP	0084	MULCAN	0088
MULTP	0080	QUO	0094	ROTATE	089C	SCI	0920
SUBTRA	0078			TIMERCAP		TIMERCMP	09E2
TIMEROV		LDIV		LongIX		MAIN	0BC9
MUL		MUL16x16		RDIV		RESET	1FFE
STARTUP	0000	STOP		SWI		WAIT	0000
longAC adstat	•	adent		add32 aregnthi		addata aregntlo	0008 001B
arg	•	atodtemp	0055 I			bothbytes	0002
cvt bin dec		_	0004			ddrc	0006
dectable		delay		digit		display psi	0B34
div32	08B1	eeclk	0007	fixcompare	09C7	hi	0000
i	0061	icaphi1	0014	icaphi2	001C	icaplo1	0015
icaplo2		initio		isboth	0002	Ιj	0063
k	0065			lcdtab	0800	•	0001
main	0BC9			mu132		ocmphi1	0016
ocmphi2		ocmplo1		ocmplo2		plma	A000
plmb portd	0008	porta		portb read a2d		portc scibaud	0002 000D
scientl1		q scicntl2		scidata		scistat	0010
						sensor type	
slope		slope const		-		tenthi	0018
tcntlo	0019	- -	0012			type	0812
xdcr_offset	005C						
MEMORY USAGE	MAP ('	X' = Used, '-	' = Unu	sed)			
0800 : XXXXX	xxxxxx	xxxx xxxxxx	xxxxxx	x xxxxxxxxxx	XXXXX	xxxxxxxxxxxx	XX
						xxxxxxxxxxxx	
						xxxxxxxxxxx	
08C0 : XXXXX	xxxxxx	xxxx xxxxxxx	xxxxxx	x xxxxxxxxxx	xxxxx	xxxxxxxxxxx	xx
0000 . 2222	vvvvvv	VVVV VVVVVVV	vvvvvv	v vvvvvvvvvvv	vvvvv	xxxxxxxxxxx	vv
						XXXXXXXXXXXXXX	
						XXXXXXXXXXXXX	
						xxxxxxxxxxxx	
OAOO : XXXXX	xxxxxx	xxxx xxxxxxx	xxxxxx	x xxxxxxxxxx	xxxxx	xxxxxxxxxxxx	xx
OA40 : XXXXX	xxxxxx	xxxx xxxxxxx	xxxxxx	x xxxxxxxxxx	xxxxx	xxxxxxxxxxx	xx
0A80 : XXXXX	xxxxxx	xxxx xxxxxxx	xxxxxx	x xxxxxxxxxx	xxxxx	xxxxxxxxxxxx	xx
OACO : XXXXX	xxxxxx	xxxx xxxxxx	xxxxxx	x xxxxxxxxxx	XXXXX	xxxxxxxxxxxx	XX
						xxxxxxxxxxx	
						xxxxxxxxxxx	
						xxxxxxxxxxxx	
OBCO : XXXXX	*XXXXXX	AAXX XXXXXXXX	AXXXXXX	A XXXXXXXXXXX	XXXXX	xxxxxxxxxxx	АX
0000 - 22222	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		**********				
1E00 :							
1E40 :							
1E80 :							
1EC0 :							x-
IFCU :						xxxxxxxxxxx	ЛX
711 other	more bi	oaka urusad					
All other me	mory bl	ocks unusea.					
Errore		: 0					
Errors		. 0					

VALUE LABEL

VALUE LABEL

VALUE

Errors : 0 Warnings : 0

LABEL

VALUE LABEL

Frequency Output Conversion for MPX2000 Series Pressure Sensors

by: Jeff Baum
Discrete Applications Engineering

INTRODUCTION

Typically, a semiconductor pressure transducer converts applied pressure to a "low-level" voltage signal. Current technology enables this sensor output to be temperature compensated and amplified to higher voltage levels on a single silicon integrated circuit (IC). While on-chip temperature compensation and signal conditioning certainly provide a significant amount of added value to the basic sensing device, one must also consider how this final output will be used and/or interfaced for further processing. In most sensing systems, the sensor signal will be input to additional analog circuitry, control logic, or a microcontroller unit (MCU).

MCU-based systems have become extremely cost effective. The level of intelligence which can be obtained for only a couple of dollars, or less, has made relatively simple 8-bit microcontrollers the partner of choice for semiconductor pressure transducers. In order for the sensor to communicate its pressure-dependent voltage signal to the microprocessor, the MCU must have an analog-to-digital converter (A/D) as an on-chip resource or an additional IC packaged A/D. In the

latter case, the A/D must have a communications interface that is compatible with one of the MCU's communications protocols. MCU's are adept at detecting logic-level transitions that occur at input pins designated for screening such events. As an alternative to the conventional A/D sensor/MCU interface, one can measure either a period (frequency) or pulse width of an incoming square or rectangular wave signal. Common MCU timer subsystem clock frequencies permit temporal measurements with resolution of hundreds of nanoseconds. Thus, one is capable of accurately measuring the frequency output of a device that is interfaced to such a timer channel. If sensors can provide a frequency modulated signal that is linearly proportional to the applied pressure being measured, then an accurate, inexpensive (no A/D) MCU-based sensor system is a viable solution to many challenging sensing applications. Besides the inherent cost savings of such a system, this design concept offers additional benefits to remote sensing applications and sensing in electrically noisy environments.

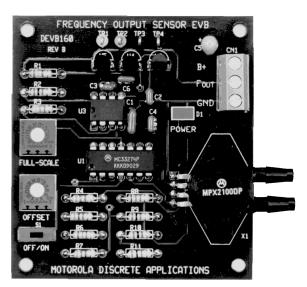


Figure 1. DEVB160 Frequency Output Sensor EVB (Board No Longer Available)

The following sections will detail the design issues involved in such a system architecture, and will provide an example

circuit which has been developed as an evaluation tool for frequency output pressure sensor applications.

AN1316

DESIGN CONSIDERATIONS

Signal Conditioning

The Freescale Semiconductor, Inc. MPX2000 Series sensors are temperature compensated and calibrated - i.e., offset and full-scale span are precision trimmed - pressure transducers. These sensors are available in full-scale pressure ranges from 10 kPa (1.5 psi) to 200 kPa (30 psi). Although the specifications in the data sheets apply only to a 10 V supply voltage, the output of these devices is ratiometric with the supply voltage. At the absolute maximum supply voltage specified, 16 V, the sensor will produce a differential output voltage of 64 mV at the rated full-scale pressure of the given sensor. One exception to this is that the full-scale span of the MPX2010 (10 kPa sensor) will be only 40 mV due to a slightly lower sensitivity. Since the maximum supply voltage produces the most output voltage, it is evident that even the best case scenario will require some signal conditioning to obtain a usable voltage level.

Many different "instrumentation-type" amplifier circuits can satisfy the signal conditioning needs of these devices. Depending on the precision and temperature performance demanded by a given application, one can design an amplifier circuit using a wide variety of operational amplifier (op amp) IC packages with external resistors of various tolerances, or a precision-trimmed integrated instrumentation amplifier IC. In any case, the usual goal is to have a single-ended supply, "rail-to-rail" output (i.e. use as much of the range from ground to the supply voltage as possible, without saturating the op amps). In addition, one may need the flexibility of performing zero-pressure offset adjust and full-scale pressure calibration. The circuitry or device used to accomplish the voltage-tofrequency conversion will determine if, how, and where calibration adjustments are needed. See Evaluation Board Circuit Description section for details.

Voltage-to-Frequency Conversion

Since most semiconductor pressure sensors provide a voltage output, one must have a means of converting this voltage signal to a frequency that is proportional to the sensor output voltage. Assuming the analog voltage output of the sensor is proportional to the applied pressure, the resultant frequency will be linearly related to the pressure being measured. There are many different timing circuits that can

perform voltage-to-frequency conversion. Most of the "simple" (relatively low number of components) circuits do not provide the accuracy or the stability needed for reliably encoding a signal quantity. Fortunately, many voltage-to-frequency (V/F) converter IC's are commercially available that will satisfy this function.

Switching Time Reduction

One limitation of some V/F converters is the less than adequate switching transition times that effect the pulse or square-wave frequency signal. The required switching speed will be determined by the hardware used to detect the switching edges. The Freescale family of microcontrollers have input-capture functions that employ "Schmitt trigger-like" inputs with hysteresis on the dedicated input pins. In this case, slow rise and fall times will not cause an input capture pin to be in an indeterminate state during a transition. Thus, CMOS logic instability and significant timing errors will be prevented during slow transitions. Since the sensor's frequency output may be interfaced to other logic configurations, a designer's main concern is to comply with a worst-case timing scenario. For high-speed CMOS logic, the maximum rise and fall times are typically specified at several hundreds of nanoseconds. Thus, it is wise to speed up the switching edges at the output of the V/F converter. A single small-signal FET and a resistor are all that is required to obtain switching times below 100 ns.

APPLICATIONS

Besides eliminating the need for an A/D converter, a frequency output is conducive to applications in which the sensor output must be transmitted over long distances, or when the presence of noise in the sensor environment is likely to corrupt an otherwise healthy signal. For sensor outputs encoded as a voltage, induced noise from electromagnetic fields will contaminate the true voltage signal. A frequency signal has greater immunity to these noise sources and can be effectively filtered in proximity to the MCU input. In other words, the frequency measured at the MCU will be the frequency transmitted at the output of a sensor located remotely. Since high-frequency noise and 50-60 Hz line noise are the two most prominent sources for contamination of instrumentation signals, a frequency signal with a range in the low end of the kHz spectrum is capable of being well filtered prior to being examined at the MCU.

Table 1. Specifications

Characteristics	Symbol	Min	Тур	Max	Units
Power Supply Voltage	B ⁺	10		30	Volts
Full Scale Pressure	P _{FS}				
- MPX2010				10	kPa
- MPX2050				50	kPa
- MPX2100				100	kPa
- MPX2200				200	kPa
Full Scale Output	f _{FS}		10		kHz
Zero Pressure Offset	f _{OFF}		1		kHz
Sensitivity	S _{AOUT}		9/P _{FS}		kHz/kPa
Quiescent Current	I _{CC}		55		mA

EVALUATION BOARD

The following sections present an example of the signal conditioning, including frequency conversion, that was developed as an evaluation tool for Freescale's MPX2000 series pressure sensors. A summary of the information required to use evaluation board number DEVB160 is presented as follows.

Description

The evaluation board shown in Figure 1 is designed to transduce pressure, vacuum or differential pressure into a single-ended, ground referenced voltage that is then input to a voltage-to-frequency converter. It nominally provides a 1 kHz output at zero pressure and 10 kHz at full scale pressure. Zero pressure calibration is made with a trimpot that is located on the lower half of the left side of the board, while the full scale output can be calibrated via another trimpot just above the offset adjust. The board comes with an MPX2100DP sensor installed, but will accommodate any MPX2000 series sensor. One additional modification that may be required is that the gain of the circuit must be increased slightly when using an MPX2010 sensor. Specifically, the resistor R5 must be increased from 7.5 k Ω to 12 k Ω .

Circuit Description

The following pin description and circuit operation corresponds to the schematic shown in Figure 2.

Pin-by-Pin Description

B⁺

Input power is supplied at the B⁺ terminal of connector CN1. Minimum input voltage is 10 V and maximum is 30 V.

Fout

A logic-level (5 V) frequency output is supplied at the OUT terminal (CN1). The nominal signal it provides is 1 kHz at zero

pressure and 10 kHz at full scale pressure. Zero pressure frequency is adjustable and set with R12. Full-scale frequency is calibrated via R13. This output is designed to be directly connected to a microcontroller timer system input-capture channel.

GND

The ground terminal on connector CN1 is intended for use as the power supply return and signal common. Test point terminal TP3 is also connected to ground, for measurement convenience.

TP1

Test point 1 is connected to the final frequency output, Fout-

TP2

Test point 2 is connected to the +5 V regulator output. It can be used to verify that this supply voltage is within its tolerance.

TP3

Test point 3 is the additional ground point mentioned above in the GND description.

TP4

Test point 4 is connected to the +8 V regulator output. It can be used to verify that this supply voltage is within its tolerance.

P1, P2

Pressure and Vacuum ports P1 and P2 protrude from the sensor on the right side of the board. Pressure port P1 is on the top (marked side of package) and vacuum port P2, if present, is on the bottom. When the board is set up with a dual ported sensor (DP suffix), pressure applied to P1, vacuum applied to P2 or a differential pressure applied between the two all produce the same output voltage per kPa of input. Neither port is labeled. Absolute maximum differential pressure is 700 kPa.

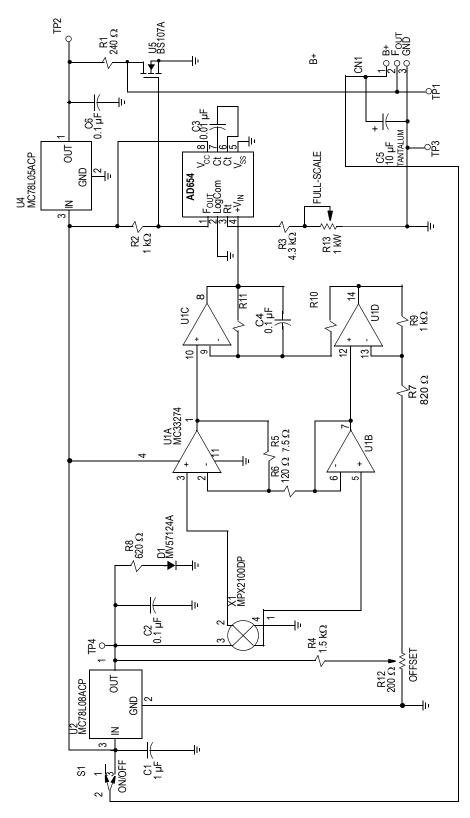


Figure 2. DEVB160 Frequency Output Sensor Evaluation Board

The following is a table of the components that are assembled on the DEVB160 Frequency Output Sensor Evaluation Board.

Table 2. Parts List

Designators	Quantity	Description	Manufacturer	Part Number
C1	1	1 μF Capacitor		
C2	1	0.1 μF Capacitor		
C3	1	0.01 μF Capacitor		
C4	1	0.1 μF Capacitor		
C5	1	10 μF Cap+		tantalum
C6	1	0.1 μF Capacitor		
CN1	1	.15LS 3 Term	PHX Contact	1727023
D1	1	RED LED	Quality Tech.	MV57124A
R1	1	240 Ω resistor		
R2, R9	2	1 kΩ resistor		
R3	1	4.3 kΩ resistor		
R4	1	1.5 kΩ resistor		
R5	1	7.5 kΩ resistor		
R6	1	120 Ω resistor		
R7	1	820 Ω resistor		
R8	1	620 $Ω$ resistor		
R10, R11	2	2 kΩ resistor		
R12	1	200 Ω Trimpot	Bourns	3386P-1-201
R13	1	1 kΩ Trimpot	Bourns	3386P-1-102
S1	1	SPDT miniature switch	NKK	SS-12SDP2
TP1	1	YELLOW Testpoint	Control Design	TP-104-01-04
TP2	1	BLUE Testpoint	Control Design	TP-104-01-06
TP3	1	BLACK Testpoint	Control Design	TP-104-01-00
TP4	1	GREEN Testpoint	Control Design	TP-104-01-05
U1	1	Quad Op Amp	Freescale	MC33274
U2	1	8 V Regulator	Freescale	MC78L08ACP
U3	1	AD654	Analog Devices	AD654
U4	1	5 V Regulator	Freescale	MC78L05ACP
U5	1	Small-Signal FET	Freescale	BS107A
X1	1	Pressure Sensor	Freescale	MPX2100DP

NOTE: All resistors are 1/4 watt, 5% tolerance values. All capacitors are 50 V rated, $\pm 20\%$ tolerance values.

Circuit Operation

The voltage signal conditioning portion of this circuit is a variation on the classic instrumentation amplifier configuration. It is capable of providing high differential gain and good common-mode rejection with very high input impedance; however, it provides a more user friendly method of performing the offset/bias point adjustment. It uses four op amps and several resistors to amplify and level shift the sensor's output. Most of the amplification is done in U1A which is configured as a differential amplifier. Unwanted current flow through the sensor is prevented by buffer U1B. At zero pressure the differential voltage from pin 2 to pin 4 on the sensor has been precision trimmed to essentially zero volts. The common-mode voltage on each of these nodes is 4 V (one-half the sensor supply voltage). The zero pressure output voltage at pin 1 of U1A is then 4.0 V, since any other voltage would be coupled back to pin 2 via R5 and create a non-zero bias across U1A's differential inputs. This 4.0 V zero pressure DC output voltage is then level translated to the desired zero pressure offset voltage by U1C and U1D. The offset voltage is produced by R4 and adjustment trimpot R12. R7's value is such that the total source impedance into pin 13 is approximately 1 k. The gain is approximately (R5/R6)(1 + R11/R10), which is 125 for the values shown in Figure 2. A gain of 125 is selected to provide a 4 V span for 32 mV of fullscale sensor output (at a sensor supply voltage of 8 V).

The resulting 0.5 V to 4.5 V output from U1C is then converted by the V/F converter to the nominal 1-10 kHz that has been specified. The AD654 V/F converter receives the amplified sensor output at pin 8 of op amp U1C. The full-scale frequency is determined by R3, R13 and C3 according to the following formula:

$$F_{out} (full\text{-scale}) = \frac{V_{in}}{(10V)(R3 + R13)C3}$$

For best performance, R3 and R13 should be chosen to provide 1 mA of drive current at the full-scale voltage produced at pin 3 of the AD654 (U3). The input stage of the AD654 is an op-amp; thus, it will work to make the voltage at pin 3 of U3 equal to the voltage seen at pin 4 of U3 (pins 3 and 4 are the input terminals of the op amp). Since the amplified sensor output will be 4.5 V at full-scale pressure, R3 + R13 should be approximately equal to 4.5 k Ω to have optimal linearity performance. Once the total resistance from pin 3 of U3 to ground is set, the value of C3 will determine the fullscale frequency output of the V/F. Trimpot R13 should be sized (relative to R3 value) to provide the desired amount of full-scale frequency adjustment. The zero-pressure frequency is adjusted via the offset adjust provided for calibrating the offset voltage of the signal conditioned sensor output. For additional information on using this particular V/F converter. see the applications information provided in the Analog Devices Data Conversion Products Databook.

The frequency output has its edge transitions "sped" up by a small-signal FET inverter. This final output is directly compatible with microprocessor timer inputs, as well as any other high-speed CMOS logic. The amplifier portion of this circuit has been patented by Freescale Semiconductor, Inc. and was introduced on evaluation board DEVB150A.

Additional information pertaining to this circuit and the evaluation board DEVB150A is contained in Freescale Application Note AN1313.¹

TEST/CALIBRATION PROCEDURE

- Connect a +12 V supply between B+ and GND terminals on the connector CN1.
- Connect a frequency counter or scope probe on the F_{out} terminal of CN1 or on TP1 with the test instrumentation ground clipped to TP3 or GND.
- Turn the power switch, S1, to the on position. Power LED, D1, should be illuminated. Verify that the voltage at TP2 and TP4 (relative to GND or TP3) is 5 V and 8 V, respectively. While monitoring the frequency output by whichever means one has chosen, one should see a 50% duty cycle square wave signal.
- 4. Turn the wiper of the OFFSET adjust trimpot, R12, to the approximate center of the pot.
- 5. Apply 100 kPa to pressure port P1 of the MPX2100DP (topside port on marked side of the package) sensor, X1.
- Adjust the FULL-SCALE trimpot, R13, until the output frequency is 10 kHz. If 10 kHz is not within the trim range of the full-scale adjustment trimpot, tweak the offset adjust trimpot to obtain 10 kHz (remember, the offset pot was at an arbitrary midrange setting as per step 4).
- Apply zero pressure to the pressure port (i.e., both ports at ambient pressure, no differential pressure applied).
 Adjust OFFSET trimpot so frequency output is 1 kHz.
- Verify that zero pressure and full-scale pressure (100 kPa) produce 1 and 10 kHz respectively, at F_{out} and/or TP1. A second iteration of adjustment on both fullscale and offset may be necessary to fine tune the 1-10 kHz range.

CONCLUSION

Transforming conventional analog voltage sensor outputs to frequency has great utility for a variety of applications. Sensing remotely and/or in noisy environments is particularly challenging for low-level (mV) voltage output sensors such as the MPX2000 Series pressure sensors. Converting the MPX2000 sensor output to frequency is relatively easy to accomplish, while providing the noise immunity required for accurate pressure sensing. The evaluation board presented is an excellent tool for either "stand-alone" evaluation of the MPX2000 Series pressure sensors or as a building block for system prototyping which can make use of DEVB160 as a "drop-in" frequency output sensor solution. The output of the DEVB160 circuit is ideally conditioned for interfacing to MCU timer inputs that can measure the sensor frequency signal.

Schultz, Warren (Freescale Semiconductor, Inc.), "Sensor Building Block Evaluation Board," Freescale Application Note AN1313.

Interfacing Semiconductor Pressure Sensors to Microcomputers

by: Warren Schultz
Discrete Applications Engineering

INTRODUCTION

The most popular silicon pressure sensors are piezoresistive bridges that produce a differential output voltage in response to pressure applied to a thin silicon diaphragm. Output voltage for these sensors is generally 25 to 50 mV full scale. Interface to microcomputers, therefore, generally involves gaining up the relatively small output voltage, performing a differential to single ended conversion, and scaling the analog signal into a range appropriate for analog to digital conversion. Alternately, the analog pressure signal can be converted to a frequency modulated 5 V waveform or 4-20 mA current loop, either of which is relatively immune to noise on long interconnect lines.

A variety of circuit techniques that address interface design are presented. Sensing amplifiers, analog to digital conversion, frequency modulation and 4-20 mA current loops are considered.

PRESSURE SENSOR BASICS

The essence of piezoresistive pressure sensors is the Wheatstone bridge shown in Figure 1. Bridge resistors RP1, RP2, RV1 and RV2 are arranged on a thin silicon diaphragm such that when pressure is applied RP1 and RP2 increase in value while RV1 and RV2 decrease a similar amount. Pressure on the diaphragm, therefore, unbalances the bridge and produces a differential output signal. One of the fundamental properties of this structure is that the differential output voltage is directly proportional to bias voltage B+. This characteristic implies that the accuracy of the pressure measurement depends directly on the tolerance of the bias supply. It also provides a convenient means for temperature compensation. The bridge resistors are silicon resistors that have positive temperature coefficients. Therefore, when they are placed in series with zero T_C temperature compensation resistors RC1 and RC2 the amount of voltage applied to the bridge increases with temperature. This increase in voltage produces an increase in electrical sensitivity which offsets and compensates for the negative temperature coefficient associated with piezoresistance.

Since RC1 and RC2 are approximately equal, the output voltage common mode is very nearly fixed at 1/2 B+. In a typical MPX2100 sensor, the bridge resistors are nominally 425 ohms; RC1 and RC2 are nominally 680 ohms. With these

values and 10 V applied to B+, a delta R of 1.8 ohms at full scale pressure produces 40 mV of differential output voltage.

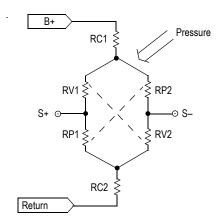


Figure 1. Sensor Equivalent Circuit

INSTRUMENTATION AMPLIFIER INTERFACES

Instrumentation amplifiers are by far the most common interface circuits that are used with pressure sensors. An example of an inexpensive instrumentation amplifier based interface circuit is shown in Figure 2. It uses an MC33274 quad operational amplifier and several resistors that are configured as a classic instrumentation amplifier with one important exception. In an instrumentation amplifier resistor R3 is normally returned to ground. Returning R3 to ground sets the output voltage for zero differential input to 0 V DC. For microcomputer interface a positive offset voltage on the order of 0.3 to 0.8 V is generally desired. Therefore, R3 is connected to pin 14 of U1D which supplies a buffered offset voltage that is derived from the wiper of R6. This voltage establishes a DC output for zero differential input. The translation is one to one. Within the tolerances of the circuit, whatever voltage appears at the wiper of R6 will also appear as the zero pressure DC offset voltage at the output.

With R10 at 240 ohms, gain is set for a nominal value of 125. This provides a 4 V span for 32 mV of full scale sensor output. Setting the offset voltage to 0.75 V results in a 0.75 V to 4.75 V output that is directly compatible with microprocessor A/D inputs. Over a zero to 50° C temperature range, combined accuracy for an MPX2000 series sensor and this interface is on the order of \pm 10%.

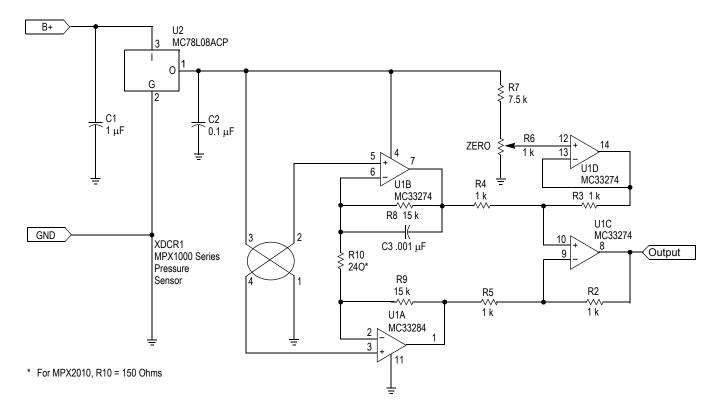


Figure 2. Instrumentation Amplifier Interface

For applications requiring greater precision a fully integrated instrument amplifier such as an LTC1100CN8 gives better results. In Figure 3 one of these amplifiers is used to provide a gain of 100, as well as differential to single ended conversion. Zero offset is provided by dividing down the precision reference to 0.5 V and buffering with U2B. This voltage is fed into the LTC1100CN8's ground pin which is equivalent to returning R3 to pin 14 of U1D in Figure 2. An additional non-inverting gain stage consisting of U2A, R1 and R2 is used to scale the sensor's full scale span to 4 V. R2 is also returned to the buffered 0.5 V to maintain the 0.5 V zero offset that was established in the instrumentation amplifier. Output voltage range is therefore 0.5 to 4.5 V.

Both of these instrumentation amplifier circuits do their intended job with a relatively straightforward tradeoff between cost and performance. The circuit of Figure 2 has the usual cumulative tolerance problem that is associated with instrumentation amplifiers that have discrete resistors, but it has a relatively low cost. The integrated instrumentation amplifier in Figure 3 solves this problem with precision trimmed film resistors and also provides superior input offset

performance. Component cost, however, is significantly higher.

SENSOR SPECIFIC INTERFACE AMPLIFIER

A low cost interface designed specifically for pressure sensors improves upon the instrumentation amplifier in Figure 2. Shown in Figure 4, it uses one quad op amp and several resistors to amplify and level shift the sensor's output. Most of the amplification is done in U1A which is configured as a differential amplifier. It is isolated from the sensor's positive output by U1B. The purpose of U1B is to prevent feedback current that flows through R5 and R6 from flowing into the sensor. At zero pressure the voltage from pin 2 to pin 4 on the sensor is 0 V. For example, let's say that the common mode voltage on these pins is 4.0 V. The zero pressure output voltage at pin 1 of U1A is then 4.0 V, since any other voltage would be coupled back to pin 2 via R6 and create a non-zero bias across U1A's differential inputs. This 4.0 V zero pressure DC output voltage is then level translated to the desired zero pressure offset voltage (V_{OFFSET}) by U1C and U1D.

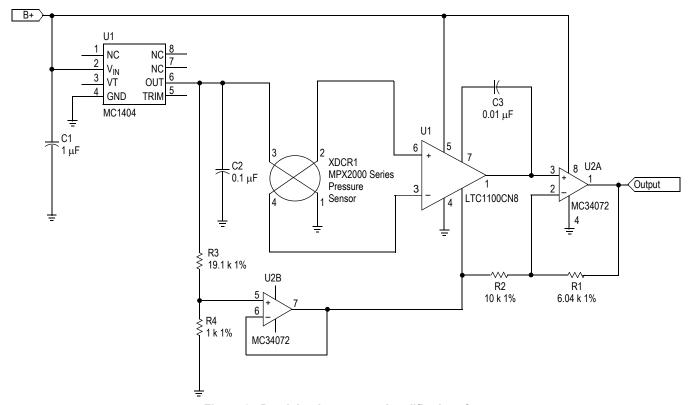
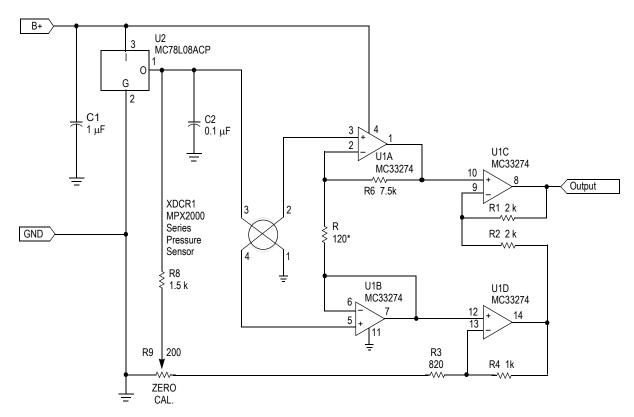



Figure 3. Precision Instrument Amplifier Interface


^{*} NOTE: For MPX2010, R5 = 75 Ohms

Figure 4. Sensor Specific Interface Circuit

AN1318

To see how the level translation works, let's look at the simplified schematic in Figure 5. Again assuming a common mode voltage of 4.0 V, the voltage applied to pin 12 of U1D is 4.0 V, implying that pin 13 is also at 4.0 V. This leaves 4.0 V - V_{OFFSET} across R3, which is 3.5 V if V_{OFFSET} is set to 0.5 V. Since no current flows into pin 13, the same current flows through both R3 and R4. With both of these resistors set to the same value, they have the same voltage drop, implying a 3.5 V drop across R4. Adding the voltages (0.5 + 3.5 + 3.5) yields

7.5 V at pin 14 of U1D. Similarly 4.0 V at pin 10 of U1C implies 4.0 V at pin 9, and the drop across R2 is 7.5 V - 4.0 V = 3.5 V. Again 3.5 V across R2 implies an equal drop across R1, and the voltage at pin 8 is 4.0 V - 3.5 V = 0.5 V. For this DC output voltage to be independent of the sensor's common mode voltage it is necessary to satisfy the condition that R4/R3 = R2/R1. In Figure 4, V_{OFFSET} is produced by R8 and adjustment pot R9. R3's value is adjusted such that the total source impedance into pin 13 is approximately 1 k.

*NOTE: For MPX2010, R5 = 75 Ohms

Figure 5. Simplified Sensor Specific Interface

Gain is approximately (R6/R5)(R1/R2+1), which is 125 for the values shown in Figure 4. A gain of 125 is selected to provide a 4 V span for the 32 mV of full scale sensor output that is obtained with 8 V B+.

The resulting 0.5 V to 4.5 V output from U1C is preferable to the 0.75 to 4.75 V range developed by the instrument amplifier configuration in Figure 2. It also uses fewer parts. This circuit does not have the instrument amplifier's propensity for oscillation and therefore does not require compensation capacitor C3 that is shown in Figure 2. It also requires one less resistor, which in addition to reducing component count also reduces accumulated tolerances due to resistor variations.

This circuit as well as the instrumentation amplifier interfaces in Figure 2 and Figure 3 is designed for direct connection to a microcomputer A/D input. Using the

MC68HC11 as an example, the interface circuit output is connected to any of the E ports, such as port E0 as shown in Figure 6. To get maximum accuracy from the A/D conversion, V_{REFH} is tied to 4.85 V and V_{REFL} is tied to 0.30 V by dividing down a 5 V reference with 1% resistors.

SINGLE SLOPE A/D CONVERTER

The 8 bit A/D converters that are commonly available on chip in microcomputers are usually well suited to pressure sensing applications. In applications that require more than 8 bits, the circuit in Figure 7 extends resolution to 11 bits with an external analog-to-digital converter. It also provides an interface to digital systems that do not have an internal A/D function.

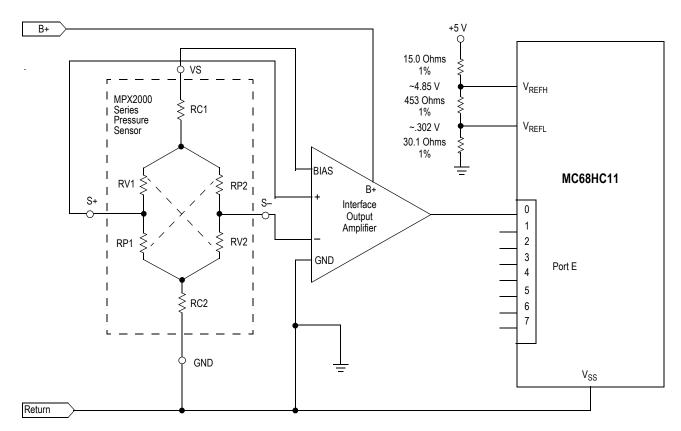


Figure 6. Application Example

Beginning with the ramp generator, a timing ramp is generated with current source U5 and capacitor C3. Initialization is provided by Q1 which sets the voltage on C3 at approximately ground. With the values shown, 470 μA flowing into 0.47 μF provide approximately a 5 msec ramp time from zero to 5 V. Assuming zero pressure on the sensor, inputs to both comparators U2A and U2B are at the same voltage. Therefore, as the ramp voltage sweeps from zero to 5 V, both PA0 and PA1 will go low at the same time when the ramp voltage exceeds the common mode voltage. The processor counts the number of clock cycles between the time that PA0 and PA1 go low, reading zero for zero pressure.

In this circuit, U4A and U4B form the front end of an instrument amplifier. They differentially amplify the sensor's output. The resulting amplified differential signal is then sampled and held in U1 and U3. The sample and hold function is performed in order to keep input data constant during the conversion process. The stabilized signals coming out of U1 and U3 feed a higher output voltage to U2A than U2B, assuming that pressure is applied to the sensor. Therefore, the ramp will trip U2B before U2A is tripped, creating a time difference between PA0 going low and PA1 going low. The processor reads the number of clock cycles between these two events. This number is then linearly scaled with software to represent the amplified output voltage, accomplishing the analog to digital conversion.

When the ramp reaches the reference voltage established by R9 and R10, comparator U2C is tripped, and a reset command is generated. To accomplish reset, Q1 is turned on with an output from PA7, and the sample and hold circuits are delatched with an output from PB1. Resolution is limited by clock frequency and ramp linearity. With the ramp generator shown in Figure 7 and a clock frequency of 2 MHz; resolution is 11 bits.

From a software point of view, the A/D conversion consists of latching the sample and hold, reading the value of the microcomputer's free running counter, turning off Q1, and waiting for the three comparator outputs to change state from logic 1 to logic 0. The analog input voltage is determined by counting, in 0.5 μsec steps, the number of clock cycles between PA0 and PA1 going low.

LONG DISTANCE INTERFACES

In applications where there is a significant distance between the sensor and microcomputer, two types of interfaces are typically used. They are frequency output and 4-20 mA loops. In the frequency output topology, pressure is converted into a zero to 5 V digital signal whose frequency varies linearly with pressure. A minimum frequency corresponds to zero pressure and above this, frequency output is determined by a Hz/unit pressure scaling factor. If minimizing the number of wires to a remote sensor is the most important design consideration, 4-20 mA current loops are the topology of choice. These loops utilize power and ground as the 4-20 mA signal line and therefore require only two wires to the sensor. In this topology 4 mA of total current drain from the sensor corresponds to zero pressure, and 20 mA to full scale.

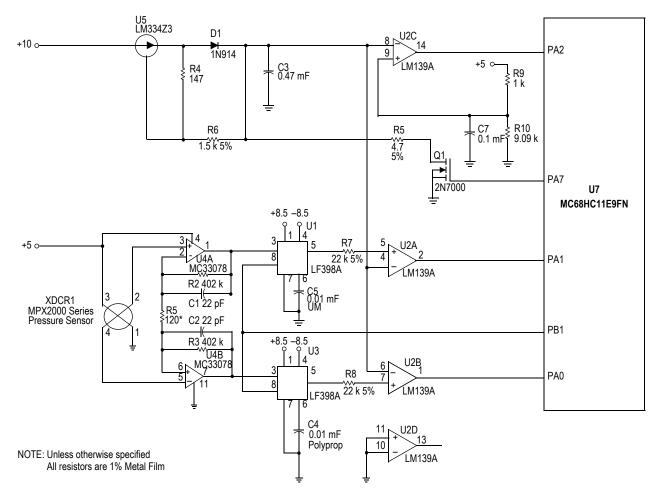


Figure 7. Single Slope A/D Converter

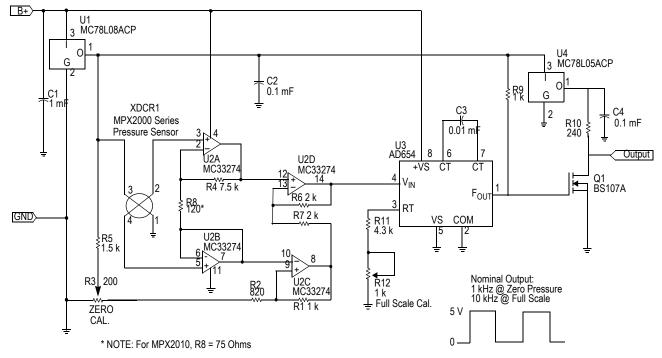


Figure 8. Frequency Output Pressure Sensor

A relatively straightforward circuit for converting pressure to frequency is shown in Figure 9. It consists of three basic parts. The interface amplifier is the same circuit that was described in Figure 4. Its 0.5 to 4.5 V output is fed directly into an AD654 voltage-to-frequency converter. On the AD654, C3 sets nominal output frequency. Zero pressure output is calibrated to 1 kHz by adjusting the zero pressure input voltage with R3. Full scale adjustments are made with R12 which sets the full scale frequency to 10 kHz. The output of the AD654 is then fed into a buffer consisting of Q1 and R10. The buffer is used to clean up the edges and level translate the output to 5 V. Advantages of this approach are that the frequency output is easily read by a microcomputer's timer and transmission over

a twisted pair line is relatively easy. Where very long distances are involved, the primary disadvantage is that 3 wires (V_{CC} , ground, and an output line) are routed to the sensor.

A 4-20 mA loop reduces the number of wires to two. Its output is embedded in the V_{CC} and ground lines as an active current source. A straightforward way to apply this technique to pressure sensing is shown in Figure 10. In this figure an MPX7000 series high impedance pressure sensor is mated to an XTR101 4-20 mA two-wire transmitter. It is set up to pull 4 mA from its power line at zero pressure and 20 mA at full scale. At the receiving end a 240 ohm resistor referenced to signal ground will provide a 0.96 to 4.8 V signal that is suitable for microcomputer A/D inputs.

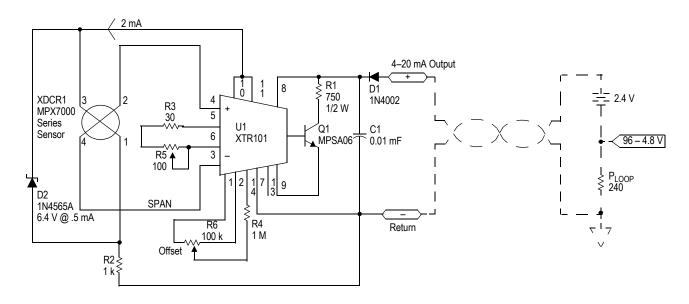


Figure 9. 4-20 mA Pressure Transducer

Bias for the sensor is provided by two 1 mA current sources (pins 10 and 11) that are tied in parallel and run into a 1N4565A 6.4 V temperature compensated zener reference. The sensor's differential output is fed directly into XTR101's inverting and non-inverting inputs. Zero pressure offset is calibrated to 4 mA with R6. Biased with 6.4 V, the sensor's full scale output is 24.8 mV. Given this input R3 + R5 nominally total 64 ohms to produce the 16 mA span required for 20 mA full scale. Calibration is set with R5.

The XTR101 requires that the differential input voltage at pins 3 and 4 has a common mode voltage between 4 and 6 V.

The sensor's common mode voltage is one half its supply voltage or 3.2 V. R2 boosts this common mode voltage by 1k•2mA or 2 V, establishing a common mode voltage for the transmitter's input of 5.2 V. To allow operation over a 12 to 40 V range, dissipation is off-loaded from the IC by boosting the output with Q1 and R1. D1 is also included for protection. It prohibits reverse polarity from causing damage. Advantages of this topology include simplicity and, of course, the two wire interface.

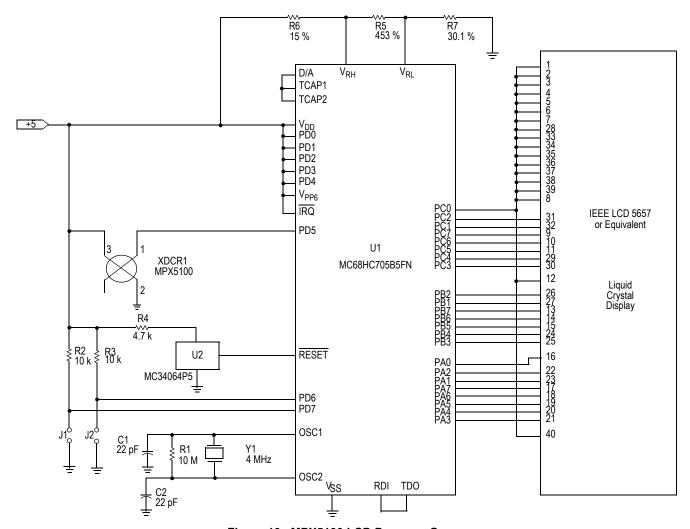


Figure 10. MPX5100 LCD Pressure Gauge

DIRECT INTERFACE WITH INTEGRATED SENSORS

The simplest interface is achieved with an integrated sensor and a microcomputer that has an on-chip A/D converter. Figure 10 shows an LCD pressure gauge that is made with an MPX5100 integrated sensor and MC68HC05 microcomputer. Although the total schematic is reasonably complicated, the interface between the sensor and the micro is a single wire. The MPX5100 has an internal amplifier that outputs a 0.5 to 4.5 V signal that inputs directly to A/D port PD5 on the HC05.

The software in this system is written such that the processor assumes zero pressure at power up, reads the sensor's output voltage, and stores this value as zero pressure offset. Full scale span is adjustable with jumpers J1 and J2. For this particular system the software is written such that with J1 out and J2 in, span is decreased by 1.5%. Similarly with J1 in and J2 out, span is increased by 1.5%. Given the $\pm\,2.5\%$ full scale spec on the sensor, these jumpers allow calibration to $\pm\,1\%$ without the use of pots.

MIX AND MATCH

The circuits that have been described so far are intended to be used as functional blocks. They may be combined in a variety of ways to meet the particular needs of an application. For example, the Frequency Output Pressure Sensor in Figure 8 uses the sensor interface circuit described in Figure 4 to provide an input to the voltage-to-frequency converter. Alternately, an MPX5100 could be directly connected to pin 4 of the AD654 or the output of Figure 3's Precision Instrumentation Amplifier Interface could by substituted in the same way. Similarly, the Pressure Gauge described in Figure 10 could be constructed with any of the interfaces that have been described.

CONCLUSION

The circuits that have been shown here are intended to make interfacing semiconductor pressure sensors to digital systems easier. They provide cost effective and relatively simple ways of interfacing sensors to microcomputers. The seven different circuits contain many tradeoffs that can be matched to the needs of individual applications. When

considering these tradeoffs it is important to throw software into the equation. Techniques such as automatic zero pressure calibration can allow one of the inexpensive analog interfaces to provide performance that could otherwise only be obtained with a more costly precision interface.

REFERENCES

- Baum, Jeff, "Frequency Output Conversion for MPX2000 Series Pressure Sensors," Freescale Application Note AN1316/D.
- Lucas, William, "An Evaluation System for Direct Interface of the MPX5100 Pressure Sensor with a Microprocessor," Freescale Application Note AN1305.
- Lucas, William, "An Evaluation System for Interfacing the MPX2000 Series Pressure Sensors to a Microprocessor," Freescale Application Note AN1315.
- 4. Schultz, Warren, "Compensated Sensor Bar Graph Pressure Gauge," Freescale Application Note AN1309.
- 5. Schultz, Warren, "Interfaced Sensor Evaluation Board," Freescale Application Note AN1312.
- 6. Schultz, Warren, "Sensor Building Block Evaluation Board," Freescale Application Note AN1313.
- Williams, Denise, "A Simple 4-20 mA Pressure Transducer Evaluation Board," Freescale Application Note AN1303.

Applying Semiconductor Sensors to Bar Graph Pressure Gauges

by: Warren Schultz
Discrete Applications Engineering

INTRODUCTION

Bar Graph displays are noted for their ability to very quickly convey a relative sense of how much of something is present. They are particularly useful in process monitoring applications where quick communication of a relative value is more important than providing specific data.

Designing bar graph pressure gauges based upon semiconductor pressure sensors is relatively straightforward. The sensors can be interfaced to bar graph display drive IC's,

microcomputers and MC33161 voltage monitors. Design examples for all three types are included.

BAR GRAPH DISPLAY DRIVER

Interfacing semiconductor pressure sensors to a bar graph display IC such as an LM3914 is very similar to microcomputer interface. The same 0.5 to 4.5 V analog signal that a microcomputer's A/D converter wants to see is also quite suitable for driving an LM3914. In Figure 1, this interface is provided by dual op amp U2 and several resistors.

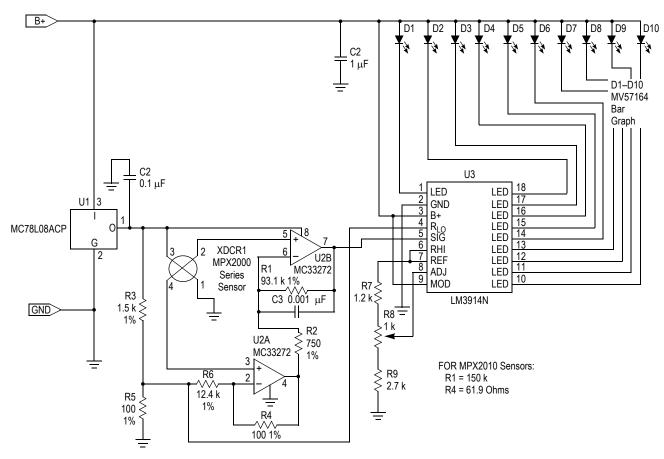


Figure 1. Compensated Sensor Bar Graph Pressure Gauge

The op amp interface amplifies and level shifts the sensor's output. To see how this amplifier works, simplify it by grounding the output of voltage divider R3, R5. If the common mode voltage at pins 2 and 4 of the sensor is 4.0 V, then pin 2 of U2A and pin 6 of U2B are also at 4.0 V. This puts 4.0 V across R6. Assuming that the current in R4 is equal to the current in R6, 323 µA • 100 ohms produces a 32 mV drop across R4 which adds to the 4.0 V at pin 2. The output voltage at pin 1 of U2A is, therefore, 4.032 V. This puts 4.032 - 4.0 V across R2, producing 43 µA. The same current flowing through R1 again produces a voltage drop of 4.0 V, which sets the output at zero. Substituting a divider output greater than zero into this calculation reveals that the zero pressure output voltage is equal to the output voltage of divider R3, R5. For this DC output voltage to be independent of the sensor's common mode voltage, it is necessary to satisfy the condition that R1/R2 = R6/R4.

Gain can be determined by assuming a differential output at the sensor and going through the same calculation. To do this assume 100 mV of differential output, which puts pin 2 of U2A at 3.95 V, and pin 6 of U2B at 4.05 V. Therefore, 3.95 V is applied to R6, generating 319 μA . This current flowing through R4 produces 31.9 mV, placing pin 1 of U2A at 3950 mV + 31.9 mV = 3982 mV. The voltage across R2 is then 4050 mV - 3982 mV = 68 mV, which produces a current of 91

 μA that flows into R1. The output voltage is then 4.05 V + (91 μA • 93.1k) = 12.5 V. Dividing 12.5 V by the 100 mV input yields a gain of 125, which provides a 4.0 V span for 32 mV of full scale sensor output.

Setting divider R3, R5 at 0.5 V results in a 0.5 V to 4.5 V output that is easily tied to an LM3914. The block diagram that appears in Figure 2 shows the LM3914's internal architecture. Since the lower resistor in the input comparator chain is pinned out at R_{LO} , it is a simple matter to tie this pin to a voltage that is approximately equal to the interface circuit's 0.5 V zero pressure output voltage. Returning to Figure 1, this is accomplished by using the zero pressure offset voltage that is generated at the output of divider R3, R5.

Again looking at Figure 1, full scale is set by adjusting the upper comparator's reference voltage to match the sensor's output at full pressure. An internal regulator on the LM3914 sets this voltage with the aid of resistors R7, R9, and adjustment pot R8.

Eight volt regulated power is supplied by an MC78L08. The LED's are powered directly from LM3914 outputs, which are set up as current sources. Output current to each LED is approximately 10 times the reference current that flows from pin 7 through R7, R8, and R9 to ground. In this design it is nominally (4.5 V/4.9 k)10 = 9.2 mA.

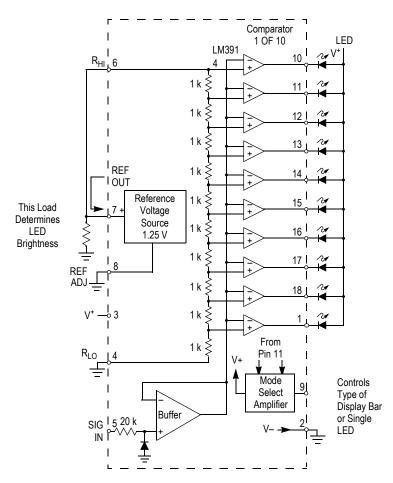


Figure 2. LM3914 Block Diagram

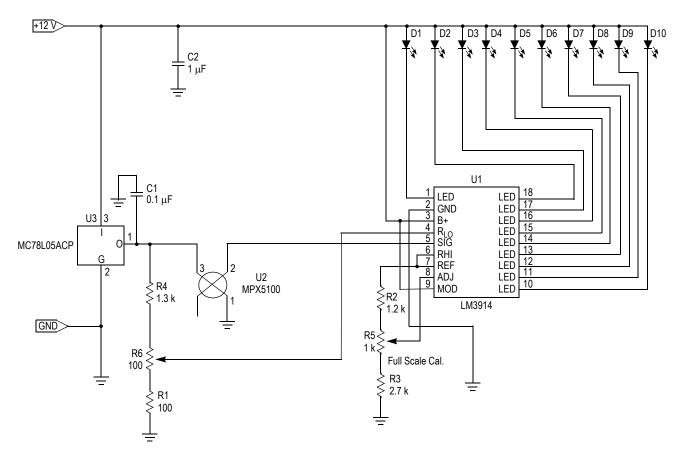


Figure 3. MPX5100 Bar Graph Pressure Gauge

Over a zero to 50° C temperature range combined accuracy for the sensor, interface, and driver IC are $\pm 10\%$. Given a 10 segment display total accuracy for the bar graph readout is approximately \pm (10 kPa +10%).

This circuit can be simplified by substituting an MPX5100 integrated sensor for the MPX2100 and the op amp interface. The resulting schematic is shown in Figure 3. In this case zero reference for the bar graph is provided by dividing down the 5 V regulator with R4, R1 and adjustment pot R6. The voltage at the wiper of R6 is adjusted to match the sensor's zero pressure offset voltage. It is connected to R_{LO} to zero the bar graph.

MICROCOMPUTER BAR GRAPH

Microcomputers with internal A/D converters such as an MC68HC05B5 lend themselves to easily creating bar graphs. Using the A/D converter to measure the sensor's analog output voltage and output ports to individually switch LED's

makes a relatively straightforward pressure gauge. This type of design is facilitated by a new MDC4510A gated current sink. The MDC4510A takes one of the processor's logic outputs and switches 10 mA to an LED. One advantage of this approach is that it is very flexible regarding the number of segments that are used, and has the availability through software to independently adjust scaling factors for each segment. This approach is particularly useful for process monitoring in systems where a microprocessor is already in

Figure 4 shows a direct connection from an MPX5100 sensor to the microcomputer. Similar to the previous example, an MPX2000 series sensor with the op amp interface that is shown in Figure 1 can be substituted for the MPX5100. In this case the op amp interface's output at pin 7 ties to port PD5, and its supply needs to come from a source greater than 6.5 V.

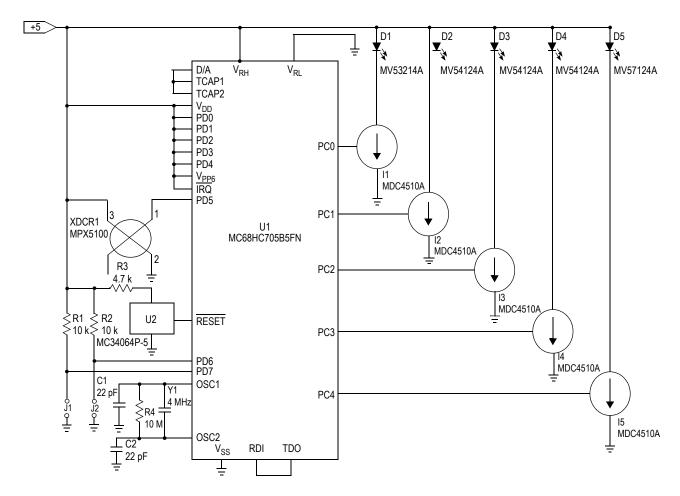


Figure 4. Microcomputer Bar Graph Pressure Gauge

PROCESS MONITOR

For applications where an inexpensive HIGH-LOW-OK process monitor is required, the circuit in Figure 5 does a good job. It uses an MC33161 Universal Voltage Monitor and the same analog interface previously described to indicate high, low or in-range pressure.

A block diagram of the MC33161 is illustrated in Figure 6. By tying pin 1 to pin 7 it is set up as a window detector. Whenever input 1 exceeds 1.27 V, two logic ones are placed at the inputs of its exclusive OR gate, turning off output 1. Therefore this output is on unless the lower threshold is exceeded. When 1.27 V is exceeded on input 2, just the opposite occurs. A single logic one appears at its exclusive OR gate, turning on output 2. These two outputs drive LED's through MDC4010A 10 mA current sources to indicate low pressure and high pressure.

Returning to Figure 5, an in-range indication is developed by turning on current source I1 whenever both the high and

low outputs are off. This function is accomplished with a discrete gate made from D1, D2 and R7. Its output feeds the input of switched current source I1, turning it on with R7 when neither D1 nor D2 is forward biased.

Thresholds are set independently with R8 and R9. They sample the same 4.0 V full scale span that is used in the other examples. However, zero pressure offset is targeted for 1.3 V. This voltage was chosen to approximate the 1.27 V reference at both inputs, which avoids throwing away the sensor's analog output signal to overcome the MC33161's input threshold. In addition, R10 and R11 are selected such that at full scale output, i.e., 5.3 V on pin 7, the low side of the pots is nominally at 1.1 V. This keeps the minimum input just below the comparator thresholds of 1.27 V, and maximizes the resolution available from adjustment pots R8 and R9. When level adjustment is not desired, R8 - R11 can be replaced by a simpler string of three fixed resistors.

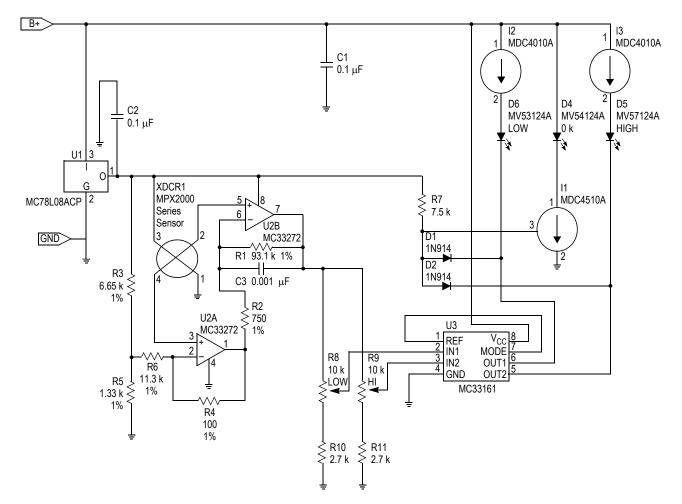


Figure 5. An Inexpensive Three-Segment Processor Monitor

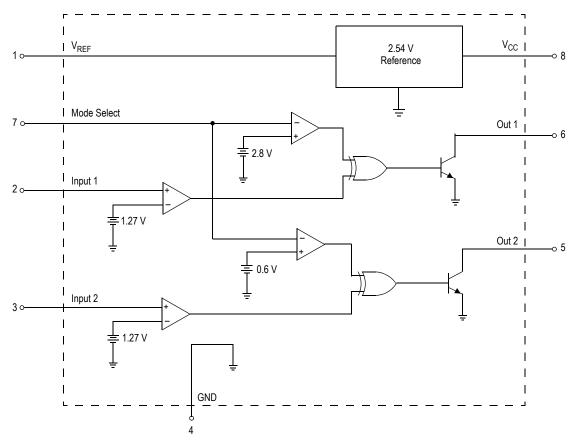


Figure 6. MC33161 Block Diagram

CONCLUSION

The circuits that have been shown here are intended to make simple, practical and cost effective bar graph pressure gauges. Their application involves a variety of trade-offs that can be matched to the needs of individual applications. In general, the most important trade-offs are the number of segments required and processor utilization. If the system in which the bar graph is used already has a microprocessor with unused A/D channels and I/O ports, tying MDC4510A current sources to the unused output ports is a very cost effective solution. On a stand-alone basis, the MC33161 based process monitor is the most cost effective where only 2 or 3 segments are required. Applications that require a larger number of segments are generally best served by one of the circuits that uses a dedicated bar graph display.

REFERENCES

- Alberkrack, Jade, & Barrow, Stephen; "Power Supply Monitor IC Fills Voltage Sensing Roles," *Power Conversion & Intelligent Motion*, October 1991.
- Lucas, William, "An Evaluation System for Direct Interface of the MPX5100 Pressure Sensor with a Microprocessor," Freescale Application Note AN1305.
- Schultz, Warren, "Integrated Sensor Simplifies Bar Graph Pressure Gauge," Freescale Application Note AN1304.
- Schultz, Warren, "Compensated Sensor Bar Graph Pressure Gauge," Freescale Application Note AN1309.

Amplifiers for Semiconductor Pressure Sensors

by: Warren Schultz
Discrete Applications Engineering

INTRODUCTION

Amplifiers for interfacing Semiconductor Pressure Sensors to electronic systems have historically been based upon classic instrumentation amplifier designs. Instrumentation amplifiers have been widely used because they are well understood standard building blocks that also work reasonably well. For the specific job of interfacing Semiconductor Pressure Sensors to today's mostly digital systems, other circuits can do a better job. This application note presents an evolution of amplifier design that begins with a classic instrumentation amplifier and ends with a simpler circuit that is better suited to sensor interface.

INTERFACE AMPLIFIER REQUIREMENTS

Design requirements for interface amplifiers are determined by the sensor's output characteristics, and the zero to 5.0 V input range that is acceptable to microcomputer A/D converters. Since the sensor's full scale output is typically tens of millivolts, the most obvious requirement is gain. Gains from 100 to 250 are generally needed, depending upon bias voltage applied to the sensor and maximum pressure to be measured. A differential to single-ended conversion is also

required in order to translate the sensor's differential output into a single ended analog signal. In addition, level shifting is necessary to convert the sensor's 1/2 B $^+$ common mode voltage to an appropriate DC level. For microcomputer A/D inputs, generally that level is from 0.3 - 1.0 V. Typical design targets are 0.5 V at zero pressure and enough gain to produce 4.5 V at full scale. The 0.5 V zero pressure offset allows for output saturation voltage in op amps operated with a single supply (V_{EE} = 0). At the other end, 4.5 V full scale keeps the output within an A/D converter's 5 V range with a comfortable margin for component tolerances. The resulting 0.5 to 4.5 V single-ended analog signal is also quite suitable for a variety of other applications such as bar graph pressure gauges and process monitors.

CLASSIC INSTRUMENTATION AMPLIFIER

A classic instrumentation amplifier is shown in Figure 1. This circuit provides the gain, level shifting and differential to single-ended conversion that are required for sensor interface. It does not, however, provide for single supply operation with a zero pressure offset voltage in the desired range.

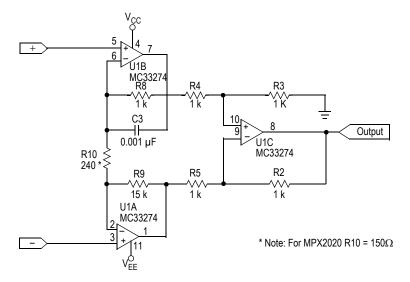


Figure 1. Classic Instrumentation Amplifier

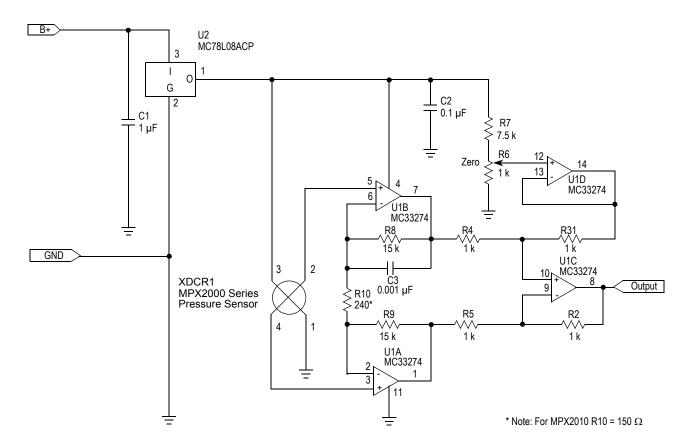


Figure 2. Instrumentation Amplifier Interface

To provide the desired DC offset, a slight modification is made in Figure 2. R3 is connected to pin 14 of U1D, which supplies a buffered offset voltage that is derived from the wiper of R6. This voltage establishes a DC output for zero differential input. The translation is one to one. Whatever voltage appears at the wiper of R6 will, within component tolerances, appear as the zero pressure DC offset voltage at the output.

With R10 at 240 Ω gain is set for a nominal value of 125, providing a 4.0 V span for 32 mV of full scale sensor output. Setting the offset voltage to 0.75 V, results in a 0.75 V to 4.75 V output that is directly compatible with microprocessor A/D inputs.

This circuit works reasonably well, but has several notable limitations when made with discrete components. First, it has a relatively large number of resistors that have to be well matched. Failure to match these resistors degrades common mode rejection and initial tolerance on zero pressure offset voltage. It also has two amplifiers in one gain loop, which makes stability more of an issue than it is in the following two alternatives. This circuit also has more of a limitation on zero pressure offset voltage than the other two. The minimum output voltage of U1D restricts the minimum zero pressure offset voltage that can be accommodated, given component tolerances. The result is a 0.75 V zero pressure offset voltage, compared to 0.5 V for each of the following two circuits.

SENSOR SPECIFIC AMPLIFIER

The limitations associated with classic instrumentation amplifiers suggest that alternate approaches to sensor interface design are worth looking at. One such approach is shown in Figure 3. It uses one quad op amp and several resistors to amplify and level shift the sensor's output.

Most of the amplification is done in U1A, which is configured as a differential amplifier. It is isolated from the sensor's minus output by U1B. The purpose of U1B is to prevent feedback current that flows through R5 and R6 from flowing into the sensor. At zero pressure the voltage from pin 2 to pin 4 on the sensor is zero V. For example, assume that the common mode voltage is 4.0 V. The zero pressure output voltage at pin 1 of U1A is then 4.0 V, since any other voltage would be coupled back to pin 2 via R6 and create a non zero bias across U1A's differential inputs. This 4.0 V zero pressure DC output voltage is then level translated to the desired zero pressure offset voltage by U1C and U1D. To see how the level translation works, assume the wiper of R9 is at ground. With 4.0 V at pin 12, pin 13 is also at 4.0 V. This leaves 4.0 V across (R3 + R9), which total essentially 1.0 k Ω . Since no current flows through R4, producing approximately 4.0 V across R4, as well. Adding the voltages (4.0 + 4.0) yields 8.0 V at pin 14. Similarly, 4.0 V at pin 10 implies 4.0 V at pin 9, and the drop across R2 is 8.0 V -4.0 = 4.0 V. Again 4.0 V across R2 implies an equal drop across R1, and the voltage at pin 8 is 4.0 V -4.0 V. In practice, the output of U1C will not go all the way to

ground, and the voltage injected by R8 at the wiper of R9 is approximately translated into a DC offset.

Gain is approximately equal to R6/R5(R1/R2+1), which predicts 125 for the values shown in Figure 3. A more exact calculation can be performed by doing a nodal analysis, which yields 127. Cascading the gains of U1A and U1C using standard op amp gain equations does not give an exact result,

because the sensor's negative going differential signal at pin 4 subtracts from the DC level that is amplified by U1C. Setting offset to 0.5 V results in an analog zero to full scale range of 0.5 to 4.5 V. For this DC output voltage to be independent of the sensor's common mode voltage it is necessary to satisfy the condition that R1/R2 = (R3+R9)/R4.

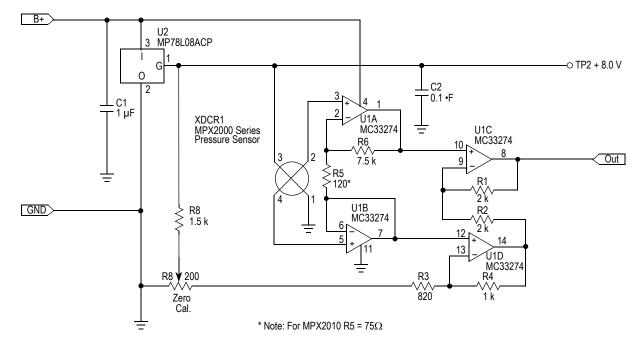


Figure 3. Sensor Specific Amplifier

This approach to interface amplifier design is an improvement over the classic instrument amplifier in that it uses fewer resistors, is inherently more stable, and provides a zero pressure output voltage that can be targeted at 0.5 V. It has the same tolerance problem from matching discrete resistors that is associated with classic instrument amplifiers.

SENSOR MINI AMP

Further improvements can be made with the circuit that is shown in Figure 4. It uses one dual op amp and several resistors to amplify and level shift the sensor's output. To see how this amplifier works, let's simplify it by grounding the output of voltage divider R3, R5 and assuming that the divider impedance is added to R6, such that R6 = 12.4 k. If the common mode voltage at pins 2 and 4 of the sensor is 4.0 V, then pin 2 of U2A and pin 6 of U2B are also at 4.0 V. This puts 4.0 V across R6, producing 323 μ A. Assuming that the current in R4 is equal to the current in R6, 323 μ A • 100 Ω produces a 32 mV drop across R4 which adds to the 4.0 V at pin 2. The output voltage at pin 1 of U2A is, therefore, 4.032 V. This puts 4.032 - 4.0 V across R2, producing 43 μ A. The same current flowing through R1 again produces a voltage drop of 4.0 V, which sets the output at zero. Substituting a divider output greater than zero into this calculation reveals that the zero

pressure output voltage is equal to the output voltage of divider R3, R5. For this DC output voltage to be independent of the sensor's common mode voltage it is necessary to satisfy the condition that R1/R2 = R6/R4, where R6 includes the divider impedance.

Gain can be determined by assuming a differential output at the sensor and going through the same calculation. To do this assume 100 mV of differential output, which puts pin 2 of U2A at 3.95 V, and pin 6 of U2B at 4.05 V. Therefore, 3.95 V is applied to R6, generating 319 μA . This current flowing through R4 produces 31.9 mV, placing pin 1 of U2A at 3950 mV + 31.9 mV = 3982 mV. The voltage across R2 is then 4050 mV - 3982 mV = 68 mV, which produces a current of 91 μA that flows into R1. The output voltage is then 4.05 V + (91 μA \bullet 93.1 k) = 12.5 V. Dividing 12.5 V by the 100 mV input yields a gain of 125, which provides a 4 V span for 32 mV of full scale sensor output. Setting divider R3, R5 at 0.5 V results in a 0.5 V to 4.5 V output that is comparable to the other two circuits.

This circuit performs the same function as the other two with significantly fewer components and lower cost. In most cases it is the optimum choice for a low cost interface amplifier.

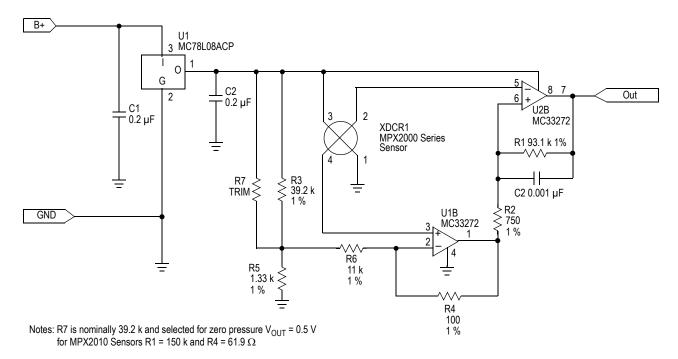


Figure 4. Sensor Mini Amp

Performance differences between the three topologies are minor. Accuracy is much more dependent upon the quality of the resistors and amplifiers that are used and less dependent on which of the three circuits are chosen. For example, input offset voltage error is essentially the same for all three circuits. To a first order approximation, it is equal to total gain times the difference in offset between the two amplifiers that are directly tied to the sensor. Errors due to resistor tolerances are somewhat dependent upon circuit topology. However, they are much more dependent upon the choice of resistors. Choosing one percent resistors rather than five percent resistors has a much larger impact on performance than the minor differences that result from circuit topology. Assuming a zero pressure offset adjustment, any of these circuits with an MPX2000 series sensor, one percent resistors and an

MC33274 amplifier results in a $\pm 5\%$ pressure to voltage translation from 0 to 50°C. Software calibration can significantly improve these numbers and eliminate the need for analog trim.

CONCLUSION

Although the classic instrumentation amplifier is the best known and most frequently used sensor interface amplifier, it is generally not the optimal choice for inexpensive circuits made from discrete components. The circuit that is shown in Figure 4 performs the same interface function with significantly fewer components, less board space and at a lower cost. It is generally the preferred interface topology for MPX2000 series semiconductor pressure sensors.

Barometric Pressure Measurement Using Semiconductor Pressure Sensors

by: Chris Winkler and Jeff Baum Discrete Applications Engineering

ABSTRACT

The most recent advances in silicon micromachining technology have given rise to a variety of low-cost pressure sensor applications and solutions. Certain applications had previously been hindered by the high-cost, large size, and overall reliability limitations of electromechanical pressure sensing devices. Furthermore, the integration of on-chip temperature compensation and calibration has allowed a significant improvement in the accuracy and temperature

stability of the sensor output signal. This technology allows for the development of both analog and microcomputer-based systems that can accurately resolve the small pressure changes encountered in many applications. One particular application of interest is the combination of a silicon pressure sensor and a microcontroller interface in the design of a digital barometer. The focus of the following documentation is to present a low-cost, simple approach to designing a digital barometer system.

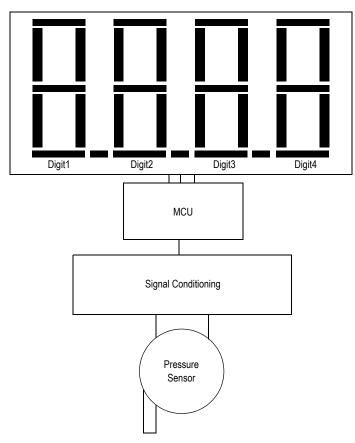


Figure 1. Barometer System

INTRODUCTION

Figure 1 shows the overall system architecture chosen for this application. This system serves as a building block, from which more advanced systems can be developed. Enhanced accuracy, resolution, and additional features can be integrated in a more complex design.

There are some preliminary concerns regarding the measurement of barometric pressure which directly affect the design considerations for this system. Barometric pressure refers to the air pressure existing at any point within the earth's atmosphere. This pressure can be measured as an absolute pressure, (with reference to absolute vacuum) or can be referenced to some other value or scale. The meteorology and avionics industries traditionally measure the absolute pressure, and then reference it to a sea level pressure value. This complicated process is used in generating maps of weather systems. The atmospheric pressure at any altitude varies due to changing weather conditions over time. Therefore, it can be difficult to determine the significance of a particular pressure measurement without additional information. However, once the pressure at a particular location and elevation is determined, the pressure can be calculated at any other altitude. Mathematically, atmospheric pressure is exponentially related to altitude. This particular system is designed to track variations in barometric pressure once it is calibrated to a known pressure reference at a given altitude.

For simplification, the standard atmospheric pressure at sea level is assumed to be 29.9 in-Hg. "Standard" barometric pressure is measured at particular altitude at the average weather conditions for that altitude over time. The system described in this text is specified to accurately measure barometric pressure variations up to altitudes of 15,000 ft. This altitude corresponds to a standard pressure of approximately 15.0 in-Hg. As a result of changing weather conditions, the standard pressure at a given altitude can fluctuate approximately ±1 in-Hg. in either direction. Table 1 indicates standard barometric pressures at several altitudes of interest.

Table 1. Altitude versus Pressure Data

Altitude (Ft.)	Pressure (in-Hg)
0	29.92
500	29.38
1,000	28.85
6,000	23.97
10,000	20.57
15,000	16.86

SYSTEM OVERVIEW

In order to measure and display the correct barometric pressure, this system must perform several tasks. The measurement strategy is outlined below in Figure 2. First, pressure is applied to the sensor. This produces a proportional differential output voltage in the millivolt range. This signal must then be amplified and level-shifted to a single-ended, microcontroller (MCU) compatible level $(0.5-4.5~\rm V)$ by a signal conditioning circuit. The MCU will then sample the voltage at the analog-to-digital converter (A/D) channel input, convert the digital measurement value to inches of mercury, and then display the correct pressure via the LCD interface. This process is repeated continuously.

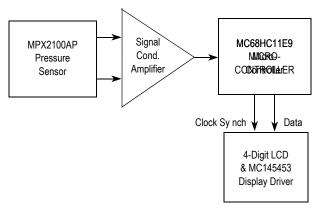


Figure 2. Barometer System Block Diagram

There are several significant performance features implemented into this system design. First, the system will digitally display barometric pressure in inches of mercury, with a resolution of approximately one-tenth of an inch of mercury. In order to allow for operation over a wide altitude range (0 – 15,000 ft.), the system is designed to display barometric pressures ranging from 30.5 in-Hg. to a minimum of 15.0 in-Hg. The display will read "lo" if the pressure measured is below 30.5 in-Hg. These pressures allow for the system to operate with the desired resolution in the range from sea-level to approximately 15,000 ft. An overview of these features is shown in Table 2.

Table 2. System Features Overview

Display Units	in-Hg
Resolution	0.1 in-Hg.
System Range	15.0 – 30.5 in-Hg.
Altitude Range	0 – 15,000 ft.

DESIGN OVERVIEW

The following sections are included to detail the system design. The overall system will be described by considering the subsystems depicted in the system block diagram, Figure 2. The design of each subsystem and its function in the overall system will be presented.

Table 3. MPX2100AP Electrical Characteristics

Characteristic	Symbol	Minimum	Typical	Max	Unit
Pressure Range	POP	0	_	100	kPa
Supply Voltage	VS	_	10	16	Vdc
Full Scale Span	VFSS	38.5	40	41.5	mV
Zero Pressure Offset	Voff	_	_	±1.0	mV
Sensitivity	S	_	0.4	_	mv/kPa
Linearity	_	_	0.05	_	%FSS
Temperature Effect on Span	_	_	0.5	_	%FSS
Temperature Effect on Offset	_	_	0.2	_	%FSS

Pressure Sensor

The first and most important subsystem is the pressure transducer. This device converts the applied pressure into a proportional, differential voltage signal. This output signal will vary linearly with pressure. Since the applied pressure in this application will approach a maximum level of 30.5 in-Hg. (100 kPa) at sea level, the sensor output must have a linear output response over this pressure range. Also, the applied pressure must be measured with respect to a known reference pressure, preferably absolute zero pressure (vacuum). The device should also produce a stable output over the entire operating temperature range.

The desired sensor for this application is a temperature compensated and calibrated, semiconductor pressure transducer, such as the MPXM2102A series sensor family. The MPX2000 series sensors are available in full-scale pressure ranges from 10 kPa (1.5 psi) to 200 kPa (30 psi). Furthermore, they are available in a variety of pressure configurations (gauge, differential, and absolute) and porting options. Because of the pressure ranges involved with barometric pressure measurement, this system will employ an MPXM2102AS (absolute with single port). This device will produce a linear voltage output in the pressure range of 0 to 100 kPa. The ambient pressure applied to the single port will be measured with respect to an evacuated cavity (vacuum reference). The electrical characteristics for this device are summarized in Table 3.

As indicated in Table 3, the sensor can be operated at different supply voltages. The full-scale output of the sensor, which is specified at 40 mV nominally for a supply voltage of 10 Vdc, changes linearly with supply voltage. All non-digital circuitry is operated at a regulated supply voltage of 8 Vdc. Therefore, the full-scale sensor output (also the output of the sensor at sea level) will be approximately 32 mV.

$$\left(\frac{8}{10} \times 40 \text{ mV}\right)$$

The sensor output voltage at the systems minimum range (15 in-Hg.) is approximately 16.2 mV. Thus, the sensor output over the intended range of operations is expected to vary from 32 to 16.2 mV. These values can vary slightly for each sensor as the offset voltage and full-scale span tolerances indicate.

Signal Conditioning Circuitry

In order to convert the small-signal differential output signal of the sensor to MCU compatible levels, the next subsystem

includes signal conditioning circuitry. The operational amplifier circuit is designed to amplify, level-shift, and ground reference the output signal. The signal is converted to a single-ended, $0.5-4.5\,\text{Vdc}$ range. The schematic for this amplifier is shown in Figure 3.

This particular circuit is based on classic instrumentation amplifier design criteria. The differential output signal of the sensor is inverted, amplified, and then level-shifted by an adjustable offset voltage (through R_{offset1}). The offset voltage is adjusted to produce 0.5 volts at the maximum barometric pressure (30.5 in-Hg.). The output voltage will increase for decreasing pressure. If the output exceeds 5.1 V, a zener protection diode will clamp the output. This feature is included to protect the A/D channel input of the MCU. Using the transfer function for this circuit, the offset voltage and gain can be determined to provide 0.1 in-Hg of system resolution and the desired output voltage level. The calculation of these parameters is illustrated below.

In determining the amplifier gain and range of the trimmable offset voltage, it is necessary to calculate the number of steps used in the A/D conversion process to resolve 0.1 in-Hg.

$$(30.5 - 15.0)$$
in-Hg* 10 $\frac{\text{steps}}{\text{Hg}}$ = 155 steps

The span voltage can now be determined. The resolution provided by an 8-bit A/D converter with low and high voltage references of zero and five volts, respectively, will detect 19.5 mV of change per step.

$$V_{RH} = 5 V$$
, $V_{RL} = 0 V$

Sensor Output at 30.5 in-Hg = 32.44 mV Sensor Output at 15.0 in-Hg = 16.26 mV Δ Sensor Output = Δ SO = 16.18 mV

Gain =
$$\frac{3.04 \text{ V}}{\Delta \text{SO}}$$
 = 187

Note: 30.5 in-Hg and 15.0 in-Hg are the assumed maximum and minimum absolute pressures, respectively.

This gain is then used to determine the appropriate resistor values and offset voltage for the amplifier circuit defined by the transfer function shown below.

$$V_{out} = -\left[\frac{R_2}{R_1} + 1\right] * \Delta V + V_{off}$$

 ΔV is the differential output of the sensor.

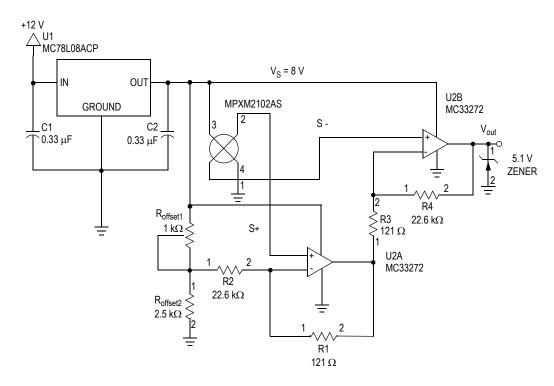


Figure 3. Signal Conditioning Circuit

The gain of 187 can be implemented with:

 $R_1 \approx R_3 = 121 \Omega$ $R_2 \approx R_4 = 22.6 \text{ k}\Omega$.

Choosing $R_{offset1}$ to be 1 $k\Omega$ and $R_{offset2}$ to be 2.5 $k\Omega,$ V_{out} is 0.5 V at the presumed maximum barometric pressure of 30.5 in-Hg. The maximum pressure output voltage can be trimmed to a value other than 0.5 V, if desired via $R_{offset1}.$ In addition, the trimmable offset resistor is incorporated to provide offset calibration if significant offset drift results from large weather fluctuations.

The circuit shown in Figure 3 employs an MC33272 (low-cost, low-drift) dual operational amplifier IC. In order to control large supply voltage fluctuations, an 8 Vdc regulator, MC78L08ACP, is used. This design permits use of a battery for excitation.

Microcontroller Interface

The low cost of MCU devices has allowed for their use as a signal processing tool in many applications. The MCU used in this application, the MC68HC11, demonstrates the power of incorporating intelligence into such systems. The on-chip resources of the MC68HC11 include: an 8 channel, 8-bit A/D, a 16-bit timer, an SPI (Serial Peripheral Interface – synchronous), and SCI (Serial Communications Interface – asynchronous), and a maximum of 40 I/O lines. This device is available in several package configurations and product variations which include additional RAM, EEPROM, and/or I/O capability. The software used in this application was developed using the MC68HC11 EVB development system.

The following software algorithm outlines the steps used to perform the desired digital processing. This system will convert the voltage at the A/D input into a digital value, convert this measurement into inches of mercury, and output this data serially to an LCD display interface (through the on-board SPI). This process is outlined in greater detail below:

- 1. Set up and enable A/D converter and SPI interface.
- 2. Initialize memory locations, initialize variables.
- 3. Make A/D conversion, store result.
- 4. Convert digital value to inches of mercury.
- 5. Determine if conversion is in system range.
- 6a. Convert pressure into decimal display digits.
- 6b. Otherwise, display range error message.
- 7. Output result via SPI to LCD driver device.

The signal conditioned sensor output signal is connected to pin PE5 (Port E-A/D Input pin). The MCU communicates to the LCD display interface via the SPI protocol. A listing of the assembly language source code to implement these tasks is included in the appendix. In addition, the software can be downloaded directly from the Freescale MCU Freeware Bulletin Board (in the MCU directory). Further information is included at the beginning of the appendix.

LCD Interface

In order to digitally display the barometric pressure conversion, a serial LCD interface was developed to communicate with the MCU. This system includes an MC145453 CMOS serial interface/LCD driver, and a 4-digit,

non-multiplexed LCD. In order for the MCU to communicate correctly with the interface, it must serially transmit six bytes for each conversion. This includes a start byte, a byte for each of the four decimal display digits, and a stop byte. For formatting purposes, decimal points and blank digits can be displayed through appropriate bit patterns. The control of display digits and data transmission is executed in the source code through subroutines BCDCONV, LOOKUP, SP12LCD, and TRANSFER. A block diagram of this interface is included below.

CONCLUSION

This digital barometer system described herein is an excellent example of a sensing system using solid state components and software to accurately measure barometric pressure. This system serves as a foundation from which more complex systems can be developed. The MPXM2102A series pressure sensors provide the calibration and temperature compensation necessary to achieve the desired accuracy and interface simplicity for barometric pressure sensing applications.

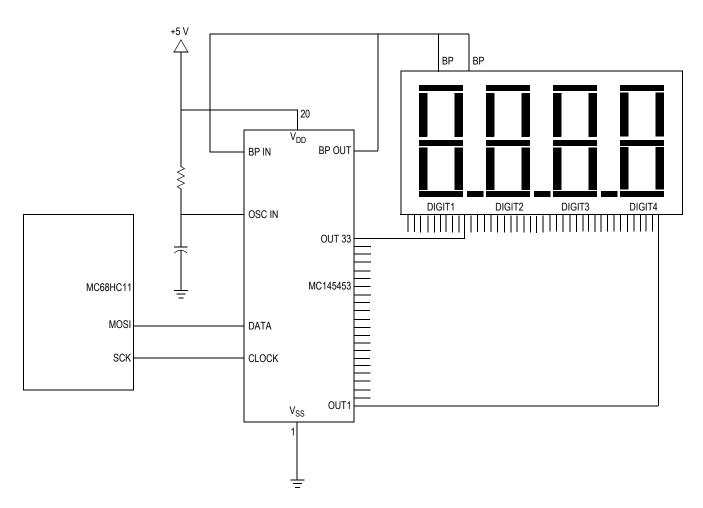


Figure 4. LCD Display Interface Diagram

APPENDIX

MC68HC11 Barometer Software Available on:

Freescale Electronic Bulletin Board MCU Freeware Line 8-bit, no parity, 1 stop bit 1200/300 baud (512) 891-FREE (3733) * BAROMETER APPLICATIONS PROJECT - Chris Winkler Developed: October 1st, 1992 - Freescale Discrete Applications * This code will be used to implement an MC68HC11 Micro-Controller * as a processing unit for a simple barometer system. * The HC11 will interface with an MPX2100AP to monitor, store * and display measured Barometric pressure via the 8-bit A/D channel * The sensor output (32mv max) will be amplified to .5 - 2.5 V dc * The processor will interface with a 4-digit LCD (FE202) via a Freescale LCD driver (MC145453) to display the pressure * within +/- one tenth of an inch of mercury. * The systems range is 15.0 - 30.5 in-Hg A/D & CPU Register Assignment This code will use index addressing to access the important control registers. All addressing will be indexed off of REGBASE, the base address for these registers. \$1000 REGBASE EQU * register base of control register ADCTL EQU \$30 * offset of A/D control register ADR2 EQU \$32 * offset of A/D results register * offset for A/D option register location ADOPT EOU \$39 PORTR EOU \$04 * Location of PORTB used for conversion \$08 * PORTD Data Register Index PORTD EQU DDRD EQU \$09 * offset of Data Direction Reg. * offset of SPI Control Reg. SPCR EOU \$28 SPSR EQU \$29 * offset of SPI Status Reg. SPDR EOU * offset of SPI Data Reg. User Variables The following locations are used to store important measurements and calculations used in determining the altitude. They are located in the lower 256 bytes of user RAM * BCD blank digit (not used) DIGIT1 EQU \$0001 DIGIT2 EQU \$0002 * BCD tens digit for pressure DIGIT3 EOU \$0003 * BCD tenths digit for pressure DIGIT4 EQU \$0004 * BCD ones digit for pressure * Variable to send 5 dummy bytes EQU \$0005 COUNTER POFFSET EQU \$0010 * Storage Location for max pressure offset \$0012 * Storage location for previous conversion SENSOUT EOU RESULT \$0014 * Storage of Pressure(in Hg) in hex format EQU * Determines if measurement is within range FLAG EOU \$0016 The conversion process involves the following steps: 1. Set-Up SPI device-SPI_CNFG 2. Set-Up A/D, Constants SET UP Read A/D, store sample ADCONV 3. Convert into in-Hg IN_HG 5. Determine FLAG conditionIN HG ERROR Display error Continue Conversion INRANGE b. 6. Convert hex to BCD formatBCDCONV Convert LCD display digits LOOKUP 7. Output via SPI to LCD SPI2LCD This process is continually repeated as the loop CONVERT runs unconditionally through BRA (the BRANCH ALWAYS statement) Repeats to step 3 indefinitely. ORG \$C000 * DESIGNATES START OF MEMORY MAP FOR USER CODE LDX #REGBASE * Location of base register for indirect adr SPI_CNFG BSR * Set-up SPI Module for data X-mit to LCD BSR * Power-Up A/D, initialize constants SET UP CONVERT BSR ADCONV * Calls subroutine to make an A/D conversion DELAY BSR * Delay routine to prevent LCD flickering

```
BSR
                           IN HG
                                                      * Converts hex format to in of Hg
         The value of FLAG passed from IN HG is used to determine
         If a range error has occurred. The following logical
         statements are used to either allow further conversion or jump
         to a routine to display a range error message.
                                                      * Determines if an range Error has ocurred
                  T.DAR
                           FLAG
                  CMPB
                           #$80
                                                      * If No Error detected (FLAG=$80) then
                  BEQ
                           INRANGE
                                                system will continue conversion process
                  BSR
                           ERROR
                                                     * If error occurs (FLAG<>80), branch to ERROR
                           OUTPUT
                                             * Branches to output ERROR code to display
                  BRA
         No Error Detected, Conversion Process Continues
INRANGE JSR
                  BCDCONV
                                    * Converts Hex Result to BCD
                  JSR
                           LOOKUP
                                             * Uses Look-Up Table for BCD-Decimal
OUTPUT
         JSR
                  SPI2LCD
                                    * Output transmission to LCD
                           CONVERT
                                            * Continually converts using Branch Always
                  BRA
         Subroutine SPI CNFG
                  Purpose is to initialize SPI for transmission
                  and clear the display before conversion.
SPI_CNFG_BSET
                  PORTD,X #$20
                                    * Set SPI SS Line High to prevent glitch
                  LDAA
                           #$38
                                                      * Initializing Data Direction for Port D
                                             * Selecting SS, MOSI, SCK as outputs only
                  STAA
                           DDRD,X
                  LDAA
                           #$5D
                                                      * Initialize SPI-Control Register
                  STAA
                           SPCR, X
                                             * selecting SPE,MSTR,CPOL,CPHA,CPRO
                  LDAA
                           #$5
                                                      * sets counter to X-mit 5 blank bytes
                  STAA
                           COUNTER
                  LDAA
                           SPSR, X
                                             * Must read SPSR to clear SPIF Flag
                  CLRA
                                                      * Transmission of Blank Bytes to LCD
ERASELCD JSR
                  TRANSFER
                                    * Calls subroutine to transmit
                  DEC
                           COUNTER
                           ERASELCD
                  BNE
                  RTS
         Subroutine SET UP
                  Purpose is to initialize constants and to power-up A/D
                  and to initialize POFFSET used in conversion purposes.
SET UP
         LDAA
                  #$90
                                            * selects ADPU bit in OPTION register
                                            * Power-Up of A/D complete
                  STAA
                           ADOPT, X
                  מת.ד
                           #$0131+$001A
                                            * Initialize POFFSET
                  STD
                           POFFSET
                                             * POFFSET = 305 - 25 in hex
                  LDAA
                           #$00
                                                     * or Pmax + offset voltage (5 V)
                  RTS
         Subroutine DELAY
                  Purpose is to delay the conversion process
                  to minimize LCD flickering.
DELAY
                  LDA
                                                      * Loop for delay of display
                  #$FF
                                             * Delay = c1k/255*255
OUTLOOP LDB
INLOOP
         DECB
                  BNE
                           INLOOP
                  DECA
                  BNE
                           OUTLOOP
                  RTS
         Subroutine ADCONV
                  Purpose is to read the A/D input, store the conversion into
                  SENSOUT. For conversion purposes later.
ADCONV
                  #REGBASE
         LDX
                                    * loads base register for indirect addressing
                  LDAA
                           #$25
                           ADCTL,X
                                            * initializes A/D cont. register SCAN=1,MULT=0
                  STAA
                  ADCTL,X #$80 WTCONV
WTCONV
         BRCLR
                                             * Wait for completion of conversion flag
                  LDAB
                           ADR2,X
                                             * Loads conversion result into Accumulator
                  CLRA
                  STD
                           SENSOUT
                                            * Stores conversion as SENSOUT
                  RTS
```

```
Subroutine IN_HG
                  Purpose is to convert the measured pressure SENSOUT, into
                  units of in-Hg, represented by a hex value of 305-150
                  This represents the range 30.5 - 15.0 in-Hg
                           POFFSET
IN_HG
                  LDD
                                             * Loads maximum offset for subtraction
                  SUBD
                           SENSOUT
                                             * RESULT = POFFSET-SENSOUT in hex format
                  STD
                           RESULT
                                             * Stores hex result for P, in Hg
                  CMPD
                           #305
                           TOHTCH
                  BHT
                  CMPD
                           #150
                  BLO
                           TOLOW
                  LDAB
                           #$80
                  STAB
                           FLAG
                           END_CONV
                  BRA
TOHIGH
        LDAB
                  #$FF
                  STAB
                           FLAG
                  BRA
                           END CONV
                  LDAB
TOLOW
                           #$00
                           FT.AG
                  STAR
END CONV RTS
         Subroutine ERROR
                           This subroutine sets the display digits to output
                           an error message having detected an out of range
                           measurement in the main program from {\tt FLAG}
ERROR
                  LDAB
                           #$00
                                                      * Initialize digits 1,4 to blanks
                  STAB
                           DIGIT1
                  STAB
                           DIGIT4
                  LDAB
                           FLAG
                                                      * FLAG is used to determine
                  CMPB
                           #$00
                                                      * if above or below range.
                  BNE
                           SET HI
                                             * If above range GOTO SET_HI
                  LDAB
                           #$0E
                                                      * ELSE display LO on display
                           DIGIT2
                                             * Set DIGIT2=L, DIGIT3=0
                  STAB
                  LDAB
                           #$7E
                  STAB
                           DIGIT3
                           END ERR
                  BRA
                                             * GOTO exit of subroutine
SET HI
         LDAB
                  #$37
                                             * Set DIGIT2=H,DIGIT3=1
                  STAB
                           DIGIT2
                  LDAB
                           #$30
                  STAB
                           DIGIT3
END ERR RTS
         Subroutine BCDCONV
                           Purpose is to convert ALTITUDE from hex to BCD
                           uses standard HEX-BCD conversion scheme
                           Divide HEX/10 store Remainder, swap Q & R, repeat
                           process until remainder = 0.
BCDCONV LDAA
                  #$00
                                             * Default Digits 2,3,4 to 0
                  STAA
                           DIGIT2
                  STAA
                           DIGIT3
                  STAA
                           DIGIT4
                  LDY
                           #DIGIT4
                                             * Conversion starts with lowest digit
                  ממיז
                           RESULT
                                             * Load voltage to be converted
CONVLP
         LDX
                  #$A
                                             * Divide hex digit by 10
                  IDIV
                                                      * Quotient in X, Remainder in D
                  STAB
                           0,Y
                                                      * stores 8 LSB's of remainder as BCD digit
                  DEY
                  CPX
                           #$0
                                                      * Determines if last digit stored
                  XGDX
                                                      * Exchanges remainder & quotient
                  BNE
                           CONVLP
                  LDX
                           #REGBASE
                                             * Reloads BASE into main program
                  RTS
         Subroutine LOOKUP
                           Purpose is to implement a Look-Up conversion
                           The BCD is used to index off of TABLE
                           where the appropriate hex code to display
                           that decimal digit is contained.
```

```
DIGIT4,3,2 are converted only.
                  #DIGIT1+4
                                            * Counter starts at 5
LOOKUP
        LDX
TABLOOP DEX
                                            * Start with Digit4
                           #TABLE
                  LDY
                                            * Loads table base into Y-pointer
                  LDAB
                                                     * Loads current digit into B
                           0,X
                                                     * Adds to base to index off TABLE
                  ABY
                  LDAA
                           0,Y
                                                     * Stores HEX segment result in A
                  STAA
                          0,X
                           #DIGIT2
                                            * Loop condition complete, DIGIT2 Converted
                  CPX
                  BNE
                          TABLOOP
                  RTS
         Subroutine SPI2LCD
                           Purpose is to output digits to LCD via SPI
                           The format for this is to send a start byte,
                          four digits, and a stop byte. This system
                          will have 3 significant digits: blank digit
                          and three decimal digits.
                                                     Sending LCD Start Byte
SPI2LCD LDX
                  #REGBASE
                           SPSR,X
                  LDAA
                                            * Reads to clear SPIF flag
                  LDAA
                           #$02
                                                     * Byte, no colon, start bit
                           TRANSFER
                  BSR
                                            * Transmit byte
                                                     Initializing decimal point & blank digit
                  LDAA
                          DIGIT3
                                            * Sets MSB for decimal pt.
                  ORA
                           #$80
                                                     * after digit 3
                  STAA
                          DIGIT3
                  LDAA
                           #$00
                                                      * Set 1st digit as blank
                  STAA
                          DIGIT1
                                                     Sending four decimal digits
                                             * Pointer set to send 4 bytes
                  T.DY
                           #DTGTT1
DLOOP
                  LDAA
                           0,Y
                                                     * Loads digit to be x-mitted
                  BSR
                           TRANSFER
                                             * Transmit byte
                  INY
                                                     * Branch until both bytes sent
                  CPY
                           #DIGIT4+1
                  BNE
                           DLOOP
                                                     Sending LCD Stop Byte
                  LDAA
                           #$00
                                                      * end byte requires all 0's
                                            * Transmit byte
                  BSR
                           TRANSFER
                  RTS
         Subroutine TRANSFER
                  Purpose is to send data bits to SPI
                  and wait for conversion complete flag bit to be set.
TRANSFER LDX
                  #REGBASE
                  BCLR
                           PORTD,X #$20
                                            * Assert SS Line to start X-misssion
                                            * Load Data into Data Reg.,X-mit
                  STAA
                           SPDR,X
XMIT
                  BRCLR
                          SPSR,X #$80 XMIT * Wait for flag
                          PORTD,X #$20
                                            * DISASSERT SS Line
                  BSET
                  LDAB
                           SPSR,X
                                            * Read to Clear SPI Flag
                  RTS
         Location for FCB memory for look-up table
         There are 11 possible digits: blank, 0-9
TABLE
                          $7E,$30,$6D,$79,$33,$5B,$5F,$70,$7F,$73,$00
                  END
```

Liquid Level Control Using a Pressure Sensor

by: J.C. Hamelain
Toulouse Pressure Sensor Laboratory

INTRODUCTION

Discrete Products provide a complete solution for designing a low cost system for direct and accurate liquid level control using an ac powered pump or solenoid valve. This circuit approach which exclusively uses Freescale semiconductor parts, incorporates a piezoresistive pressure sensor with on-chip temperature compensation and a new solid-state relay with an integrated power triac, to drive directly the liquid level control equipment from the domestic 110/220V 50/60 Hz ac main power line.

PRESSURE SENSOR DESCRIPTION

The MPXM2000 Series pressure sensor integrates onchip, laser-trimmed resistors for offset calibration and temperature compensation. The pressure sensitive element is a patented, single piezoresistive implant which replaces the four resistor Wheatstone bridge traditionally used by most pressure sensor manufacturers.

Depending on the application and pressure range, the sensor may be chosen from the following portfolio. For this application the MPXM2010GS was selected.

Device	Pressure Range	Application Sensitivity*
MPXM2010GS	0 to 10 kPa	± 0.01 kPa (1 mm H ₂ O)
MPXM2053GS	0 to 50 kPa	± 0.05 kPa (5 mm H ₂ O)
MPXM2102GS	0 to 100 kPa	± 0.1 kPa (10 mm H ₂ O)
MPXM2202GS	0 to 200 kPa	± 0.2 kPa (20 mm H ₂ O)
* After proper gain ad	ustment	

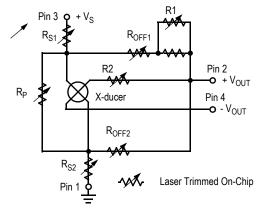


Figure 1. Pressure Sensor MPXM2000 Series

POWER ISOLATOR MOC2A60 DESCRIPTION

The MOC2A60 is a new isolator and consists of a gallium arsenide, infrared emitting diode, which is optically coupled to a zero-cross triac driver and a power triac. It is capable of driving a load of up to 2 A (rms) directly from a line voltage of 220 V (50/60 Hz).

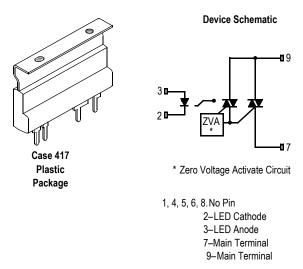


Figure 2. MOC2A60 Isolator

SIGNAL CONDITIONING

When a full range pressure is applied to the MPXM2010GS, it will provide an output of about 20 mV (at an 8 V supply). Therefore, for an application using only a few percent of the pressure range, the available signal may be as low as a few hundred microvolts. To be useful, the sensor signal must be amplified. This is achieved via a true differential amplifier (A1 and A2) as shown in Figure 4. The GAIN ADJ (500 ohm) resistor, R_G, sets the gain to about 200.

The differential output of this stage is amplified by a second stage (A3) with a variable OFFSET resistor. This stage performs a differential to single-ended output conversion and references this output to the adjustable offset voltage. This output is then compared to a voltage ($V_{REF} = 4 \text{ V}$ at TP2) at the input of the third stage (A4).

This last amplifier is used as an inverted comparator amplifier with hysteresis (Schmitt trigger) which provides a logic signal (TP3) within a preset range variation of about 10% of the input (selected by the ratio R9/(R9 + R7).

If the pressure sensor delivers a voltage to the input of the Schmitt trigger (pin 13) lower than the reference voltage (pin 12), then the output voltage (pin 14) is high and the drive current for the power stage MOC2A60 is provided. When the

sensor output increases above the reference voltage, the output at pin 14 goes low and no drive current is available.

The amplifier used is an MC33179. This is a quad amplifier with large current output drive capability (more than 80 mA).

OUTPUT POWER STAGE

For safety reasons, it is important to prevent any direct contact between the ac main power line and the liquid environment or the tank. In order to maintain full isolation between the sensor circuitry and the main power, the solid-state relay is placed between the low voltage circuit (sensor and amplifier) and the ac power line used by the pump and compressor.

The output of the last stage of the MC33179 is used as a current source to drive the LED (light emitting diode). The series resistor, R8, limits the current into the LED to approximately 15 mA and guarantees an optimum drive for the power opto-triac. The LD1 (MFOE76), which is an infrared light emitting diode, is used as an indicator to detect when the load is under power.

The MOC2A60 works like a switch to turn ON or OFF the pump's power source. This device can drive up to 2 A for an ac load and is perfectly suited for the medium power motors (less than 500 watts) used in many applications. It consists of an opto-triac driving a power triac and has a zero-crossing detection to limit the power line disturbance problems when fast switching selfic loads. An RC network, placed in parallel with the output of the solid-state relay is not required, but it is good design practice for managing large voltage spikes coming from the inductive load commutation. The load itself (motor or solenoid valve) is connected in series with the solid-state relay to the main power line.

EXAMPLE OF APPLICATION: ACCURATE LIQUID LEVEL MONITORING

The purpose of the described application is to provide an electronic system which maintains a constant liquid level in a tank (within \pm 5 mm H_2O). The liquid level is kept constant in the tank by an ac electric pump and a pressure sensor which provides the feedback information. The tank may be of any size. The application is not affected by the volume of the tank but only by the difference in the liquid level. Of course, the maximum level in the tank must correspond to a pressure within the operating range of the pressure sensor.

LIQUID LEVEL SENSORS

Freescale has developed a piezoresistive pressure sensor family which is very well adapted for level sensing, especially when using an air pipe sensing method. These devices may also be used with a bubbling method or equivalent.

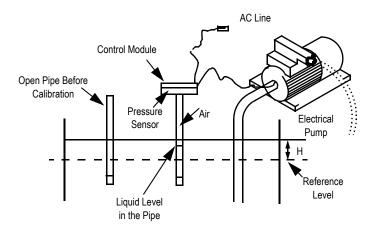


Figure 3. Liquid Level Monitoring

LEVEL SENSING THEORY

If a pipe is placed vertically, with one end dipped into a liquid and the other end opened, the level in the pipe will be exactly the same as the level in the tank. However, if the upper end of the pipe is closed off and some air volume is trapped, the pressure in the pipe will vary proportionally with the liquid level change in the tank.

For example, if we assume that the liquid is water and that the water level rises in the tank by 10 mm, then the pressure in the pipe will increase by that same value (10 mm of water).

A gauge pressure sensor has one side connected to the pipe (pressure side) and the other side open to ambient (in this case, atmospheric) pressure. The pressure difference which

corresponds to the change in the tank level is measured by the pressure sensor.

PRESSURE SENSOR CHOICE

In this example, a level sensing of 10 mm of water is desired. The equivalent pressure in kilo pascals is 0.09806 kPa. In this case, Freescale's temperature compensated 0-10 kPa, MPXM2010GS is an excellent choice. The sensor output, with a pressure of 0.09806 kPa applied, will result in 2.0 mV/kPa x 0.09806 = 0.196 mV.

The sensing system is designed with an amplifier gain of about 1000. Thus, the conditioned signal voltage given by the module is $1000 \times 0.196 \text{ mV} = 0.196 \text{ V}$ with $10 \text{ mm} - \text{H}_2\text{O}$ pressure.

Table 1. Liquid Level Sensors

Method	Sensor	Advantages	Disadvantages	
Liquid Weight	Magnetoresitive	Low Power, No Active Electronic	Low Resolution, Range Limited	
	Magnetoresitive	Very High Resolution	Complex Electronic	
	Ultrasonic	Easy to Install	Need High Power, Low Accuracy	
Liquid Resistivity	No Active Electronic	No Active Electronic	Low Resolution, Liquid Dependent	
String Potentionmeter	Potentionmeter	Low Power, No Active Electronic	Poor Linearity, Corrosion	
Pressure	Silicon Sensors	Inexpensive, Good Resolution, Wide Range Measurements	Active Electronic, Need Power	

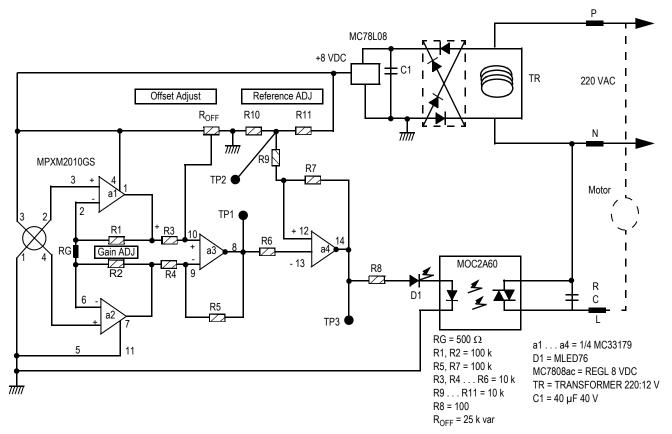
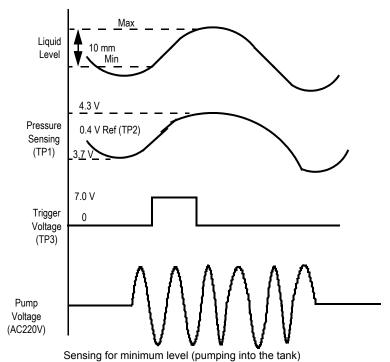



Figure 4. Electrical Circuit

The sensing probe is tied to the positive pressure port of the sensor. The pump is turned on to fill the tank when the minimum level is reached.

Figure 5. Functional Diagram

LEVEL CONTROL MODES

This application describes two ways to keep the liquid level constant in the tank; first, by pumping the water out if the liquid level rises above the reference, or second, by pumping the water in if the liquid level drops below the reference.

If pumping water out, the pump must be OFF when the liquid level is below the reference level. To turn the pump ON, the sensor signal must be decreased to drop the input to the Schmitt trigger below the reference voltage. To do this, the sensing pipe must be connected to the NEGATIVE pressure port (back or vacuum side) of the sensor. In the condition when the pressure increases (liquid level rises), the sensor voltage will decrease and the pump will turn ON when the sensor output crosses the referenced level. As pumping continues, the level in the tank decreases (thus the pressure on the sensor decreases) and the sensor signal increases back up to the trigger point where the pump was turned OFF.

In the case of pumping water into the tank, the pump must be OFF when the liquid level is above the reference level. To turn ON the pump, the sensor signal must be decreased to drive the input Schmitt trigger below the reference voltage. To do this, the sensing pipe must be connected to the POSITIVE pressure port (top side) of the sensor. In this configuration when the pressure on the sensor decreases, (liquid level drops) the sensor voltage also decreases and the pump is turned ON when the signal exceeds the reference. As pumping continues, the water level increases and when the maximum level is reached, the Schmitt trigger turns the pump OFF.

ADJUSTMENTS

The sensing tube is placed into the water at a distance below the minimum limit level anywhere in the tank. The other end of the tube is opened to atmosphere. When the tank is filled to the desired maximum (or minimum) level, the pressure sensor is connected to the tube with the desired port configuration for the application. Then the water level in the tank is the reference.

After connecting the tube to the pressure sensor, the module must be adjusted to control the water level. The output voltage at TP1 is preadjusted to about 4.0 V (half of the supply voltage). When the sensor is connected to the tube, the module output is ON (lighted) or OFF. By adjusting the offset adjust potentiometer the output is just turned into the other state: OFF, if it was ON or the reverse, ON, if it was OFF, (the change in the tank level may be simulated by moving the sensing tube up or down).

The reference point TP2 shows the ON/OFF reference voltage, and the switching point of the module is reached when the voltage at TP1 just crosses the value of the TP2 voltage. The module is designed for about 10 mm of difference level between ON and OFF (hysteresis).

CONCLUSION

This circuit design concept may be used to evaluate pressure sensors used as a liquid level switch. This basic circuit may be easily modified to provide an analog signal of the level within the controlled range. It may also be easily modified to provide tighter level control (± 2 mm H₂O) by increasing the gain of the first amplifier stage (decreasing RG resistor).

The circuit is also a useful tool to evaluate the performance of the power optocoupler MOC2A60 when driving ac loads directly.

Pressure Switch Design with Semiconductor Pressure Sensors

by: Eric Jacobsen and Jeff Baum Sensor Design and Applications Group, Phoenix, AZ

INTRODUCTION

The Pressure Switch concept is simple, as are the additions to conventional signal conditioning circuitry required to provide a pressure threshold (or thresholds) at which the output switches logic state. This logic-level output may be input to a microcontroller, drive an LED, control an electronic switch, etc. The user-programmed threshold (or reference voltage) determines the pressure at which the output state will switch. An additional feature of this minimal component design is an optional user-defined hysteresis setting that will eliminate multiple output transitions when the pressure sensor voltage is comparable to the threshold voltage.

This paper presents the characteristics and design criteria for each of the major subsystems of the pressure switch design: the pressure sensor, the signal conditioning (gain) stage, and the comparator output stage. Additionally, an entire section will be devoted to comparator circuit topologies which employ comparator ICs and/or operational amplifiers. A window comparator design (high and low thresholds) is also included. This section will discuss the characteristics and design criteria for each comparator circuit, while evaluating them in overall performance (i.e., switching speed, logic-level voltages, etc.).

BASIC SENSOR OPERATION

The MPX2000 Series sensors are temperature compensated and calibrated (i.e., offset and full-scale span are precision trimmed) pressure transducers. These sensors are available in full-scale pressure ranges from 10 kPa (1.5 psi) to 200 kPa (30 psi). Although the specifications (see Table 1) in the data sheets apply only to a 10 V supply voltage, the output of these devices is ratiometric with the supply voltage. For example, at the absolute maximum supply voltage rating, 16 V, the sensor will produce a differential output voltage of 64 mV at the rated full-scale pressure of the given sensor. One exception to this is that the full-scale span of the MPX2010 (10 kPa sensor) will be only 40 mV due to the device's slightly lower sensitivity. Since the maximum supply voltage produces the most output voltage, it is evident that even the best case scenario will require some signal conditioning to obtain a usable voltage level. For this specific design, an MPX2100 and 5.0 V supply is used to provide a maximum sensor output of 20 mV. The sensor output is then signal conditioned to obtain a four volt signal swing (span).

Table 1. MPX2100 Electrical Characteristics for $V_S = 10 \text{ V}$, $T_A = 25^{\circ}\text{C}$

Characteristics	Symbol	Minimum	Typical	Maximum	Unit
Pressure Range	P _{OP}	0	_	100	kPa
Supply Voltage	Vs	_	10	16	V _{DC}
Full Scale Span	V _{FSS}	38.5	40	41.5	mV
Zero Pressure Offset	V _{OFF}	_	0.05	0.1	mV
Sensitivity	S	_	0.4	_	mV/kPa
Linearity	_	_	0.05	_	%F _{SS}
Temperature Effect on Span	_	_	0.5	_	%F _{SS}
Temperature Effect on Offset	_	_	0.2	_	%F _{SS}

THE SIGNAL CONDITIONING

The amplifier circuitry, shown in Figure 1, is composed of two op-amps. This interface circuit has a much lower component count than conventional quad op amp instrumentation amplifiers. The two op amp design offers the high input impedance, low output impedance, and high gain desired for a transducer interface, while performing a differential to single-ended conversion. The gain is set by the following equation:

 $GAIN = 1 + \frac{R6}{R5}$

where R6 = R3 and R4 = R5

For this specific design, the gain is set to 201 by setting R6=20 $k\Omega$ and R5 = 100 Ω . Using these values and setting R6=R3 and R4=R5 gives the desired gain without loading the reference voltage divider formed by R1 and R_{off} . The offset voltage is set via this voltage divider by choosing the value of R_{off} . This enables the user to adjust the offset for each application's requirements.

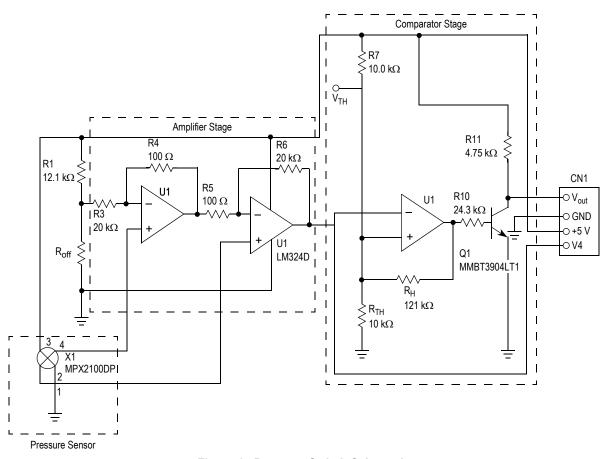


Figure 1. Pressure Switch Schematic

THE COMPARISON STAGE

The comparison stage is the "heart" of the pressure switch design. This stage converts the analog voltage output to a digital output, as dictated by the comparator's threshold. The comparison stage has a few design issues which must be addressed:

- The threshold for which the output switches must be programmable. The threshold is easily set by dividing the supply voltage with resistors R7 and R_{TH}. In Figure 1, the threshold is set at 2.5 V for R7 = R_{TH} = 10 k Ω .
- A method for providing an appropriate amount of hysteresis should be available. Hysteresis prevents multiple transitions from occurring when slow varying signal inputs oscillate about the threshold. The hysteresis can be set by applying positive feedback. The amount of hysteresis is determined by the value of the feedback resistor, R_H (refer to equations in the following section).
- It is ideal for the comparator's logic level output to swing from one supply rail to the other. In practice, this is not possible. Thus, the goal is to swing as high and low as possible for a given set of supplies. This offers the greatest

AN1517

difference between logic states and will avoid having a microcontroller read the switch level as being in an indeterminate state.

- In order to be compatible with CMOS circuitry and to avoid microcontroller timing delay errors, the comparator must switch sufficiently fast.
- By using two comparators, a window comparator may be implemented. The window comparator may be used to monitor when the applied pressure is within a set range. By adjusting the input thresholds, the window width can be customized for a given application. As with the single threshold design, positive feedback can be used to provide hysteresis for both switching points. The window comparator and the other comparator circuits will be explained in the following section.

EXAMPLE COMPARATOR CIRCUITS

Several comparator circuits were built and evaluated. Comparator stages using the LM311 comparator, LM358 Op-Amp (with and without an output transistor stage), and LM339were examined. Each comparator was evaluated on output voltage levels (dynamic range), transition speed, and the relative component count required for the complete pressure switch design. This comparison is tabulated in Table 2.

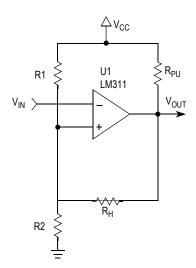


Figure 2. LM311 Comparator Circuit Schematic

LM311 USED IN A COMPARATOR CIRCUIT

The LM311 chip is designed specifically for use as a comparator and thus has short delay times, high slew rate, and an open collector output. A pull-up resistor at the output is all that is needed to obtain a rail-to-rail output. Additionally, the LM311 is a reverse logic circuit; that is, for an input lower than the reference voltage, the output is high. Likewise, when the input voltage is higher than the reference voltage, the output is low. Figure 2 shows a schematic of the LM311 stage with threshold setting resistor divider, hysteresis resistor, and the open-collector pull-up resistor. Table 2 shows the comparator's performance. Based on its performance, this circuit can be used in many types of applications, including interface to microprocessors.

The amount of hysteresis can be calculated by the following equations:

$$V_{REF} = \frac{R2}{R1 + R2} V_{CC}$$

neglecting the effect of R_H

$$VREFH = \frac{R1R2 + R2R_{H}}{R1R2 + R1R_{H} + R2R_{H}} V_{CC}$$

$$VREFL = \frac{R2R_{H}}{R1R2 + R1R_{H} + R2R_{H}} V_{CC}$$

$$\mathsf{HYSTERESIS} = \mathsf{V}_{\mathsf{REF}} - \mathsf{V}_{\mathsf{REFL}}$$

when the normal state is below V_{REF} or

when the normal state is above V_{REE}.

Characteristics	LM311	LM358	LM358 w/Trans.	Unit
Switching Speeds	_	_	_	_
Rise Time	1.40	5.58	2.20	μs
Fall Time	0.04	6.28	1.30	μs
Output Levels	_	_	_	_
V _{OH}	4.91	3.64	5.00	V
V _{OL}	61.1	38.0	66.0	mV
Circuit Logic Type	NEGATIVE	NEGATIVE	POSITIVE	_

The initial calculation for V_{REF} will be slightly in error due to neglecting the effect of R_H . To establish a precise value for V_{REF} (including R_H in the circuit), recompute R1 taking into account that V_{REF} depends on R1, R2, and R_H . It turns out that when the normal state is below V_{REF} , R_H is in parallel with R1:

$$V_{\mathsf{REF}} = \frac{\mathsf{R2}}{\mathsf{R1} \, \| \, \mathsf{R}_{\mathsf{H}} + \mathsf{R2}} \, \, \mathsf{V}_{\mathsf{CC}}$$

(Which is identical to the equation for V_{REFH})

Alternately, when the normal state is above VREF, RH is in parallel with R2:

$$V_{REF} = \frac{R2 \| R_{H}}{R1 + R2 \| R_{H}} V_{CC}$$

(Which is identical to the equation for V_{REFL})

These two additional equations for V_{REF} can be used to calculate a more precise value for V_{REF} .

The user should be aware that V_{REF} , V_{REFH} and V_{REFL} are chosen for each application, depending on the desired switching point and hysteresis values. Also, the user must specify which range (either above or below the reference voltage) is the desired normal state (see Figure 3). Referring to Figure 3, if the normal state is below the reference voltage then V_{REFL} (V_{REFH} is only used to calculate a more precise value for V_{REF} as explained above) is below V_{REF} by the desired amount of hysteresis (use V_{REFL} to calculate R_H). Alternately, if the normal state is above the reference voltage, then V_{REFL} (V_{REFL} is only used to calculate a more precise value for V_{REFL} is above V_{REF} by the desired amount of hysteresis (use V_{REFL} to calculate R_H).

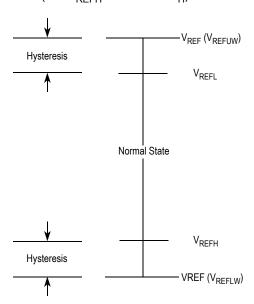


Figure 3. Setting the Reference Voltages

LM358 OP AMP USED IN A COMPARATOR CIRCUIT

Figure 4 shows the schematic for the LM358 op amp comparator stage, and Table 2 shows its performance. Since the LM358 is an operational amplifier, it does not have the fast slew-rate of a comparator IC nor the open collector output.

Comparing the LM358 and the LM311 (Table 2), the LM311 is better for logic/switching applications since its output nearly extends from rail to rail and has a sufficiently high switching speed. The LM358 will perform well in applications where the switching speed and logic-state levels are not critical (LED output, etc.). The design of the LM358 comparator is accomplished by using the same equations and procedure presented for the LM311. This circuit is also reverse logic.

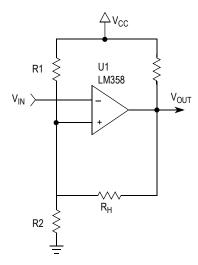


Figure 4. LM358 Comparator Circuit Schematic

LM358 OP AMP WITH A TRANSISTOR OUTPUT STAGE USED IN A COMPARATOR CIRCUIT

The LM358 with a transistor output stage is shown in Figure 5. This circuit has similar performance to the LM311 comparator: its output reaches the upper rail and its switching speed is comparable to the LM311's. This enhanced performance does, however, require an additional transistor and base resistor. Referring to Figure 1, note that this comparator topology was chosen for the pressure switch design. The LM324 is a quad op amp that has equivalent amplifier characteristics to the LM358.

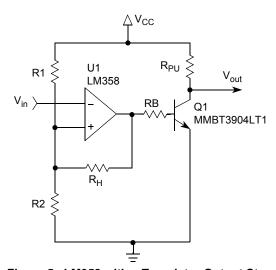


Figure 5. LM358 with a Transistor Output Stage Comparator Circuit Schematic

AN1517

Like the other two circuits, this comparator circuit can be designed with the same equations and procedure. The values for $R_{\rm B}$ and $R_{\rm PU}$ are chosen to give a 5:1 ratio in Q1's collector current to its base current, in order to insure that Q1 is well-saturated (V_{\rm OUT} can pull down very close to ground when Q1 is on). Once the 5:1 ratio is chosen, the actual resistance values determine the desired switching speed for turning Q1 on and off. Also, $R_{\rm PU}$ limits the collector current to be within the maximum specification for the given transistor (see example values in Figure 1). Unlike the other two circuits, this circuit is positive logic due to the additional inversion created at the output transistor stage.

LM339 USED IN A WINDOW COMPARATOR CIRCUIT

Using two voltage references to detect when the input is within a certain range is another possibility for the pressure switch design. The window comparator's schematic is shown in Figure 6. The LM339 is a quad comparator IC (it has open collector outputs), and its performance will be similar to that of the LM311.

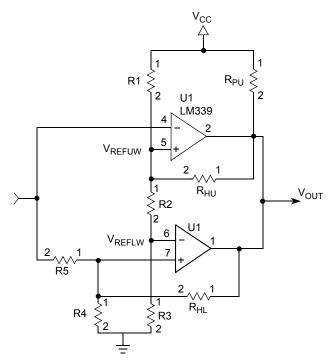


Figure 6. LM339 Window Comparator Circuit Schematic

Obtaining the correct amount of hysteresis and the input reference voltages is slightly different than with the other circuits. The following equations are used to calculate the hysteresis and reference voltages. Referring to Figure 3, V_{REFUW} is the upper window reference voltage and V_{REFLW} is the lower window reference voltage. Remember that reference voltage and threshold voltage are interchangeable terms.

For the upper window threshold:

Choose the value for V_{REFUW} and R1 (e.g., 10 k Ω). Then, by voltage division, calculate the total resistance of the

combination of R2 and R3 (named R23 for identification) to obtain the desired value for $\rm V_{REFUW}\!,$ neglecting the effect of $\rm R_{HU}\!:$

$$V_{REFUW} = \frac{R23}{R1 + R23} V_{CC}$$

The amount of hysteresis can be calculated by the following equation:

$$V_{REFUW} = \frac{R23R_{HU}}{R1R23 + R1R_{HU} + R23R_{HU}} V_{CC}$$

Notice the upper window reference voltage, V_{REFUW} , is now equal to its V_{REFL} value, since at this moment, the input voltage is above the normal state.

where VREFL is chosen to give the desired amount of hysteresis for the application.

The initial calculation for V_{REFUW} will be slightly in error due to neglecting the effect of R_{HU} . To establish a precise value for V_{REFUW} (including R_{HU} in the circuit), recompute R1 taking into account that V_{REFUW} depends on R2 and R3 and the parallel combination of R1 and R_{HU} . This more precise value is calculated with the following equation:

$$V_{REFUW} = \frac{R23}{R1 \| R_{HU} + R23} V_{CC}$$

for the lower window threshold choose the value for V_{REFLW}.

$$SetV_{REFLW} = \frac{R3}{R1 \parallel R_{HII} + R2 + R3} V_{CC}$$

where R2 + R3 = R23 from above calculation.

To calculate the hysteresis resistor:

The input to the lower comparator is one half V_{IN} (since R4 = R5) when in the normal state. When V_{REFLW} is above one half of V_{IN} (i.e., the input voltage has fallen below the window), R_{HL} parallels R4, thus loading down V_{IN} . The resulting input to the comparator can be referred to as V_{INL} (a lower input voltage). To summarize, when the input is within the window, the output is high and only R4 is connected to ground from the comparator's positive terminal. This establishes one half of V_{IN} to be compared with V_{REFLW} . When the input. When the input voltage is below V_{REFLW} , the output is low, and V_{IN} is effectively in parallel with R4. By voltage division, less of the input voltage at V_{IN} be required to make the noninverting input exceed V_{RELW} .

Therefore, the following equations are established:

Choose R4 = R5 to simplify the design.

$$R_{HL} = \frac{R4R5(V_{REFLW} - V_{INL} - V_{CC})}{(R4 + R5)(V_{INL} - V_{REFLW})}V_{CC}$$

NOTE:

As explained above, because the input voltage is divided in half by R4 and R5, all calculations are done relative to the one half value of V_{in} . Therefore, for a hysteresis of 200 mV (relative to V_{in}), the above equations must use one half this hysteresis value (100 mV). Also, if a V_{REFLW} value of 2.0 V is desired (relative to V_{in}), then 1.0 V for its value should be used in the above equations. The value for V_{INL} should be scaled by one half also.

The window comparator design can also be designed using operational amplifiers and the same equations as for the LM339 comparator circuit. For the best performance, however, a transistor output stage should be included in the design.

TEST/CALIBRATION PROCEDURE

 Before testing the circuit, the user-defined values for R_{TH}, R_H and R_{off} should be calculated for the desired application.

The sensor offset voltage is set by

$$V_{OFF} = \frac{V_{OFF}}{R1 + R_{OFF}} V_{CC}$$

Then, the amplified sensor voltage corresponding to a given pressure is calculated by:

$$V_{SENSOR}$$
 = 201 × 0.0002 × APPLIED PRESSURE + V_{OFF}

where 201 is the gain, 0.0002 is in units of V/kPa and APPLIED PRESSURE is in kPa.

The threshold voltage, V_{TH} , at which the output changes state is calculated by determining V_{sensor} at the pressure that causes this change of state:

$$V_{TH} = V_{SENSOR}$$
 (@ pressure threshold) = $\frac{R_{TH}}{R7 + R_{TH}} V_{CC}$

If hysteresis is desired, refer to the LM311 *Used in a Comparator* section to determine R_H.

- To test this design, connect a +5 volt supply between pins 3 and 4 of the connector CN1.
- Connect a volt meter to pins 1 and 4 of CN1 to measure the output voltage and amplified sensor voltage, respectively.
- Connect an additional volt meter to the V_{TH} probe point to verify the threshold voltage.
- Turn on the supply voltage.
- 6. With no pressure applied, check to see that V_{off} is correct by measuring the voltage at the output of the gain stage (the volt meter connected to Pin 4 of CN1). If desired, V_{off} can be fine tuned by using a potentiometer for R_{off}.
- Check to see that the volt meter monitoring V_{TH} displays the desired voltage for the output to change states. Use a potentiometer for R_{TH} to fine tune V_{TH}, if desired.
- Apply pressure to the sensor. Monitor the sensor's output via the volt meter connected to pin 4 of CN1. The output will switch from low to high when this pressure sensor voltage reaches or exceeds the threshold voltage.
- If hysteresis is used, with the output high (pressure sensor voltage greater than the threshold voltage), check to see if V_{TH} has dropped by the amount of hysteresis desired.

A potentiometer can be used for $R_{\rm H}$ to fine tune the amount of hysteresis.

CONCLUSION

The pressure switch design uses a comparator to create a logic level output by comparing the pressure sensor output voltage and a user-defined reference voltage. The flexibility of this minimal component, high performance design makes it compatible with many different applications. The design presented here uses an op amp with a transistor output stage, yielding excellent logic-level outputs and output transition speeds for many applications. Finally, several other comparison stage designs, including a window comparator, are evaluated and compared for overall performance.

Using a Pulse Width Modulated Output with Semiconductor Pressure Sensors

by: Eric Jacobsen and Jeff Baum Sensor Design and Applications Group, Phoenix, AZ

INTRODUCTION

For remote sensing and noisy environment applications, a frequency modulated (FM) or pulse width modulated (PWM) output is more desirable than an analog voltage. FM and PWM outputs inherently have better noise immunity for these types of applications. Generally, FM outputs are more widely accepted than PWM outputs, because PWM outputs are restricted to a fixed frequency. However, obtaining a stable FM output is difficult to achieve without expensive, complex circuitry.

With either an FM or PWM output, a microcontroller can be used to detect edge transitions to translate the time-domain signal into a digital representation of the analog voltage signal. In conventional voltage-to-frequency (V/F) conversions, a voltage-controlled oscillator (VCO) may be used in conjunction with a microcontroller. This use of two time bases, one analog and one digital, can create additional inaccuracies. With either FM or PWM outputs, the microcontroller is only concerned with detecting edge transitions. If a programmable frequency, stable PWM output

could be obtained with simple, inexpensive circuitry, a PWM output would be a cost-effective solution for noisy environment/remote sensing applications while incorporating the advantages of frequency outputs.

The Pulse Width Modulated Output Pressure Sensor design (Figure 1) utilizes simple, inexpensive circuitry to create an output waveform with a duty cycle that is linear to the applied pressure. Combining this circuitry with a single digital time base to create and measure the PWM signal, results in a stable, accurate output. Two additional advantages of this design are 1) an A/D converter is not required, and 2) since the PWM output calibration is controlled entirely by software, circuit-to-circuit variations due to component tolerances can be nullified.

The PWM Output Sensor system consists of a Freescale Semiconductor, Inc. MPX5000 series pressure sensor, a ramp generator (transistor switch, constant current source, and capacitor), a comparator, and an MC68HC05P9 microcontroller. These subsystems are detailed in Figure 1.

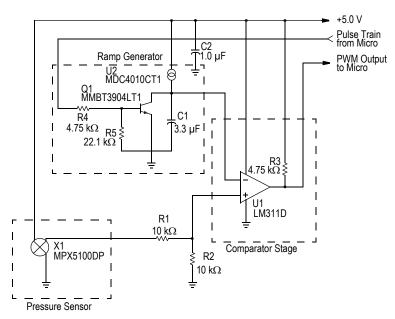


Figure 1. PWM Output Pressure Sensor Schematic

PRESSURE SENSOR

Freescale's MPX5000 series sensors are signal conditioned (amplified), temperature compensated and

calibrated (i.e., offset and full-scale span are precision trimmed) pressure transducers. These sensors are available in full-scale pressure ranges of 50 kPa (7.3 psi) and 100 kPa (14.7 psi). With the recommended 5.0 V supply, the MPX5000 series produces an output of 0.5 V at zero pressure to 4.5 V at full scale pressure. Referring to the schematic of the system

in Figure 1, note that the output of the pressure sensor is attenuated to one-half of its value by the resistor divider comprised of resistors R1 and R2. This yields a span of 2.0 V ranging from 0.25 V to 2.25 V at the non-inverting terminal of the comparator. Table 1 shows the electrical characteristics of the MPX5100.

Table 1. MPX5100DP Electrical Characteristics

Characteristics	Symbol	Min	Тур	Max	Unit
Pressure Range	P _{OP}	0	_	100	kPa
Supply Voltage	V _S	_	5.0	6.0	V _{DC}
Full Scale Span	V _{FSS}	3.9	4.0	4.1	V
Zero Pressure Offset	V _{OFF}	0.4	0.5	0.6	V
Sensitivity	S	_	40	_	mV/kPa
Linearity	_	- 0.5	_	0.5	%F _{SS}
Temperature Effect on Span	_	- 1.0	_	1.0	%F _{SS}
Temperature Effect on Offset	_	- 50	0.2	50	mV

THE RAMP GENERATOR

The ramp generator is shown in the schematic in Figure 1. A pulse train output from a microcontroller drives the ramp generator at the base of transistor Q1. This pulse can be accurately controlled in frequency as well as pulse duration via software (to be explained in the microcontroller section).

The ramp generator uses a constant current source to charge the capacitor. It is imperative to remember that this current source generates a stable current only when it has approximately 2.5 V or more across it. With less voltage across the current source, insufficient voltage will cause the current to fluctuate more than desired; thus, a design constraint for the ramp generator will dictate that the capacitor can be charged to only approximately 2.5 V, when using a 5.0 V supply.

The constant current charges the capacitor linearly by the following equation:

$$\Delta V = \frac{I\Delta t}{C}$$

where Δt is the capacitor's charging time and C is the capacitance.

Referring to Figure 2, when the pulse train sent by the microcontroller is low, the transistor is off, and the current source charges the capacitor linearly. When the pulse sent by the microcontroller is high, the transistor turns on into saturation, discharging the capacitor. The duration of the high part of the pulse train determines how long the capacitor discharges, and thus to what voltage it discharges. This is how the dc offset of the ramp waveform may be accurately controlled. Since the transistor saturates at approximately 60 mV, very little offset is needed to keep the capacitor from discharging completely.

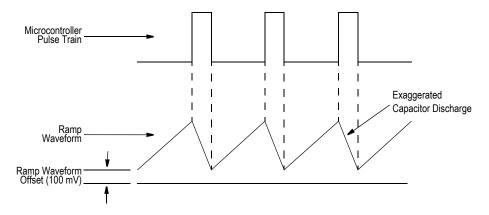


Figure 2. Ideal Ramp Waveform for the PWM Output Pressure Sensor

The PWM output is most linear when the ramp waveform's period consists mostly of the rising voltage edge (see Figure 2). If the capacitor were allowed to completely

discharge (see Figure 3), a flat line at approximately 60 mV would separate the ramps, and these "flat spots" may result in

AN1518

non-linearities of the resultant PWM output (after comparing it to the sensor voltage). Thus, the best ramp waveform is produced when one ramp cycle begins immediately after

another, and a slight dc offset disallows the capacitor from discharging completely.

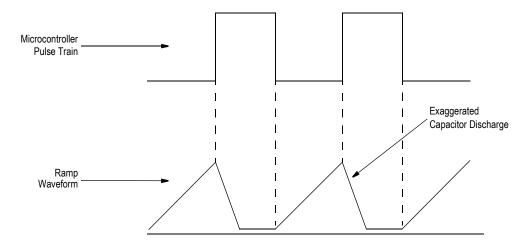


Figure 3. Non Ideal Ramp Waveform for the PWM Output Pressure Sensor

The flexibility of frequency control of the ramp waveform via the pulse train sent from the microcontroller allows a programmable-frequency PWM output. Using Equation 1 the frequency (inverse of period) can be calculated with a given capacitor so that the capacitor charges to a maximum ΔV of approximately 2.5 V (remember that the current source needs approximately 2.5 V across it to output a stable current). The importance of software control becomes evident here since the selected capacitor may have a tolerance of $\pm 20\%$. By adjusting the frequency and positive width of the pulse train, the desired ramp requirements are readily obtainable; thus, nullifying the effects of component variances.

For this design, the ramp spans approximately 2.4 V from 0.1 V to 2.5 V. At this voltage span, the current source is stable and results in a linear ramp. This ramp span was used for reasons which will become clear in the next section.

In summary, complete control of the ramp is achieved by the following adjustments of the microcontroller-created pulse train:

- Increase Frequency: Span of ramp decreases. The DC offset decreases slightly.
- Decrease Frequency: Span of ramp increases. The DC offset increases slightly.
- Increase Pulse Width: The DC offset decreases. Span decreases slightly.
- Decrease Pulse Width: The DC offset increases. Span increases slightly.

THE COMPARATOR STAGE

The LM311 chip is designed specifically for use as a comparator and thus has short delay times, high slew rate, and an open-collector output. A pull-up resistor at the output is all that is needed to obtain a rail-to-rail output. As Figure 1 shows, the pressure sensor output voltage is input to the non inverting terminal of the op amp and the ramp is input to the inverting terminal. Therefore, when the pressure sensor

voltage is higher than a given ramp voltage, the output is high; likewise, when the pressure sensor voltage is lower than a given ramp voltage, the output is low (refer to Figure 5). As mentioned in the Pressure Sensor section, resistors R1 and R2 of Figure 1 comprise the voltage divider that attenuates the pressure sensor's signal to a 2.0 V span ranging from 0.25 V to 2.25 V.

Since the pressure sensor voltage does not reach the ramp's minimum and maximum voltages, there will be a finite minimum and maximum pulse width for the PWM output. These minimum and maximum pulse widths are design constraints dictated by the comparator's slew rate. The system design ensures a minimum positive and negative pulse width of 20 μs to avoid nonlinearities at the high and low pressures where the positive duty cycle of the PWM output is at its extremes (refer to Figure 4). Depending on the speed of the microcontroller used in the system, the minimum required pulse width may be larger. This will be explained in the next section.

THE MICROCONTROLLER

The microcontroller for this application requires input capture and output compare timer channels. The output capture pin is programmed to output the pulse train that drives the ramp generator, and the input capture pin detects edge transitions to measure the PWM output pulse width.

Since software controls the entire system, a calibration routine may be implemented that allows an adjustment of the frequency and pulse width of the pulse train until the desired ramp waveform is obtained. Depending on the speed of the microcontroller, additional constraints on the minimum and maximum PWM output pulse widths may apply. For this design, the software latency incurred to create the pulse train at the output compare pin is approximately 40 μ s.

Consequently, the microcontroller cannot create a pulse train with a positive pulse width of less than 40 μ s. Also, the

software that measures the PWM output pulse width at the input capture pin requires approximately $20~\mu s$ to execute. Referring to Figure 5, the software interrupt that manipulates the pulse train always occurs near an edge detection on the input capture pin (additional software interrupt). Therefore, the

minimum PWM output pulse width that can be accurately detected is approximately 60 μ s (20 μ s + 40 μ s). This constrains the minimum and maximum pulse widths more than the slew rate of the comparator which was discussed earlier (refer to Figure 4)

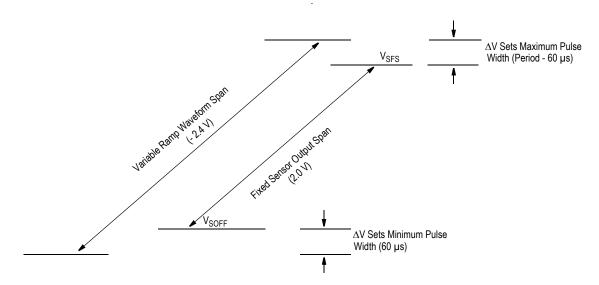


Figure 4. Desired Relationship Between the Ramp Waveform and Pressure Sensor Voltage Spans

An additional consideration is the resolution of the PWM output. The resolution is directly related to the maximum frequency of the pulse train. In our design, 512 μ s are required to obtain at least 8-bit resolution. This is determined by the fact that a 4 MHz crystal yields a 2 MHz clock speed in the microcontroller. This, in turn, translates to 0.5 us per clock tick. There are four clock cycles per timer count. This results in 2 us per timer count. Thus, to obtain 256 timer counts (or 8-bit resolution), the difference between the zero pressure and full scale pressure PWM output pulse widths must be at least 512 μs (2 μs x 256). But since an additional 60 μs is needed at both pressure extremes of the output waveform, the total period must be at least 632 µs. This translates to a maximum frequency for the pulse train of approximately 1.6 kHz. With this frequency, voltage span of the ramp generator, and value of current charging the capacitor, the minimum capacitor value may be calculated with Equation 1.

To summarize:

The MC68HC705P9 runs off a 4 MHz crystal. The microcontroller internally divides this frequency by two to yield an internal clock speed of 2 MHz.

$$\frac{1}{2 \text{ MHz}} = > \frac{0.5 \text{ } \mu\text{s}}{\text{clock cycle}}$$

And,

4 clock cycles = 1 timer count.

Therefore,

$$\frac{\text{4 clock cycles}}{\text{timer count}} x \quad \frac{0.5 \ \mu \text{s}}{\text{clock cycle}} = \quad \frac{2 \ \mu \text{s}}{\text{timer count}}$$

For 8-bit resolution.

Adding a minimum of $60 \mu s$ each for the zero and full scale pressure pulse widths yields

$$512 \mu s + 60 \mu s + 60 \mu s = 632 \mu s$$

which is the required minimum pulse train period to drive the ramp generator.

Translating this to frequency, the maximum pulse train frequency is thus

$$\frac{1}{632 \, \mu s} = 1.58 \, \text{kHz}$$

CALIBRATION PROCEDURE AND RESULTS

The following calibration procedure will explain how to systematically manipulate the pulse train to create a ramp that meets the necessary design constraints. The numbers used here are only for this design example. Figure 6 shows the linearity performance achieved by following this calibration procedure and setting up the ramp as indicated by Figure 4 and Figure 5.

- 1. Start with a pulse train that has a pulse width and frequency that creates a ramp with about 100 mV dc offset and a span smaller than required. In this example the initial pulse width is 84 μ s and the initial frequency is 1.85 kHz.
- Decrease the frequency of the pulse train until the ramp span increases to approximately 2.4 V. The ramp span of

- 2.4~V will ensure that the maximum pulse width at full scale pressure will be at least $60~\mu s$ less than the total period. Note, by **decreasing** the **frequency** of the pulse train, a dc offset will begin to appear. This may result in the ramp looking nonlinear at the top.
- If the ramp begins to become nonlinear, increase the pulse width to decrease the dc offset.
- 4. Repeat steps 2 and 3 until the ramp spans 2.4 V and has a dc offset of approximately 100 mV. The dc offset value is not critical, but the bottom of the ramp should have a "crisp" point at which the capacitor stops discharging and begins charging. Simply make sure that the minimum pulse width at zero pressure is at least 60 μs. Refer to Figure 4 and Figure 5 to determine if the ramp is sufficient for the application.

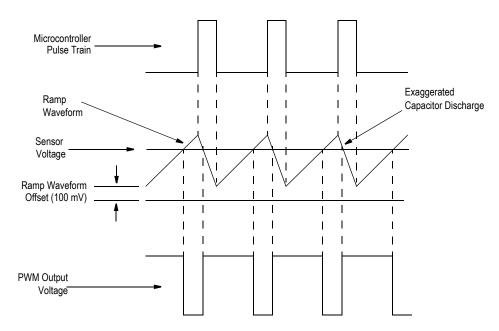


Figure 5. Relationship Between the PWM Output Pressure Sensor Voltages

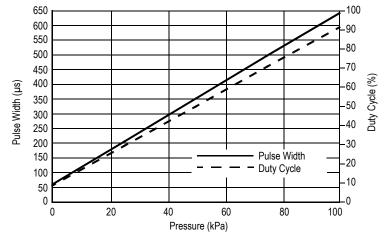


Figure 6. PWM Output Pressure Sensor Linearity Data

CONCLUSION

The Pulse Width Modulated Output Pressure Sensor uses a ramp generator to create a linear ramp which is compared to the amplified output of the pressure sensor at the input of a comparator. The resulting output is a digital waveform with a duty cycle that is linearly proportional to the input pressure.

Although the pressure sensor output has a fixed offset and span, the ramp waveform is adjustable in frequency, dc offset, and voltage span. This flexibility enables the effect of component tolerances to be nullified and ensures that ramp span encompasses the pressure sensor output range. The ramp's span can be set to allow for the desired minimum and maximum duty cycle to guarantee a linear dynamic range.

The ABCs of Signal-Conditioning Amplifier Design for Sensor Applications

by: Eric Jacobsen and Jeff Baum, Sensor Applications Engineering Signal Products Division, Phoenix, AZ

INTRODUCTION

Although fully signal-conditioned, calibrated, and temperature compensated monolithic sensor ICs are commercially available today, there are many applications where the flexibility of designing custom signal-conditioning is of great benefit. Perhaps the need for a versatile low-level sensor output is best illustrated by considering two particular cases that frequently occur: (1) the user is in a prototyping phase of development and needs the ability to make changes rapidly to the overall transfer function of the combined sensor/amplifier subsystem, (2) the specific desired transfer function does not exist in a fully signal-conditioned, precisiontrimmed sensor product (e.g., a signal-conditioned device is precision trimmed over a different pressure range than that of the application of interest). In such cases, it is obvious that there will always be a need for low-level, nonsignalconditioned sensors. Given this need, there is also a need for sensor interface amplifier circuits that can signal condition the "raw" sensor output to a usable level. These circuits should also be user friendly, simple, and cost effective.

Today's unamplified solid-state sensors typically have an output voltage of tens of millivolts (Freescale's basic 10 kPa pressure sensor, MPX10, has a typical full-scale output of 58 mV, when powered with a 5.0 V supply). Therefore, a gain stage is needed to obtain a signal large enough for additional processing. This additional processing may include digitization by a microcontroller's analog to digital (A/D) converter, input to a comparator, etc. Although the signal-conditioning circuits described here are applicable to low-level, differential-voltage output sensors in general, the focus of this paper will be on interfacing pressure sensors to amplifier circuits.

This paper presents a basic two operational-amplifier signal-conditioning circuit that provides the desired characteristics of an instrumentation amplifier interface:

- · High input impedance
- Low output impedance
- Differential to single-ended conversion of the pressure sensor signal
- · High gain capability

For this two op-amp circuit, additional modifications to the circuit allow (1) gain adjustment without compromising common mode rejection and (2) both positive and negative dc level shifts of the zero pressure offset. Varying the gain and offset is desirable since full-scale span and zero pressure offset voltages of pressure sensors will vary somewhat from unit to unit. Thus, a variable gain is desirable to fine tune the sensor's full-scale span, and a positive or negative dc level shift (offset adjustment) of the pressure sensor signal is needed to translate the pressure sensor's signal-conditioned output span to a specific level (e.g., within the high and low reference voltages of an A/D converter).

For the two op-amp gain stage, this paper will present the derivation of the transfer function and simplified transfer function for pressure sensor applications, the derivation and explanation of the gain stage with a gain adjust feature, and the derivation and explanation of the gain stage with the dc level shift modification.

Adding another amplifier stage provides an alternative method of creating a negative dc voltage level shift. This stage is cascaded with the output from the two op-amp stage (*Note:* gain of the two op-amp stage will be reduced due to additional gain provided by the second amplifier stage). For this three op-amp stage, the derivation of the transfer function, simplified transfer function, and the explanation of the negative dc level shift feature will be presented.

GENERAL NOTE ON OFFSET ADJUSTMENT

Pressure sensor interface circuits may require either a positive or a negative dc level shift to adjust the zero pressure offset voltage. As described above, if the signal-conditioned pressure sensor voltage is input to an A/D, the sensor's output dynamic range must be positioned within the high and low reference voltages of the A/D; i.e., the zero pressure offset voltage must be greater than (or equal to) the low reference voltage and the full-scale pressure voltage must be less than (or equal to) the high reference voltage (see Figure 1). Otherwise, voltages above the high reference will be digitally converted as 255 decimal (for 8-bit A/D), and voltages below the low reference will be converted as 0. This creates a nonlinearity in the analog-to-digital conversion.

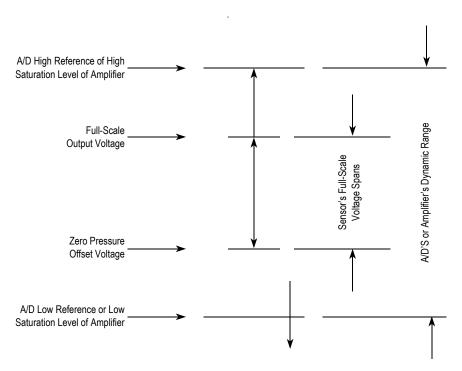


Figure 1. Positioning the Sensor's Full-Scale Span within the A/D's or Amplifier's Dynamic Range

A similar requirement that warrants the use of a dc level shift is the prevention of the pressure sensor's voltage from extending into the saturation regions of the operational amplifiers. This also would cause a nonlinearity in the sensor output measurements. For example, if an op-amp powered with a single-ended 5.0 V supply saturates near the low rail of the supply at 0.2 V, a positive dc level shift may be required to position the zero pressure offset voltage at or above 0.2 V. Likewise, if the same op-amp saturates near the high rail of the supply at 4.8 V, a negative dc level shift may be required to position the full-scale pressure voltage at or below 4.8 V. It should be obvious that if the gain of the amplifiers is too large, the span may be too large to be positioned within the 4.6 V window (regardless of ability to level shift dc offset). In such a case, the gain must be decreased to reduce the span.

THE TWO OP-AMP GAIN STAGE TRANSFER FUNCTION

The transfer function of the two op-amp signal-conditioning stage, shown in Figure 2, can be determined using nodal analysis at nodes 1 and 2. The analysis can be simplified by calculating the transfer function for each of the signals with the other two signals grounded (set to zero), and then employing superposition to realize the overall transfer function. As shown in Figure 2, V_{IN2} and V_{IN1} are the differential amplifier input signals (with $V_{IN2} > V_{IN1}$), and V_{REF} is the positive dc level adjust point. For a sensor with a small zero pressure offset and operational amplifiers powered from a single-ended supply, it may be necessary to add a positive dc level shift to keep the operational amplifiers from saturating near zero volts.

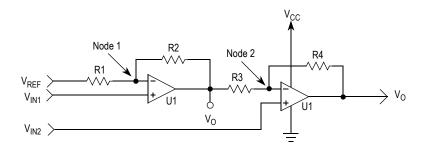


Figure 2. The Two Operational-Amplifier Gain Stage

First, the transfer function for V_{IN1} is determined by grounding V_{RFF} and V_{IN2} at Node 1:

$$\frac{V_{IN1}}{R_1} = \frac{V_{O'} - V_{IN1}}{R_2} \tag{1}$$

and at Node 2:

$$\frac{\mathsf{V}_{\mathsf{O}'}}{\mathsf{R}_3} = -\frac{\mathsf{V}_{\mathsf{O}}}{\mathsf{R}_4} \tag{2}$$

By solving Equations (1) and (2) for V_O ' and equating the results, Equation (3) is established:

$$\left(\frac{R_2}{R_1} + 1\right)V_{IN1} = -\frac{R_3}{R_4}V_0$$
 (3)

Solving for V_O yields:

$$V_{O1} = -\frac{R_4}{R_3} \left(\frac{R_2}{R_1} + 1 \right) V_{IN1}$$
 (4)

where V_{O1} represents the part of V_{O} that V_{IN1} contributes.

To determine the transfer function for V_{IN2} , V_{IN1} , and V_{REF} are grounded, and a similar analysis is used, yielding:

$$V_{O2} = \left(\frac{R_4}{R_3} + 1\right) V_{IN2}$$
 (5)

where V_{O2} represents the part of V_O that V_{IN2} contributes. Finally, to calculate the transfer function between V_O and V_{REF} , V_{IN1} , and V_{IN2} are grounded to obtain the following transfer function:

$$V_{OREF} = \frac{R_4 R_2}{R_3 R_1} V_{REF}$$
 (6)

where V_{OREF} represents the part of V_{O} that V_{REF} contributes.

Using superposition for the contributions of V_{IN1} , V_{IN2} , and V_{REF} gives the overall transfer function for the signal-conditioning stage.

$$V_{O} = V_{O1} + V_{O2} + V_{OREF}$$

$$V_{O} = \left(-\frac{R_{4}}{R_{3}}\right) \left(\frac{R_{2}}{R_{1}} + 1\right) V_{IN1} + \left(\frac{R_{4}}{R_{3}} + 1\right) V_{IN2} + \frac{R_{4}R_{2}}{R_{3}R_{1}} V_{REF} (7)$$

Equation (7) is the general transfer function for the signalconditioning stage. However, the general form is not only cumbersome, but also if care is not taken to match certain resistance ratios, poor common mode rejection results. A simplified form of this equation that provides good common mode rejection is shown in the next section.

APPLICATION TO PRESSURE SENSOR CIRCUITS

The previous section showed the derivation of the general transfer function for the two op-amp signal-conditioning circuit. The simplified form of this transfer function, as applied to a pressure sensor application, is derived in this section.

For pressure sensors, V_{IN1} and V_{IN2} are referred to as S⁻ and S⁺, respectively. The simplification is obtained by setting

$$\frac{R_4}{R_3} = \frac{R_1}{R_2}$$

Through this simplification, Equation (7) reduces to

$$V_O = \left(\frac{R_4}{R_3} + 1\right) (S^+ - S^-) + V_{REF}$$
 (8)

By examining Equation (8), the differential gain of the signal-conditioning stage is:

$$G = \frac{R_4}{R_3} + 1 \tag{9}$$

Also, since the differential voltage between S^+ and S^- is the pressure sensor's actual differential output voltage (V_{SENSOR}), the following equation is obtained for V_O :

$$V_{O} = \left(\frac{R_4}{R_3} + 1\right) V_{SENSOR} + V_{REF}$$
 (10)

Finally, the term V_{REF} is the positive offset voltage added to the amplified sensor output voltage. V_{REF} can only be positive when using a positive single-ended supply. This offset (dc level shift) allows the user to adjust the absolute range that the sensor voltage spans. For example, if the gain established by R4 and R3 creates a span of four volts and this signal swing is superimposed upon a dc level shift (offset) of 0.5 volts, then a signal range from 0.5 V to 4.5 V results.

 V_{REF} is typically adjusted by a resistor divider as shown in Figure 3. A few design constraints are required when designing the resistor divider to set the voltage at V_{REF} .

- To establish a stable positive dc level shift (V_{REF}), V_{CC} should be regulated; otherwise, V_{REF} will vary as V_{CC} varies.
- When looking into the resistor divider from R1, the effective resistance of the parallel combination of the resistors, R_{REF1} and R_{REF2}, should be at least an order of magnitude smaller than R1's resistance. If the resistance of the parallel combination is not small in comparison to R1, R1's value will be significantly affected by the parallel combination's resistance. This effect on R1 will consequently affect the amplifier's gain and reduce the common mode rejection.

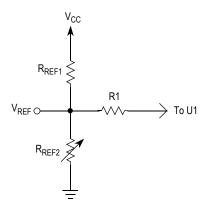


Figure 3. A Resistor Divider to Create V_{REF}

THE TWO OP-AMP GAIN STAGE WITH VARIABLE GAIN

Varying the gain of the two op-amp stage is desirable for fine-tuning the sensor's signal-conditioned output span. However, to adjust the gain in the two op-amp gain circuit in Figure 2 and to simultaneously preserve the common mode rejection, two resistors must be adjusted. To adjust the gain, it is more desirable to change one resistor. By adding an additional feedback resistor, RG, the gain can be adjusted with this one resistor while preserving the common mode rejection. Figure 4 shows the two op-amp gain stage with the added resistor, $R_{\rm G}$

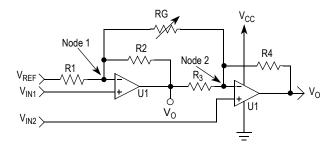


Figure 4. Two Operational-Amplifier Gain Stage with Variable Gain

As with the two op-amp gain stage, nodal analysis and superposition are used to derive the general transfer function for the variable gain stage.

$$V_{O} = \left(\frac{R_{4}}{R_{3}} + \frac{R_{4}}{R_{G}} + \frac{R_{2}R_{4}}{R_{3}R_{G}} + 1\right)V_{IN2}$$

$$-\left(\frac{R_{4}}{R_{3}} + \frac{R_{4}}{R_{G}} + \frac{R_{2}R_{4}}{R_{3}R_{G}} + \frac{R_{2}R_{4}}{R_{1}R_{3}}\right)V_{IN1}$$

$$+\left(\frac{R_{2}R_{4}}{R_{1}R_{3}}\right)V_{REF}$$
(11)

This general transfer function also is quite cumbersome and is susceptible to producing poor common mode rejection

without additional constraints on the resistor values. To obtain good common mode rejection, use a similar simplification as before; that is, set

$$R_1 = R_4$$

and

$$R_1 = R_4$$

Defining the voltage differential between V_{IN2} and V_{IN1} as V_{SENSOR} , the simplified transfer function is

$$V_O = \left(\frac{R_4}{R_3} + \frac{2R_4}{R_G} + 1\right) V_{SENSOR} + V_{REF}$$
 (12)

Thus, the gain is

$$G = \frac{R_4}{R_3} + \frac{2R_4}{R_G} + 1 \tag{13}$$

and V_{REF} is the positive dc level shift (offset).

Use the following guidelines when determining the value for RG :

- By examining the gain equation, RG's resistance should be comparable to R4's resistance. This will allow fine tuning of the gain established by R4 and R3. If RG is too large (e.g., RG approaches ∞), it will have a negligible effect on the gain. If RG is too small (e.g., RG approaches zero), the RG term will dominate the gain expression, thus prohibiting fine adjustment of the gain established via the ratio of R4 and R3.
- Use a potentiometer for RG that has a resistance range on the order of R4 (perhaps with a maximum resistance equal to the value of R4). If a fixed resistor is preferable to a potentiometer, use the potentiometer to adjust the gain, measure the potentiometer's resistance, and replace the potentiometer with the closest one percent resistor value.
- To maintain good common mode rejection while varying the gain, RG should be the only resistor that is varied. RG equally modifies both of the resistor ratios which need to be well-matched for good common mode rejection, thus preserving the common mode rejection.

THE TWO OP-AMP GAIN STAGE WITH VARIABLE GAIN AND NEGATIVE DC LEVEL SHIFT

The last two op-amp circuits both incorporate positive dc level shift capability. Recall that a positive dc level shift is required to keep the operational amplifiers from saturating near the low rail of the supply or to keep the zero pressure offset above (or equal to) the low reference voltage of an A/D. This two op-amp stage incorporates an additional resistor, R_{OFF}, to provide a negative dc level shift. A negative dc level shift is useful when the zero pressure offset voltage of the sensor is too high. In this case, the user may be required to level shift the zero pressure offset voltage down (toward zero volts). Now, for a specified amount of gain, the full-scale pressure output voltage does not saturate the amplifier at the high rail of the voltage supply, nor is it greater than the A/D's high reference voltage. Figure 5 shows the schematic for this amplifier circuit.

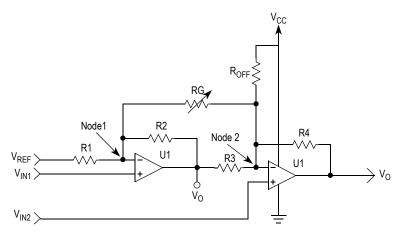


Figure 5. Two Op-Amp Signal Conditioning Stage with Variable Gain and Negative dc Level Shift Adjust

To derive the general transfer function, nodal analysis and superposition are used:

$$V_{O} = \left(\frac{R_{4}}{R_{3}} + \frac{R_{4}}{R_{G}} + \frac{R_{2}R_{4}}{R_{3}R_{G}} + 1\right)V_{IN2}$$

$$-\left(\frac{R_{4}}{R_{3}} + \frac{R_{4}}{R_{G}} + \frac{R_{2}R_{4}}{R_{1}R_{3}} + \frac{R_{2}R_{4}}{R_{3}R_{G}}\right)V_{IN1}$$

$$+ \frac{R_{2}R_{4}}{R_{1}R_{3}}V_{REF} + \frac{R_{4}}{R_{OFF}}(V_{IN2} - V_{CC}) \quad (14)$$

As before, defining the sensor's differential output as V_{SENSOR} , defining V_{IN2} as S^+ for pressure sensor applications, and using the simplification that

$$R_1 = R_4$$

and

$$R_2 = R_3$$

obtains the following simplified transfer function:

$$V_{O} = \left(\frac{R_{4}}{R_{3}} + \frac{2R_{4}}{R_{G}} + 1\right) V_{SENSOR} + V_{REF} + \frac{R_{4}}{R_{OFF}} (S^{+} - V_{CC})$$
 (15)

The gain is

$$G = \frac{R_4}{R_3} + \frac{2R_4}{R_G} + 1 \tag{16}$$

To adjust the gain, refer to the guidelines presented in the section on *Two Op-Amp Gain Stage with Variable Gain*.

 $\ensuremath{V_{REF}}$ is the positive dc level shift, and the negative dc level shift is:

$$V_{-\text{shift}} = \frac{R_4}{R_{\text{OFF}}} (S^{+} V_{\text{CC}})$$
 (17)

The following guidelines will help design the circuitry for the negative dc voltage level shift:

- To establish a stable negative dc level shift, V_{CC} should be regulated; otherwise, the amount of negative level shift will vary as V_{CC} varies.
- R_{OFF} should be the only resistor varied to adjust the negative level shift. Varying R4 will change the gain of the two op-amp circuit and reduce the common mode rejection.
- To determine the value of R_{OFF}:
 - Determine the amount of negative dc level shifting required (defined here as V_{SHIFT}).
 - R₄ already should have been determined to set the gain for the desired signal-conditioned sensor output.
 - 3. Although V_SHIFT is dependent on S⁺, S⁺ changes only slightly over the entire pressure range. With Freescale's MPX10 powered at a 5.0 V supply, S⁺ will have a value of approximately 2.51 V at zero pressure and will increase as high as 2.53 V at full-scale pressure. This error over the full-scale pressure span of the device is negligible when considering that many applications use an 8-bit A/D converter to segment the pressure range. Using an 8-bit A/D, the 20 mV (0.02 V) error corresponds to only 1 bit of error over the entire pressure range (1 bit / 255 bits x 100% = 0.4% error).
 - 4. R_{OFF} is then calculated by the following equation:

$$R_{OFF} = \frac{S^{+}-V_{CC}}{V_{-\text{shift}}} R_4$$
 (18)

An alternative to using this equation is to use a potentiometer for R_{OFF} that has a resistance range on the order of R_4 (perhaps 1 to 5 times the value of R4). Use the potentiometer to fine tune the negative dc level shift, while monitoring the zero pressure offset output voltage, $V_{\mathsf{O}}.$ As before, if a fixed resistor is preferable, then measure the potentiometer's resistance and replace the potentiometer with the closest 1% resistor value.

Important Note: The common mode rejection of this amplifier topology will be low and perhaps unacceptable in some applications. (A SPICE model of this amplifier topology showed the common mode rejection to be 28 dB.) However,

this circuit is presented as a solution for applications where only two operational amplifiers are available and the common mode rejection is not critical when considering the required system performance. Adding a third op-amp to the circuit for the negative dc level shifting capability (as shown in the next section) is a solution that provides good common mode rejection, but at the expense of adding an additional op-amp.

THE THREE OP-AMP GAIN STAGE FOR NEGATIVE dc LEVEL SHIFTING

This circuit adds a third op-amp to the output of the two opamp gain block (see Figure 6). This op-amp has a dual function in the overall amplifier circuit:

- Its non-inverting configuration provides gain via the ratio of R6 and R5.
- It has negative dc voltage level shifting capability typically created by a resistor divider at V_{-SHIFT}, as discussed in the section on Application to Pressure Sensor Circuits. Although this configuration requires a third op-amp for the negative dc level shift, it has no intrinsic error nor low common mode rejection associated with the negative level shift (as does the previous two op-amp stage). Depending on the application's accuracy requirement, this may be a more desirable configuration for providing the negative dc level shift.

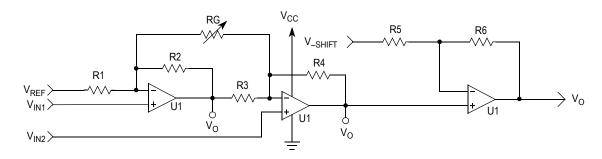


Figure 6. Three Op-Amp Gain Stage with Variable Gain and Negative DC Level Shift

The transfer function for this stage will be similar to the chosen two op-amp gain stage configuration (either the fixed gain with positive dc level shift circuit or the variable gain with positive dc level shift circuit) with additional terms for the negative level shift and gain. As an example, the variable-gain two op-amp gain circuit is used here. All of the design considerations and explanations for the variable gain two op-amp circuit apply.

The transfer function may be derived with nodal analysis and superposition.

$$V_{O} = \left[1 + \frac{R_{6}}{R_{5}}\right] \left[\left(\frac{R_{4}}{R_{3}} + \frac{R_{4}}{R_{G}} + \frac{R_{2}R_{4}}{R_{3}R_{G}} + 1\right)V_{IN2}\right]$$

$$-\left(\frac{R_{4}}{R_{3}} + \frac{R_{4}}{R_{G}} + \frac{R_{2}R_{4}}{R_{3}R_{G}} + \frac{R_{2}R_{4}}{R_{1}R_{3}}\right)V_{IN1}$$

$$+\left(\frac{R_{2}R_{4}}{R_{1}R_{3}}\right)V_{REF} - \frac{R_{6}}{R_{5}}V_{-shift}$$
(19)

First, use the same simplifications as before; that is, set

$$R_1 = R_4$$
 and
$$R_2 = R_3$$

Defining the voltage differential between V_{IN2} and V_{IN1} as V_{SENSOR} , the simplified transfer function is

$$V_{O} = \left[1 + \frac{R_{6}}{R_{5}}\right] \left[\left(\frac{R_{4}}{R_{3}} + \frac{2R_{4}}{R_{G}} + 1\right) (V_{SENSOR}) + V_{REF}\right] - \frac{R_{6}}{R_{5}} V_{-shift}$$
(20)

The gain is

$$G = \left[1 + \frac{R_6}{R_5}\right] \left[\frac{R_4}{R_3} + \frac{2R_4}{R_G} + 1\right]$$
 (21)

 $V_{\mbox{\scriptsize REF}}$ is the positive dc level shift (offset), and $V_{\mbox{\scriptsize -SHIFT}}$ is the negative dc level shift.

The preceding simplifications have been performed in the previous sections, but by examining Equation 20, notice that the third op-amp's gain term also amplifies the positive and negative dc voltage level shifts, V_{REF} and V_{SHIFT} . If R6 and R5 are chosen to make an arbitrary contribution to the overall system gain, designing an appropriate amount of positive and negative dc level shift can be difficult. To simplify the transfer function, set R5 = R6, and the following equation for V_{O} results:

$$V_O = 2 \left[\left(\frac{R_4}{R_3} + \frac{2R_4}{R_G} + 1 \right) (V_{SENSOR}) + V_{REF} \right] - V_{-shift}$$
 (22)

Now the third op-amp's contribution to the overall system gain is a factor of two. When designing the overall system gain and the positive dc level shift, use the following guidelines:

Since the third op-amp contributes a gain of two to the overall system, design the gain that the two op-amp circuit contributes to the system to be one-half the desired system gain. The gain term for the two op-amp circuit is:

$$G = \frac{R_4}{R_3} + \frac{2R_4}{R_G} + 1$$

which is the same as presented in Equation 16.

 Similarly, since the third op-amp also amplifies V_{REF} by two (refer to Equation 22), the resistor divider that creates V_{REF} should be designed to provide one-half the desired positive dc voltage level shift needed for the final output. When designing the voltage divider for V_{REF}, use the same design constraints as were given in the section on Application to Pressure Sensor Circuits.

With the above simplification of R5 = R6, the negative dc level shift, V_{-SHIFT} , which is also created by a voltage divider, is now amplified by a factor of unity. When designing the voltage divider, use the same design constraints as were

presented in the section on Application to Pressure Sensor Circuits.

CONCLUSION

The amplifier circuits discussed in this paper apply to pressure sensor applications, but the amplifier circuits can be interfaced to low-level, differential-voltage output sensors, in general. All of the circuits exhibit the desired instrumentation amplifier characteristics of high input impedance, low output impedance, high gain capability, and differential to singleended conversion of the sensor signal. Each amplifier circuit provides positive dc level shift capability, while the last two circuit topologies presented are also able to provide a negative dc voltage level shift. This enables the user to position the sensor's dynamic output within a specified range (e.g., within the high and low references of an A/D converter). Also detailed is a method of using an additional feedback resistor to adjust easily the differential voltage gain, while not sacrificing common mode rejection. Combining the appropriate sensor device and amplifier interface circuit provides sensor users with a versatile system solution for applications in which the ideal fully single-conditioned sensor does not exist or in which such signal flexibility is warranted.

Digital Blood Pressure Meter

by: C.S. Chua and Siew Mun Hin, Sensor Application Engineering Singapore, A/P

INTRODUCTION

This application note describes a Digital Blood Pressure Meter concept which uses an integrated pressure sensor, analog signal-conditioning circuitry, microcontroller hardware/software and a liquid crystal display. The sensing system reads the cuff pressure (CP) and extracts the pulses for analysis and determination of systolic and diastolic pressure. This design uses a 50 kPa integrated pressure sensor (Freescale Semiconductor, Inc.P/N: MPXV5050GP) yielding a pressure range of 0 mm Hg to 300 mm Hg.

CONCEPT OF OSCILLOMETRIC METHOD

This method is employed by the majority of automated noninvasive devices. A limb and its vasculature are compressed by an encircling, inflatable compression cuff. The blood pressure reading for systolic and diastolic blood pressure values are read at the parameter identification point.

The simplified measurement principle of the oscillometric method is a measurement of the amplitude of pressure change in the cuff as the cuff is inflated from above the systolic pressure. The amplitude suddenly grows larger as the pulse breaks through the occlusion. This is very close to systolic pressure. As the cuff pressure is further reduced, the pulsation increase in amplitude, reaches a maximum and then diminishes rapidly. The index of diastolic pressure is taken where this rapid transition begins. Therefore, the systolic blood pressure (SBP) and diastolic blood pressure (DBP) are

obtained by identifying the region where there is a rapid increase then decrease in the amplitude of the pulses respectively. Mean arterial pressure (MAP) is located at the point of maximum oscillation.

HARDWARE DESCRIPTION AND OPERATION

The cuff pressure is sensed by Freescale's integrated pressure X-ducer‰. The output of the sensor is split into two paths for two different purposes. One is used as the cuff pressure while the other is further processed by a circuit. Since MPXV5050GP is signal-conditioned by its internal opamp, the cuff pressure can be directly interfaced with an analog-to-digital (A/D) converter for digitization. The other path will filter and amplify the raw CP signal to extract an amplified version of the CP oscillations, which are caused by the expansion of the subject's arm each time pressure in the arm increases during cardiac systole.

The output of the sensor consists of two signals; the oscillation signal (\approx 1 Hz) riding on the CP signal (\leq 0.04 Hz). Hence, a 2-pole high pass filter is designed to block the CP signal before the amplification of the oscillation signal. If the CP signal is not properly attenuated, the baseline of the oscillation will not be constant and the amplitude of each oscillation will not have the same reference for comparison. Figure 1 shows the oscillation signal amplifier together with the filter.

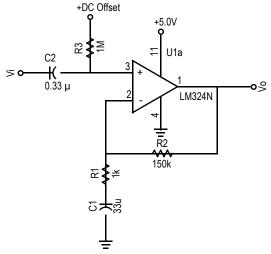


Figure 1. Oscillation Signal Amplifier

The filter consists of two RC networks which determine two cut-off frequencies. These two poles are carefully chosen to ensure that the oscillation signal is not distorted or lost. The

two cut-off frequencies can be approximated by the following equations. Figure 2describes the frequency response of the filter. This plot does not include the gain of the amplifier.

$$_{\text{P1}} = \frac{1}{2\pi R_{1}C_{1}}$$

$$^{\text{fP2}} = \frac{1}{2\pi R_3 C_2}$$

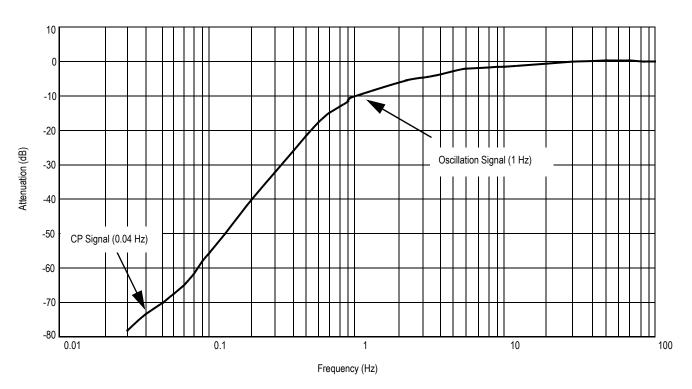


Figure 2. Filter Frequency

The oscillation signal varies from person to person. In general, it varies from less than 1 mm Hg to 3 mm Hg. From the transfer function of MPXV5050GP, this will translate to a voltage output of 12 mV to 36 mV signal. Since the filter gives an attenuation of 10 dB to the 1 Hz signal, the oscillation signal becomes 3.8 mV to 11.4 mV respectively. Experiments

indicate that, the amplification factor of the amplifier is chosen to be 150 so that the amplified oscillation signal is within the output limit of the amplifier (5.0 mV to 3.5 V). Figure 3 shows the output from the pressure sensor and Figure 4 illustrates the extracted oscillation signal at the output of the amplifier.

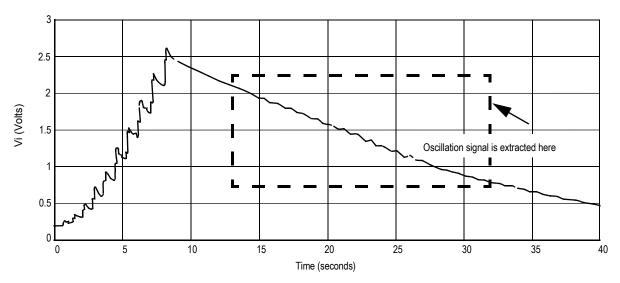


Figure 3. CP Signal at the Output of the Pressure Sensor

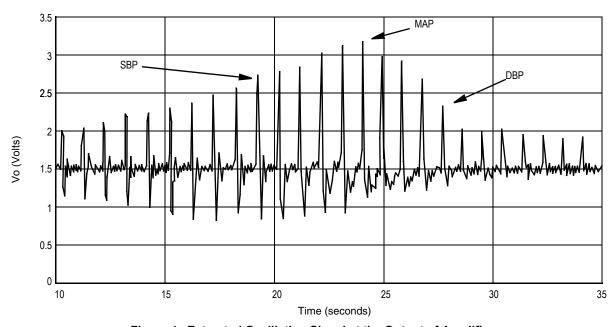


Figure 4. Extracted Oscillation Signal at the Output of Amplifier

Referring to the schematic, Figure 5, the MPX5050GP pressure sensor is connected to PORT D bit 5 and the output of the amplifier is connected to PORT D bit 6 of the microcontroller. This port is an input to the on-chip 8-bit analog-to-digital (A/D) converter. The pressure sensor provides a signal output to the microprocessor of approximately 0.2 Vdc at 0 mm Hg to 4.7 Vdc at 375 mm Hg of applied pressure whereas the amplifier provides a signal from 0.005 V to 3.5 V. In order to maximize the resolution, separate voltage references should be provided for the A/D instead of using the 5 V supply. In this example, the input range of the A/D converter is set at approximately 0 Vdc to 3.8 Vdc. This compresses the range of the A/D converter around 0 mm Hg to 300 mm Hg to maximize the resolution; 0 to 255

counts is the range of the A/D converter. V_{RH} and V_{RL} are the reference voltage inputs to the A/D converter. The resolution is defined by the following:

$$Count = [(V_{Xdcr} - V_{RL})/(V_{RH} - V_{RL})] \times 255$$

The count at 0 mm Hg = $[(0.2 - 0)/(3.8 - 0)] \times 255 \approx 14$

The count at 300 mm Hg = $[(3.8 - 0)/(3.8 - 0)] \times 255 \approx 255$

Therefore the resolution = 255 - 14 = 241 counts. This translates to a system that will resolve to 1.24 mm Hg.

The voltage divider consisting of R5 and R6 is connected to the +5 volts powering the system. The output of the pressure sensor is ratiometric to the voltage applied to it. The pressure sensor and the voltage divider are connected to a common supply; this yields a system that is ratiometric. By nature of this ratiometric system, variations in the voltage of the power supplied to the system will have no effect on the system accuracy.

The liquid crystal display (LCD) is directly driven from I/O ports A, B, and C on the microcontroller. The operation of a LCD requires that the data and backplane (BP) pins must be driven by an alternating signal. This function is provided by a software routine that toggles the data and backplane at approximately a 30 Hz rate.

Other than the LCD, there are two more I/O devices that are connected to the pulse length converter (PLM) of the microcontroller; a buzzer and a light emitting diode (LED). The buzzer, which connected to the PLMA, can produce two different frequencies; 122 Hz and 1.953 kHz tones. For

instance when the microcontroller encounters certain error due to improper inflation of cuff, a low frequency tone is alarm. In those instance when the measurement is successful, a high frequency pulsation tone will be heard. Hence, different musical tone can be produced to differential each condition. In addition, the LED is used to indicate the presence of a heart beat during the measurement.

The microcontroller section of the system requires certain support hardware to allow it to function. The MC34064P-5 provides an undervoltage sense function which is used to reset the microprocessor at system power-up. The 4 MHz crystal provides the external portion of the oscillator function for clocking the microcontroller and provides a stable base for time based functions, for instance calculation of pulse rate.

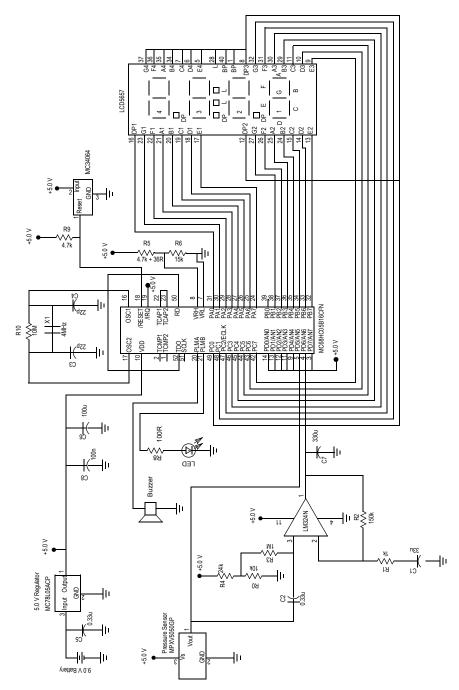


Figure 5. Blood Pressure Meter Schematic Drawing

SOFTWARE DESCRIPTION

Upon system power-up, the user needs to manually pump the cuff pressure to approximately 160 mm Hg or 30 mm Hg above the previous SBP. During the pumping of the inflation bulb, the microcontroller ignores the signal at the output of the amplifier. When the subroutine TAKE senses a decrease in CP for a continuous duration of more than 0.75 seconds, the microcontroller will then assume that the user is no longer pumping the bulb and starts to analyze the oscillation signal. Figure 6 shows zoom-in view of a pulse.

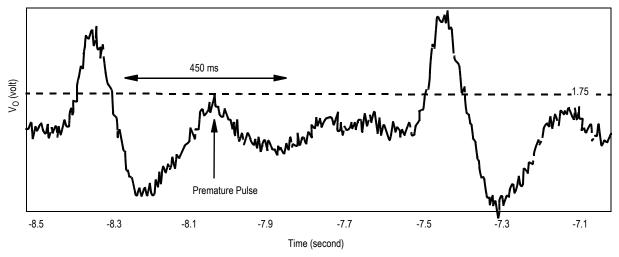


Figure 6. Zoom-In View of a Pulse

First of all, the threshold level of a valid pulse is set to be 1.75 V to eliminate noise or spike. As soon as the amplitude of a pulse is identified, the microcontroller will ignore the signal for 450 ms to prevent any false identification due to the presence of premature pulse "overshoot" due to oscillation. Hence, this algorithm can only detect pulse rate which is less than 133 beats per minute. Next, the amplitudes of all the pulses detected are stored in the RAM for further analysis. If the microcontroller senses a non-typical oscillation envelope shape, an error message ("Err") is output to the LCD. The user will have to exhaust all the pressure in the cuff before repumping the CP to the next higher value. The algorithm ensures that the user exhausts all the air present in the cuff before allowing any re-pumping. Otherwise, the venous blood trapped in the distal arm may affect the next measurement. Therefore, the user has to reduce the pressure in the cuff as soon as possible in order for the arm to recover. Figure 7 on the following page is a flowchart for the program that controls the system.

SELECTION OF MICROCONTROLLER

Although the microcontroller used in this project is MC68HC05B16, a smaller ROM version microcontroller can also be used. The list below shows the requirement of

microcontroller for this blood pressure meter design in this project.

- On-chip ROM space: 2 kilobytes
- On-chip RAM space: 150 bytes
- 2-channel A/D converter (min.)
- 16-bit free running counter timer
- LCD driver
- On-chip EEPROM space: 32 bytes
- · Power saving Stop and Wait modes

CONCLUSION

This circuit design concept may be used to evaluate Freescale pressure sensors used in the digital blood pressure meter. This basic circuit may be easily modified to provide suitable output signal level. The software may also be easily modified to provide better analysis of the SBP and DBP of a person.

REFERENCES

Lucas, Bill (1991). "An Evaluation System for Direct Interface of the MPX5100 Pressure Sensor with a Microprocessor," Freescale Application Note AN1305.

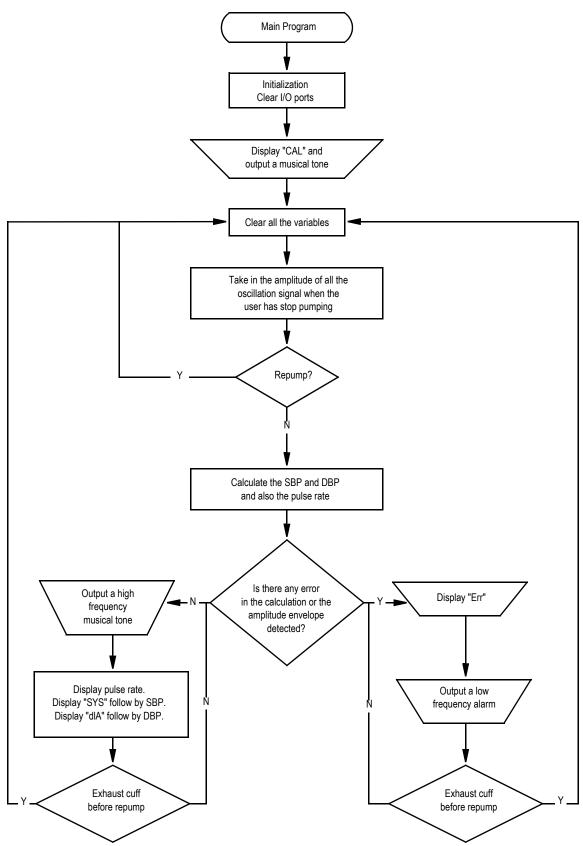


Figure 7. Main Program Flowchart

Understanding Pressure and Pressure Measurement

by: David Heeley

Sensor Products Division, Phoenix, Arizona

INTRODUCTION

Fluid systems, pressure and pressure measurements are extremely complex. The typical college curriculum for Mechanical Engineers includes at least two semesters in fluid mechanics. This paper will define and explain the basic concepts of fluid mechanics in terms that are easily understood while maintaining the necessary technical accuracy and level of detail.

PRESSURE AND PRESSURE MEASUREMENT

What is fluid pressure? Fluid pressure can be defined as the measure of force per-unit-area exerted by a fluid, acting perpendicularly to any surface it contacts (a fluid can be either a gas or a liquid, fluid and liquid are not synonymous). The standard SI unit for pressure measurement is the Pascal (Pa) which is equivalent to one Newton per square meter (N/m²) or the KiloPascal (kPa) where 1 kPa = 1000 Pa. In the English system, pressure is usually expressed in pounds per square inch (psi). Pressure can be expressed in many different units including in terms of a height of a column of liquid. Table 1 lists commonly used units of pressure measurement and the conversion between the units.

Pressure measurements can be divided into three different categories: absolute pressure, gage pressure and differential pressure. Absolute pressure refers to the absolute value of the force per-unit-area exerted on a surface by a fluid. Therefore the absolute pressure is the difference between the pressure at a given point in a fluid and the absolute zero of pressure or a perfect vacuum. Gage pressure is the measurement of the difference between the absolute pressure and the local atmospheric pressure. Local atmospheric pressure can vary depending on ambient temperature, altitude and local weather

conditions. The U.S. standard atmospheric pressure at sea level and 59°F (20°C) is 14.696 pounds per square inch absolute (psia) or 101.325 kPa absolute (abs). When referring to pressure measurement, it is critical to specify what reference the pressure is related to. In the English system of units, measurement relating the pressure to a reference is accomplished by specifying pressure in terms of pounds per square inch absolute (psia) or pounds per square inch gage (psig). For other units of measure it is important to specify gage or absolute. The abbreviation 'abs' refers to an absolute measurement. A gage pressure by convention is always positive. A 'negative' gage pressure is defined as vacuum. Vacuum is the measurement of the amount by which the local atmospheric pressure exceeds the absolute pressure. A perfect vacuum is zero absolute pressure. Figure 1 shows the relationship between absolute, gage pressure and vacuum. Differential pressure is simply the measurement of one unknown pressure with reference to another unknown pressure. The pressure measured is the difference between the two unknown pressures. This type of pressure measurement is commonly used to measure the pressure drop in a fluid system. Since a differential pressure is a measure of one pressure referenced to another, it is not necessary to specify a pressure reference. For the English system of units this could simply be psi and for the SI system it could be kPa.

In addition to the three types of pressure measurement, there are different types of fluid systems and fluid pressures. There are two types of fluid systems; *static systems* and *dynamic systems*. As the names imply, a static system is one in which the fluid is at rest and a dynamic system is on in which the fluid is moving.

kPa mm Hg millibar in H₂O PSI 1 atm 101.325 760.000 1013.25 406.795 14.6960 1 kPa 1.000 7.50062 10.000 4.01475 0.145038 0.133322 1.000 1.33322 0.535257 0.0193368 1 mm Hg 1 millibar 0.1000 0.750062 0.401475 0.0145038 1 000 1 in H₂O 0.249081 1.86826 2.49081 1.000 0.0361 1 PSI 51.7148 68.9473 6.89473 27.6807 1.000 0.009806 0.07355 9.8 x 10⁻⁸ 0.03937 0.0014223 1 mm H₂O

Table 1. Conversion Table for Common Units of Pressure

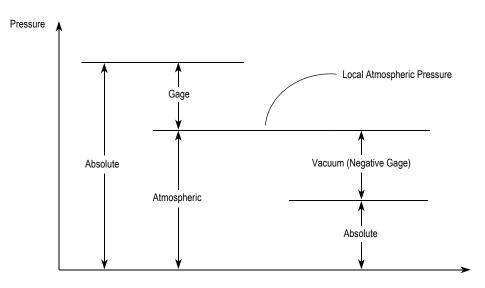


Figure 1. Pressure Term Relationships

STATIC PRESSURE SYSTEMS

The pressure measured in a static system is static pressure. In the pressure system shown in Figure 2 a uniform static fluid is continuously distributed with the pressure varying only with vertical distance. The pressure is the same at all points along the same horizontal plane in the fluid and is independent of the shape of the container. The pressure increases with depth in the fluid and acts equally in all directions. The increase in pressure at a deeper depth is essentially the effect of the weight of the fluid above that depth. Figure 3 shows two containers with the same fluid exposed to the same external pressure - P. At any equal depth within either tank the pressure will be the same. Note that the sides of the large tank are not vertical. The pressure is dependent only on depth and has nothing to do with the shape of the container. If the working fluid is a gas, the pressure increase in the fluid due to the height of the fluid is in most cases negligible since the density and therefore the weight of the fluid is much smaller than the pressure being applied to the system. However, this may not remain true if the system is large enough or the pressures low enough. One example

considers how atmospheric pressure changes with altitude. At sea level the standard U.S. atmospheric pressure is 14.696 psia (101.325 kPa). At an altitude of 10,000 ft (3048 m) above sea level the standard U.S. atmospheric pressure is 10.106 psia (69.698 kPa) and at 30,000 ft (9144 m), the standard U.S. atmospheric pressure is 4.365 psia (30.101 kPa).

The pressure in a static liquid can be easily calculated if the density of the liquid is known. The absolute pressure at a depth H in a liquid is defined as:

$$P_{abs} = P + (\rho x g x H)$$

Where:

P_{abs} is the absolute pressure at depth H.

P is the external pressure at the top of the liquid. For most open systems this will be atmospheric pressure.

 ρ is the density of the fluid.

g is the acceleration due to gravity (g = 32.174 ft/sec^2 (9.81 m/sec²)).

H is the depth at which the pressure is desired.

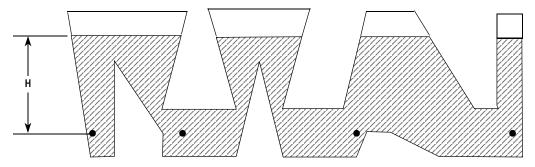


Figure 2. Continuous Fluid System

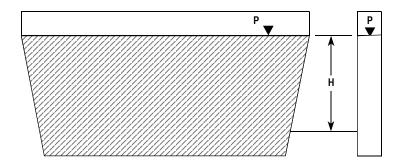


Figure 3. Pressure Measurement at a Depth in a Liquid

DYNAMIC PRESSURE SYSTEMS

Dynamic pressure systems are more complex than static systems and can be more difficult to measure. In a dynamic system, pressure typically is defined using three different terms. The first pressure we can measure is *static pressure*. This pressure is the same as the static pressure that is measured in a static system. Static pressure is independent of the fluid movement or flow. As with a static system the static pressure acts equally in all directions. The second type of pressure is what is referred to as the *dynamic pressure*. This pressure term is associated with the velocity or the flow of the fluid. The third pressure is *total pressure* and is simply the static pressure plus the dynamic pressure.

STEADY-STATE DYNAMIC SYSTEMS

Care must be taken when measuring dynamic system pressures. For a dynamic system, under steady-state conditions, accurate static pressures may be measured by tapping into the fluid stream perpendicular to the fluid flow. For

a dynamic system, steady-state conditions are defined as no change in the system flow conditions: pressure, flow rate, etc. Figure 4 illustrates a dynamic system with a fluid flowing through a pipe or duct. In this example a static pressure tap is located in the duct wall at point A. The tube inserted into the flow is called a Pitot tube. The Pitot tube measures the total pressure at point B in the system. The total pressure measured at this point is referred to as the *stagnation* pressure. The stagnation pressure is the value obtained when a flowing fluid is decelerated to zero velocity in an isentropic (frictionless) process. This process converts all of the energy from the flowing fluid into a pressure that can be measured. The stagnation or total pressure is the static pressure plus the dynamic pressure. It is very difficult to accurately measure dynamic pressures. When dynamic pressure measurement is desired, the total and static pressures are measured and then subtracted to obtain the dynamic pressure. Dynamic pressures can be used to determine the fluid velocities and flow rates in dynamic systems.

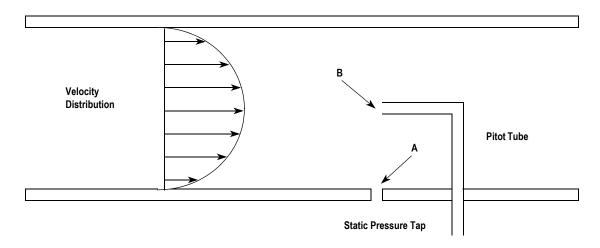


Figure 4. Static and Total Pressure Measurements Within a Dynamic Fluid System

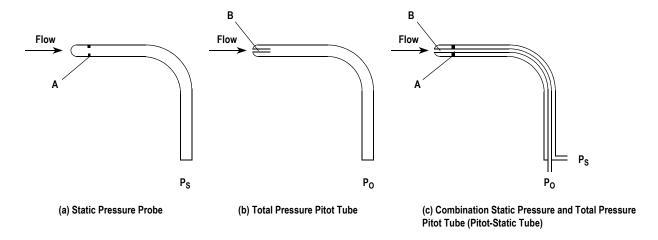


Figure 5. Types of Pressure Probes

When measuring dynamic system pressures, care must be taken to ensure accuracy. For static pressure measurements, the pressure tap location should be chosen so that the measurement is not influenced by the fluid flow. Typically, taps are located perpendicular to the flow field. In Figure 4, the static pressure tap at point A is in the wall of the duct and perpendicular to the flow field. In Figure 5 a and c the static taps (point A) in the pressure probes are also perpendicular to the flow field. These examples show the most common type of static pressure taps, however there are many different static pressure tap options. For total or stagnation pressure measurements, it is important that the Pitot or impact tube be aligned parallel to the flow field with the tip of the tube pointing directly into the flow. In Figure 5 b and c, the Pitot tube is aligned parallel with the flow, with the tube opening pointing directly into the flow. Although the static pressure is independent of direction, the dynamic pressure is a vector quantity which depends on both magnitude and direction for the total measured value. If the Pitot tube is misaligned with the flow, accuracy of the total pressure measurement may

suffer. In addition, for accurate pressure measurements the pressure tap holes and probes must be smooth and free from any burrs or obstructions that could cause disturbances in the flow. The location of the pressure taps and probes, static and total, must also be selected carefully. Any location in the system where the flow field may be disturbed should be avoided, both upstream and downstream. These locations include any obstruction or change such as valves, elbows, flow splits, pumps, fans, etc. To increase the accuracy of pressure measurement in a dynamic system, allow at least 10 pipe / duct diameters downstream of any change or obstruction and at least two pipe / duct diameters upstream. In addition the pipe / duct diameter should be much larger than the diameter of the Pitot tube. The pipe / duct diameter should be at least 30 times the Pitot tube diameter. Flow straighteners can also be used to minimize any variations in the direction of the flow. Also, when using a Pitot tube, it is recommended that the static pressure tap be aligned in the same plane as the total pressure tap. On the Pitot-static tube, the difference in location is assumed to be negligible.

Flow-through pipes and ducts will result in a velocity field and dynamic pressure field that are non-uniform. At the wall of any duct or pipe there exists a no-slip boundary due to friction. This means that at the wall itself the velocity of the fluid is zero. Figure 4 shows an imaginary velocity distribution in a duct. The shape of the distribution will depend on the fluid conditions, system flow and pressure. In order to accurately determine the average dynamic pressure across a duct section, a series of total pressure readings must be taken across the duct. These pressure measurements should be taken at different radii and clock positions across the cross section of a round duct or at various width and height locations for a rectangular duct. Once this characterization has been performed for the duct, a correlation can be easily made between the total pressure measurement at the center of the duct relative to the average duct total pressure. This technique is also used to determine the velocity profile within the duct.

TRANSIENT SYSTEMS

Transient systems are systems with changing conditions such as pressures, flow rates, etc. Measurements in transient systems are the most difficult to accurately obtain. If the measurement system being used to measure the pressure has a faster response time than the rate of change in the system, then the system can be treated as quasi-steady-state. That is, the measurements will be about as accurate as those taken in the steady-state system. If the measurement of the system is assumed to be a snap shot of what is happening in the system, then you want to be able to take the picture faster than the rate of change in the system or the picture will be blurred. In other words, the measurement results will not be accurate. In a pressure measurement system, there are two factors that determine the overall measurement response: (1) the response of the transducer element that senses the pressure, and (2) the response of the interface between the transducer and the pressure system such as the pressure transmitting fluid and the connecting tube, etc. For Freescale Semiconductor, Inc. pressure sensors, the second factor usually determines the overall frequency response of the pressure measurement system. The vast majority of pressure systems that require measurements today are quasi-steadystate systems where system conditions are changing relatively slowly compared to the response rate of the measurement system or the change happens instantaneously and then stabilizes.

Two transient system examples include washing machines and ventilation ducts in buildings. In a washing machine, the height of the water in the tub is measured indirectly by

measuring the pressure at the bottom of the tub. As the tub fills the pressure changes. The rate at which the tub fills and the pressure changes is much slower than the response rate of the measurement system. In a ventilation duct, the pressure changes as the duct registers are opened and closed, adjusting the air movement within the building. As more registers are opened and closed, the system pressure changes. The pressure changes are virtually instantaneous. In this case, pressure changes are essentially incremental and therefore easy to measure accurately except at the instant of the change. For most industrial and building control applications, the lag in the pressure measurement system is negligible. As the control or measurement system becomes more precise, the frequency response of the measurement system must be considered.

FREESCALE PRESSURE SENSORS

This application note has covered various types of pressures that are measured and how to tap into a system to measure the desired pressures. How are the actual pressure measurements made? There are many types of pressure measurement systems ranging from simple liquid tube manometers to bourdon-tube type gages to piezo-electric silicon based transducers. Today, as electronic control and measurement systems are replacing mechanical systems, silicon-based pressure transducers and sensors are becoming the sensors of choice. Silicon micromachined sensors offer very high accuracies at very low cost and provide an interface between the mechanical world and the electrical system. Freescale carries a complete line of silicon based pressure sensors which feature a wide range of pressures with various levels of integration on a single chip. These levels of integration start with the basic uncompensated, uncalibrated pressure sensor all the way to the fully integrated, temperature compensated, calibrated and signal conditioned pressure sensors. The response time of Freescale's MPX series silicon pressure sensors is typically 1 millisecond or less. For static or dynamic systems, Freescale's pressure sensors are an excellent solution for pressure measurement systems.

CONCLUSION

Pressures and pressure measurements can be extremely complex and complicated. However, for most systems it is relatively easy to obtain accurate pressure measurements if the proper techniques are used.

Designing a Homemade Digital Output for Analog Voltage Output Sensors

by: Eric Jacobsen, Systems and Applications Engineer Sensor Products Division, Phoenix, AZ

INTRODUCTION

A digital output is more desirable than an analog output in noisy environments (e.g., automotive, washing machines, etc.) and remote sensing applications (building controls, industrial applications, etc.) because a digital signal inherently has better noise immunity compared to analog signals. Additional applications requiring a sensor with a digital output include microcontroller-based systems that have no A/D in the system or that have no A/D channels available for the sensing function. For these applications, there is no other option but a digital output to further process the signal.

Via a design example this paper shows how to easily convert an analog voltage output sensor to a digital output sensor. For the design example, each of the required circuit components is discussed in detail. While the design is applicable to analog voltage output sensors (differential or single-ended output) in general, the design example and

following discussions will pertain specifically to semiconductor pressure sensors.

The digital output sensor in Figure 1 consists of the following:

- MPX2000 series pressure sensor
- A two op amp gain stage to amplify the sensor's signal
- An integrator (i.e., a low pass filter consisting of one resistor and one capacitor)
- An LM311 comparator
- An MC68HC05P9 microcontroller with which only two pins are used: the output compare timer channel (TCMP) and one general I/O pin (the input capture timer channel, TCAP, can be used in place of the general I/O pin). Since only two of the MC68HC05P9's pins are used, the remaining pins are available for other system functions.

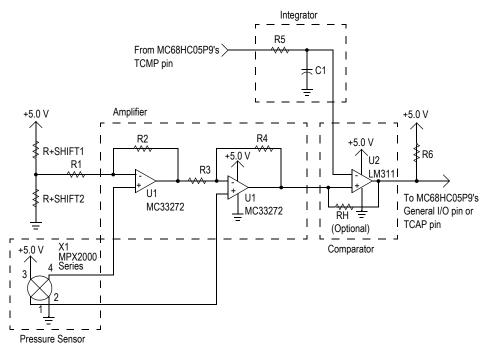


Figure 1. The Digital Output Sensor Schematic

After the discussion of the circuit components, the following system-related issues will be discussed simultaneously using the design example:

- · How the system works
- Defining and designing the digital output for a desired signal resolution
- A step-by-step procedure that shows you how to digitize the signal
- A procedure to show you how to software calibrate the digital output
- Related software examples

This system, in addition to the benefits of a digital output (noise immunity, etc.), also has the following additional inherent benefits. These benefits will be addressed in more detail in the systems topics.

- The circuit topology and method of "digitizing" the sensor's analog output is very stable and accurate. The system uses the microcontroller's precise, internal, digital time base to digitize the analog signal.
- The signal resolution is user-programmable via software i.e. the user can program whether the resolution is 8-bit,
 10-bit, etc.
- The digital output is calibrated in software so that component tolerances can be nullified.
- The software required to digitize the signal requires very little CPU time and overhead.

The required circuitry is minimal, simple, and cost-effective.

THE PRESSURE SENSOR

The Freescale Semiconductor, Inc. MPX2000 series sensors are temperature compensated and calibrated (i.e., offset and span are precision trimmed) pressure transducers. These sensors are available in full scale pressure ranges from 10 kPa (1.5 psi) to 700 kPa (100 psi). Although the specifications (see Table 1) in the data sheets apply to a 10 V supply voltage, the output of these devices is ratiometric with the supply voltage. For example, at the absolute maximum supply voltage rating, 16 V, the sensor will typically produce a differential output voltage of 64 mV at the rated full scale pressure of the given sensor. One exception to this is that the span of the MPX2010 (10 kPa sensor) will be only 40 mV due to the device's slightly lower sensitivity. Since the maximum supply voltage produces the largest output signal, it is evident that even the best case scenario will require some signal conditioning to obtain a usable signal (input to an A/D, etc.). For this specific design, an MPX2100 and 5.0 V supply are used, yielding a typical maximum sensor output of 20 mV (typical zero pressure offset is 0.0 mV and typical span is 20 mV). The sensor's output is then signal conditioned (amplified and level shifted) to provide a four volt span with a zero pressure offset of 0.5 V.

Table 1. MPX2100 Electrical Characteristics for V_S = 10 V, T_A = 25°C

Characteristics	Symbol	Min	Тур	Max	Unit
Pressure Range	P _{OP}	0	_	100	kPa
Supply Voltage	Vs	_	10	16	V_{DC}
Full Scale Span	V _{FSS}	38.5	40	41.5	mV
Zero Pressure Offset	V _{OFF}	-1.0	_	1.0	mV
Sensitivity	ΔV/ΔΡ	_	0.4	_	mV/kPa
Linearity	_	-0.25	_	0.25	%V _{FSS}
Temperature Effect on Span	TCV _{FSS}	-1.0	_	1.0	%V _{FSS}
Temperature Effect on Offset	TCV _{OFF}	-1.0	_	1.0	mV

AMPLIFIER STAGE

The amplifier circuitry, shown in Figure 1, is composed of two op amps. This interface circuit has a much lower component count than conventional quad op amp instrumentation amplifiers. The two op-amp design offers the high input impedance, low output impedance, and high gain desired for a transducer interface, while performing a differential to single-ended conversion. The amplifier incorporates level shifting capability. The amplifier has the following transfer function:

$$V_O = \left(1 + \frac{R_4}{R_3}\right)^2 (V_{sensor}) + V + shift$$

where R1 = R4; R2 = R3,

the gain is
$$1 + \frac{R_4}{R_3}$$

 V_{sensor} is the sensor's differential output (S⁺ – S⁻)

and

V+shift is the positive dc level shift voltage created by the resistor divider comprised of R+shift1 and R+shift2.

V+shift is used to position the zero pressure offset at the desired level.

Table 2 summarizes the 1% resistor values used to obtain a four-volt span with a zero pressure offset of $0.5\,\mathrm{V}$ (assuming the typical sensor offset and span values of $0.0\,\mathrm{mV}$ and $20\,\mathrm{mV}$, respectively).

Table 2. Resistor Values for the MPX2100
Amplifier Design

R+shift1	R+shift2	R1	R2	R3	R4
4.99 kΩ	549 Ω	20.0 kΩ	100 Ω	100 Ω	20.0 kΩ

THE INTEGRATOR

As shown in Figure 1, the integrator consists of a single resistor and single capacitor. A programmable duty cycle

pulse train from the microcontroller is input to the integrator. Assuming that the RC time constant of the integrator is sufficiently long compared to the pulse train's frequency, the resulting output which is input to the inverting terminal of the comparator is a dc voltage that is linearly proportional to the pulse train's duty cycle, i.e.:

DC Output Voltage = Pulse Train's Duty Cycle (%) × 5.0 V

Where the Pulse Train's Duty Cycle is multiplied by the pulse train's logic-level one voltage value which is typically the same voltage as the microcontroller's 5.0 V supply.

Table 3 shows a few examples of Pulse Train Duty Cycles and the corresponding DC Output Voltage assuming a typical pulse train logic-level one value of 5.0 V.

Table 3. Example Pulse Train Duty Cycles and the Inegrator's Corresponding dc Voltage Output

Pulse Train's Duty Cycle (%)	0	25	50	75	100
DC Output Voltage (V)	0	1.25	2.5	3.75	5

To establish a stable constant dc voltage at the integrator's output, its time constant must be sufficiently long compared to the frequency of the pulse train. However, the system resolution and thus performance are directly related to the pulse train's frequency. The design of the time constant and choice of the resistor and capacitor values is discussed in *System Design: Defining and designing for a desired signal resolution.*

COMPARATOR

The LM311 chip is designed specifically for use as a comparator and thus has short delay times, high slew rate, and an open-collector output. A pull-up resistor (R6 = 5 k Ω) at the output is all that is needed to obtain a rail-to-rail output. As Figure 1illustrates, the pressure sensor's amplified output voltage is input to the non-inverting terminal of the op-amp and the integrator's dc output voltage is input to the inverting terminal. Therefore, when the pressure sensor's output voltage is greater than the integrator's dc output voltage, the comparator's output is high (logic-level one); conversely, when the pressure sensor's output voltage is less than the integrator's dc output voltage, the comparator's output is low (logic-level zero).

An optional resistor, RH is used as positive feedback around U2 in Figure 1 to provide a small amount of hysteresis to ensure a clean logic-level transition (prevents multiple transitions (squegging)) when the comparator's inputs are similar in value. The amount of hysteresis increases as the value of RH decreases. For this design, the value of RH is not critical but should be on the order of 100 k Ω .

THE MC68HC05P9 MICROCONTROLLER

The microcontroller for this application requires an output compare timer channel and one general I/O pin. The output compare pin is programmed to output the pulse train that is input to the integrator, and the general I/O pin is configured as an input to monitor the logic-level of the comparator's output. The remainder of this paper discusses the system and software requirements.

SYSTEM DESIGN: HOW THE SYSTEM WORKS

For any analog sensor voltage output, there's a pulse train with a duty cycle that when integrated will equal the sensor's output. Therefore, by incrementing via software the pulse train's duty cycle from 0% to 100%, there's a duty cycle that when integrated will be larger than the sensor's current voltage output. When the integrated pulse train voltage becomes larger than the sensor's output voltage, the comparator's output will change from a logic-level one to a logic-level zero. This logic-level, in turn, is monitored on the general I/O pin. The pulse train's duty cycle creating the integrated voltage that caused the comparator's logic-level transition is the digital representation of the sensor's voltage. Thus every sensor analog output voltage is mapped to a specific duty cycle. This design inherently has outstanding performance (very stable and accurate) since the digital representation of the sensor signal is created by the microcontroller's digital time base. Also the pressure measurement, made via software that first increments the pulse train's duty cycle and then determines if an edge transition occurred on the general I/O pin, is straightforward and easy.

In a calibration routine (discussed below) the sensor's output at two known pressures (e.g. zero and full-scale pressure) can be mapped to two corresponding pulse train duty cycles. Since the pressure sensor's output voltage is linear with the applied pressure, and the integrator's dc output voltage is linear with the input pulse train duty cycle, then the pulse train's duty cycle that causes the logic-level transition at the comparator's output will also be linear with the applied pressure. Thus by knowing the duty cycles for two known pressures, a linear interpolation of any duty cycle gives an accurate measurement of the current pressure. The following equation is used to interpolate the pressure measurement where the pressure units are in kPa.

Current Pressure =

For example:

At zero pressure, if the pulse train's duty cycle required to cause a logic-level transition at the comparator's output is 25% and at full-scale pressure the pulse train's duty cycle is 75%, then the current pressure that corresponds to a duty cycle of 50% (required to obtain the logic-level one to logic-level zero transition at the comparator's output) is

Current Pressure =
$$\frac{50\% - 25\%}{75\% - 25\%}$$
 x 100 kPa = 50 kPa

Until now, the pulse train has been defined in terms of duty cycle. However, in practice duty cycle is calculated from the ratio of the high time to the total period of the pulse train. Therefore, there is a high time (typically in μs) of the pulse train that causes the logic-level transition of the comparator's output. The interpolation of the current pressure can then be calculated directly from the high time of the pulse train that is programmed by the user to be generated by the microcontroller's output compare pin. The equation is similar to the one above for Current Pressure:

Current Pressure =

Current High Time – High Time @ Zero Pressure

High Time @ Full-Scale Pressure – High Time @ Zero Pressure

x Full-Scale Pressure in kPa

Via this equation, the digital nature of the design is revealed. The analog voltage signal has been translated into a signal in the time domain where the high time generated by the output compare pin is actually the digital time representation of the sensor's output. Since the user precisely controls the high time of the pulse train (and period) via software which is based on the accurate digital time base of the microcontroller, the digital representation of the signal is very stable and accurate. Additionally, the high accuracy of the digital representation is possible since all the user must do to digitize the signal is detect a single logic-level transition at the comparator's output.

SYSTEM DESIGN: DEFINING AND DESIGNING FOR A DESIRED SIGNAL RESOLUTION

The resolution is directly related to the period (and thus frequency) of the pulse train. In our design, the difference between the pulse train's high time at full scale pressure and the pulse train's high time and zero pressure must be 512 μs to obtain at least 8-bit resolution. This is determined by the fact that a 4.0 MHz crystal yields a 2.0 MHz clock speed in the MC68HC05P9 microcontroller. This, in turn, translates to 0.5 μs per clock tick. There are four clock cycles per timer count. This results in 2 μs per timer count. Thus, to obtain 256 timer counts (discrete high-time time intervals or 8-bit resolution), the difference between the zero pressure and full scale pressure high times must be at least 2 μs x 256 = 512 μs .

To determine the pulse train's maximum frequency (or minimum period), the sensor's analog dynamic range (span) must be known. For this design, the span is 4.0 V. Thus the 4.0 V span of the sensor must translate to 512 μs of time for 8-bit resolution. But the pulse train typically has a logic-level high value of 5.0 V, indicating that for a 100% duty cycle or a period with all high time, the integrator's output would be 5.0 V; likewise, for a duty cycle of 0% or a period with no high time, the output would be 0 V. Therefore, 512 μs accounts for only

4.0 V/5.0 V (80%) of the pulse train's total period. See Figure 2. To calculate the pulse train's total period, divide the 512 μ s by 4/5 (0.8) to obtain the required minimum period for the pulse train of 640 μ s. The reciprocal of this minimum period is the maximum frequency (1.56 kHz) of the pulse train to obtain at least 8-bit resolution.

To summarize:

The MC68HC05P9 runs off a 4.0 MHz crystal. The microcontroller internally divides this frequency by two to yield an internal clock speed of 2.0 MHz.

$$\frac{1}{2 \text{ MHz}} = > \frac{0.5 \text{ } \mu\text{s}}{\text{Clock Cycle}}$$

and

Therefore,

$$\frac{\text{4 Clock Cycles}}{\text{Timer Count}} \quad \text{X} \frac{\text{0.5 } \mu \text{s}}{\text{Clock Cycle}} = \frac{\text{2 } \mu \text{s}}{\text{Timer Count}}$$

For 8-bit resolution,

$$\frac{2 \mu s}{\text{Timer Count}}$$
 X 256 Timer Counts = 512 μs

which is the required minimum time into which the sensor's 4.0 V span is translated.

To calculate the required period of the pulse train to yield the 0 to 5.0 V output (from 0% to 100% duty cycle based on the pulse train's logic-level high value of 5.0 V):

Minimum Required Period =

Required Period =
$$\frac{512 \mu s}{4/5}$$
 of Integrator's Output = 640 μs

Translating this to frequency, the maximum pulse train frequency is thus:

$$\frac{1}{640 \, \mu s} = 1.55 \, \text{KHz}$$

The above procedure can be implemented easily for other resolution requirements (i.e. a resolution of 1%, 2%, etc.).

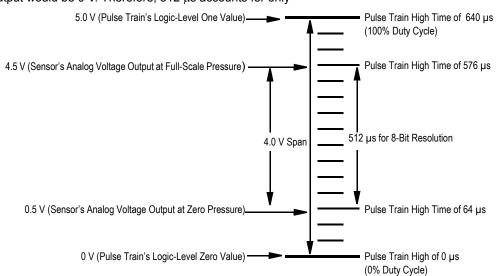


Figure 2. Designing the Pulse Train's Period for 8-Bit Resolution

NOTE: Very small and very large high times (assuming a fixed period) are typically unattainable due to the finite amount of time it takes to generate the pulse train on the output compare pin. This amount of time will varv depending on the microcontroller's clock speed and the latency of the actual software routines implemented. Thus the sensor's analog voltage to which the integrator's dc voltage is compared must be within the possible ranges of voltages created by the integrator's input pulse train - i.e. the sensor's zero pressure offset voltage must be greater than the smallest voltage created by the integrator (corresponding to the pulse train's smallest possible high time) and the sensor's full scale output voltage must be less than the largest voltage created by the integrator (corresponding to the pulse train's largest possible high time).

After establishing the frequency of the pulse train, the RC time constant for the integrator can be determined and the resistor and capacitor value can be chosen. The RC time constant should be long compared to the period of the pulse train so that a stable dc voltage (very little ripple due to the capacitor's charging and discharging) is obtained at the output of the comparator.

Follow these steps to design the RC time constant and integrator's component values. The design example's calculations are presented simultaneously.

For the resolution desired, determine the number of volts (typically mV) that corresponds to the least significant bit (one timer count). For this design example, 8-bit resolution (256 timer counts) over the desired pressure sensor span corresponds to

of
$$\frac{\text{mV}}{\text{timer count}} = \frac{\text{Desired Pressure Sensor Span (V)}}{\text{Number of Timer Counts}}$$

$$= \frac{4.0 \text{ V}}{256 \text{ timer counts}} = \frac{15.6 \text{ mV}}{\text{timer counts}}$$

Therefore, the stability of the integrator's output voltage should be less than 15.6 mV (least significant bit). Choosing an RC time constant that allows a ripple of approximately one-fourth of the least significant bit is sufficient (approximately 3.9 mV).

The most ripple occurs at a 50% duty cycle pulse train. For this design the entire period is 640 $\mu s.$ 50% duty cycle indicates a high time (and low time) of 320 $\mu s.$ Furthermore, the capacitor should discharge no more than approximately 3.9 mV (defined as ΔV) over the 320 $\mu s.$ The following equation is used to calculate the value for RC:

$$V(t) = V_{INITIAL} - \Delta V =$$

Pulse Train Logic– level one value \times Duty Cycle \times e $\frac{\iota}{RC}$ where

 $\label{eq:Vinitial} V_{\text{INITIAL}} = \text{Pulse Train Logic-level one value} \times \text{Duty Cycle}$ and

 ΔV is the voltage discharge of the capacitor. Solving for RC:

RC =
$$\frac{t}{\ln\left(\frac{V(t)}{\text{Pulse Train Logic-level one value} \times \text{Duty Cycle}}\right)}$$
$$= \frac{320 \text{ }\mu\text{s}}{\ln\left(\frac{2.5 \text{ V} - 3.9 \text{ mV}}{5.0 \text{ V} \times 50\%}\right)} = 0.205 \text{ s}$$

Finally, choose the values of the resistor and capacitor. A typical resistor value is on the order of a tens of $k\Omega.$ The resistor's value can be higher (hundreds of $k\Omega)$ but care must be taken to avoid increased thermal noise.

For this design, the resistor value is chosen to be 49.9 k Ω (1% resistor). The capacitor's value is readily calculated to be

$$C = \frac{0.205 \text{ s}}{49.9 \text{ k}\Omega} = 4.1 \text{ }\mu\text{F}$$

Choose the values of the resistor and capacitor so that the actual time constant is equal to or greater than the calculated time constant.

NOTE: Be aware that temperature variations can create errors in the system (thus reducing system performance); therefore, be sure to use low temperature coefficient resistors, capacitors, etc.

SYSTEM DESIGN: STEP-BY-STEP PROCEDURE FOR PRESSURE MEASUREMENT AND CALIBRATION

To measure pressure (Note: there are other measurement algorithms that can be performed that in some cases may be more acceptable [see below, Additional notes]):

- Start with a pulse train with the minimum high time feasible with the system's microcontroller. Pulse train should run at a frequency equal to or less than the frequency calculated above.
- Make sure the general I/O pin's input is high (sensor's output voltage is greater than the integrator's output voltage).
- Increment the high time of the pulse train by one timer count.
- Check the general I/O pin to see if its input is low (sensor's output voltage has become less than the integrator's output voltage).
- If the general I/O pin is reading a logic-level zero, store in memory the high time of the pulse train as the current pressure high time reading that created the logic-level transition in the comparator's output.
- 6. If the general I/O pin is reading a logic-level one, go back to step 3 and repeat.
- 7. Using the equation "Current Pressure =" shown above, calculate the current pressure (assuming the system has already been calibrated).
- Repeat steps 1 through 7 for additional pressure measurements.

To calibrate the system:

At zero and full scale pressures, perform the above 8 step pressure measurement routine. Store the appropriate pulse train high times corresponding to zero and full scale pressure. These high times will be used to calculate the current pressure as mentioned in Step 7 above.

SOFTWARE EXAMPLES TO GENERATE PULSE TRAIN ON OUTPUT COMPARE TIMER CHANNEL

The following software examples are written in assembly language for the MC68HC05P9 (the code is applicable to any HC05 series microcontroller with TCMP pin).

```
* GENERATES THE PULSE TRAIN ON TCMP
GEN
LDA PERIODL
                            * LOW BYTE OF THE PERIOD
SUB HIGHTIMEL
                           * LOW BYTE OF THE HIGHTIME
STA LOWTIMEL
                           * LOW BYTE OF THE LOWTIME
LDA PERIODH
                           * HIGH BYTE OF THE PERIOD
SBC HIGHTIMEH
                           * HIGH BYTE OF THE HIGHTIME
STA LOWTIMEH
                           * HIGH BYTE OF THE LOWTIME
RTS
* INCREASE THE HIGH TIME (DUTY CYCLE) OF THE PULSE TRAIN
INCPW
LDA HIGHTIMEL
ADD #$01
                     * INCREMENT PULSE WIDTH BY 2 µs
STA HIGHTIMEL
LDA HIGHTIMEH
ADC #$0
STA HIGHTIMEH
RTS
* DECREASE THE HIGH TIME (DUTY CYCLE) OF THE PULSE TRAIN
DECPW
LDA HIGHTIMEL
SUB #$01
                     * DECREMENT PULSE WIDTH BY 2 µs
STA HIGHTIMEL
LDA HIGHTIMEH
SBC #$0
STA HIGHTIMEH
JSR GEN
RTS
* INCREASE THE PERIOD (DECREASE FREQUENCY) OF THE PULSE TRAIN
LDA PERIODL
ADD #$05
                     * INCREMENT PERIOD BY 10 \mu s
STA PERIODL
LDA PERIODH
ADC #$0
                     * ADJUST HIGH BYTE OF PERIOD IF CARRY
STA PERIODH
JSR GEN
* DECREASE THE PERIOD (INCREASE FREQUENCY) OF THE PULSE TRAIN
DECPER
LDA PERIODL
SUB #$05
                     * DECREMENT PERIOD BY 10 \mu s
STA PERIODL
LDA PERIODH
SBC #$0
                     * ADJUST HIGH BYTE OF PERIOD IF BORROW
STA PERIODH
JSR GEN
RTS
TIMER
                            * INTERRUPT SERVICE ROUTINE FOR TCMP
LDA TSR
                     * CLEAR OCF FLAG IN TSR
LDA TCMPL
BRSET 0,TCR,ADDHIGH* HIGH OR LOW PULSE TIME NEEDED?
ADDLOW
BSET 0,TCR
                    * ADD LOW TIME TO THE PULSE TRAIN
LDA LOWTIMEL
ADD TCMPL
TAX
LDA TCMPH
ADC LOWTIMEH
STA TCMPH
```

```
STX TCMPL
RTI

ADDHIGH
BCLR 0, TCR * ADD HIGH TIME TO THE PULSE TRAIN
LDA HIGHTIMEL
ADD TCMPL
TAX
LDA TCMPH ADC HIGHTIMEH
STA TCMPH
STX TCMPL
RTI
```

ADDITIONAL NOTES

This type of A/D conversion method (one type of A/D conversion) inherently takes a finite period of time to digitize the signal (incrementing the pulse train's high time while polling the general I/O pin); however, for most sensor applications the physical phenomenon being measured does not change quickly (<1 ms) enough to warrant an ultra-fast A/D conversion process.

An additional advantage of this design is that the measurement process may be performed only as necessary, keeping the CPU processing time and overhead minimal.

If an input capture timer channel (TCAP) is available, it may be configured to detect the logic-level one to logic-level zero transition of the comparator's output. When the edge transition occurs, an interrupt service routine is executed that stores the pulse train's high times, calculates the current pressure, etc. This is typically more convenient and eliminates the need to poll a general I/O pin every time the pulse train's high time is incremented (interrupt subroutine is executed only when the edge transition occurs).

SUMMARY

Shown above is a minimal component design that can convert an analog sensor's output into a digital output. Each major subsystem (sensor, amplifier, integrator, comparator, and microcontroller) is explained in detail simultaneously with a design example. Next the system operation is discussed including how it works and how to design a desired system resolution. Finally a flow chart for measuring and calibrating the sensor's output is presented.

Implementing Auto Zero for Integrated Pressure Sensors

by: Ador Peodique Sensor Systems and Applications Engineering

INTRODUCTION

This application note describes how to implement an autozero function when using an integrated pressure sensor with a microcontroller and an analog to digital converter (MCU and an A/D). Auto-zero is a compensation technique based on sampling the offset of the sensor at reference pressure (atmospheric pressure is a zero reference for a gauge measurement) in order to correct the sensor output for longterm offset drift or variation.

Sources of offset errors are due to device to device offset variation (trim errors), mechanical stresses (mounting stresses), shifts due to temperature and aging. Performing auto-zero will greatly reduce these errors. The amount of error correction is limited by the resolution of the A/D.

In pressure sensing applications where a zero-pressure reference condition can exist, auto-zero can be implemented easily when an integrated pressure sensor is interfaced to an MCU.

EFFECTS OF OFFSET ERRORS

Figure 1 illustrates the transfer function of an integrated pressure sensor. It is expressed by the linear function:

$$V_{OUT} = V_{OFF} + [(V_{FSO} - V_{OFF})/(P_{MAX} - P_{REF})] \times P = V_{OFF} + S \times P$$

Here, V_{OUT} is the voltage output of the sensor, V_{FSO} is the full-scale output, V_{OFF} is the offset, P_{MAX} is the maximum pressure and P_{REF} is the reference pressure. Note that ($V_{FSO} \times V_{OFF}/P_{MAX} \times P_{REF}$) can be thought of as the slope of the line and V_{OFF} as they y-intercept. The slope is also referred to as the sensitivity, S, of the sensor.

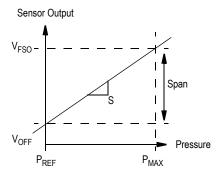


Figure 1. Definition of Span, Full-Scale Output, Offset and Sensitivity

A two-point pressure calibration can be performed to accurately determine the sensitivity and get rid of the offset calibration errors altogether. However, this can be very expensive in a high volume production due to extra time and labor involved. The system designer therefore designs a pressure sensor system by relying on the sensitivity and offset data given in the data sheet and using a linear equation to determine the pressure. Using the later, the sensed pressure is easily determined by:

$$P = (V_{OUT} - V_{OFF})/S$$

If an offset error is introduced due to device to device variation, mechanical stresses, or offset shift due to temperature (the offset has a temperature coefficient or TCO), those errors will show up as an error, DP, in the pressure reading:

$$P + \Delta P = [V_{OLIT} \times (V_{OFF} + \Delta V_{OFF})]/S$$

As evident in Figure 2, offset errors, ΔV_{OFF} , have the effect of moving the intercept up and down without affecting the sensitivity. We can therefore correct this error by sampling the pressure at zero reference pressure (atmosphere) and subtracting this from the sensor output.

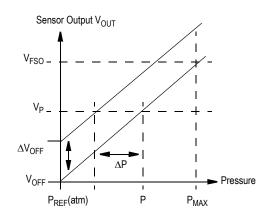


Figure 2. Effect of Offset Errors

AUTO-ZERO CONSIDERATIONS IN APPLICATIONS

There is an important consideration when implementing auto-zero. In order to use this technique, a zero pressure reference condition must be known to exist in the system.

There are a lot of applications that will lend themselves naturally to auto-zeroing. Typical applications are those that:

- · Experience a zero-pressure condition at system start up,
- Are idle for a long time (zero pressure), take a pressure measurement then go back to idle again.

For example, in a water level measurement in a washing machine application, there is a zero pressure reference condition when the water in the tub is fully pumped out. Another application that is perfect for auto-zeroing is a beverage fill level measurement; a zero reference condition exists before the bottle is filled. HVAC air flow applications can also use auto-zeroing; before system start up, an auto-zero can be initiated. In other words, it can be used in applications where a zero pressure condition can exist in order to auto-zero the system.

An auto-zero command can be automated by the system or can be commanded manually. Each system will have a different algorithm to command an auto-zero signal. For example, using the beverage fill level measurement as an example, the system will auto zero the sensor before the bottle is filled.

IMPLEMENTATION OF AUTO-ZERO WITH A MICROCONTROLLER

Auto-zero can be implemented easily when the integrated sensor is interfaced to a microcontroller. The auto-zero algorithm is listed below:

- Sample the sensor output when a known zero reference is applied to the sensor (atmospheric pressure is a zero reference for gauge type measurement). Store current zero pressure offset as CZPO.
- Sample the sensor output at the current applied pressure. Call this SP.
- Subtract the stored offset correction, CZPO, from SP. The pressure being measured is simply calculated as:

$$P_{MEAS} = (SP \times CZPO)/S$$

Note that the equation is simply a straight line equation, where S is the sensitivity of the sensor. The auto-zero algorithm is shown graphically in Figure 3.

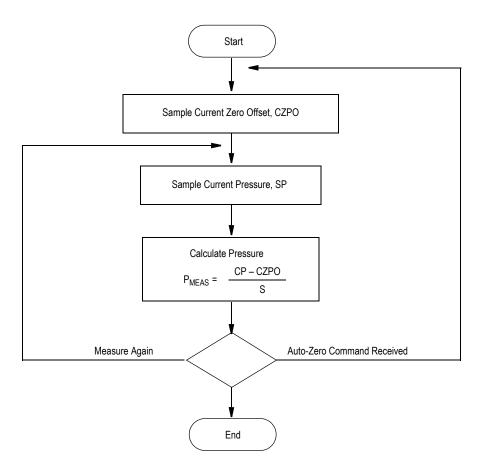


Figure 3. Flowchart of the Auto-Zero Algorithm

IMPROVEMENT ON OFFSET ERROR

In the following calculations, we will illustrate how auto-zero will improve the offset error contribution. We will use the MPXV4006G interfaced to an 8-bit A/D as an example. When auto-zero is performed, the offset errors are reduced and the resulting offset errors are replaced with the error (due to resolution) of the A/D. We can categorize the offset error contributions into temperature and calibration errors.

Temperature Coefficient of Offset Error

The offset error due to temperature is due to Temperature Coefficient of Offset, or TCO. This parameter is the rate of change of the offset when the sensor is subject to temperature. It is defined as:

$$TCO = (\Delta V_{OFF}/\Delta T)$$

The MPXV4006G has a temperature coefficient of offset (normalized with the span at 25°C) of:

$$\Delta TCO = (\Delta V_{OFF}/\Delta T)/V_{FS@25^{\circ}C} = 0.06\% FS/^{\circ}C$$

As an example, if the sensor is subjected to temperature range between 10°C and 60°C, the error due to TCO is:

$$\Delta TCO = (0.06\% FS/C) \times (60^{\circ}C - 10^{\circ}C) = \pm 3.0\% FS$$

Offset Calibration Errors

Even though the offset is laser trimmed, offset can shift due to packaging stresses, aging and external mechanical stresses due to mounting and orientation. This results in offset calibration error. For example, the MPXV4006G data sheet shows this as:

$$V_{OFF\ MIN} = 0.100\ V_{,}$$

$$V_{OFF\ TYPICAL} = 0.225\ V$$
 and $V_{OFF\ MAX} = 0.430V$

We can then calculate the offset calibration error with respect to the full scale span as:

$$\Delta V_{OFF\;MIN,MAX} = \\ (V_{OFF\;TYPICAL} - V_{OFF\;MIN,MAX})/VFS$$

This results in the following offset calibration error,

$$\Delta V_{OFF MIN}$$
 = 2.7% FS and $\Delta V_{OFF MAX}$ = 4.5% FS

A/D Error

As mentioned above, we can reduce offset errors (calibration and TCO) when we perform auto-zero. These errors are replaced with the A/D error (due to its resolution),

$$\Delta$$
OFFSET_{AUTOZERO} = Δ TCO + Δ OFFSET = Δ A/D

Typically, a sensor is interfaced to an 8-bit A/D. With the A/D reference tied to V_{RH} = 5.0 V and V_{RL} = 0 V, the A/D can resolve 19.6 mV/bit. For example, the MXPV4006G has a sensitivity of 7.5 mV/mm H₂0, the resolution is therefore

 $A/D_{RESOLUTION} = 19.6 \text{ mV/bit}/(7.5 \text{ mV/mm H}_20) = 2.6 \text{ mm H}_20/\text{bit}$

Assuming \pm 1 LSB error, the error due to digitization *and* the resulting offset error is,

$$\Delta$$
A/D = Δ OFFSET_{AUTOZERO} =2.6 mm H₂0/612 mmH₂0 = ±0.4% FS

It can be seen that with increasing A/D resolution, offset errors can be further reduced. For example, with a 10-bit A/D, the resulting offset error contribution is only 0.1% FS when auto-zero is performed.

If auto-zero is to be performed only once and offset correction data is stored in non-volatile memory, the TCO offset error and calibration error will not be corrected *if* the sensor later experiences a wide temperature range or later experience an offset shift. However, if auto-zero is performed at the operating temperature, TCO error will be compensated although subsequent offset calibration error will not be compensated. It is therefore best to auto-zero as often as possible in order to dynamically compensate the system for offset errors.

CONCLUSION

Auto-zero can be used to reduce offset errors in a sensor system. This technique can easily be implemented when an integrated pressure sensor is interfaced to an A/D and a microcontroller. With a few lines of code, the offset errors are effectively reduced; the resulting offset error reduction is limited only by the resolution of the A/D.

Noise Considerations for Integrated Pressure Sensors

by: Ador Reodique, Sensor and Systems Applications Engineering and Warren Schultz, Field Engineering

INTRODUCTION

The Integrated Pressure Sensors (IPS) have trimmed outputs, built-in temperature compensation and an amplified single-ended output which make them compatible with Analog to Digital converters (A/D's) on low cost micro-controllers. Although 8-bit A/D's are most common, higher resolution A/D's are becoming increasingly available. With these higher resolution A/D's, the noise that is inherent to piezo-resistive bridges becomes a design consideration.

The two dominant types of noise in a piezo-resistive integrated pressure sensor are shot (white) noise and 1/f (flicker noise). Shot noise is the result of non-uniform flow of carriers across a junction and is independent of temperature. The second, 1/f, results from crystal defects and also due to wafer processing. This noise is proportional to the inverse of frequency and is more dominant at lower frequencies.

Noise can also come from external circuits. In a sensor system, power supply, grounding and PCB layout is important and needs special consideration.

The following discussion presents simple techniques for mitigating these noise signals, and achieving excellent results with high resolution A/D converters.

EFFECTS OF NOISE IN SENSOR SYSTEM

The transducer bridge produces a very small differential voltage in the millivolt range. The on-chip differential amplifier amplifies, level shifts and translates this voltage to a single-ended output of typically 0.2 volts to 4.7 volts. Although the transducer has a mechanical response of about 500 Hz, its noise output extends from 500 Hz to 1 MHz. This noise is amplified and shows up at the output as depicted in Figure 1.

There is enough noise here to affect 1 count on an 8-bit A/D, and 4 or 5 counts on a 10-bit A/D. It is therefore important to consider filtering. Filtering options are discussed as follows.

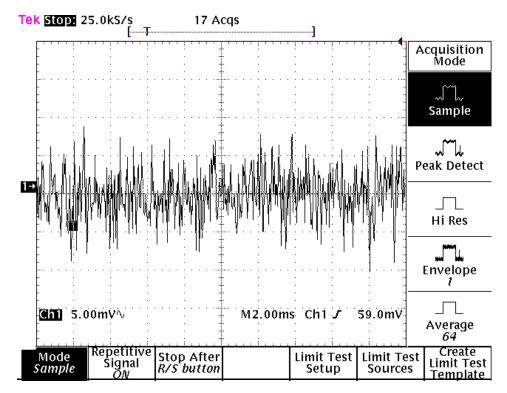


Figure 1. MPX5006 Raw Output

NOISE FILTERING TECHNIQUES AND CONSIDERATIONS

For mitigating the effects of this sensor noise, two general approaches are effective, low pass filtering with hardware, and low pass filtering with software. When filtering with hardware,

a low-pass RC filter with a cutoff frequency of 650 Hz is recommended. A 750 ohm resistor and a 0.33 μF capacitor have been determined to give the best results (see Figure 2) since the 750 ohm series impedance is low enough for most A/D converters

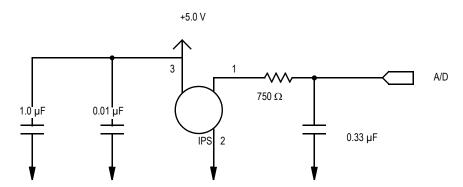


Figure 2. Integrated Pressure Sensor with RC LP Filter to Filter Out Noise

This filter has been tested with an MC68HC705P9 microcontroller which has a successive approximation A/D converter. Successive approximation A/D's are generally compatible with the DC source impedance of the filter in Figure 2. Results are shown in Figure 4.

Some A/D's will not work well with the source impedance of a single pole RC filter. Please consult your A/D converter

technical data sheet if input impedance is a concern. In applications where the A/D converter is sensitive to high source impedance, a buffer should be used. The integrated pressure sensor has a rail-to-rail output swing, which dictates that a rail-to-rail operational amplifier (op amp) should be used to avoid saturating the buffer. A MC33502 rail-to-rail input and output op amp works well for this purpose (see Figure 3).

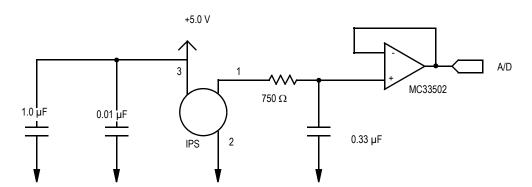


Figure 3. Use a Rail-to-Rail Buffer to Reduce Output Impedance of RC Filter

Averaging is also effective for filtering sensor noise. Averaging is a form of low pass filtering in software. A rolling average of eight to 64 samples will clean up most of the noise. A 10 sample average reduces the noise to about 2.5 mV peak to peak and a 64 sample average reduces the noise to about 1 mV peak to peak (see Figure 5 and Figure 6).

This method is simple and requires no external components. However, it does require RAM for data storage, extra computation cycles and code. In applications where the microcontroller is resource limited or pressure is changing relatively rapidly, averaging alone may not be the best solution. In these situations, a combination of RC filtering and a limited number of samples gives the best results. For example, a rolling average of four samples combined with the RC filter in Figure 2 results in a noise output on the order of 1 mV peak-to-peak.

Another important consideration is that the incremental effectiveness of averaging tends to fall off as the number of samples is increased. In other words, the signal-to-noise (S/N) ratio goes up more slowly than the number of samples. To be more precise, the S/N ratio improves as the square root of the number of samples is increased. For example, increasing the number of samples from 10 to 64, in Figure 5, and in Figure 6, reduced noise by a factor of 2.5.

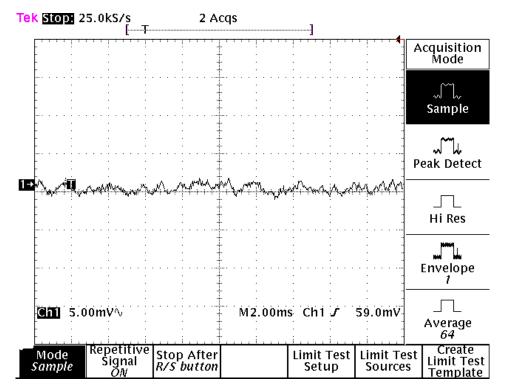


Figure 4. Output After Low Pass Filtering

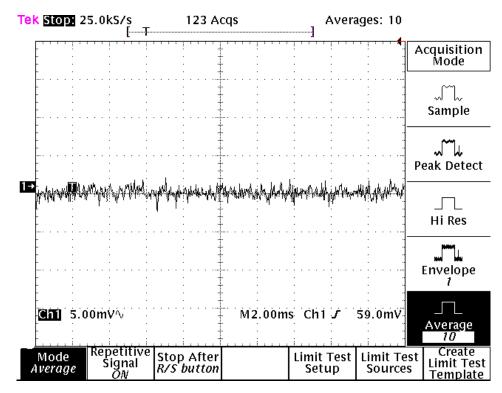


Figure 5. Output with 10 Averaged Samples

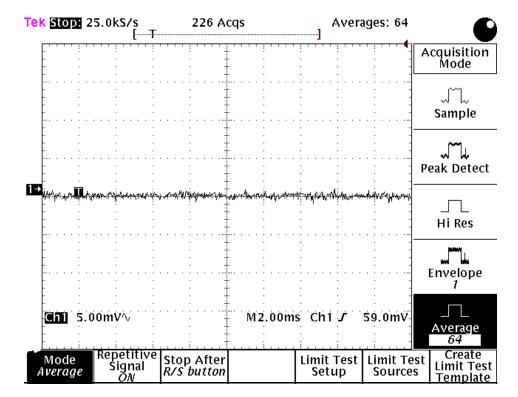


Figure 6. Output with 64 Averaged Samples

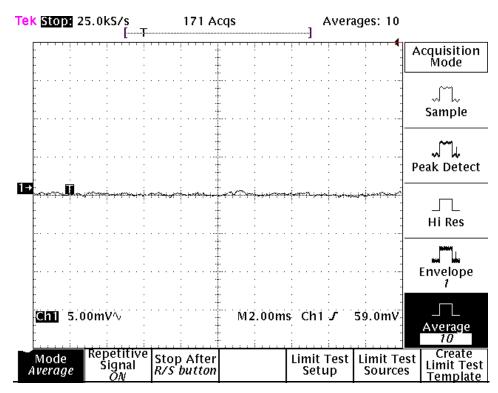


Figure 7. Filtered Sensor Output and Averaged Over 10 Samples

POWER SUPPLY

Since the sensor output is ratiometric with the supply voltage, any variation in supply voltage will also proportionally appear at the output of the sensor. The integrated pressure sensor is designed, characterized and trimmed to be powered with a $5.0~V~\pm 5\%$ power supply which can supply the maximum 10 mA current requirement of the sensor. Powering the integrated sensor at another voltage than specified is not recommended because the offset, temperature coefficient of offset (TCO) and temperature coefficient of span (TCS) trim will be invalidated and will affect the sensor accuracy.

From a noise point of view, adequate de-coupling is important. A 0.33 μF to 1.0 μF ceramic capacitor in parallel with a 0.01 μF ceramic capacitor works well for this purpose. Also, with respect to noise, it is preferable to use a linear regulator such as an MC78L05 rather than a relatively more noisy switching power supply 5.0 volt output. An additional consideration is that the power to the sensor and the A/D voltage reference should be tied to the same supply. Doing this takes advantage of the sensor output ratiometricity. Since the A/D resolution is also ratiometric to its reference voltage, variations in supply voltage will be canceled by the system.

LAYOUT OPTIMIZATION

In mixed analog and digital systems, layout is a critical part of the total design. Often, getting a system to work properly depends as much on layout as on the circuit design. The following discussion covers some general layout principles, digital section layout and analog section layout.

General Principles

There are several general layout principles that are important in mixed systems. They can be described as five rules.

Rule 1: Minimize loop areas.

This is a general principle that applies to both analog and digital circuits. Loops are antennas. At noise sensitive inputs, the area enclosed by an incoming signal path and its return is proportional to the amount of noise picked up by the input. At digital output ports, the amount of noise that is radiated is also proportional to loop area.

Rule 2: Cancel fields by running equal currents that flow in opposite directions as close as possible to each other.

If two equal currents flow in opposite directions, the resulting electromagnetic fields will cancel as the two currents are brought infinitely close together. In printed circuit board layout, this situation can be approximated by running signals and their returns along the same path but on different layers. Field cancellation is not perfect due to the finite physical separation, but is sufficient to warrant serious attention in critical paths. Looked at from a different perspective, this is another way of looking at Rule # 1, i.e., minimize loop areas.

Rule 3: On traces that carry high speed signals avoid 90 degree angles, including "T" connections.

If you think of high speed signals in terms of wavefronts moving down a trace, the reason for avoiding 90 degree angles is simple. To a high speed wavefront, a 90 degree angle is a discontinuity that produces unwanted reflections. From a practical point of view, 90 degree turns on a single trace are easy to avoid by using two 45 degree angles or a curve. Where two traces come together to form a "T" connection, adding some material to cut across the right angles accomplishes the same thing.

Rule 4: Connect signal circuit grounds to power grounds at only one point.

The reason for this constraint is that transient voltage drops along the power grounds can be substantial, due to high values of di/dt flowing through finite inductance. If signal processing circuit returns are connected to power ground at multiple points, then these transients will show up as return voltage differences at different points in the signal processing circuitry. Since signal processing circuitry seldom has the noise immunity to handle power ground transients, it is generally necessary to tie signal ground to power ground at only one point.

Rule 5: Use ground planes selectively.

Although ground planes are highly beneficial when used with digital circuitry, in the analog world they are better used selectively. A single ground plane on an analog board puts parasitic capacitance in places where it is not desired, such as at the inverting inputs of op amps. Ground planes also limit efforts to take advantage of field cancellation, since the return is distributed.

ANALOG LAYOUT

In analog systems, both minimizing loop areas and field cancellation are useful design techniques. Field cancellation is applicable to power and ground traces, where currents are equal and opposite. Running these two traces directly over each other provides field cancellation for unwanted noise, and minimum loop area.

Figure 8 illustrates the difference between a power supply de-coupling loop that has been routed correctly and one that has not. In this figure, the circles represent pads, the schematic symbols show the components that are connected to the pads, and the routing layers are shown as dark lines (top trace) or grey lines (bottom trace). Note, by routing the two traces one over the other, the critical loop area is minimized. In addition, it is important to keep de-coupling capacitors close to active devices such as MPX5000-series sensors and operational amplifiers. As a rule of thumb, when 50 mil ground and Vcc traces are used, it is not advisable to have more than 1 inch between a de-coupling capacitor and the active device that it is intended to be de-coupled.

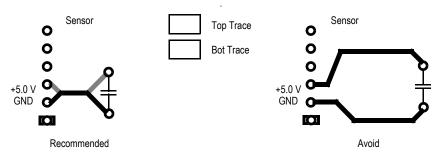


Figure 8. Minimizing Loop Areas

For similar reasons it is desirable to run sensor output signals and their return traces as close to each other as possible. Minimizing this loop area will minimize the amount of external noise that is picked up by making electrical connections to the sensor.

DIGITAL LAYOUT

The primary layout issue with digital circuits is ground partitioning. A good place to start is with the architecture that is shown in Figure 9. This architecture has several key attributes. Analog ground and digital ground are both separate and distinct from each other, and come together at only one point. For analog ground it is preferable to make the one point as close as possible to the analog to digital converter's ground reference (V_{REFL}). The power source ground connection should be as close as possible to the microcontroller's power supply return (V_{SS}). Note also that the path from V_{REFL} to V_{SS} is isolated from the rest of digital ground until it approaches V_{SS} .

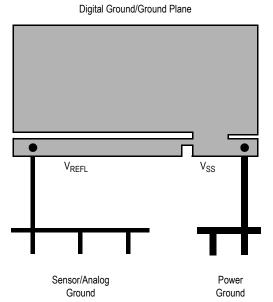
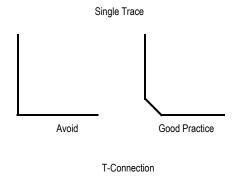



Figure 9. Ground Partitioning

In addition to grounding, the digital portion of a system benefits from attention to avoiding 90 degree angles, since there are generally a lot of high speed signals on the digital portion of the board. Routing with 45 degree angles or curves minimizes unwanted reflections, which increases noise

immunity. Single traces are easy, two forty five degree angles or a curve easily accomplish a 90 degree turn. It is just as important to avoid 90 degree angles in T connections.

Figure 10 illustrates correct versus incorrect routing for both cases.

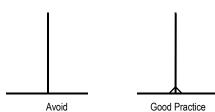


Figure 10. Degree Angles

CONCLUSION

Piezo-resistive pressure sensors produce small amounts of noise that can easily be filtered out with several methods. These methods are low pass filtering with an RC filter, averaging or a combination of both which can be implemented with minimal hardware cost.

In a mixed sensor system, noise can be further reduced by following recommended power supply, grounding and layout techniques.

REFERENCES

- AN1626 Noise Management in Motor Drives, Warren Schultz, Freescale Semiconductor, Inc.
- 2. Noise Reduction Techniques In Electronic Systems 2nd Edition, Henry W. Ott, John Wiley & Sons.
- Noise: Comparing Integrated Pressure Sensors and Op Amps, Ira Basket, Freescale Semiconductor, Inc. Sensor Products Division internal paper.

Compound Coefficient Pressure Sensor PSPICE Models

by: Warren Schultz

INTRODUCTION

PSPICE models for Uncompensated, MPX2000 series, and MPX5000 series pressure sensors are presented here. These models use compound coefficients to improve modeling of temperature dependent behavior. The discussion begins with an overview of how the models are structured, and is followed by an explanation of compound coefficients. The emphasis is on how to use these models to estimate sensor performance. They can be found electronically on a disk included in ASB200 Sensor Development Controller kits.

MODEL STRUCTURE

Models for all three sensors series share a common structure. They are complete models set up to run as is. To obtain output voltage versus pressure, it is only necessary to run the model and display V(2,4) or V(1,0). V(2,4) gives the output voltage for Uncompensated and MPX2000 series sensors. V(1,0) applies to MPX5000 sensors. In both cases, V(2,4) and V(1,0) correspond to the pin numbers where output voltage would be, if probed on an actual part.

These models are divided into five sections to facilitate ease of use. They are:

- Input Parameters
- · Linear to Compound Conversion
- Model Coefficients
- Circuit
- Stimulus

Each of these sections is described in the following discussion.

INPUT PARAMETERS

This section contains input parameters that describe measurable sensor characteristics. Inputs such as full scale pressure (FSP), full scale span (FSS) offset voltage (VOFFSET), and temperature coefficient of offset voltage (TCOS) are made here. Characteristics that are specific to the transducer, such as bridge impedance (RBRIDGE), temperature coefficient of bridge resistance (TCRB), and temperature coefficient of span (TCSP) are also listed here.

Parameters such as VOFFSET that set an output value for the sensor are used to calculate resistance values that produce those outputs. For example, if you input 100 mV of offset voltage and a 10 μ V/degree temperature coefficient of offset voltage, the model will calculate the bridge resistance values necessary to produce 100 mV of offset voltage and a 10 μ V/degree temperature coefficient.

In the MPX2000 and MPX5000 models, temperature coefficient of span (TCSP) is handled differently than the other parameters. The non-linear behavior of span over temperature is calculated from the interaction of the transducer's temperature coefficient of span (TCSP), the transducer's temperature coefficient of resistance (TCRB), and the effects of inserting fixed resistance, RTCSPAN, in series with the bridge. The result is a temperature coefficient of span that closely resembles the real thing, but is not directly controlled by the user.

LINEAR TO COMPOUND CONVERSION

The compound coefficients used in these models are from equations of the form:

$$(1) R(Temp) = R25(1) TCR)(Temp - 25)$$

where R_{25} is resistance at 25 degrees Celsius, TCR is temperature coefficient of resistance, Temp is an abbreviation for Temperature in degrees Celsius, and R(Temp) is the function resistance versus temperature.

The TCR (temperature coefficient of resistance) in equation (1) is a different number than a temperature coefficient that is stated in linear terms. The three statements in this section convert linear coefficients to the compound values that the models need. This conversion is based upon a 100 degree difference between the two points at which the linear coefficients have been measured.

MODEL COEFFICIENTS

In this section most of the calculation is performed. Values for the transducer bridge resistors are determined from pressure, temperature, offset, temperature coefficient of offset, span, temperature coefficient of span, and temperature coefficient of resistance inputs. A series of parameter statements are used, as much as is practical, to do calculations that will fit in an 80 character line without wraparounds. These calculations use PSPICE's

PARAMETER function, making the models specific to PSPICE. Parameters are described as:

- KP Pressure constant; translates pressure into a bridge resistance multiplier
- KO Offset constant; offset component of bridge resistance
- DT Delta temperature; Temperature *25 degrees Celsius
- KTCO Temperature coefficient of offset constant; translates temperature coefficient of offset into bridge resistance
- TCR Temperature coefficient of bridge resistance; shaped by a Table that accounts for cold temperature nonlinearity's
- TCR2 Temperature coefficient of contact resistance; shaped by a Table that accounts for cold temperature nonlinearity's
- TCS Temperature coefficient of Span; shaped by a Table that accounts for cold temperature non-linearity's
- RPH Bridge Resistance (RS1 and RS3) modified by pressure and temperature
- ROH Offset Component of Bridge Resistors RS1 and RS3
- RPL Bridge Resistance (RS2 and RS4) modified by pressure and temperature
- ROL Offset Component of Bridge Resistors RS2 and RS4
- KB Bias Constant; adjusts KP for bias voltage effects of span compensation network (MPX2000 and MPX5000 series sensors)

- KBT Bias Constant; adjusts KO for bias voltage effects of span compensation network (MPX2000 and MPX5000 series sensors)
- GAIN Instrumentation amplifier gain; differential gain (MPX5000 series)
- ROFF Offset resistance; determines value of RS13 (MPX5000 series)

After these calculations are made, the final bridge resistance calculation is performed in the circuit section. The value for bridge resistors RS1 and RS3 is RPH + ROH. Bridge resistors RS2 and RS4 are equal to RPL-ROL.

CIRCUIT

Three circuits are used to model the three sensor families, one each for the Uncompensated series, MPX2000 series, and MPX5000 series sensors. Schematics that are derived from the circuit netlists are shown in Figure 1, Figure 2, and Figure 3. They are discussed beginning with the Uncompensated series, which is the least complex.

Uncompensated Series

The Uncompensated Series sensors (MPX10, MPX50, and MPX100) are modeled as Wheatstone bridges. In the configuration that is shown in Figure 1, resistors RS2 and RS4 decrease in value as pressure is applied. Similarly, RS1 and RS3 increase in value as pressure is applied. Resistors RS5 and RS7 are contact resistors. They represent real physical resistors that are used to make contact to the bridge. Resistors RS6 and RS8 are included to satisfy PSPICE's requirement for no floating nodes. That's it. The netlist in this model is quite simple. The hard part is calculating the values for RS1, RS2, RS3, and RS4.

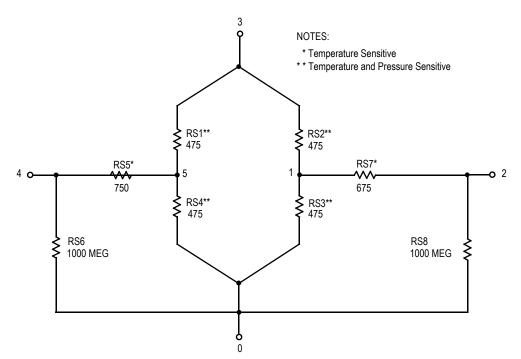


Figure 1. MPX10 and 100 PSPICE Compound Coefficient Model

MPX2000 Series:

The MPX2000 Series sensors (MPX2010, MPX2050, MPX2100, and MPX2200) add span compensation and trim resistors to the Uncompensated model. These resistors are shown in Figure 2 as RS9, RS11, and RS10. The temperature coefficient of resistance (TCR) for the bridge resistors works against fixed resistors RS9 and RS11 to produce a bias to the bridge that increases with temperature. This increasing bias compensates for the temperature coefficient of span, which is negative.

Resistor RS12 is also added to the Uncompensated model. It represents additional impedance that is associated with the MPX2000 series sensors' offset trim network. Offset performance is modeled behaviorally. Inputs for offset (VOFFSET) and temperature coefficient of offset (TCOS) are translated into bridge resistance values that produce the specified performance. This behavioral approach was chosen in order to make it easy to plug in different values for VOFFSET and TCOS.

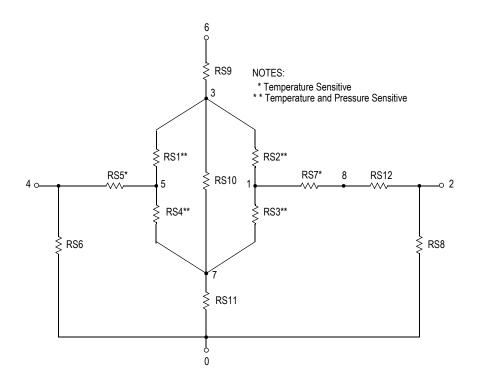


Figure 2. MPX2000 Series PSPICE Compound Coefficient Model

MPX5000 Series

The MPX5000 Series sensors (MPX5010, MPX5050, MPX5100, MPX5700, and MPX5999) add an instrumentation amplifier to the MPX2000 series model. This amplifier is shown in Figure 3. It consists of operational amplifiers ES1, ES2, ES3, and ES4. Amplifiers ES1, ES2 and ES3 are

modeled as voltage controlled voltage sources with gains of 100,000. Offset voltage, input bias current effects, etc. are taken into account with the values that are used to determine offset voltage and temperature coefficient of the sensor bridge. Amplifier ES4 models saturation voltage. Its output follows the output of ES3 with saturation limits at 75 millivolts and 4.9 volts.

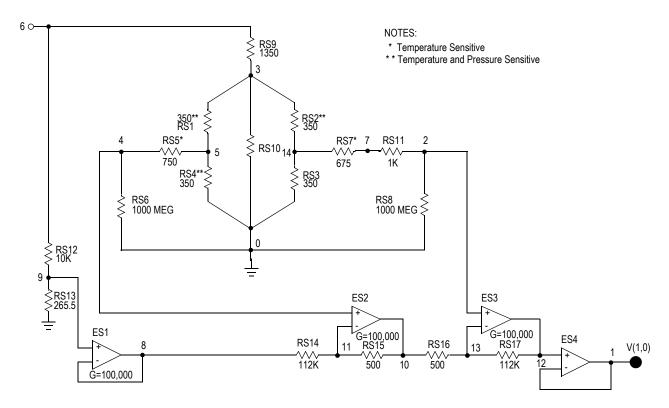


Figure 3. MPX Series PSPICE Compound Coefficient Model

STIMULUS

The last section of these models is labeled STIMULUS. Bias voltage, pressure, and temperature are applied here. Nominal bias voltage (VCC) is 3.0 volts for Uncompensated sensors, 10.0 volts for MPX2000 sensors, and 5.0 volts for MPX5000 sensors. Pressure is selected on the second line. It is effective when the asterisk (*) on line 4 is removed to command a temperature sweep. Line 3 calls for a sweep of pressure and temperature. An asterisk (*) placed in front of Line 3 allows the temperature sweep on line four to be selected.

COMPOUND COEFFICIENTS

Applying temperature coefficients to variables such as resistance is an essential part of modeling. The linear approach, that is usually used, is based upon the assumption that changes are small, and can be modeled with a linear approximation. Using temperature coefficient of resistance as (TCR) as an example, the linear expression takes the form:

(2)
$$R(Temp) = R25(1) TCR(Temp - 25)$$

Provided that the TCR in equation (2) is 100 parts per million per degree Celsius or less this approach works quite well. With sensor TCR's of several thousand parts per million per degree Celsius, however, the small change assumption does not hold. To accurately model changes of this magnitude, the mathematical expression has to describe a physical process where a unit change in temperature produces a constant percentage change in resistance. For

example, a 1% per degree TCR applied to a 1 K Ohm resistor should add 10 ohms to the resistor's value going from 25 to 26 degrees. At 70 degrees, where the resistor has increased to 2006 Ohms, going from 70 to 71 degrees should add 20.06 Ohms to its value. The error in the linear expression comes from that fact that it adds 10 ohms to the resistor's value at all temperatures.

A physical process whereby a unit change in temperature produces a constant percentage change in resistance is easily modeled by borrowing an expression from finance. Compound interest is a direct analog of temperature coefficients. With compound interest, a unit change in time produces a constant percentage change in the value of a financial instrument. It can be described by the expression:

where i is the interest rate and n is the number of periods. Substituting R_{25} for Present Value, R(Temp) for Future Value, TCR for i, and (Temp - 25) for n yields:

(4) R(Temp) =
$$R_{25}(1)$$
 TCR) (Temp * 25)

Equation (4) works quite well, provided that TCR is constant over temperature. When modeling semiconductor resistors, it is also necessary to account for variable TCR's. At cold, the TCR for p type resistors changes with temperature. These changes are modeled using TABLE functions that have three values for TCR. Results of this modeling technique versus actual measurements and a linear model are summarized in Table 1.

Table 1. Actual versus Modeled R(Temp)

Temp	Measured R(Temp)	Compound Model	Linear Model
*40	406	406	372
*25	418	418	395
0	445	445	434
25	474	474	474
50	509	508	513
75	545	545	552
100	585	584	592
125	627	626	632
150	671	671	671

In Table 1, 25 and 150 degree Celsius data points were used to determine both linear and compound temperature

coefficients. Therefore, measured values, linear model values and compound model values all match at these two temperatures. At other temperatures, the linear model exhibits errors that are significant when modeling piezoresistive pressure sensors. The compound model, however, tracks with measured values to within 1 Ohm out of 500 Ohms.

EXAMPLES

Two examples of what the model outputs look like are shown in Figure 4 and Figure 5. Figure 4 shows a sweep of pressure versus output voltage (V_{OUT}) at 0, 25, and 85 degrees Celsius, for an MPX2010 sensor. It has the expected 0 to 25 mV output voltage, given a 0 to 10 kPa pressure input. At these three temperatures, compensation is sufficiently good that all three plots look like the same straight line.

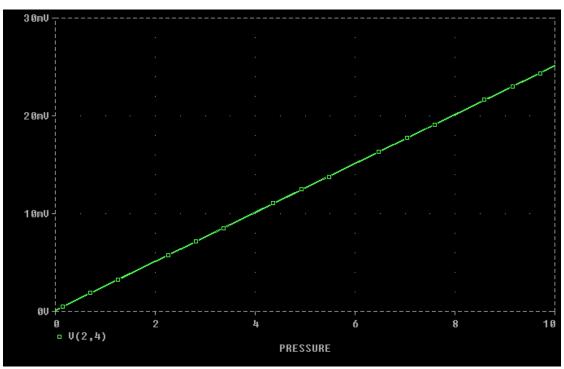


Figure 4. MPX2010 V_{OUT} versus Pressure and Temperature

To produce the plot in Figure 4, the stimulus section is set up as follows, and V(2,4) is probed.

STIMULUS

V_{CC} 6 0 DC=10; DC BIAS FROM PIN 3 TO PIN 1 .PARAM PRESSURE=0; INPUT PRESSURE (kPa) .DC PARAM PRESSURE 0_Kpa 10_Kpa 0.5_Kpa TEMP LIST 0 25 85

*.DC PARAM TEMP -40 125 5

This is the default configuration with which the model is shipped. To change to a sweep of zero pressure voltage versus temperature, an asterisk is placed on line 3 and removed from line 4. The stimulus section then looks as follows:

STIMULUS

VCC 6 0 DC=10; DC BIAS FROM PIN 3 TO PIN 1
.PARAM PRESSURE=0; INPUT PRESSURE (kPa)
*.DC PARAM PRESSURE 0_Kpa 10_Kpa 0.5_Kpa TEMP
LIST 0 25 85

.DC PARAM TEMP -40 125 5

Again, V(2,4) is probed. The resulting output appears in Figure 5.

This plot shows offset versus temperature performance that is typical of MPX2000 series sensors. From –40 to +85 degrees Celsius, offset compensation is quite good. Above 85 degrees there is a hook in this curve, that is an important attribute of the sensor's performance.

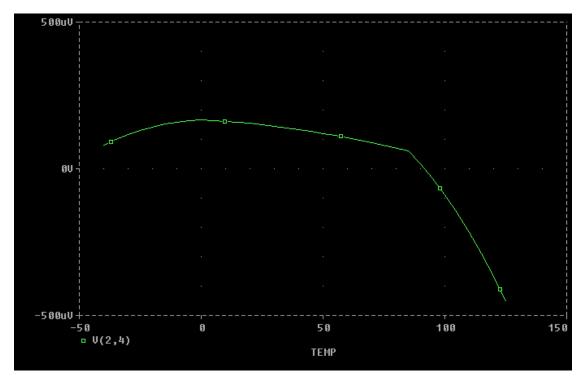


Figure 5. MPX2010 Offset versus Temperature

CONCLUSION

PSPICE models for Uncompensated, MPX2000 series, and MPX5000 series pressure sensors are available for estimating sensor performance. These models make use of the compounding concept that is used in finance to calculate compound interest. The resulting compound temperature coefficients do a better job than linear methods of modeling temperature dependent behavior. These models make extensive use of PSPICE's. PARAMETER statement, and are, therefore, specific to PSPICE. They are intended as references for determining typical sensor performance, and are structured for easy entry of alternate assumptions.

DISCLAIMERS

Macromodels, simulation models, or other models provided by Freescale Semiconductor, Inc., directly or indirectly, are not warranted by Freescale as fully representing all of the specifications and operating characteristics of the semiconductor product to which the model relates. Moreover, these models are furnished on an "as is" basis without support or warranty of any kind, either expressed or implied, regarding the use thereof and Freescale specifically disclaims all implied warranties of merchantability and fitness of the models for any purpose. Freescale does not assume any liability arising out of the application or use of the models including infringement of patents and copyrights nor does Freescale convey any license under its patents and copyrights or the rights of others. Freescale reserves the right to make changes without notice to any model.

Although macromodels can be a useful tool in evaluating device performance in various applications, they cannot

model exact device performance under all conditions, nor are they intended to replace breadboarding for final verification.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale was negligent regarding the design or manufacture of the part. Freescale and (Freescale logo symbol) are registered trademarks of Freescale Semiconductor, Inc. Freescale is an Equal Opportunity/Affirmative Action Employer.

PSPICE is a registered trademark of MicroSim Corporation. If you have any questions or suggestions, please contact:

Freescale Semiconductor, Inc. Semiconductor Products Sector Sensor Products Division 5005 East McDowell Road Phoenix, AZ 85008 (602) 244-4556

Washing Appliance Sensor Selection

by: Ador Reodique Sensor and Systems Applications Engineer

INTRODUCTION

North American washing machines currently in production use mechanical sensors for water level measurement function. These sensors are either purely mechanical pressure switch with discrete trip points or electromechanical pressure sensor with an on-board electronics for a frequency output.

High efficiency machines require high performance sensors (accuracy, linearity, repeatability) even at lower pressure ranges. Benchmarks indicate that these performance goals is difficult to achieve using current mechanical pressure sensors.

In Europe, where energy conservation is mandated, washing machine manufacturers have started to look at electronic solutions where accuracy, reliability, repeatability and additional functionality is to be implemented. North American and Asia Pacific manufacturers are also looking for better solutions.

From surveys of customer requirements, a typical vertical-axis machine calls for a sensor with 600 mm $\rm H_2O$ (24 " $\rm H_2O\sim6~kPa)$ sensor with a 5% FS accuracy spec. Certain appliances call for a lower pressure range especially in Europe where horizontal axis machines are common.

SENSOR SOLUTIONS

For the typical 600 mm $\rm H_2O$, 5% FS spec, an off the shelf solution available today is the MPX10/MPX12, MXP2010 and the MPXV4006G sensor. The MPX10 (or the MPX12) is 10 kPa (40 " $\rm H_2O$) full-scale pressure range device. It is uncompensated for temperature and untrimmed offset and full-scale span. This means that the end user must temperature compensate as well as calibrate the full-scale offset and span of the device. The output of the device must be amplified using a differential amplifier (see Figure 1) so it can be interfaced to an A/D and to obtain the desired range.

Since the MPX10/MPX12 sensors must be calibrated, the implications of this device being used in high-volume production is expensive. Because the offset and full-scale output can vary from part to part, a two-point calibration is required as a minimum. A two point calibration is a time consuming procedure as well as possible modification to the production line to accommodate the calibration process. The circuitry must also accommodate for trimming, i.e., via

trimpots and/or EEPROM to store the calibration data. This adds extra cost to the system.

The MPX2010 is a 10 kPa (40" H_2O), temperature compensated, offset and full-scale output calibrated device. A differential amplifier like the one shown in Figure 1 should be used to amplify its output. Unlike the MPX10 or MPX12, this device does not need a two-point calibration but auto-zeroing can improve its performance. This procedure is easily implemented using the system MCU.

The MPXV4006G is a fully integrated pressure sensor specifically designed for appliance water level sensing application. This device has an on board amplification, temperature compensation and trimmed span. An auto-zero procedure should be implemented with this device (refer to Application Note AN1636). Because expensive and time consuming calibration, temperature compensation and amplification is already implemented, this device is more suitable for high volume production. The MPXV4006G integrated sensor is guaranteed to be have an accuracy of \pm 3% FS over its pressure and temperature range.

For washing machine applications where low cost and high volume productions are involved, both the MPX2010 and MPXV4006G are recommended. Both solutions can be used in current vertical axis machines where the water level in the 600 mm $\rm H_2O$ or 24 " $\rm H_2O$ range. In the following, a comparison is made between MPX2010 and MPXV4006G in terms of system and performance considerations to help the customer make a decision.

EXPECTED ACCURACY OF THE MPX2010 SYSTEM SOLUTION

The MPX2010 compensated sensor has an off the shelf overall RMS accuracy of $\pm\,7.2\%$ FS over 0 to 85°C temperature range.

Auto-zeroing can improve the sensor accuracy to \pm 4.42% FS. However, since this sensor does not have an integrated amplification, its amplifier section must be designed carefully in order to meet the target accuracy requirement. The MPX2010 compensated sensor has the following specifications shown on Table 1.

Table 1. MPX2010 Specifications

Characteristic	Min	Тур	Max	Unit
Pressure Range	0		10	kPa
Supply Voltage		10	16	Vdc
Supply Current		6		mA
Full Scale Span	24	25	26	mV
Offset	*1		1	mV
Sensitivity		25		mV/kPa
Linearity	*1		1	%V _{FSS}
Pressure Hysterisis		0.1		%V _{FSS}
Temperature Hysterisis (*40 to 125°C)		0.5		%V _{FSS}
Temperature Effect on Span	*1		1	%V _{FSS}
Temperature Effect Offset (0 to 85°C)	*1		1	mV
Input Impedance	1300		2550	W
Output Impedance	1400		3000	W
Response Time (10% to 90%)		1		ms
Warm-Up		20		ms

The sensor system errors is made up of the sensor errors, amplifier errors and A/D errors. In other words,

With auto-zeroing, the offset calibration, temperature effect on offset and offset stability is reduced or eliminated,

$$\varepsilon$$
System = $\sqrt{\varepsilon}$ Sensor² + ε Amplifier² + ε ADResolution² (1)

Table 2 shows the MPX2010 with the errors converted to $\rm \%V_{FSS}$. The expected maximum root mean squared error of the sensor is

$$\varepsilon Sensor = \sqrt{SpanCal^{2} + Lin^{2} + Phys^{2} + Thys^{2} + TCS^{2} + OffCal^{2} + Tco^{2} + OffStab^{2}}$$
 (2)
= $\pm 7.19\%$ FS.

$$\epsilon$$
Sensor = $\sqrt{\text{SpanCal}^2 + \text{Lin}^2 + \text{Phys}^2 + \text{Thys}^2 + \text{TCS}^2}$ (3) = +/- 4.42% FS.

The sensor error is calculated using the full-scale pressure range of the device, 0 to 85° C temperature and 10 V excitation.

In comparison with the MPXV4006G solution, the expected accuracy of the system (MPXV4006G + 8 bit A/D) with auto-zero is 3.1% FS.

Table 2. MPX2010 Span, Offset and Calculated Maximum RMS Error*

Span Errors (converted to %V _{FSS})	Symbol	Error Value	Note	Unit
Span Calibration	SpanCal	4		%V _{FSS}
Linearity	Lin	1		%V _{FSS}
Pressure Hysterisis	Phys	0.1		%V _{FSS}
Temperature Hysterisis	Thys	0.5		%V _{FSS}
Temperature Effect on Span	Tcs	1.5		%V _{FSS}
Offset Errors (converted to %V _{FSS})				
Offset Calibration	OffCal	4		%V _{FSS}
Temperature Effect on Offset	Tco	4		%V _{FSS}
Offset Stability	OffStab	0.5		%V _{FSS}
Calculated Maximum RMS Errors		RMS Error		
No Compensation*		7.19		% _{FS}
With auto-zero		4.42		% _{FS}

^{*} This assumes the power supply is constant.

AMPLIFIER SELECTION AND AMPLIFIER INDUCED ERRORS

A differential amplifier is needed to convert the differential output of the MPX2010 sensor to a high level ground-referenced (single-ended). The classic three-op amp

instrumentation amplifier can be used. However, it requires additional components (3 op-amps and possibly a split power supply). An instrumentation topology shown in Figure 1 requires only a single supply and only 2 op-amps and 1% resistors.

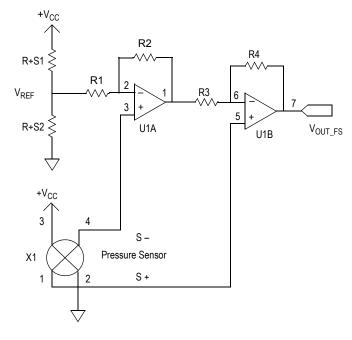


Figure 1. MPX2010 Amplifier Circuit

The circuit uses a voltage divider R+S1 and R+S2 to provide the reference (level shift), U1A and U1B are non-inverting amplifiers arranged in a differential configuration with gain resistors R1, R2, R3, and R4. Note that U1B is the main gain stage and it has the most gain. It is recommended to place a $0.015\,\mu\text{F}$ capacitor in it's feedback loop (in parallel with R4) to reduce noise. The amplifier output can be characterized with the equation below:

$$Gain = \frac{R4}{R3} + 1 \tag{4}$$

Voffset = VREF
$$\left(\frac{R2 \cdot R1}{R1 \cdot R3}\right) - VSCM\left[\left(\frac{R2 \cdot R4}{R1 \cdot R3}\right)\right] - 1$$
 (5)

$$Vout = (S + - S -) Gain + Voffset$$
 (6)

where (S+ - S-) = Sensor differential output + Sensor offset (7)

Equation 4 is the differential gain of the amplifier and equation 5 is the resulting offset voltage of the amplifier.

The above equations assume that the amplifier is close to ideal (high A_{OL} , low input offset voltage and low input offset bias currents). Since an ideal op-amp is hard to come by, the customer should select an op-amp based on cost and performance. Below are some points to keep in mind when selecting an op-amp and designing the amplifier circuit.

Note that the ratio R2*R4/R1*R3 controls the system offset as well as the common mode error of the amplifier. Mismatches in these resistors will result in an offset and common mode error which appear as offset. It is therefore recommended to use 1% metal film resistors to reduce these errors. Also, V_{REF} source impedance should be minimized in comparison with R1 in order to reduce common mode error.

Amplifier input offset and input bias currents can induce errors. For example, an input offset (Vio) of the amplifier can become significant when the closed-loop gain of the amplifier is increased. Furthermore, there is also a temperature coefficient of the input voltage offset which contribute an additional error across temperature. If the input bias current of the amplifier is not taken into account in the design, it can also become a source of error. A technique to reduce this error is to match the impedance the source impedance of what the opamp input pins sees.

It is important to note that high performance op-amps are more expensive. An MC33272 op-amp has a low input offset and low input bias current which is suitable for the two-op amp amplifier design. We can see that there is a tradeoff between accuracy and cost when designing a solution with the MPX2010.

When designing a system based on the MPX2010, it is important to take into account errors due to parametric variation of the sensor (i.e., offset calibration, span calibration, TcS, TcO), power supply and the inherent errors of the amplification circuit. The offset and span errors greatly determines the resolution of the system (which adds to the system error). Even though the system offset error can be

nulled out by auto-zeroing, these errors must be accounted for when setting the system gain (refer to AN1556 for more details). This forces the total span of the system to be smaller, because we must reserve an extra headroom from the total span to account for amplifier and A/D variations (i.e., amp. sat. voltage, power supply variation, A/D quantization error, and gain errors). If these errors are not accounted for, it could, for example, result in non-linearity errors if the sensor span or

offset error causes the amplified output of the sensor to reach the saturation voltage of the amplifier.

As an example, a MPX2010 sensor system is designed which has a range of 600 mm H_2O FS range with a $\pm5\%$ FS RMS error. The system uses a $+5.0~V~\pm5\%$ linear regulated power supply, a MC33272 dual op-amp and a 1% resistors.

Table 3 shows the resulting specification and component values for the system based on MPX2010 sensor.

Table 3	MPX2010	Sensor	System	Values
Table 3.	IVIFAZUIU	Jenson	Ovaleiii	values

MPX2010 Sensor Design						
Parameter	Description	Value	Units			
V _{CC}	Reg Power Supply	5	V			
Differential Gain	Gain	433	V/V			
Vout_FS	Full Scale Span	3.02	V			
V _{REF}	Offset Reference	0.66	V			
Parts List						
U1A,U1B	MC33272 Op-amp					
R1	Gain Resistor	39.2K	Ω			
R2	Gain Resistor	90.9	Ω			
R3	Gain Resistor	909	Ω			
R4	Gain Resistor	392K	Ω			
R + S1	Level Shift Resistor	1K	Ω			
R + S2	Level Shift Resistor	150	Ω			
X1	MPX2010					

Table 4. Performance Comparison between MPX2010 and MPXV4006G Solution

Error Contribution		Solution Error 0 mm H ₂ O)	MPXV4006G Solution Error (FS = 612 mm H ₂ O)		
	± % FS	± mm H ₂ O	± % FS	± mm H ₂ O	
Max Sensor Error	7.19	43	3.00	18	
System Resolution (A/D + Amplification)	1.30	8	0.80	5	
System Error (Sensor + A/D + Amplification)	7.3	44	3.10	19	
System Error with Auto-Zero	4.6	28	t3	t19	

Note that the error due to system resolution is higher for the MPX2010 solution (\pm 2 bit A/D accuracy). This is because the MPX2010 span is limited as discussed above. Also, this accuracy assumes that the amplifier does not induce significant errors. As noted MPXV4006G sensor has better overall accuracy. The system resolution is very good because of its large span (4.6 V versus 3.0 V typical).

SUMMARY

Several washing machine solutions were examined. The MPX10/12 solution can be expensive in terms of additional support circuitry and the added time and labor involved during the calibration procedure. The MPX2010 is good alternative for high volume manufacturing because is already calibrated. With this solution, however, the system amplifier design must be chosen and designed carefully in order to minimize the system error. This is a consideration when deciding to implement a high accuracy solution with the MPX2010 because the cost of the system will go up.

The MPXV4006G solution is geared towards high volume manufacturing because trimming, compensation and

amplification is already on board. Besides the system simplicity and using less component, the resolution and overall accuracy of this solution is better than the MPX2010 solution. In some cases, less components can actually improve the reliability and manufacturability the system.

REFERENCES

- Benchmark of Washing Machine Mechanical Sensor, Jack Rondoni, Freescale Semiconductor, Inc. Internal Document.
- [2] Mechanical Sensor Characterization, Ador Reodique, Freescale Internal Document.
- [3] AN1551 Low Pressure Sensing with the MPX2010 Pressure Sensor, Jeff Baum, Freescale Application Note.
- [4] AN1636 Implementing Auto-Zero for Integrated Pressure Sensors, Ador Reodique, Freescale Application Note.
- [5] AN1556 Designing Sensor Performance Specifications for MCU-based Systems, Eric Jacobsen and Jeff Baum, Freescale Application Note.

Water Level Monitoring

by: Michelle Clifford, Applications Engineer Sensor Products, Tempe, AZ

INTRODUCTION

Many washing machines currently in production use a mechanical sensor for water level detection. Mechanical sensors work with discrete trip points enabling water level detection only at those points. The purpose for this reference design is to allow the user to evaluate a pressure sensor for not only water level sensing to replace a mechanical switch, but also for water flow measurement, leak detection, and other solutions for smart appliances. This system continuously monitors water level and water flow using the temperature compensated MPXM2010GS pressure sensor in the low cost MPAK package, a dual op-amp, and the MC68HC908QT4, eight-pin microcontroller.

SYSTEM DESIGN

Pressure Sensor

The pressure sensor family has three levels of integration — Uncompensated, Compensated and Integrated. For this design, the MPXM2010GS compensated pressure sensor was selected because it has both temperature compensation and calibration circuitry on the silicon, allowing a simpler, yet more robust, system circuit design. An integrated pressure sensor, such as the MPXV5004G, is also a good choice for the design eliminating the need for the amplification circuitry.

Figure 1. Water Level Reference Design Featuring a Pressure Sensor

The height of most washing machine tubs is 40 cm, therefore the water height range that this system will be measuring is between 0–40 cm. This corresponds to a pressure range of 0–4 kPa. Therefore, the MPXM2010GS was selected for this system. The sensor sensitivity is 2.5 mV/kPa, with a full-scale span of 25 mV at the supply voltage of 10 V_{DC} . The full-scale output of the sensor changes linearly with supply voltage, so a supply voltage of 5 V will return a full-scale span of 12.5 mV.

$$(V_{S \text{ actual}} / V_{S \text{ spec}}) * V_{OUT \text{ full-scale spec}} = V_{OUT \text{ full-scale}}$$

(5.0 V/ 10 V) x 25 mV = 12.5 mV

Since this application will only be utilizing 40 percent of the pressure range, 0–4kPa, our maximum output voltage will be 40 percent of the full-scale span.

$$V_{OUT FS}$$
 * (Percent _{FS Range}) = $V_{OUT max}$
12.5 mV * 40% = 5.0 mV

The package of the pressure sensor is a ported MPAK package. This allows a tube to be connected to the sensor and the tube is connected to the bottom of the tub. This isolates the sensor from direct contact with the water. The small size and low cost are additional features making this package a perfect fit for this application.

Figure 2. A Ported Pressure Sensor

Table 1. MPXM2010D OPERATING CHARACTERISTICS ($V_S = 10 V_{DC}$, $T_A = 25^{\circ}C$ unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range	P _{OP}	0	_	10	kPa
Supply Voltage	V _S	_	10	16	Vdc
Supply Current	I _O	_	6.0	_	mAdc
Full Scale Span	V _{FSS}	24	25	26	mV
Offset	V _{off}	-1.0	_	1.0	mV
Sensitivity	DV/DP	_	2.5	_	mV/kPa
Linearity	_	-1.0	_	1.0	%V _{FSS}

Amplifier Induced Errors

The sensor output needs to be amplified before being inputted directly to the microcontroller through an eight-bit A/D input pin. To determine the amplification requirements, the pressure sensor output characteristics and the 0-5 V input range for the A/D converter had to be considered.

The amplification circuit uses three op-amps to add an offset and convert the differential output of the MPXM2010GS sensor to a ground-referenced, single-ended voltage in the range of 0–5.0 V.

The pressure sensor has a possible offset of ± 1 mV at the minimum rated pressure. To avoid a nonlinear response when a pressure sensor chosen for the system has a negative offset (V_{OFF}), we added a 5.0 mV offset to the positive sensor output signal. This offset will remain the same regardless of the sensor output. Any additional offset the sensor or op-amp introduces is compensated for by software routines invoked when the initial system calibration is done.

To determine the gain required for the system, the maximum output voltage from the sensor for this application had to be determined. The maximum output voltage from the sensor is approximately 12.5 mV with a 5.0 V supply since the full-scale output of the sensor changes linearly with supply voltage. This system will have a maximum pressure of 4 kPa at 40 cm of water. At a 5.0 V supply, we will have a maximum sensor output of 5 mV at 4 kPa of pressure. To amplify the maximum sensor output to 5.0 V, the following gain is needed:

The gain for the system was set for 500 to avoid railing from possible offsets from the pressure sensor or the op-amp.

The Voltage Outputs from the sensor are each connected to a non-inverting input of an op-amp. Each op-amp circuit has the same resistor ratio. The amplified voltage signal from the negative sensor lead is V_A . The resulting voltage is calculated as follows:

$$V_A = (1+R8/R6) * V_4$$

= $(1+10/1000) * V_4$

$$= (1.001) * V_4$$

The amplified voltage signal from the positive sensor lead is V_B . This amplification adds a small gain to ensure that the positive lead, V_2 , is always greater than the voltage output from the negative sensor lead, V_4 . This ensures the linearity of the differential voltage signal.

$$V_{B} = (1+R7/R5) * V_{2} - (R7/R5) * V_{CC}$$
$$= (1+10/1000) * V_{2} + (10/1000) * (5.0 \text{ V})$$
$$= (1.001) * V_{2} + 0.005 \text{ V}$$

The difference between the positive sensor voltage, V_B , and the negative sensor voltage, V_A is calculated and amplified with a resulting gain of 500.

$$VC = (R12/R11) * (V_B - V_A)$$
$$= (500 \text{ K/1K}) * (V_B - V_A)$$
$$= 500 * (V_B - V_A)$$

The output voltage, V_C , is connected to a voltage follower. Therefore, the resulting voltage, V_C , is passed to an A/D pin of the microcontroller.

The range of the A/D converter is 0 to 255 counts. However, the A/D Values that the system can achieve are dependent on the maximum and minimum system output values:

$$\begin{aligned} & \text{Count} = (\text{V}_{\text{OUT}} - \text{VRL}) \, / \, (\text{ VRH} - \text{VRL}) \, \text{x } \, 255 \\ & \text{where V}_{\text{Xdcr}} = \text{Transducer Output Voltage} \end{aligned}$$

V_{RH} = Maximum A/D voltage

V_{I H} = Minimum A/D voltage

Count (0 mm H20) =
$$(2.5 - 0) / (5.0 - 0) * 255 = 127$$

Count (40 mm H20) =
$$(5.0 - 0) / (5.0 - 0) * 255 = 255$$

Total # counts =
$$255 - 127 = 127$$
 counts.

The resolution of the system is determined by the mm of water represented by each A/D count. As calculated above, the system has a span of 226 counts to represent water level up to and including 40 cm. Therefore, the resolution is:

Resolution = mm of water / Total # counts = 400mm/127 counts = 3.1 mm per A/D count

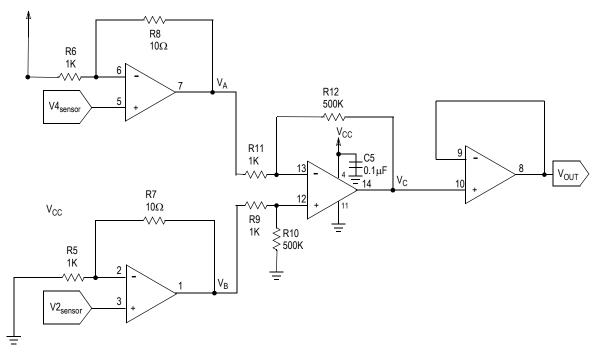


Figure 3. Amplification Scheme

Microprocessor

To provide the signal processing for pressure values, a microprocessor is needed. The MCU chosen for this application is the MC68HC908QT4. This MCU is perfect for appliance applications due to its low cost, small eight-pin package, and other on-chip resources. The MC68HC908QT4 provides: a four-channel, eight-bit A/D, a 16-bit timer, a trimmable internal timer, and in-system FLASH programming.

The central processing unit is based on the high performance M68HC08 CPU core and it can address 64 Kbytes of memory space. The MC68HC908QT4 provides 4096 bytes of user FLASH and 128 bytes of random access memory (RAM) for ease of software development and maintenance. There are five bi-directional input/output lines and one input line shared with other pin features.

The MCU is available in eight-pin as well as 16-pin packages in both PDIP and SOIC. For this application, the eight-pin PDIP was selected. The eight-pin PDIP was chosen for a small package, eventually to be designed into applications as the eight-pin SOIC. The PDIP enables the customer to reprogram the software on a programming board and retest.

Display

Depending on the quality of the display required, water level and water flow can be shown with two LEDs. If a higher quality, digital output is needed, an optional LCD interface is provided on the reference board. Using a shift register to hold display data, the LCD is driven with only three lines outputted from the microcontroller: an enable line, a data line, and a clock signal. The two LEDs are multiplexed with the data line and clock signal

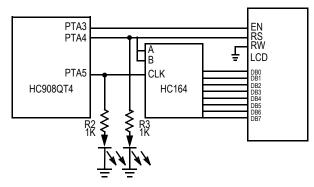


Figure 4. Multiplexed LCD Circuit

Multiplexing of the microcontroller output pins allows communication of the LCD to be accomplished with three pins instead of eight or 11 pins of I/O lines usually needed. With an eight-bit shift register, we are able to manually clock in eight bits of data. The enable line (EN) is manually accepted when eight bytes have been shifted in, telling the LCD the data on the data bus is available to execute.

The LEDs are used to show pressure output data by displaying binary values corresponding to a pressure range. Leak detection, or water-flow speed, is displayed by blinking a green LED at a speed relating to the speed of water flow. The red LED displays the direction of water flow. Turning the red LED off signifies water flowing into the tub. Turning the red LED on signifies water flowing out of the tub, or alternatively, there is a leak.

Digital values for water height, rate of water flow, and calibration values are displayed if an LCD is connected to the board

OTHER

This system is designed to run on a 9.0 V battery. It contains a 5.0 V regulator to provide 5.0 V to the pressure

sensor, microcontroller, and LCD. The battery is mounted on the back of the board using a space saving spring battery clip.

Table 2. Parts List

Ref.	Qty	Description	Value	Vendor	Part No.
U2	1	Pressure Sensor	1	Freescale	MPXM2010GS
C1	1	Vcc Cap	0.1μf	Generic	_
C2	1	Op-Amp Cap	0.1μf	Generic	_
C3	1	Shift Register Cap	0.1μf	Generic	_
D1	1	Red LED	_	Generic	_
D2	1	Green LED	_	Generic	_
S2, S3	2	Pushbuttons	_	Generic	_
U1	1	Quad Op-Amp	_	ADI	AD8544
U3	1	Voltage Regulator	5.0 V	Fairchild	LM78L05ACH
U4	1	Microcontroller	8-pin	Freescale	MC68HC908QT4
R1	1	1/4 W Resistor	22 K	Generic	_
R2	1	1/4 W Resistor	2.4 K	Generic	_
R3, R6	2	1/4 W Resistor	1.2 M	Generic	_
R4, R5	2	1/4 W Resistor	1.5 K	Generic	_
R7, R8	2	1/4 W Resistor	10 K	Generic	_
R9, R10	2	1/4 W Resistor	1.0 K	Generic	_
U6	1	LCD (Optional)	16 x 2	Seiko	L168200J000
U5	1	Shift Registor	_	Texas Instruments	74HC164

Smart Washer Software

This application note describes the first software version available. However, updated software versions may be available with further functionality and menu selections.

Software User Instructions

When the system is turned on or reset, the microcontroller will flash the selected LED and display the program title on the LCD for five seconds, or until the select (SEL) button is pushed. Then the menu screen is displayed. Using the select (SEL) pushbutton, it is easy to scroll through the menu options for a software program. To run the water level program, use the select button to highlight the *Water Level* option, then press the enter (ENT) pushbutton. The Water Level program will display current water level, the rate of flow, a message if the container is *Filling*, *Emptying*, *Full*, or *Empty*, and a scrolling graphical history displaying data points representing the past forty level readings.

The Water Level is displayed by retrieving the digital voltage from the internal A/D Converter. This voltage is converted to pressure in millimeters of water and then displayed on the LCD.

Calibration and Calibration Software

To calibrate the system, a two-point calibration is performed. The sensor will take a calibration point at 0 mm and at 40 mm of water. Depressing both the SEL and ENT

buttons on system power-up enters the calibration mode. At this point, the calibration menu is displayed with the previously sampled offset voltage. To recalibrate the system, expose the sensor to atmospheric pressure and press the SEL button (PB1). At this point, the zero offset voltage will be sampled and saved to a location in the microcontroller memory. To obtain the second calibration point, place the end of the plastic tube from the pressure sensor to the bottom of a container holding 40 mm of water. Then press the ENT button (PB2). The voltage output will be sampled, averaged and saved to a location in memory. To exit the calibration mode, press the SEL (PB1) button.

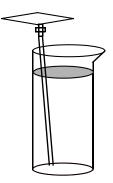


Figure 5. Water Level System Set-Up for Demonstration

Converting Pressure to Water Level

Hydrostatic pressure being measured is the pressure at the bottom of a column of fluid caused by the weight of the fluid and the pressure of the air above the fluid. Therefore, the hydrostatic pressure depends on the air pressure, the fluid density and the height of the column of fluid.

P= Pa + ρ g Δ h

where P = pressure

Pa = pressure

 ρ = mass density of fluid

 $g = 9.8066 \text{ m/s}^2$

h = height of fluid column

To calculate the water height, we can use the measured pressure with the following equation, assuming the atmospheric pressure is already compensated for by the selection of the pressure sensor being gauge:

$$\Delta h = P \setminus \rho g$$

Software Function Descriptions

Main Function

The main function calls an initialization function *Allinit* calls a warm-up function, *Warmup*, to allow extra time for the LCD to initialize, then checks if buttons PB1 and PB2 are depressed. If they are depressed concurrently, it calls a calibration function *Calib*. If they are not both pressed, it enters the main function loop. The main loop displays the menu, moves the cursor when the PB1 is pressed and enters the function corresponding to the highlighted menu option when PB2 is depressed.

Calibration Function

The calibration function is used to obtain two calibration points. The first calibration point is taken when the head tube is not placed in water to obtain the pressure for 0 mm of water. The second calibration point is obtained when the head tube is placed at the bottom of a container with a height of 160 mm. When the calibration function starts, a message appears displaying the A/D values for the corresponding calibration points currently stored in the flash. To program new calibration points, press PB1 to take 256 A/D readings at 0 mm of water. The average is calculated and stored in a page of flash. Then the user has the option to press PB1 to exit the calibration function or obtain the second calibration point. To obtain the second calibration point, the head tube should be placed in 160 mm of water, before depressing PB2 to take 256 A/D readings. The average is taken and stored in a page of flash. Once the two readings are taken, averaged, and stored in the flash, a message displays the two A/D values stored.

Level Function

The Level function initializes the graphics characters. Once this is complete, it continues looping to obtain an average A/D reading, displaying the Water Level, the Water Flow, and a Graphical History until simultaneously depressing both PB1 and PB2 to return to the main function.

The function first clears the 40 pressure readings it updates for the Graphical History. The history then enters the loop first displaying eight special characters, each containing five data points of water level history. The function *adcbyta* is called to obtain the current averaged A/D value. The function *LfNx* is called to convert the A/D value to a water level. It is then compared to the calibration points, the maximum and minimum points, to determine if the container is full or empty. If true, then it displays the corresponding message. The current water level is compared to the previous read and displays the message *filling* if it has increased, *emptying* if it has decreased, and *steady* if it has not changed.

The water level calculation has to be converted to decimal in order to display it in the LCD. To convert the water level calculation to decimal, the value is continually divided with the remainder displayed to the screen for each decimal place. To display the Rate of Water Flow, the sign of the value is first determined. If the value is negative, the one's complement is taken, a negative sign is displayed, and then the value is continually divided to display each decimal place. If the number is positive, a plus sign.

Level Function

The Level function initializes the graphics characters. Once this is complete, it continues looping to obtain an average A/D reading, displaying the Water Level, the Water Flow, and a Graphical History until simultaneously depressing both PB1 and PB2 to return to the main function.

The function first clears the 40 pressure readings it updates for the Graphical History. The history then enters the loop first displaying eight special characters, each containing five data points of water level history. The function *adcbyta* is called to obtain the current averaged A/D value. The function *LfNx* is called to convert the A/D value to a water level. It is then compared to the calibration points, the maximum and minimum points, to determine if the container is full or empty. If true, then it displays the corresponding message. The current water level is compared to the previous read and displays the message *filling* if it has increased, *emptying* if it has decreased, and *steady* if it has not changed.

The water level calculation has to be converted to decimal in order to display it in the LCD. To convert the water level calculation to decimal, the value is continually divided with the remainder displayed to the screen for each decimal place. To display the Rate of Water Flow, the sign of the value is first determined. If the value is negative, the one's complement is taken, a negative sign is displayed, and then the value is continually divided to display each decimal place. If the number is positive, a plus sign is displayed to maintain the display alignment and the value is continually divided to display each decimal place.

The most complicated part of this function is updating the graphics history display. The characters for the 16x2 LCD chosen for this reference design are 8x5 pixels by default. Therefore, each special character that is created will be able to display five water level readings. Since the height of the special character is eight pixels, each vertical pixel position will represent a water level in increments of 20 mm.

Resolution =
$$(H1 - H0) / D$$

where H1 and H2 are the maximum and minimum water levels respectively and D is the possible datapoints available per character.

Resolution = (160mm-0mm) / 8.0 = 20 mm / data point.

The graphical history is displayed using the eight special characters. To update the graphics, all the characters have to be updated. The characters are updated by first positioning a pixel for the most recent water level reading in the first column of the first character. Then the four right columns of the first character are shifted to the right. The pixel in the last column of that character is carried to the first column of the next character. This column shifting is continued until all 40 data points have been updated in the eight special characters.

LfNx Function

The LfNx function calculates the water level from the current A/D pressure reading. The A/D Pressure value is stored in Register A before this function is called. Using the A/D value and the calibration values stored in the flash, the water level is calculated from the following function:

RBRA: = (NX –N1) * 160 / (N2 – N1), where NX is the current A/D Value N1 is the A/D Value at 0 mm H20 N2 is the A/D Value at 160 mm H20

To simplify the calculation, the multiplication is done first. Then the function *NdivD* is called to divide the values.

NdivD Function

The *NdivD* function performs a division by counting successive subtractions of the denominator from the numerator to determine the quotient. The denominator is subtracted from the numerator until the result is zero. If there is an overflow, the remainder from the last subtraction is the remainder of the division.

wrflash and ersflsh Functions

The wrflash and ersflsh functions are used to write to and erase values from the flash. For more information regarding flash functionality, refer to Section Four, Flash Memory from the MC68HC908QY4/D Databook.

ALLINIT Function

The Allinit function disables the COP for this version of software, sets the data direction bits, and disables the data to the LCD and turns off the LCD enable line. It also sets up the microcontroller's internal clock to half the speed of the bus clock. See Section 15, Computer Operating Properly, of the MC68908QT4 datasheet for information on utilizing the COP module to help software recover from runaway code.

WARMUP Function

The *Warmup* function alternates the blinking of the two LEDs ten times. This gives the LCD some time to warm up. Then the function *warmup* calls the LCD initialization function, *lcdinit*.

bintasc Function

The *binasc* function converts a binary value to its ascii representation.

A/D Functions

The A/D functions are used to input the amplified voltage from the pressure sensor from channel 0 of the A/D converter. The function *adcbyti* will set the A/D control register, wait for the A/D reading and load the data from the A/D data register into the accumulator. The function *adcbyta* is used to obtain an averaged A/D reading by calling *adcbyti* 256 times and returning the resulting average in the accumulator.

LCD Functions

The LCD hardware is set up for multiplexing three pins from the microcontroller using an eight-bit shift register. Channels three, four, and five are used on port A for the LCD enable (E), the LCD reset (RS), and the shift register clock bit, respectively. The clock bit is used to manually clock data from channel four into the eight-bit shift register. This is the same line as the LCD RS bit because the MSB of the data is low for a command and high for data. The RS bit prepares the LCD for instructions or data with the same bit convention. When the eight bits of data are available on the output pins of the shift register, the LCD enable (E) is toggled to receive the data.

The LCD functions consist of an initialization function *Icdinit* which is used once when the system is started and five output functions. The functions *Icdcmdo* and *Icdchro* both send a byte of data. The function *shiftA* is called by both *Icdcmdo* and *Icdchro* to manually shift eight bits of data into the shift register. The function *Icdnibo* converts the data to binary before displaying. The *Icdnibo* displays a byte of data by calling *Icdnibo* for each nibble of data. The function *Icdnibo* enables strings to be easily added to the software for display. The function accepts a comma- delimited string of data consisting of 1–2 commands for clearing the screen and positioning the cursor. It then continues to output characters from the string until the @ symbol is found, signally the end of the string.

CONCLUSION

The water level reference design uses a MPXM2010GS pressure sensor in the low cost MPAK package, the low cost, eight-pin microcontroller, and a quad op-amp to amplify the sensor output voltage. This system uses very few components, reducing the overall system cost. This allows for a solution to compete with a mechanical switch for water level detection but also offer additional applications such as monitoring water flow for leak detection, and the other applications for smart washing machines.

SOFTWARE LISTING

```
;NitroWater 2.0 24Jan03
;Water Level Reference Design
*******
; - uses 908QT4 (MC68HC908QT4) and MPAK (MPXM2010GS)
   CALIB: 2-point pressure calibration (0mm and 160mm)
   LEVEL: displays water level, flow, and graphics
   UNITS: allows user to select between cm and inches
ram
       equ
            $0080
                       ;memory pointers
            $EE00
rom
       equ
vectors equ $FFDE
porta
            $00
       equ
                       registers
ddra
       equ
            $04
config2 equ $1E
config1 equ
             $1F
tsc
      equ $20
tmodh equ $23
icgcr
      equ
            $36
adscr
      equ $3C
adr
      equ $3E
adiclk equ $3F
flcr
     equ $FE08
flbpr equ $FFBE
          $FD00
     org
                      ;flash variables
N1
      db
           $96
                      ;1st calibration pt. = 0mm
          $FD40
     org
N2
      db
           $F6
                      ;2nd calibration pt. = 160mm
          $FD80
     org
     org
          vectors
     dw
          cold
                    :ADC
                    ;Keyboard
     dw
          cold
     dw
          cold
                    ;not used
          cold
     dw
                    ;not used
                    ;TIM Overflow
     dw
          cold
                    ;TIM Channel 1
     dw
          cold
     dw
          cold
                    ;TIM Channel 0
                    :not used
     dw
          cold
     dw
          cold
                    ;IRQ
     dw
                    ;SWI
          cold
                    ;RESET ($FFFE)
     dw
          cold
     org
          ram
BB
      ds
           1
                     :variables
flshadr ds
           2
flshbyt ds
            1
memSP
         ds
              2
mem03
         ds
```

```
CNT
        ds
Lgfx
       ds
weath ds
UnitType ds
UnitDiv ds
UnitEmpt ds
UnitFull ds
ram0
        ds
             1
NC
       ds
NB
       ds
            1
NA
       ds
            1
DC
       ds
             1
DB
       ds
DA
       ds
MB
       ds
MA
       ds
            1
OB
       ds
            1
OA
       ds
            1
RB
            1
       ds
RA
       ds
            1
P<sub>0</sub>C
        ds
            1
P<sub>0</sub>B
        ds
             1
P0A
        ds
             1
NPTR
         ds
             1
ramfree ds
              80
                        ;used both for running RAM version of wrflash & storing 40 readings
      org rom
cold:
                     ;reset SP if any issues (all interrupt vectors point here)
      rsp
     jsr ALLINIT
                       ;general initialization
      jsr WARMUP
                         ;give LCD extra time to initialize
      brset 1,porta,nocalib
      brset 2,porta,nocalib
     jmp CALIB
                       ;only do calibration if SEL & ENT at reset
                           ;otherwise skip and show welcome messages
nocalib: ldhx #msg01
      jsr lcdstro
                     ;"Reference Design" msg
      jsr del1s
                     ;wait 1s
      ldhx #msg01a
                         ;"Water Level" msg
      jsr lcdstro
     jsr del1s
                     ;wait 1s
initCM: Idhx #$A014
                          ;initialize default units to cm ($A0=cm, $3F=in)
      sthx UnitType
                        ;UnitType set to $A0; UnitDiv set to $14
      Idhx #$039E
     sthx UnitEmpt
                        ;UnitEmpt set to $03; UnitFull set to $9E
MENU: Idhx #msg01b
      isr lcdstro
                     :Menu msq
      clr RA
                     ;menu choice=0 to begin with
      Ida #$0D
     jsr lcdcmdo
                       ;blink cursor on menu choice
luke: Idx RA
                       get current menu choice
      clrh
                         ;and look up corresponding LCD address
      lda menupos,x
      jsr
          Icdcmdo
                       reposition cursor;
```

```
warm: brclr 1,porta,PB1 ;check for SEL
     brclr 2,porta,PB2 ;or for ENT
     bclr 4,porta
                      :otherwise
     bset 5,porta
                      ;turn on "SEL" LED
     jsr del100ms
                       ;delay
     bset 4,porta
                      ;toggle LEDs
     bclr 5,porta
                      ;"ENT" now on: means choice is SEL ***or*** ENT
     jsr del100ms
                       ;delay and repeat until SEL or ENT
     bra warm
     inc RA
PB1:
                       ;***SEL*** toggles menu choices
     lda RA
     cmp #$02
                       ;menu choices are $00 and $01
     bne PB1ok
     clr RA
                    :back to $00 when all others have been offered
PB1ok: bclr 4,porta
                     ;LEDs off
     bclr 5,porta
     jsr del100ms
                      ;wait a little bit
     brclr 1,porta,PB1ok ;make sure they let go of SEL
     bra luke
PB2:
       bclr 4,porta
                        ;***ENT*** confirms menu choice
     bclr 5,porta
                      ;LEDs off
     lda RA
                     ;get menu choice
     bne skip00
                       ;do ===LEVEL=== if choice=$01
     imp LEVEL
skip00: jmp UNITS
                          ;do ===UNITS=== if choice=$00
CALIB: Ida
             #$01
     isr Icdcmdo
     clr ram0
     Idhx #msq05
                        :===CALIB=== 2-point calibration
     jsr lcdstro
                     :Calibration current values
     lda N1
                     :0mm
     isr lcdbyto
     Ida #'/'
     isr Icdchro
                     :160mm
     lda N2
     jsr lcdbyto
     bset 4,porta
     bset 5,porta
                      :LEDs on
lego1: brclr 1,porta,lego1
lego2: brclr 2,porta,lego2
     bclr 4,porta
     bclr 5,porta
                      :LEDs off when both SEL & ENT are released
     jsr del1s
     jsr del1s
                     ;wait 2s
     ldhx #msg05a
     isr lcdstro
                     ;show instructions
waitPB1: brset 2,porta,no2 ;if ENT is not pressed, skip
     jmp nocalib
                      ;if ENT is pressed then cancel calibration
       brclr 1,porta,do1st ;if SEL is pressed then do 1st point cal
no2:
     bra waitPB1
                       ;otherwise wait for SEL or ENT
do1st: Idhx #msg05b
                          ;1st point cal: show values
     isr Icdstro
     clr CNT
                     ;CNT will count 256 A/D readings
     clr RB
     clr RA
                    ;RB:RA will contain 16-bit add-up of those 256 values
```

```
do256: Ida #$C9
     jsr lcdcmdo
                      ;position LCD cursor at the right spot
     Ida CNT
     deca
     jsr lcdbyto
                     ;display current iteration $FF downto $00
     lda #':'
     jsr Icdchro
     jsr
         adcbyti
                     ;get reading
     add RA
     sta RA
     lda RB
     adc #$00
                     ;add into RB:RA (16 bit add)
     sta RB
                     ;show RB
     jsr
         Icdbyto
     lda RA
     jsr Icdbyto
                     :then RA
     dbnz CNT,do256
                         ;and do 256x
                    ;get bit7 into carry
     Isl RA
                      ;if C=0 then no need to round up
     bcc nochg
                    ;otherwise round up
     inc RB
nochg: Ida RB
                       ;we can discard RA: average value is in RB
     ldhx #N1
                     ;point to flash location
     jsr wrflash
                     :burn it in!
                        ;ask for 160mm
     ldhx #msg05c
     jsr lcdstro
waitPB2: brset 2,porta,waitPB2; wait for ENT
     ldhx #msg05d
                        ;2nd point cal: show values
     jsr Icdstro
     clr CNT
                     ;ditto as 1st point cal
     clr RB
     clr RA
do256b: Ida #$C9
     isr Icdcmdo
     Ida CNT
     deca
     jsr lcdbyto
     lda #':'
     jsr Icdchro
     isr
         adcbyti
     add RA
     sta RA
     lda RB
     adc #$00
     sta RB
     jsr lcdbyto
     lda RA
     jsr lcdbyto
     dbnz CNT,do256b
     Isl RA
     bcc nochg2
     inc RB
nochg2: Ida RB
     cmp N1
                      ;compare N2 to N1
                      ;if different, we are OK
     bne validcal
                        ;otherwise warn of INVALID CAL!
     ldhx #msg05e
     jsr lcdstro
     isr del1s
     jsr del1s
     jsr del1s
                    ;wait 2s
     jmp CALIB
                      ;try cal again
```

```
validcal: ldhx #N2
      jsr wrflash
                       :burn N2 into flash
      ldhx #msq05
                         ;and display new current cal values from flash
      isr lcdstro
      lda N1
                      :0mm value
      jsr Icdbyto
      Ida #'/'
      jsr Icdchro
      lda N2
                      :160mm value
      jsr lcdbyto
      jsr del1s
      jsr del1s
      jmp nocalib
                        :done!
LEVEL:
               #$01
                           ;===LEVEL=== main routine: displays level, flow & graphics
         lda
      jsr lcdcmdo
                        :clear screen
      Ida #$0C
          Icdcmdo
      isr
                        cursor off:
           #$88
                       ;position cursor at LCD graphics portion
      lda
      jsr
                        (2nd half of first line)
           Icdcmdo
      clra
                    ;and write ascii $00 through $07
fillgfx: jsr
                       ;which contain the graphics related to
           Icdchro
      inca
                     ;40 different readings
      cmp
            #$08
                        :do all 8
           fillgfx
      bne
LVL:
       Idhx #ramfree
                           point to 40 pressure readings
      lda #$28
                       ;count down from 40
purge: clr 0,x
                        :clear all those locations
      incx
                     ;next (H cannot change: we are in page0 RAM)
      dbnza purge
      jsr adcbyta
                       ;get averaged A/D reading (i.e. NX)
      jsr LfNx
                      ;convert to level and
                      ;store in "Level graphics"
      sta Lgfx
LVLwarm: bset 4,porta
      bset 5,porta
                        ;LEDs on during this cycle
      Idhx #ramfree
                         ;point to 40 pressure readings
      mov #$27,RA
                          ;count down from 39
shiftgfx: Ida 1,x
                        :take location+1
                      ;and move to location+0, i.e. shift graphics left
      sta 0,x
                    ;next X (once again: we are in page 0, no need to worry about H)
      incx
      dbnz RA,shiftgfx ;do this 39x
      jsr adcbyta
                       ;get averaged A/D reading (i.e. NX)
                      ;LX:=(NX-N1)*ConversionValue/(N2-N1)
      isr LfNx
      mov RA,OA
                          ;store result in OA
      clr RB
                      ;RB will contain graphic pixels (default=$00)
      cmp UnitEmpt
                          ;if <UnitEmpty (preset value = empty or almost)
           Lzero
                       ;then "empty" (no pixels)
      bcs
      cmp
           UnitFull
                        ;if >=UnitFull (preset value = full or almost)
      bcc
           Lsat
                       then "full" (pixel $80=bit 7);
                    otherwise determine one of 8 graphic values
      clrh
                       :UnitDiv is roughly full range/8
      ldx
           UnitDiv
                    ;in order to give 8 values
      div
           #$01,RB
                          ;but now value has to be converted to pixel
      mov
```

```
;if result is $01
      cmp #$01
      beg Lzero
                       then display it directly
makeRB Isl RB
                         otherwise shift 1 pixel bit to the right place
                          :by counting down result of division
      dbnza makeRB
      bra Lzero
Lsat: mov #$80,RB
                          ;if full then position highest pixel
Lzero: Ida RB
     ldhx #ramfree+$27 ;last of the 40
     sta 0.x
                     ;put it at then end of the 40 bytes (new value), all others were shifted left
          weath
                      ;weath will contain dynamic change based also on value of RB
      clr
      lda RB
                        ;if RB=$00 then weath=$00: "empty"
      beq
          donew
      cmp
            #$80
      bne notfull
                          ;if $80 then weath=$01: "full"
      mov #$01,weath
      bra donew
notfull mov #$02,weath
                          ;prepare for "steady" if L(i)=L(i-1)
                     ;get current level value L(i)
     lda OA
      cmp Lgfx
                      ;compare to previous level value L(i-1)
      beg donew
      mov
           #$03,weath
                         ;"filling" if L(i)>L(i-1)
      bcc donew
      mov #$04,weath
                         ;"emptying" otherwise
donew: Ida OA
                         ;current level L(i)
     sub Lqfx
                      ;minus previous level L(i-1)
                     ;establishes rate: L(i)-L(i-1)
     sta MA
     mov RA,Lgfx
                        ;update L(i-1)
;-----
                        ;****** now let's display the level in decimal ******
golevel: Ida #$80
     jsr lcdcmdo
                       start on 1st character of 1st line
     lda
          OA
                     ;get current level value
      clrh
          #$64
                      ;and divide by 100
      ldx
      div
      bne over100
                        ;if result is >0 then handle "hundreds"
      lda #$20
                      ;otherwise display space (remove leading 0)
      isr Icdchro
     bra Inext
over100: jsr lcdnibo
                         ;display "hundreds" digit
Inext: pshh
      pula
                    ;move remainder into A
      clrh
     ldx #$0A
                      ; divide by 10
      div
      jsr Icdnibo
                     ;display "tens" digit
         #'.'
      lda
          Icdchro
      jsr
                      ;display decimal point
      pshh
      pula
      jsr Icdnibo
                     ;and first decimal
                       ;check for cm ($A0) vs. in (#3F)
      Ida UnitType
      cmp #$3F
      beg dspllN
dspICM: Ida #'c'
     jsr lcdchro
     lda #'m'
```

```
jsr lcdchro
                      ;display "cm" for centimeters
      bra
          goflow
dsplIN: Ida #'i'
     jsr lcdchro
     lda #'n'
     jsr lcdchro
                      ;display "in" for inches
                          ;***** now let's display the flow in decimal *******
goflow: Ida #$C0
      jsr
          Icdcmdo
                       ;position cursor on 1st character 2nd line
                      ;get flow
      lda
           MA
                    ;test sign of rate (in MA)
      Isla
      bcc
           positiv
                       ;if positive, then it's easy
      lda
           MA
                      ;otherwise 1's complement of MB
      coma
      inca
      sta MA
      cmp #$64
                        ;check to see if >100
      bcs not2lo
                       ;if not we are OK
      lda #'<'
                     ;otherwise display that we exceeded min rate
      jsr
          Icdchro
                      ;that LCD can display (<9.9)
      lda #$63
                       ;force value to 99
           MΑ
      sta
      bra
           goconv
not2lo: Ida #'-'
     jsr lcdchro
                      ;display that minus sign
     bra goconv
positiv: Ida MA
                        ;check to see if >100
      cmp #$64
      bcs not2hi
                       ;if not we are OK
      lda #'>'
                     otherwise display that we exceeded max rate
                      ;that LCD can display (>9.9)
      jsr Icdchro
          #$63
                       :force value to 99
      lda
      sta
           MA
      bra
           goconv
not2hi: Ida #'+'
     jsr lcdchro
                      ;display the plus sign (to keep alignment)
                          ;get flow
goconv: Ida MA
      clrh
      ldx
          #$0A
                       ;and divide by 10
      div
          Icdnibo
                      ;display "tens" digit
      jsr
          #'.'
      lda
          Icdchro
                      ;display decimal point
      jsr
      pshh
      pula
      jsr Icdnibo
                      ;and first decimal
      Ida UnitType
                        ;check for cm ($A0) vs. in (#3F)
      cmp #$3F
      beq dsplINf
dspICMf: Ida #'c'
      jsr lcdchro
          #'m'
      lda
      bra reusef
```

```
dsplINf: Ida #'i'
     isr Icdchro
     lda #'n'
reusef: jsr lcdchro
     lda #'/'
     jsr lcdchro
     lda #'s'
     jsr lcdchro
gfxupdt: Ida #$40
                        ;====== Graphics Update: tough stuff =======
                      ;prepare to write 8 bytes into CGRAM starting at @ $40
     jsr lcdcmdo
Idhx#ramfree;point to 40 pressure readings (this reuses wrflash RAM)
                         ;DA will count those 8 CGRAM addresses
     mov #$08,DA
cg8: Ida 0,x
 sta NC
 lda 1,x
 sta NB
 lda 2,x
 sta NA
 Ida 3.x
 sta DC
lda 4.x
staDB;readings 0-4 go into NC,NB,NA,DC,DB and will form 1 LCD special
character
      mov #$08,RA
                         ;RA will count the 8 bits
fill:clrRB;start with RB=0, this will eventually contain the data for CGRAM
 rol NC
 rolRB
  rol NB
 rolRB
 rol NA
 rolRB
 rol DC
 rolRB
 rol DB
rolRB;rotate left those 5 values and use carry bits to form RB (tough part)
 Ida RB
isrlcdchro; and put it into CGRAM
dec RA
              :do this 8 times to cover all 8 bits
 bne fill
     incx
     incx
     incx
     incx
incx ;now point to next 5 values for next CGRAM address (5 values per
character)
           DA
                      ;do this for all 8 CGRAM characters
      dec
      bne cg8
Idaweath; get weather variable and decide which message to display
      cmp #$04
      bne try3210
     ldhx #msg02e
                         ;if $04
      bra showit
try3210: cmp #$03
     bne try210
     ldhx #msq02d
                         ;if $03
     bra showit
try210: cmp #$02
```

```
bne try10
                       ;if $02
     ldhx #msg02c
     bra showit
try10: cmp #$01
     bne try0
                       ;if $01
     ldhx #msg02b
     bra showit
try0: Idhx #msg02a
                        ;otherwise this one
showit: jsr lcdstro
     jsr del1s
                   ;1s between pressure/altitude readings
     brset 1,porta,contin ;exit only if SEL
     brset 2,porta,contin; and ENT pressed together
     jmp MENU
contin: jmp LVLwarm
                      ;*** PX=f(NX,N2,N1) ***
LfNx:
       sub N1
     Idx UnitType
                     ;$A0=160 for cm, $3F=63 for in
     mul
     sta NA
     stx NB
     clr NC
                   ;NCNBNA:=(NX-N1)* (conversion value: 160 or 63)
     lda N2
     sub N1
     sta DA
     clr DB
     clr DC
     jsr NdivD
                    ;RBRA:=(NX-N1)*(conversion value)/(N2-N1)
     lda RA
     cmp #$C8
                      ;check to see if result is negative
     bcs noovflw
                     ;if <$C8 we are OK
ovflw: clr RA
                     ;otherwise force level to 0!
noovflw: Ida RA
     rts
            RA
NdivD: clr
                      ;RBRA:=NCNBNA/DCDBDA
     clr RB
                   ;destroys NCNBNA and DCDBDA
keepatit: Ida RA
     add #$01
     sta RA
     lda RB
     adc #$00
                    ;increment RB:RA
     sta RB
     lda NA
     sub DA
     sta NA
     lda NB
     sbc DB
     sta NB
     Ida NC
     sbc DC
     sta NC
                    ;NC:NB:NA:=NC:NB:NA-DC:DB:DA
     bcc keepatit
                     ;keep counting how many times until overflow
     lda RA
     sub #$01
          RA
     sta
          RB
     lda
          #$00
     sbc
          RB
                    ;we counted once too many, so undo that
     sta
```

```
DC
     Isr
     ror
          DB
          DA
                    ;divide DC:DB:DA by 2
     ror
     lda NA
     add DA
     sta NA
     lda NB
     adc DB
     sta NB
     lda NC
     adc DC
     sta NC
                     :and add into NC:NB:NA
     Isla
                      ;if carry=1 then remainder<1/2 of dividend
     bcs nornd
     lda RA
     add #$01
     sta RA
     lda RB
     adc #$00
     sta RB
                     otherwise add 1 to result
nornd: rts
UNITS: brclr 2,porta,UNITS ;let go of ENT first
     lda #$01
                     ;===UNITS=== Allows user to select units: inches or cm
     jsr Icdcmdo
                      ;clear screen
     ldhx #msg03
                    ;Unit Choice menu
     jsr lcdstro
     jsr del100ms
     clr RA
                    ;menu choice=0 to begin with
     Ida #$0D
     isr Icdcmdo
                      ;blink cursor on menu choice
uluke: Idx RA
                       ;get current menu choice
     clrh
     lda menupos,x
                        ;and look up corresponding LCD address
     jsr lcdcmdo
                      reposition cursor;
uwarm: brclr 1,porta,uPB1 ;check for SEL
     brclr 2,porta,uPB2 ;or for ENT
     bclr 4,porta
                     ;otherwise
     bset 5,porta
                      ;turn on "SEL" LED
     jsr del100ms
                       ;delay
     bset 4,porta
                      ;toggle LEDs
                     ;"ENT" now on: means choice is SEL ***or*** ENT
     bclr 5,porta
     jsr del100ms
                       ;delay and repeat until SEL or ENT
     bra uwarm
uPB1: inc RA
                       ;***SEL*** toggles menu choices
     lda RA
     cmp #$02
                      ;menu choices are $00 and $01
     bne uPB1ok
                    ;back to $00 when all others have been offered
     clr RA
uPB1ok: bclr 4,porta
                     ;LEDs off
     bclr 5,porta
     isr del100ms
                       :wait a little bit
     brclr 1,porta,uPB1ok ;make sure they let go of SEL
     bra uluke
```

```
uPB2: bclr 4,porta
                      ;***ENT*** confirms menu choice
     bclr 5,porta
                    ;LEDs off
     lda RA
                   get menu choice
     bne SellN
SelCM: Idhx #$A014
                         ;initialize default units to cm ($A0=cm, $3F=in)
     sthx UnitType
                     ;UnitType set to $A0; UnitDiv set to $14
     Idhx #$039E
     sthx UnitEmpt
                      ;UnitEmpt set to $03; UnitFull set to $9E
     lda #$01
     jsr lcdcmdo
                    :clear LCD
     ldhx #msg03a
     jsr lcdstro
                   ;and show choice selection to be cm
     jsr del1s
                   :wait 1s
     jmp LEVEL
                     ;let's do LEVEL now...
SelIN: Idhx #$3F08
                       ;initialize default units to in ($A0=cm, $3F=in)
     sthx UnitType
                     ;UnitType set to $3F; UnitDiv set to $08
     Idhx #$033D
     sthx UnitEmpt
                      ;UnitEmpt set to $03; UnitFull set to $3D
     lda #$01
     jsr lcdcmdo
                    :clear LCD
     ldhx #msg03b
     jsr lcdstro
                   ;and show choice selection to be in
     jsr del1s
                   ;wait 1s
     imp LEVEL
                     ;let's do LEVEL now...
********************
*******************
:----- INITIALIZATION Routines -----
     ALLINIT: initializes HC08, sets I/O, resets LCD and LEDs
ALLINIT: bset 0,config1
                        :disable COP
     mov #$38,ddra ;PTA0=MPAK,PTA1=SEL,PTA2=ENT,PTA3=E,PTA4=RS,PTA5=clk
     mov #$30,adiclk ;ADC clock /2
     bclr 3,porta ;E=0
                    ;grn=OFF; RS=0
     bclr 4,porta
     bclr 5,porta
                   :red=OFF: CLK=0
     rts
     WARMUP: waits half a second while it flashes LEDs, and allows LCD to get ready
WARMUP: bclr 4,porta
     bclr 5,porta
                    ;LEDs off
     lda #$0A
                    ;prepare to do this 10x
tenx: jsr del25ms
                      ;delay
     bclr 4,porta
     bset 5,porta
                    ;alternate on/off
     jsr del25ms
     bset 4,porta
     bclr 5,porta
                    ;and off/on
     dbnza tenx
                    ;10 times so the LCD can get ready (slow startup)
     jsr Icdinit
                  :now initialize it
```

```
bclr 4,porta
      bclr 5,porta
                      ;LEDs off
      rts
     -- WRITE TO EEPROM Routines -----
      wrflash: burns A into flash at location pointed by H:X
wrflash: sthx flshadr
                         ;this is the address in the flash
      sta flshbyt
                      ;and the byte we want to put there
      tsx
      sthx memSP
                         ;store SP in memSP, so it can be temporarily used as a 2nd index register
     ldhx #ramfree+1
                         ;SP now points to RAM (remember to add 1 to the address!!!, HC08 guirk)
                   ;SP changed (careful not to push or call subroutines)
                       ;H:X points to beginning of flash programming code
     ldhx #ersflsh
                      get 1st byte from flash
doall: Ida 0,x
      sta 0.sp
                     ;copy it into RAM
      aix #$0001
                       ;HX:=HX+1
                       ;SP:=SP+1
      ais #$0001
      cphx #lastbyt
                       ;and continue until we reach the last byte
      bne doall
      Idhx memSP
                         ;once done, restore the SP
      txs
                      ;and run the subroutine from RAM, you cannot write the flash while
     jsr ramfree
                   ;running a code in it, so the RAM has to take over for that piece
     rts
;******* THE FOLLOWING CODE WILL BE COPIED INTO AND WILL RUN FROM RAM ******
ersflsh: Ida #$02
                        ;textbook way to erase flash
      sta flcr
      lda flbpr
      clra
     Idhx flshadr
      sta 0.x
      bsr
          delayf
      lda
          #$0A
      sta flcr
          delayf
      bsr
     lda
          #$08
      sta
           flcr
      bsr
           delayf
      clra
      sta flcr
      bsr delayf
pgmflsh: Ida #$01
                         ;textbook way to program flash
      sta flcr
      lda flbpr
      clra
      ldhx flshadr
      sta 0.x
          delayf
      bsr
          #$09
      lda
      sta
          flcr
          delayf
      bsr
      lda flshbyt
      Idhx flshadr
      sta 0,x
      bsr delayf
          #$08
      lda
          flcr
      sta
           delayf
      bsr
      clra
          flcr
      sta
```

```
bsr delayf
    rts
delayf: ldhx #$0005
                   ;wait 5x20us
    mov #$36,tsc ;stop TIM & / 64
    sthx tmodh ;count H:X x 20us
    bclr 5,tsc ;start clock
delayfls: brclr 7,tsc,delayfls
    rts
                ;this RTS will move from RAM back into EEPROM
lastbyt: nop
:******* END OF CODE THAT WILL BE COPIED INTO AND WILL RUN FROM RAM *****
;----- DELAY Routines -----
    del1s: generates a 1s delay
del1s: pshh
     pshx
                  ;1 second delay=$C350=50000 x 20us
     Idhx #$C350
    bra delmain
    del100ms: generates a 100ms delay
del100ms: pshh
     pshx
    Idhx #$1388
     bra delmain
     ------
     del50ms: generates a 50ms delay
del50ms: pshh
    pshx
    Idhx #$09C4
    bra delmain
    del25ms: generates a 25ms delay
del25ms: pshh
     pshx
     Idhx #$04E2
     bra delmain
    del5ms: generates a 5ms delay
del5ms: pshh
    pshx
    Idhx #$00FA
    bra delmain
     del1ms: generates a 1ms delay
del1ms: pshh
    pshx
    Idhx #$0032
    bra delmain
;-----
    del100us: generates a 100us delay
del100us: pshh
    pshx
    Idhx #$0005
    bra delmain
```

```
delmain: main delay routine; generates delay equal to H:X x 20us
delmain: mov #$36,tsc
                          :stop TIM & / 64
     sthx tmodh :count H:X x 20us
     bclr 5,tsc
                    ;start clock
delwait: brclr 7,tsc,delwait ;wait for end of countdown
     pulx
     pulh
     rts
                  :this RTS serves for all delay routines!
     -- A/D Routines ----
     adcbyti: gets single A/D reading from PTA0 and returns it in A
adcbyti: mov #$00,adscr ;ADC set to PTA0
     brclr 7,adscr,* ;wait for ADC reading
     lda adr
                    result in adr
     rts
     adcbyta: gets averaged A/D reading from PTA0 and returns it in A
                      ;average 256 readings
adcbyta: clr CNT
     clr RB
                    ; will be addint them up
     clr RA
                    ;in RB:RA
do256a: bsr adcbyti
     add RA
     sta RA
     lda RB
     adc #$00
                    ;16-bit add into RB:RA
     sta RB
     dbnz CNT,do256a ;do all 256
                    ;if RA<$80
     Isl RA
                    ;then RB result is correctly rounded
     bcc nochga
                     ;otherwise round off to next value
     inc RB
nochga: Ida RB
     rts
:------ LCD Routines ------
     Icdinit: initializes LCD
Icdinit: Ida #$3C
                       ;set 8-bit interface, 1/16 duty, 5x10 dots
     bsr lcdcmdo
     lda #$0C
                      ;display on, cursor off, blink off
     bsr lcdcmdo
     lda #$06
                     ;increment cursor position, no display shift
     bsr lcdcmdo
     lda #$01
                     ;clear display
     bsr lcdcmdo
     rts
     Icdcmdo: sends a command to LCD
Icdcmdo: bsr shiftA
     bclr 4,porta
                     ;RS=0 for command
     bset 3,porta
     bclr 3,porta
                     ;toggle E
     bsr del5ms
                     ;some commands require 2ms for LCD to execute
                  ;so let's play it safe
     Icdchro: sends a character (data) to LCD
Icdchro: bsr shiftA
                      ;RS=1 for data
     bset 4,porta
```

```
bset 3,porta
      bclr 3,porta
                      ;toggle E
     bsr del100us
                      ;data only requires 40us for LCD to execute
     rts
     shiftA: shifts A into shift register and provides 8-bits to LCD
shiftA: psha
     mov #$08,BB
                        ;will be shifting 8 bits
all8:
           get bit;
     Isla
     bcc shift0
                     ;if bit=0 then shift a 0
shift1: bset 4,porta ;otherwise shift a 1
     bra shift
shift0: bclr 4,porta
                       ;bit 4 is data to shift register
shift: bclr 5,porta
                       ;bit 5 is shift register clock
     bset 5,porta
      bclr 5,porta
                      ;toggle CLK
      dbnz BB,all8
                       ;do all 8 bits
     pula
      Icdnibo: displays 1 character (0-9,A-F) based on low-nibble value in A
Icdnibo: psha
                       ;convert 4 bits from binary to ascii
     add #$30
                      ;add $30 (0-9 offset)
                       ; is it a number (0-9)?
      cmp #$39
     bls d0to9b
                      ;if so skip
      add #$07
                      ;else add $07 = total of $37 (A-F offset)
d0to9b: bsr lcdchro
     pula
     rts
            _____
     Icdbyto: displays 2 characters based on hex value in A
Icdbyto: psha
                    ;remember A (for low nibble)
      psha
                   ;shift right 4 times
      Isra
     Isra
     Isra
      Isra
                      ;high nibble
      bsr Icdnibo
      pula
      and #$0F
      bsr Icdnibo
                      ;low nibble
     pula
     rts
     Icdstro: displays message ending in '@', but also sends commands to LCD
Icdstro: psha
     lda 0,x
                        ;if ASCII >=$80
Icon: cmp #$80
      bhs iscmd
      cmp #$1F
                       ;or <=$1F then
     bls iscmd
                      ;assume it is a command to LCD
isdta: bsr lcdchro
                       otherwise it is data to LCD
reuse1: aix #$0001
                         :next character
     lda 0,x
                    ;indexed by x
                      ;continue until
     cmp #$40
                      ;character = '@'
     bne Icon
```

```
pula
                    ;we are done
      bclr 4,porta
                      :turn off LEDs
      bclr 5,porta
      rts
iscmd: bsr lcdcmdo
     bra reuse1
     --- ROM DATA: contains all LCD messages ---
msg01
              $01,$80,'*MPAK & 908QT4* '
      db
             $C0,'Reference Design','@'
msg01a
               $01,$80,'Water Level &
         db
             $C0,'Flow
                           v2.0','@'
      db
               $01,$80,'1:Level/Flow
msg01b
         db
             $C0,'2:Set Units ','@'
      db
              $01,$80,'* Calibration! *'
msg05
      db
             $C0,'Curr lo/hi:','@'
msg05a
               $01,$80,'1st point: 0mm'
         db
             $C0,'SEL:cal ENT:quit','@'
      db
msg05b
               $01,$80,'Calibrating...
         db
             $C0,' 0mm: ','@'
      db
msg05c db
              $01,$80,'2nd point: 160mm'
      db
             $C0,'ENT:continue ','@'
msg05d
         db
               $01,$80,'Calibrating... '
             $C0,' 160mm: ','@'
      db
msg05e db
               $01,$80,'INVALID
      db
             $C0,'CALIBRATION! ','@'
                 $C8,' EMPTY','@'
$C8,' FULL','@'
msg02a
         db
msg02b
         db
         db
msg02c
                 $C8,' steady','@'
msg02d
         db
                 $C8,' H20 in','@'
msg02e
         db
                 $C8,' H20 out','@'
         db
msg03
              $01,$80,'1: unit=cm H20 '
             $C0,'2: unit=in H20 ','@'
      db
msg03a
         db
                 $80,'Unit is now: cm','@'
                 $80,'Unit is now: in','@'
msg03b
         db
menupos db
                $80,$C0
```

end

REFERENCES

Baum, Jeff, "Frequency Output Conversion for MPX2000 Series Pressure Sensors," Application Note AN1316/D. Hamelain, JC, "Liquid Level Control Using a Pressure Sensor," Application Note AN1516/D.

Altimeter and Barometer System

by: Michelle Clifford and Fernando Gonzalez Sensor Products Division, Tempe, AZ

INTRODUCTION

With smaller packages and lower costs, pressure sensors can be designed into more consumer applications. This document describes a reference design for a digital barometer and altimeter using the MPXM2102A pressure sensor in the low cost MPAK package, a quad op-amp, and the MC68HC908QT4 microcontroller. This system continuously monitors the barometric pressure and compares it to previous pressure readings to update altitude and weather predictions. This reference design enables the user to evaluate a Freescale Semiconductor, Inc. pressure sensor for barometer, personal weather station and altimeter applications. This reference design also allows customers to evaluate barometer pressure readings obtainable from the MPXM2102A sensor for watches or GPS systems with this feature. In addition, many systems require barometric pressure data to correct system response errors. This application note describes the reliability and accuracy that our sensors can provide in this system.

SYSTEM DESIGN

Pressure Sensor

The barometer/altimeter system requires a pressure sensor that has a pressure range of 64 kPa to 105 kPa. Freescale Semiconductor, Inc. has a broad portfolio of silicon piezo-resistive pressure sensors. They provide a very accurate and linear voltage output directly proportional to the applied pressure. By evaluating the application design and cost, the right pressure sensor can be selected from our portfolio.

Figure 1. Pressure Sensor

There are three types of pressure measurements: gauge, absolute, and differential. Since this reference design

measures changes in ambient pressure, we need a known pressure reference. Therefore, an absolute pressure sensor was selected. Freescale offers three levels of integration: uncompensated, compensated, and integrated. Since there can be large temperature changes from one elevation to another the sensor for this reference design needs to be offset calibrated and temperature compensated. Therefore a compensated sensor was selected requiring external amplification circuitry. However, integrated solutions such as the MPXM5100A, can also be considered, thereby eliminating the need for the external amplification circuitry.

Knowing the range of pressure, the type of pressure measurement, and the level of integration required for this application, the MPXM2102A sensor was selected. The sensor has both temperature compensation and calibration circuitry on the silicon and is capable of producing a linear output voltage in the range of 0 to 100 kPa, but can be pushed further up to 105 kPa with linear results. The characteristics of this sensor are described in greater detail in Table 2. A 5-volt supply was used throughout the circuit to power the components. Since the MPXM2102A is ratio metric, meaning the output voltage changes linearly with the supply voltage, the sensor will have a full scale span of 20 mV instead of the specified 40 mV at a 10 V supply. The calculation of the full scale span is shown below:

 $(V_{S \text{ actual}}/V_{S \text{ spec}}) \times V_{OUT \text{ full-scale spec}} = V_{OUT \text{ full-scale}}$ (5.0 V/ 10 V) x 40 mV = 20 mV

One of the most important decisions for a pressure application is the packaging. Freescale has a large offering of pressure packaging options. To minimize the space of a final application, the MPAK package was selected. A non-ported MPAK is the ideal pressure sensor package for hand held GPS units or altimeter watches due to its small size. However, a ported MPAK package can also be selected, allowing a tube to be attached to the port for testing and demonstration purposes.

Figure 2. MPXM2102A Case 1320A-02

Table 1. MPXM2102A Operating Characteristics

	Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range		P _{OP}	0	_	100	kPa
Supply Voltage		V _S	_	10	15	Vdc
Supply Current		Io	_	6.0	_	mAdc
Full Scale Span		V _{FSS}	38.5	40	41.5	mV
Offset		V _{off}	-1.0 -2.0		1.0 2.0	mV
Sensitivity	MPX2102D Series MPX2102A Series	ΔV/ΔΡ	_	0.4	_	MV/kPa
Linearity	MPX2102D Series MPX2102A Series	_	-0.6 -1.0		0.4 1.0	%V _{FSS}

Amplifier Selection and Amplifier Induced Errors

The main goal of the signal conditioning circuit is to convert the MPX2102A differential output to a single-ended, groundreferenced output. The differential output is extremely small for the MCU to process so a conditioning circuit also needs to provide amplification.

This reference design has a barometric pressure range of 64 kPa to 105 kPa. The output of the sensor is ratiometric to the supply voltage and the supply voltage is 5.0 V, the FSS, Sensitivity, and Offset are 5.0 V/10 V, or half, of the specified values at a 10 V supply. Using these calculated sensitivity and offset ranges, the lowest and highest possible values were calculated.

$$V_{OUT}$$
 = (Applied Pressure * Sensitivity) ± Offset
 V_{OUT} at 64 kPa = 64 kPa * 0.2 mV/kPa — 1 mV = 11.32 mV
 V_{OUT} at 105 kPa = 105 kPa * 0.2 mV/kPa + 1 mV = 21.0 mV

These values were found to be 11.32 mV to 22.79 mV differential output from the sensor.

Two-Stage Design

This two-stage design level shifts the differential output voltage of the sensor by subtracting an offset voltage from

each of the sensor outputs, then uses a differential amplification as shown in Figure 2.

After the first stage of amplification, the output of op-amp A is:

$$V_A = (1+R8/R6) \times V_4 - (R8/R6) \times V_8(1)$$

= $(1+10/4.42k) \times V_4 - (10/4.42k) \times 5.0 \text{ V}$
= $(1+10/4.42k) \times V_4 - 11.3 \text{ mV}$

and the output of op-amp B is:

$$V_B = (1+R7 / R5) \times V_2 - (R7 / R5) \times V_S(2)$$
= (1+10/4.42 k) \times V_2 - (10/4.42 k) \times 0 V
= (1+10/4.42 k) \times V_2 - 0

The second stage of amplification connects these two outputs to a common differential amplifier (op-amp C) also shown in Figure 3. With some algebraic manipulation, the output voltage (V_{OUT}) of the entire amplification circuit is

$$\begin{split} &V_{C} = (R12/R11) \times [(1+R8/R6) \times (V_{2} - V_{4}) - (R8/R6) \times V_{S}](3) \\ &= (412K/1 \text{ k}) \times [(1+10/4.42 \text{ K}) \times (V_{2} - V_{4}) - (10/4.42 \text{ K}) * 5 \text{ V}] \\ &= (412) \times [(1.002) \times (V_{2} - V_{4}) - 11.3 \text{ mV}] \\ &= 412 \times (V_{2} - V_{4}) - 11.3 \text{ mV} \end{split}$$

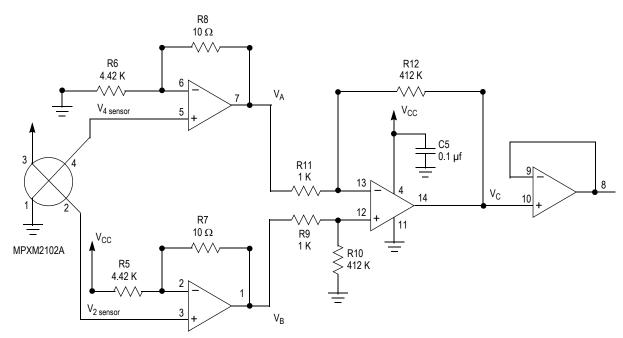


Figure 3. Amplification Scheme

The range of the A/D converter is 0 to 255 counts. However, the A/D values that the system can achieve are dependent on the maximum and minimum system output values:

Count =
$$(V_{OUT} - V_{RL}) / (V_{RH} - V_{RL}) \times 255(4)$$

where V_{Xdcr} = Transducer Output Voltage
 V_{RH} = Maximum A/D voltage
 V_{LH} = Minimum A/D voltage
Count (64 kPa) = $(0.03 - 0.0) / (5.0 - 0.0) \times 255 = 2$
Count (105 kPa) = $(4.85 - 0.0) / (5.0 - 0.0) \times 255 = 247$

Total # counts = 247 - 2 = 245 counts.

The resolution of the system is determined by the barometric pressure represented by each A/D count. As calculated above, the system has a span of 247 counts to represent a pressure from 64 kPa to 105 kPa. Therefore, the resolution is:

Resolution = (System Pressure Range) / Total # counts (5)

= (105 kPa - 64 kPa)/245 counts

= 0.17 kPa per A/D count

Microprocessor

To provide the signal processing for pressure values, a microprocessor is needed. The MCU chosen for this application is the MC68HC908QT4. This MCU is perfect for appliance applications due to its low cost, small eight-pin package, and other on-chip resources. The MC68HC908QT4 provide: a four-channel, eight-bit A/D, a 16-bit timer, a trimmable internal timer, and in-system FLASH programming.

The central processing unit is based on the high performance M68HC08 CPU core and it can address 64

Kbytes of memory space. The MC68HC908QT4 provides 4096 bytes of user FLASH and 128 bytes of random access memory (RAM) for ease of software development and maintenance. There are five bi-directional input/output lines and one input line that are shared with other pin features.

The MCU is available in eight-pin as well as 16-pin packages in both PDIP and SOIC. For this application, the eight-pin PDIP was selected. The eight-pin PDIP was chosen for a small package, eventually to be designed into applications as the eight-pin SOIC. If added circuitry for programming the microcontroller is added, a cyclone could be used to program an SOIC on the PCB. If your design requires software updates, consult the MC68HC908QT4 handbook for adding this option.

IMPROVEMENTS

The resolution of this design is limited by the eight-bit A/D converter on the microcontroller. Theoretically, the accuracy achieved by this device should produce an output when altitude change differs by about 41.54 feet (ΔZ). This occurs at approximately 1000 feet below sea level. Due to the logarithmic relationship between pressure and elevation, the accuracy of the results decreases as the device is elevated. At 12,000 feet above sea level, the device should recognize a change of about 65.53 feet (ΔZ) as shown in Table 3. A 10-bit, 12-bit or even a 16-bit A/D converter could be implemented in order to increase the resolution of this reference design.

Table 2. Microcontroller Accuracy Comparisons

Z (ft)	P (kPa)	V (mV)	Amp scheme	Vamp (mV)	Vamp – 1 bit	P0	Px	∆ Z (m)	∆ Z (ft)	Micro
-1000	105	20.265	(Vx-12.8)*650	4852.3	4832.6	20.265	20.235	12.66	41.54	8 bits
12000	64.259	12.852		33.8	14.2	12.852	12.822	19.97	65.53	8 bits
-1000	105	20.265	(Vx-12.8)*650	4852.3	4847.4	20.265	20.257	3.15	10.35	10 bits
12000	64.259	12.852		33.8	28.9	12.852	12.844	4.97	16.32	10 bits
-1000	105	20.265	(Vx-12.8)*650	4852.3	4851	20.265	20.263	0.79	2.59	12 bits
12000	64.259	12.852		33.8	32.6	12.852	12.85	1.24	4.08	12 bits
-1000	105	20.265	(Vx-12.8)*650	4852.3	4852.2	20.265	20.265	0.05	0.16	16 bits
12000	64.259	12.852		33.8	33.7	12.852	12.852	0.08	0.25	16 bits

Table 2 shows the theoretical maximum resolution that this reference design can achieve. However, factors such as noise within the circuit, sensitivity of the sensor, and voltage offsets in the amplification scheme should be taken into consideration. Accommodating for these factors in the software can filter out some of these factors.

Further testing is required to determine the accuracy of the reference design without the limiting A/D converter.

DISPLAY

The display of the barometric pressure, barometric pressure history, current calculated altitude, and a simple weather prediction is displayed on a 16x2 LCD.

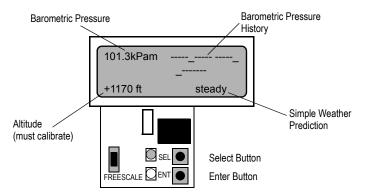


Figure 4. Barometric Display

Due to the limited number of bi-directional data pins on the microcontroller, a system was designed to serially buffer the display data. Using a shift register to hold display data, the LCD is driven with only three lines of output from the

microcontroller: an enable line, a data line, and a clock signal while the two LEDs are multiplexed with the data line and clock signal.

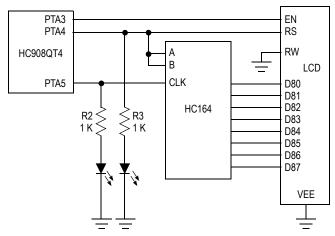


Figure 5. Multiplexed LCD Circuit

Multiplexing of the microcontroller output pins allows communication of the LCD to be accomplished with three pins instead of eight or 11 I/O pins usually required. With an eight-bit shift register, we are able to manually clock in eight bits of data. The enable line, EN, is manually enabled when eight

bytes have been shifted in, telling the LCD the data on the data bus is available to execute. The LCD will only be written to and the contrast can be held at a constant brightness, allowing the read/write and the VEE bits to be held low, also minimizing additional I/O lines.

Table 3. Parts List

Ref	Qty.	Description	Value	Vendor	Part No.
U3	1	Pressure Sensor	1.0	Freescale	MPXM2102A
C1	1	V _{CC} Cap	0.1 μF	Generic	
C2	1	Op-Amp Cap	0.1 μF	Generic	
C3	1	Shift Register Cap	0.1 μF	Generic	
D1	1	Red LED	_	Generic	
D2	1	Green LED	_	Generic	
S2, S3	1	Push buttons	_	Generic	
U1	1	Microcontroller	8-Pin	Freescale	MC68HC908QT4
U2	1	16x2 B&W LCD	16x2	Seiko	L168200J000
U4	1	Shift Register	_	Texas	74HC164
U5	1	Voltage Regulator	5.0 V	Fairchild	LM78L05ACH
U6	1	Quad Op-Amp	_	ADI	AD8544
R1, R4	1	1/4 W Resistor	10 K	Generic	
R2, R3	2	1/4 W Resistor	1.0 K	Generic	
R5, R6	2	1/4 W Resistor	3.65 K	Generic	
R7, R8	2	1/4 W Resistor	10 K	Generic	
R9, R11	2	1/4 W Resistor	1.0 K	Generic	
R10, R12	2	1/4 W Resistor	200 K	Generic	

OTHER

This system is designed to run on a 9.0~V battery. It contains a 5.0~V Regulator to provide a 5.0~V supply to the pressure sensor, microcontroller, and LCD. The battery is mounted on the back of the board using a space saving spring battery clip.

ALTIMETER/BAROMETER SOFTWARE

This application note describes the software version that was available during publication. However updated software versions may be available with further functionality and menu selections. Check our website update for updates to Sensor Products Reference designs.

Software User Instructions

When the system is turned on or reset, the microcontroller will flash the select LED and display the program title on the LCD for five seconds or until the select (SEL) button is pushed. Then the menu screen is displayed. Using the select (SEL) push button, the user can scroll through the menu options for a software program. To run the altimeter program, use the (SEL) select button to high-light the "Alti/Barometer" option, then press the enter (ENT) push button. The Altimeter program will display current barometric pressure reading, the

calculated altitude in feet, a message displaying a simple weather prediction such as "sunny", "rainy", "steady" without a pressure change, and "history" before enough history is collected to make a prediction. In the top right corner of the display, a scrolling graphical history displays data points representing the past forty pressure readings.

Calibration and Calibration Software

There are two forms of calibration for this system. The first calibration is used for the barometer part of the system. This calibration was already done before you received the reference design and only needs to be done once per system. To calibrate the barometer module, a two-point calibration is performed using a highly accurate pressure generator. The system takes a calibration point at 64 kPa and another at 105 kPa. Holding down both the SEL and ENT buttons on system power-up will put the system into calibration mode. At this point, the calibration menu will be displayed with the previously sampled offset voltage. To recalibrate the system. apply a pressure of 64 kPa and press the SEL button (PB1). This A/D value is then saved to a location in the microcontroller memory. To obtain the second calibration point, using the accurate pressure generator apply a pressure of 105 kPa directly to the sensor. Then press the ENT button (PB2). This signal is similarly sampled, averaged and saved to a location in FLASH. To exit the calibration mode, press the SEL (PB1) button.

The second calibration is done for the altimeter. The Altimeter requires a one-point calibration where a known altitude is entered with a known pressure. This ensures that changes in atmospheric pressure are due to increases or decreases in altitude and not changes in barometric pressure. By returning to the main menu, and selecting the "Set Elevation", the user can select an elevation by pressing the SEL button to cycle through the Elevation options from 0 to 12000 feet in 100-foot increments. Once the selection has been made the elevation is flashed into the microcontroller and the user is brought to the Altimeter/Barometer function. Calibration is required for each use of the altimeter module.

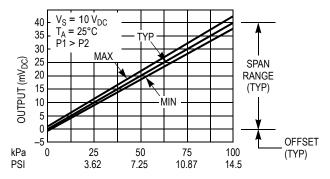


Figure 6. Analog Output to Pressure

CONVERTING ANALOG OUTPUT TO PRESSURE

Freescale pressure sensors have an extremely linear analog voltage output that is proportional to the pressure input. Since the sensor output is linear, the pressure can be calculated by using the equation of a line, y = mx + b, where y is the output voltage, the slope, m, is the Sensitivity, and the y intercept, b, is the Offset:

V_{OUT} = Sensitivity x Pressure + Offset

With algebraic manipulation, pressure can be determined by:

Below is an example of determining the pressure from the analog output of 9.5 mV using the Sensitivity and Offset of the MPX2102a sensor specified in the datasheet:

Pressure = (V_{OUT} – Offset)/Sensitivity

= (9.5 mV - 0.5 mV) / 0.1 mV/kPa

= (9.0)/0.1 mV/kPa

= 90 kPa

where 0.5 mV is the typical offset for the MPX2102 and 0.1 mV/kPa is the sensitivity with a 5.0 V supply

This system uses additional amplifiers and an A/D converter that all add additional offset and gain errors; however, the translation function was corrected with the two-point calibration. The known pressure values that are used for calibration are the maximum and minimum pressures for the system, 105 kPa and 64 kPa respectively. The A/D values for

these known pressures are saved in the flash memory of the microcontroller.

$$ATD = (Po - P_{64kPa})/(P_{105kPa} - P_{64kPa}) \times 255$$

By algebraic manipulation, the following equation is reached to find the barometric pressure:

$$Po = (ATD/255) \times (P_{105kPa} - P_{64kPa}) + P_{64kPa}$$

Converting Pressure to Altitude

The method of determining altitude for this reference design is measuring the changes in barometric pressure. The relationship of pressure vs. altitude is not linear. As pressure decreases, altitude increases, but the higher the altitude gets the less pressure changes. The equation that was used for this reference design is:

$$P = (P0) e^{-(g/(RT))} x (Z - Z0),$$

where P = pressure at an unknown altitude,

P0 = pressure at a known altitude,

e = a constant,

g = gravitational constant 9.8 (m/s^2),

R = dry air constant 287 J/(kg x K),

T = temperature at unknown elevation in Kelvin,

Z = unknown altitude in meters,

and Z0 = known altitude also in meters.

This equation originates from the hydrostatic equation:

$$dP = -\rho g dZ$$

in conjunction with the ideal gas law:

$$P = \rho RT$$

After some algebraic manipulation, plugging in constant values and converting meters to feet, the following equation was generated:

$$Z = Z0 - 27,887$$
 in (P/P0),

where Z = unknown altitude in feet,

Z0 = known altitude also in feet,

P = known pressure at unknown altitude,

and P0 = known pressure at known altitude.

For this system to calculate an altitude, Z, at a known pressure P, the user must enter a known pressure, P0, and its corresponding altitude, Z0. To accommodate for changes in barometric conditions, the known pressure and altitude data must be re-entered during each use to ensure accuracy.

Simple Weather Prediction

Atmospheric pressure at the Earth's surface is one of the measurements used to make weather predictions. Air in a high-pressure area compresses and warms as it descends. The warming air inhibits the formation of clouds. Therefore, the sky is normally sunny in high-pressure areas with a small chance of haze or fog. However, in an area of low atmospheric pressure, the air rises and cools. With enough humidity in the

AN1979

air, the rising air will cool, the air will condense forming clouds and precipitation in the form of rain or snow.

This reference design saves the current pressure reading and compares it to past pressure measurements. It determines if there was a pressure drop or a pressure increase. Using this information, it makes a simple weather prediction by sending a message of 'sunny' for a pressure increase, 'rainy for a pressure drop, and 'steady' for no significant change in pressure.¹

CONCLUSION

The Altimeter is one of many applications for the MPXM2102AS pressure sensor. This reference design can be used as a reference for developing more integrated barometer applications such as hand-held weather stations, altimeter features for camera or GPS systems, as well as barometric pressure monitoring systems for industrial systems. The MPXM2102AS is an excellent pressure sensor for this application since it is calibrated and temperature compensated. By having these features available on-chip, there is a large savings in PCB real estate in addition to savings in cost for external components

Table 4. Elevation Pressure and Temperature Changes

Altitude Abo	ove Sea Level	Tempe	erature	Barometer	Atmospher	ic Pressure
Feet	Meters	F	С	mm * Hg	psi	kPa
-1000	-305	63	17	787.9	15.23	105.0
-500	-153	61	16	773.9	14.96	103.1
0	0	59	15	760.0	14.69	101.33
500	153	57	14	746.3	14.43	99.49
1000	305	55	13	733.0	14.16	97.63
1500	458	54	12	719.6	13.91	95.91
2000	610	52	11	706.6	13.66	94.19
2500	763	50	10	693.9	13.41	92.46
3000	915	48	9	681.2	13.17	90.81
3500	1068	47	8	668.8	12.93	89.15
4000	1220	45	7	656.3	12.69	87.49
4500	1373	43	6	644.4	12.46	85.91
5000	1526	41	5	632.5	12.23	84.33
6000	1831	38	3	609.3	11.78	81.22
7000	2136	34	1	586.7	11.34	78.19
9000	2441	31	-1	564.6	10.91	75.22
9000	2746	27	-3	543.3	10.5	72.40
10,000	3050	23	-5	522.7	10.1	69.64
15,000	4577	6	-14	429.0	8.29	57.16

^{1.} This information was found from the USA Today Weather Book from USAToday.com.

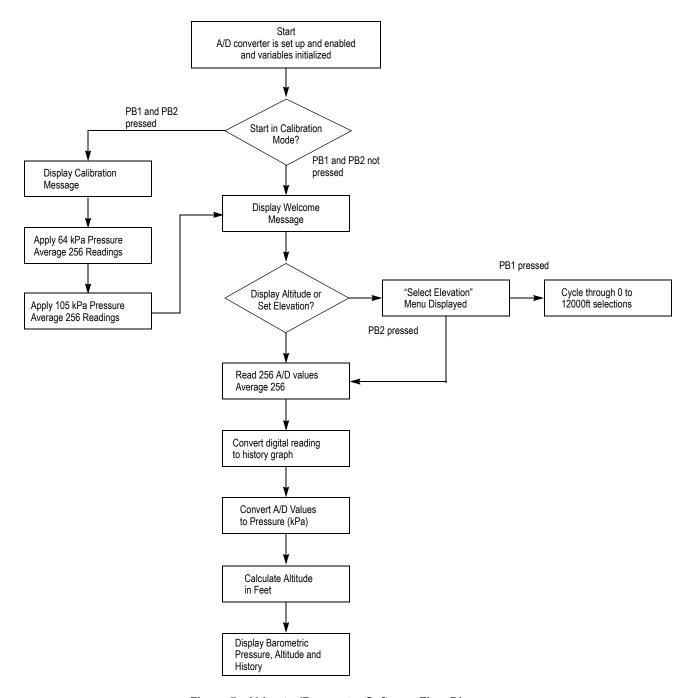


Figure 7. Altimeter/Barometer Software Flow Diagram

REFERENCES

Williams, Jack. (2001). Understanding Air Pressure. *The Weather Book*, 5, 117–123. Retrieved April 4, 2003, from http://www.usatoday.com/weather/wfront.htm

Handling Freescale Pressure Sensors

by: William McDonald

INTRODUCTION

Smaller package outlines and higher board densities require the need for automated placement of components. These components are supplied in embossed carrier tape on plastic reels to meet the increased demand and facilitate ease of handling. This application note is intended to provide general information and understanding for handling Freescale's surface mount pressure sensors. Equipment details are not provided in this document and it is recommended that end users contact suppliers of equipment for specific applications.

METHODS OF HANDLING

Components can be picked from the carrier tape using either the vacuum assist or the mechanical type pick up heads. A vacuum assist nozzle type is most common due to its lower cost of maintenance and ease of operation. The recommended vacuum nozzle configuration should be designed to make contact with the device directly on the metal

cover and avoid vacuum port location directly over the vent hole in the metal cover of the device. To provide a more secure hold on the device, contact with the plastic ridge around the perimeter of the metal cover should be avoided to prevent loss of vacuum pressure. Multiple vacuum ports within the nozzle may be required to effectively handle the device and prevent shifting during movement to placement position.

Figure 1 shows two styles of multiple port vacuum nozzles for the MPXH series device as an example. Figure 2 represents the nozzle location on the device.

Vacuum pressure required to adequately support the component should be approximately 25 in Hg (85kPa). This level is typical of in-house vacuum supply.

Pick up nozzles are available in various sizes and configurations to suit a variety of component geometries. To select the nozzle best suited for the specific application, it is recommended that the customer consult their pick and place equipment supplier to determine the correct nozzle. In some cases it may be necessary to fabricate a special nozzle depending on the equipment and speed of operation.

Figure 1. MPXH Series Multiple Port Vacuum Nozzles

Figure 2. Nozzle Location

Figure 3. SSOP Axial Style Port

AVAILABLE PACKAGES

Freescale offers several small outline surface mount device families. These are MPXA, MPXH, MPXM, and MPXY series of devices.

These devices are also available in axial ported versions to allow pressure to be interfaced to a device via a hose connection.

Pick up nozzles for these packages should be configured to apply vacuum only to the flat surface of a port base. An access clearance in the nozzle for a port shank is necessary to properly handle these device configurations. See Figure 3.

IVI

Figure 2. Available Packages

Table 1. Tape and Reel Information

	Case	423A	1317	1317A	1320	1320A	482	482A	1369
Carrier Tape		Chip Pak	SSOP	SSOP Ported	M-Pak	M-Pak Ported	SOP	SOP Ported	SOP Side Port
Tape Width	W	24.0+/-0.3	24.0+/-0.3	24.0+/-0.3	24.0+/-0.3	24.0+/-0.3	32+/-0.3	32+/-0.3	32+/-0.3
Pocket Width	A _o	8.5+/-0.2	7.7+/-0.1	8.8+/-0.1	6.8+/-0.1	7.2+/-0.1	11.3+/-0.1	12.0+/-0.2	12.6+/-0.2
Length	B _o	14.2+/-0.2	10.7+/-0.1	11.8+/-0.1	12.6+/-0.1	13.2+/-0.1	18.9+/-0.1	18.8+/-0.2	18.8+/-0.2
Depth	K _o	4.7+/-0.1	5.0+/-0.1	10.8+/-0.1	4.6+/-0.1	10.5+/-0.1	6.4+/-0.1	13.8+/-0.1	9.2+/-0.2
Sprocket Hole Pitch	P _o	4.0 +/-0.1	4.0+/-0.1	4.0+/-0.1	4.0+/-0.1	4.0+/-0.1	4.0+/-0.1	4.0+/-0.1	4.0+/-0.1
Sprocket Hole Diagram	D _o	1.55+/-0.05	1.55+/-0.05	1.55+/-0.05	1.55+/-0.05	1.55+/-0.05	1.5+/-0.05	1.5+/-0.1	1.5+/-0.1
Edge to Hole	E ₁	1.75+/-0.1	1.75+/-0.1	1.75+/-0.1	1.75+/-0.1	1.75+/-0.1	1.75+/-0.1	1.75+/-0.1	1.75+/-0.1
Hole to Edge	E ₂	22.2 min	N/A	N/A	N/A				
Distance between Holes	S _o	N/A	N/A	N/A	N/A	N/A	28.4+/-0.1	28.4+/-0.1	28.4+/-0.1
Pocket Pitch	P ₁	12.0+/-0.1	12.0+/-0.1	16.0+/-0.1	12.0+/-0.1	16.0+/-0.1	16.0+/-0.1	20.0+/-0.1	24.0+/01
Pocket	P ₂	2.0+/-0.1	2.0+/-0.1	2.0+/-0.1	2.0+/-0.1	2.0+/-0.1	2.0+/-0.1	2.0+/-0.1	2.0+/-0.1
Position	F	11.5+/-0.1	11.5+/-0.1	11.5+/-0.1	11.5+/-0.1	11.5+/-0.1	14.2+/-0.1	14.2+/-0.1	14.2+/-0.1
Tape Thickness	Т	0.40+/-0.05	0.40+/-0.05	0.40+/-0.05	0.40+/-0.05	0.40+/-0.05	0.30+/-0.05	0.35+/-0.05	0.40+/-0.05
Distance Pocket to Edge	S ₁	0.6 min.	0.6 min	0.6 min	0.6 min	0.6 min	N/A	N/A	N/A
Pocket Hole Diagram	D ₁	N/A	1.5+/-0.1	1.5+/-0.1	1.5+/-0.1	1.5+/-0.1	2.0+/-0.1	2.0+/-0.1	2.0+/-0.1
Cover Tape	ı							·	
Thickness	T ₁	0.052 +/-0.01							
Width	W ₄	21.1+/-0.1	21.1+/-0.1	21.1+/-0.1	21.1+/-0.1	21.1+/-0.1	21.1+/-0.1	25.5+/-0.1	25.5+/-0.1
Reel	·							•	
Width at Hub	W_1	23.7 - 25.2	23.7 - 25.2	23.7 - 25.2	23.7 - 25.2	23.7 - 25.2	23.7 - 25.2	31.7 - 33.2	31.7 - 33.2
Width at outer flange	W ₃	23.7 - 28.0	23.7 - 28.0	23.7 - 28.0	23.7 - 28.0	23.7 - 28.0	23.7 - 28.0	31.7 - 36.0	31.7 - 36.0
Overall Width	W ₂	30.4 max.	38.4 max.	38.4 max					
Hub Diagram	N	100+/-2.50	100+/-2.50	100+/-2.50	100+/-2.50	100+/-2.50	100+/-2.50	178+/-2.50	178+/-2.50
Arbor Hole Diagram	С	13.0+ 0.5/-0.2	13.0+ 0.5/-0.2	13.0+ 0.5/-0.2	13.0 +0.5/-0.2	13.0 +0.5/-0.2	13.0 +0.5/-0.2	13.0 +0.5/-0.2	13.0 +0.5/-0.2
Slot of Arbor Hole	В	1.50/2.50	1.50/2.50	1.50/2.50	1.50/2.50	1.50/2.50	1.50/2.50	1.50/2.50	1.50/2.50
Reel Diagram	Α	330+/-0.76	330+/-0.76	330+/-0.76	330+/-0.76	330+/-0.76	330+/-0.76	330+/-0.76	330+/-0.76
DEVICE QTY/REEL	MPQ	1000	1000	300	1000	400	600	100	200

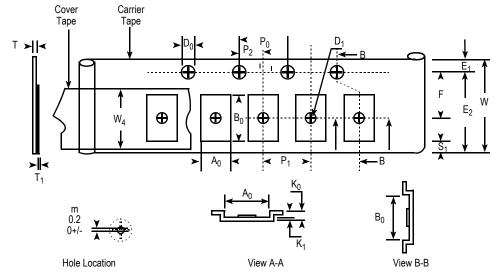


Figure 3. Carrier Tape

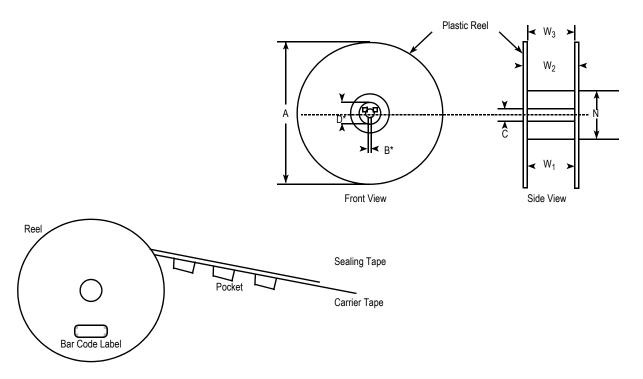
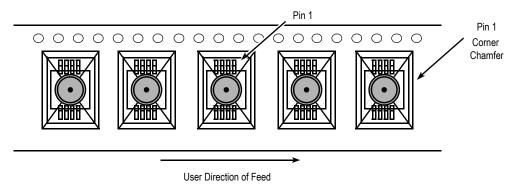
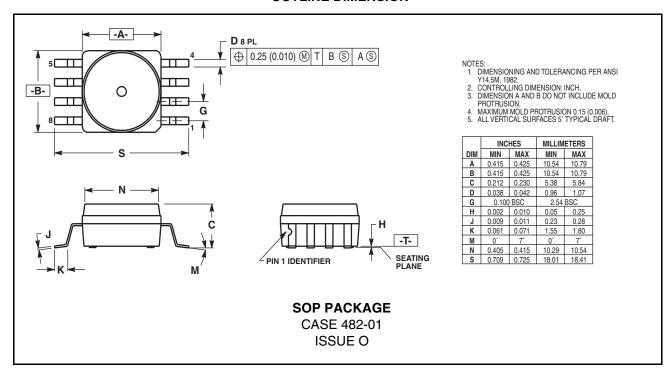
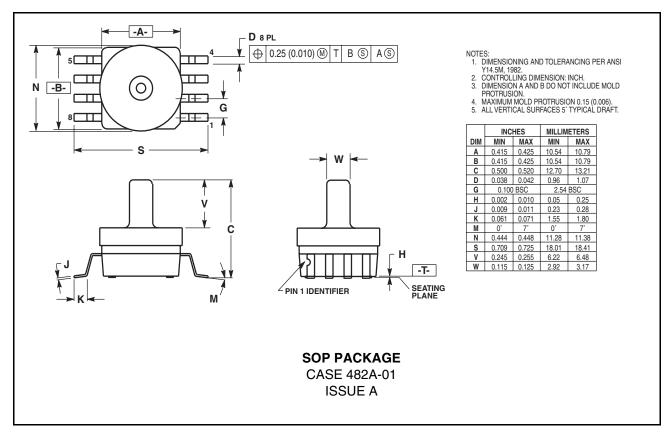
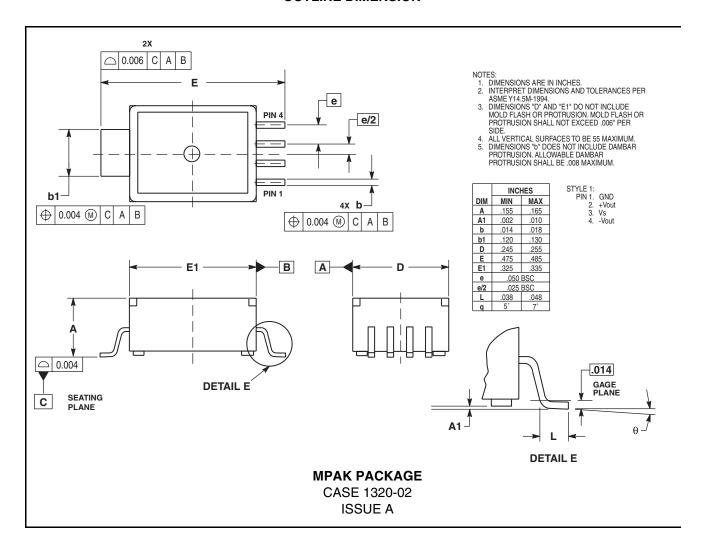
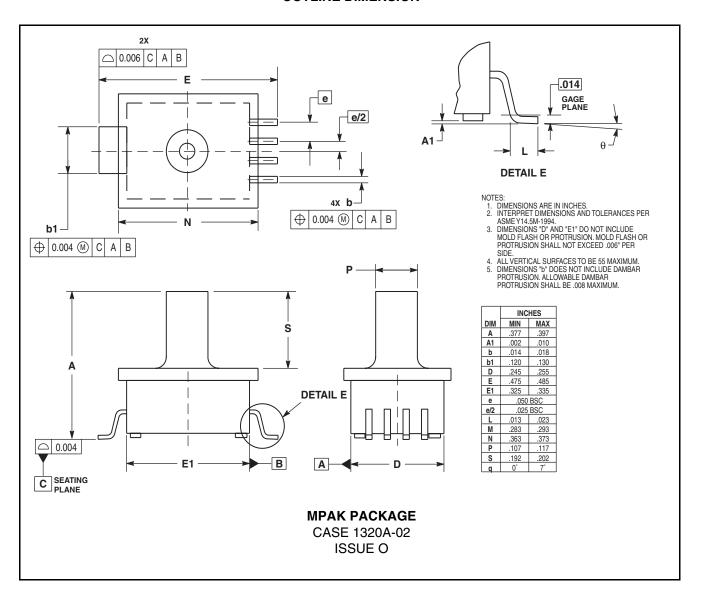
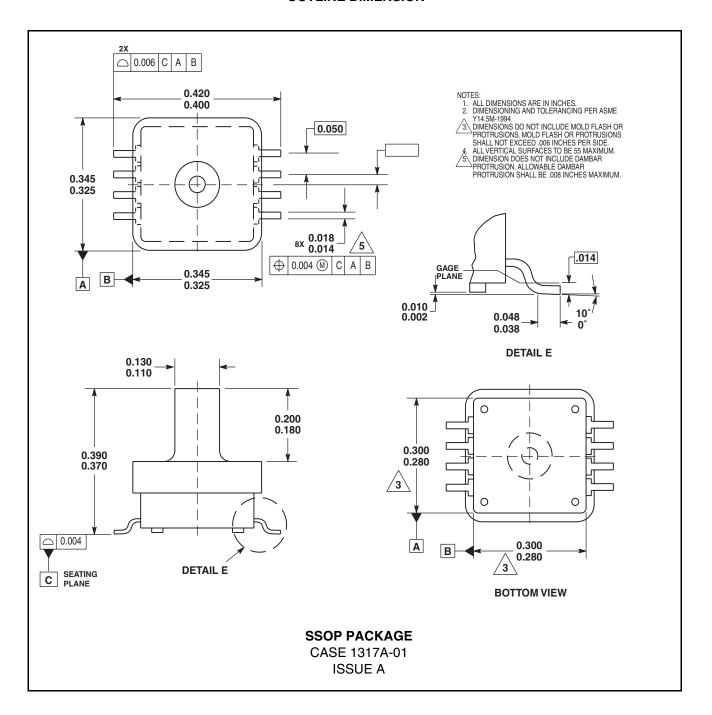
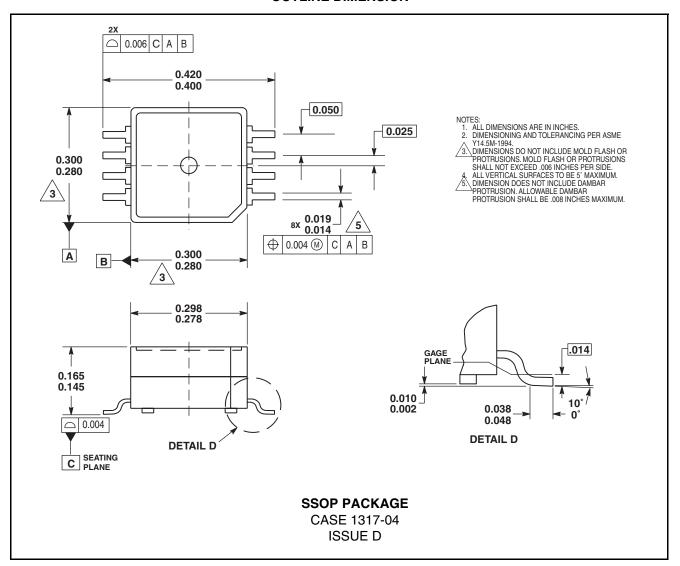
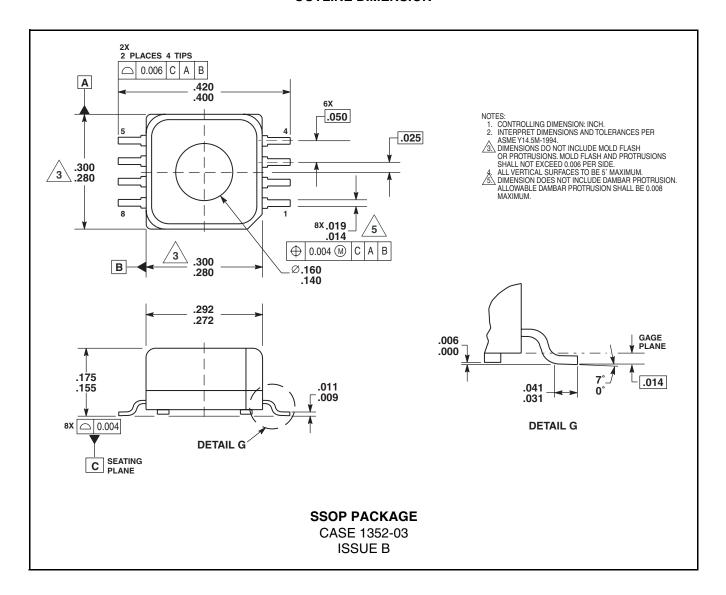


Figure 4. Reel


Figure 5. Orientation of Small Outline Package Sensor Device





MPXY80XX Application Mounting

by: Michael Agic Freescale Semiconductor, Inc. Sensor Products

SYNOPSIS

Tire pressure has long been known to be a significant factor in the driving experience and vehicle performance. Keeping the recommended level of pressure, as specified by tire and/or car manufacturers, is a very important part of the overall vehicle maintenance affecting the vehicle's suspension, steering, braking systems, and tire wear among others.

Following popular concerns regarding tire pressure security and in response to a mandate in the Transportation Recall Enhancement, Accountability, and Documentation (TREAD) Act of 2000, the National Traffic Highway Safety Administration (NHTSA) issued a ruling mandating installation of Tire Pressure Monitoring Systems (TPMS) that warn drivers when a tire is significantly under-inflated. This new Federal Motor Safety Standard mandates that vehicle manufacturers and TPMS suppliers, over time, equip all light vehicles with such systems. For the newest timeline and for more information on TPMS requirements, please refer to http://www.nhtsa.dot.gov/.

Within its extensive portfolio of pressure sensors, Freescale Semiconductor, Inc. offers highly integrated solutions for tire pressure monitoring systems – the MPXY80xx family.

This application note deals with considerations pertaining to the mounting of the MPXY80xx family sensors in the end user's applications.

MPXY80XX FAMILY

Freescale's MPXY80xx tire pressure monitoring sensor is a capacitive pressure sensing element, a temperature-sensing element, and an interface circuit with a wake-up feature, all on a single chip. The die is housed in Freescale's Super Small Outline Package (SSOP). The SSOP's size and enhanced media protection make it the perfect package solution for the TPMS.

Tire pressure monitoring systems operate in potentially corrosive environments that could lead to device failures if no protection is implemented. For that reason, the MPXY80xx family sensors use a media filter as the protection method. The filter allows pressure equalization on both sides of the filter. This, in turn, subjects the sensor's silicon diaphragm to the true tire pressure.

Despite these precautions, the tire's rapid and wide temperature variation, in concert with high humidity levels, present a major challenge in terms of pressure sensor operability.

Figure 1. MPXY80XX Sensor Package

MODULE MOUNTING CONSIDERATIONS

MPXY80xx sensors are designed to be mounted inside the tire either in valve stems or on the rim.

On-rim module installation typically requires that the module's case, containing the sensor and the rest of the

system components, is mounted on the rim inside the tire as depicted in Figure 2.

Valve-stem installation typically involves mounting the combination of the valve stem and module casing on the outside rim as depicted in Figure 3.

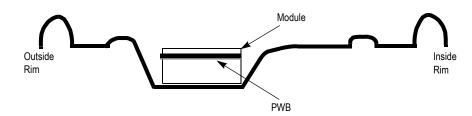


Figure 2. In-Rim Mounting Conceptual Depiction

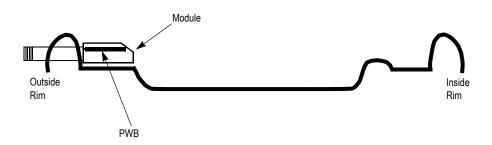


Figure 3. Valve-Stem Conceptual Depiction

SENSOR MOUNTING CONSIDERATIONS

Moisture Related Considerations

The MPXY80xx family integrated filter provides media and humidity protection needed for demanding automotive environments. The devices have been successfully qualified to a stringent list of qualification tests based on the Automotive Electronics Council (AEC) – Q100 requirements. These tests include accelerated humidity testing, long-term pressure and temperature cycling, as well as exposure to chemicals commonly found in Tire Pressure Monitoring applications. The integrated filter's ability to provide sensors with sufficient humidity and media protection, while not causing any false electrical signals from the devices due to acceleration forces in system applications, demonstrates the capabilities of this innovative packaging solution.

In order to maximize the media protection benefits from the integrated filter, the sensor's position needs to be carefully considered. Position of the MPXY80xx sensor in its final application is an important design decision since, in the extreme case where liquid would accumulate inside the tire and settle on top of the sensor package, the media filter may become obstructed (see Figure 4).

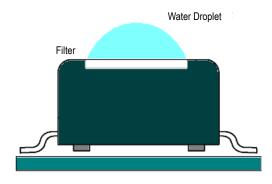


Figure 4. Filter Blockage

In addition to liquid possibly obstructing pressure transmission, liquid can be forced through the filter if it is present on the filter's exterior surface at a time when the device sees rapid pressurization such as when a tire is first installed on a rim.

In order to minimize the likelihood of liquid impacting the device's performance, it is suggested that the media filter on MPXY80xx family sensors faces outward and away from the wheel axis as depicted in Figure 5. This position of the sensor will take advantage of the strong radial forces experienced by the tire allowing for removal of water captured on top of, or inside, the package.

AN3108

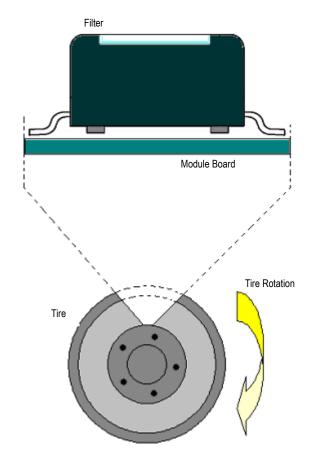


Figure 5. Filter Orientation

Vibration Related Considerations

During normal driving conditions, tire pressure monitoring systems are subjected to high levels of vibrations and strong dynamic forces as shown in an example of the P215/50R16 tire (refer to Figure 6). To ensure that the MPXY80xx family of sensors can withstand these harsh conditions, they are tested to acceleration and shock forces of up to 2000g.

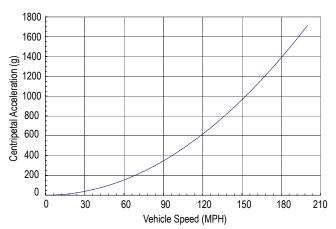


Figure 6. Centripetal Acceleration On a Rim Mounted Pressure Sensor for a P215/50R16 Tire

Due to these dynamic forces caused by the road conditions, the package leads may oscillate with the varying frequency. In order to prevent the board-level vibration failure caused by the driving dynamics, appropriate steps need to be taken when mounting the MPXY80xx family sensors to the system board. Quality automotive-grade components and assembly need to be used in order to prevent such failures. In addition to electrically protecting the MPXY80xx sensor's pins, potting and/or conformal coating techniques may help with the vibration failures and are commonly used as the final step in manufacturing the tire pressure monitoring systems.

SUMMARY

There are several important mounting considerations for the MPXY80xx family of sensors. In-tire environment demands that the sensor faces away from the wheel axis; this position takes advantage of the radial forces which will help remove any possible accumulated liquid off the integrated filter. The sensor position within the tire needs to be chosen such that the sensor is not immersed in the liquid for prolonged periods of time.

Dynamic forces induced by the driving conditions require that the board housing the MPXY80xx family of sensors is made with quality, automotive-grade materials. A non-conductive, potting material needs to be applied in order to protect electrically active parts on the system board from creation of unintended, electrically conductive paths.

ACKNOWLEDGMENTS

I would like to acknowledge the expert advice, and inputs given to me by Dave Monk, PhD., the design manager from Freescale Semiconductor, Inc., Sensor Products Division (SPD). I would also like to acknowledge inputs, and review contributed to creation of this application note by Carl Lopez, the new product development manager from Freescale Semiconductor, Inc., Sensor Products Division (SPD).

New Small Amplified Automotive Vacuum Sensors

A Single Chip Sensor Solution for Brake Booster Monitoring

by: Marc Osajda Automotive Sensors Marketing, Sensor Products Division Semiconductors S.A., Toulouse France

BRAKING SYSTEM

Different types of braking principles can be found in vehicles depending on whether the brake system is only activated by muscular energy or power assisted (partially or completely).

Muscular activated brakes are mostly found on motorcycles and very light vehicles. The driver's effort on the hand lever or pedal is directly transmitted via a hydraulic link to the brake pads.

Power assisted brakes are found on most passenger cars and some light vehicle trucks. In this case, the driver's effort is amplified by a *brake booster* to increase the force applied to the brake pedal.

BRAKE BOOSTER OPERATION PRINCIPLE

The vacuum brake booster is a system using the differential between atmospheric pressure and a lower pressure source (vacuum) to assist the braking operation. The brake booster is located between the brake pedal and the master cylinder. Figure 1 shows a simplified schematic of a vacuum brake booster.

When no brake pressure is applied on the push rod (brake pedal side), the air intake valve is closed and the vacuum valve open. Thus, both the vacuum and working chambers are at the same pressure, typically around -70 kPa (70 kPa below atmospheric pressure). Vacuum is generated by either the engine intake manifold or by an auxiliary vacuum pump.

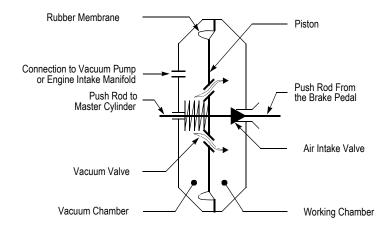


Figure 1. Brake Booster Simplified Schematic

Once the brake pedal is activated (force Fp), the vacuum valve is closed and the air intake valve is open proportionally to the displacement of the push rod (Figure 2). The working chamber is progressively open to atmospheric pressure, which creates a differential between the vacuum chamber and the working chamber. This differential pressure applied to the surface (S) of the piston results in a force $Fb = (Pw - Pv) \times S$.

The forces Fb + Fp are then applied to the brake pads through the master cylinder and hydraulic links.

When the brake pedal is released, the spring moves the piston back, closing the air intake valve and opening the vacuum valve to rebalance the pressure between the two chambers.

AN4007

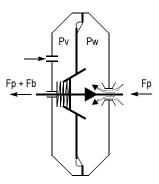


Figure 2. Braking Phase

VACUUM GENERATION

On most passenger cars, vacuum is generated by the engine itself. When the engine throttle valve is closed, the

displacement of the pistons produces vacuum in the intake manifold. Thanks to a tube or hose connected between the engine intake manifold and the brake booster, vacuum can be applied to the chambers. A backslash valve inserted between the intake manifold and the booster maintains the vacuum in the booster when the engine throttle valve is open.

This principle has some limitations, however. For example, it can be only used on engines that have the ability to generate enough vacuum. On diesel engines, which have no throttle valve, it is necessary to use an auxiliary pump to generate vacuum. This will also be the case on the Gasoline Direct Injection (GDI) engine, where in some driving conditions (idle, lean burn) the electrically assisted throttle valve will be maintained slightly open. In this situation, the vacuum available on the intake manifold is not sufficient to provide an efficient braking.

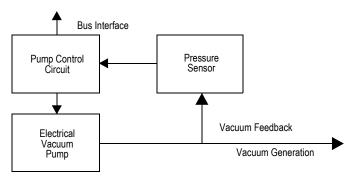


Figure 3. Vacuum Pump Monitoring

Therefore, it is necessary and desirable to use an electrical pump that will generate the vacuum for the brake booster. The use of an auxiliary electrical pump (Figure 3) provides several advantages over the "intake manifold" vacuum.

- Vacuum generation is no longer related to the engine running condition. Vacuum is only generated and controlled by the pump thanks to a vacuum pressure sensor that provides an accurate reading to the pump electrical control circuit.
- The electrical pump can be switched on and off based on the required vacuum. To compensate atmospheric pressure variation in order to maintain a constant booster effect, the pump also can be switched on independently from the atmospheric pressure. Various algorithms for driving the pump can be implemented depending on the required braking conditions.
- Pressure variations during braking can be measured, and the pump can be activated to generated additional vacuum if required to increase the braking force.
- Leakage can be detected by the pressure sensors and the pump can be switched on to compensate them. The driver can be informed of any type of failure thanks to the bus interface. Vacuum level, and thus available braking force can be communicated through the bus to other braking systems such as, for example, ABS or ESP.

Freescale Semiconductor, Inc., a worldwide leader in automotive semiconductors, has introduced a new integrate

pressure sensor dedicated to vacuum measurements in applications such as brake booster monitoring. The single-chip vacuum sensor may be placed directly onto the pump electronic control unit or integrated as component within the brake booster, thus providing flexibility, system integration and reduced system cost.

FREESCALE'S NEW MPXV6115VC6U VACUUM SENSOR

PIEZORESISTIVE/AMPLIFIED SENSORS

Freescale's pressure sensors are based on a piezoresistive technology that consists of a silicon micromachined diaphragm and a diffused piezoresistive strain gauge. When vacuum or pressure is applied on the die, the diaphragm is deformed and stressed. The resulting constraints create a variation of resistance in the piezoresistive strain gauge. In order to read this variation, an excitation current passes through the gauge, and a voltage proportional to the applied pressure and excitation current appears between the voltage taps. To get an accurate pressure reading, such a sensing element needs usually to be calibrated, temperature compensated and amplified.

In order to solve the inherent limitation of the basic sensing element, Freescale produces an entire family of calibrated, thermally compensated and amplified pressure sensors (see Figure 4) called Integrated Pressure Sensors (IPS).

The IPS is a state of the art, monolithic, amplified and signal-conditioned silicon pressure sensor. The sensor combines advanced micromachining techniques, thin film memorization and bipolar semiconductor processing to

provide an accurate, high-level analog output that is proportional to the applied pressure. IPS sensors can be directly connected to an A/D converter.

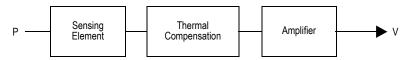


Figure 4. Integrated Pressure Sensor Block Diagram

PRESSURE MEASUREMENT CONVENTION

Pressure measurements can be divided into three different categories: absolute, gage and differential pressure.

Absolute pressure refers to the absolute value of the force per unit area exerted on a surface by a fluid. Therefore, the absolute pressure is the difference between the pressure at a given point in a fluid and the absolute zero of pressure or a perfect vacuum.

Gage pressure is the measurement of the difference between the absolute pressure and the local atmospheric pressure. Local atmospheric pressure can vary depending on ambient temperature, altitude and local weather conditions. The standard atmospheric pressure at sea level and 20°C is

101.325 kPa absolute. When referring to pressure measurement, it is critical to specify what reference the pressure is related to: gage or absolute. A gage pressure by convention is always positive. A 'negative' gage pressure is defined as vacuum. Figure 5 shows the relationship between absolute, gage pressure and vacuum.

Differential pressure is simply the measurement of one unknown pressure with reference to another unknown pressure. The pressure measured is the difference between the two unknown pressures. Since a differential pressure is a measure of one pressure referenced to another, it is not necessary to specify a pressure reference.

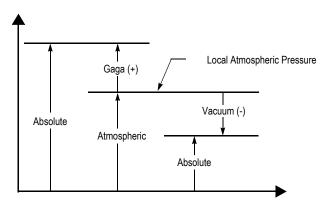


Figure 5. Pressure Convention

TRANSFER FUNCTION

The behavior of an IPS is defined by a linear transfer function. This transfer function applies to all Freescale's Integrated Pressure Sensors whatever the pressure range and type of sensing element (absolute or differential).

$$V_{out} = V_S x (P x K1 + K2)$$

± (PE x TM x $V_S x K1$)

- Vout: Sensor output voltage
- P: Applied pressure in kPa
- Vs: Sensor supply voltage in V
- K1: Sensitivity constant in V/V/kPa
- K2: Offset Constant inV/V
- · PE: Pressure error in kPa
- · TM: Temperature multiplier

The constants, K1, K2, PE & TM are specific to each device, temperature and pressure encountered in the application.

The variables P and Vs are dependent on the user application but must remain within the operating specification of the device.

THE MPXV6115VC6U INTEGRATED PRESSURE SENSOR

The MPXV6115VC6U gauge vacuum sensor, designed to measure pressure below the atmospheric pressure, is suitable for automotive application such as vacuum pump or brake booster monitoring. The MXPV4115V is also ideal for non-automotive applications where vacuum control is required.

The MPXV6115VC6U has the following basic characteristics (Note: Detailed characteristics of Freescale's pressure sensors can be found on http://www.freescale.com/semiconductors).

MPXV6115VC6U CHARACTERISTICS

$$V_{out} = V_S x (P \times 0.007652 + 0.92)$$

 $\pm (PE \times TM \times V_S \times 0.007652)$

AN4007

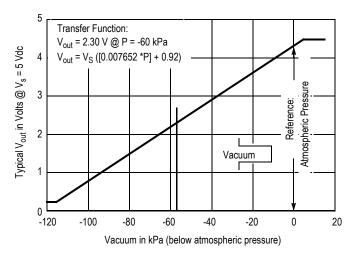


Figure 6. MPXV6115VC6U Transfer Function

P is the applied vacuum to the sensor pressure port.
 Pressures below atmospheric pressure have a negative sign. For example, 50 kPa below atmospheric is P = -50 in the transfer function. For pressure higher than the atmospheric pressure, the device will electrically saturate. The sensor is designed to measure vacuum from 0 kPa (Atmospheric pressure applied to the sensor pressure port) down to -115kPa.

Since the MPXV6115VC6U is using the atmospheric pressure as reference, -115 kPa can only be reached if the atmospheric pressure is higher or equal than 115 kPa. The device will electrically saturate for vacuum below -115 kPa.

- PE = 1.725 kPa (1.5% of full scale span) over the entire pressure range
- TM = 1 between 0 and +85°C, 3 at -40°C and +125°C. TM is a linear response from -40°C to 0°C and from 85°C to 125°C.

The real intent for the pressure-sensor user is to know the measured pressure. In this case it is preferable to express the transfer function as:

$$P = (V_{out}/V_S - 0.92) 0.007652 \pm (PE \times TM)$$

As an example, if Vout = 2.30 V for a 5 Vdc power supply and at 25°C ambient temperature, the measured vacuum is

$$P = -60.1 \text{ kPa} \pm 1.725 \text{ kPa}.$$

SENSOR PACKAGING

The packaging of a pressure sensor die is critical to achieve optimal performances of the final product. The package must isolate the pressure sensor die from unwanted external stress which can cause undesired drift of the electrical signal while being robust enough to support the pressure applied to the device without cracks, leaks or mechanical failures. It must be media compatible for the same reasons.

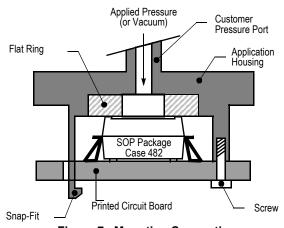


Figure 7. Mounting Suggestion

The new small pressure sensor package from Freescale addresses those requirements and lets designers mount a pressure sensor directly on a printed circuit board, thus providing great flexibility for space saving design. Figure 7 shows a typical assembly using a small outline package (SOP) Case 482-01.

The sensor can be mounted on the printed circuit board by an automatic pick and place machine as with every other surface mount component. Sealing is done by using a silicone flat ring inserted in the application housing. The printed circuit board must be maintained against the flat ring either by a snap fit, or by a screws as shown.

The new small outline package (SOP) is fabricated using poly-phenyl sulfide (PPS), a robust material, which can withstand high temperatures and is highly resistant to chemicals. Consequently, the package is ideal for harsh environment such as automotive, industrial or medical systems.

The small outline package is suitable for any of Freescale's sensor chips from the basic uncompensated sensor to the fully integrated sensing solution that include amplifiers and other circuitry all on one chip.

Freescale's sensors using this package are available in both tubes and tape and reel configuration for high productivity on your assembly line.

Low-Pressure Sensing Using MPX2010 Series Pressure Sensors

by: Memo Romero and Raul Figueroa Sensor Products Division Systems and Applications Engineering

INTRODUCTION

This application note presents a design for a low pressure evaluation board using the Freescale Semiconductor, Inc. MPX2010 series pressure sensors. By providing large gain amplification and allowing for package flexibility, this board is intended to serve as a design-in tool for customers seeking to quickly evaluate this family of pressure sensors.

The MPX2010 family of pressure sensors appeals to customers needing to measure small gauge, vacuum, or differential pressures at a low cost. However, different applications present design-in challenges for these sensors. For very low pressure sensing, large signal amplification is required, with gains substantially larger than what is provided in Freescale's current integrated pressure sensor portfolio. In terms of packaging, customers often need more mechanical flexibility such as smaller size, dual porting or both. In many cases, customers often lack the engineering resources, time or expertise to evaluate the sensor. The low-pressure evaluation board, shown in Figure 1, facilitates the design-in-

process by providing large signal gain and by providing for different package designs in a relatively small footprint.

CIRCUIT DESCRIPTION

For adequate and stable signal gain and output flexibility, a two-stage differential op-amp circuit with analog or switch output is utilized, as shown in Figure 2. The four op-amps are packaged in a single 14 pin quad package. There are several features to note about the circuitry.

The first gain stage is accomplished by feeding both pressure sensor outputs (VS- & VS+) into the non-inverting inputs of operational amplifiers. These op-amps are used in the standard non-inverting feedback configuration. With the condition that Resistors R2=R3, and R1=R4 (as closely as possible), this configuration results in a gain of G1= R4/R3+1.

The default gain is 101, but there are provisions for easily changing this value. The signal V (op-amp Pin 7) is then calculated as:

$$V_1 = G1*(VS+ - VS-) + Voffset. \dots Equation (1)$$

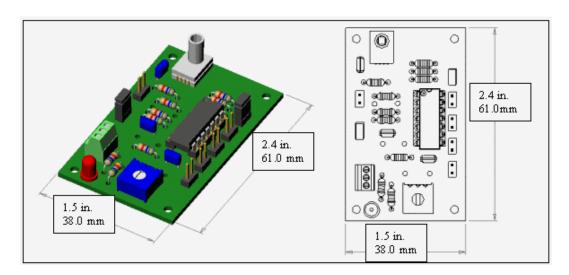


Figure 1. Low Pressure Evaluation Board

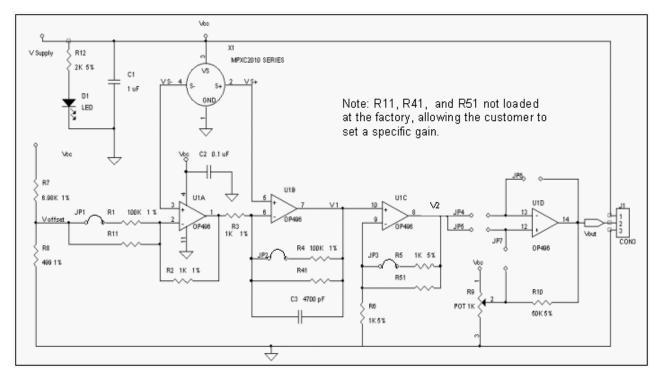


Figure 2. Circuit Schematic

Voffset is the reference voltage for the first op-amp and is pre-set with a voltage divider from the supply voltage. This value is set to be 6.7 percent of the supply voltage. It is important to keep this value relatively small simply because it too is amplified by the second gain stage. It is also desirable to have resistors R7 and R8 sufficiently large to reduce power consumption.

The second gain stage takes the signal from the first gain stage, V, and feeds it into the non-inverting input of a single op-amp. This op-amp is also configured with standard non-inverting feedback, resulting in a gain of G2=R5/R6+1. The default value is set to 2, but can easily be changed.

The signal produced at the output of the second stage amplifier, V (op-amp pin 8) is the fully amplified signal. This is calculated as

$$V_2 = G2^* V_1$$
. ... Equation (2)

From this point, there are two possible output types available. One is a simple follower circuit, as shown in Figure 3, in which the circuit output, Vout (op-amp pin 14), is essentially a buffered V signal. This analog output option is available for applications in which the real time nature of the pressure signal needs to be measured. This option is selected by connecting jumpers J5 and J6. J4 and J7 are not connected for analog output.

The second output choice, a switch output as shown in Figure 4, is accomplished by setting jumpers J4 and J7, and leaving J5 and J6 unconnected. This is appropriate for applications in which a switching function is desired. In this case, the fourth op-amp is configured as a comparator, which will invert V_2 , high or low, depending on whether V_2 is larger or smaller than the preset reference signal, set by trim-pot R9. This signal can be used to simulate a real world threshold.

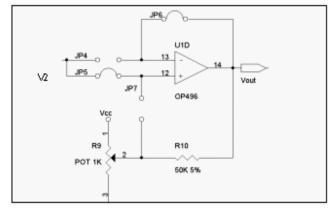


Figure 3. Analog Output Jumper Settings

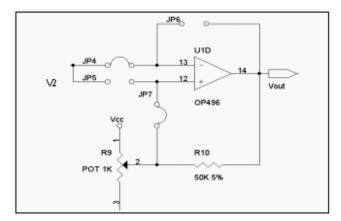


Figure 4. Switch Output Jumper Settings

Table 1 shows the jumper settings for both analog and switches outputs.

Table 1. Output Jumper Settings

Output	JP4	JP5	JP6	JP7
Analog	Out	In	In	Out
Switch	In	Out	Out	In

For the switch output option, it is desirable to apply some hysteresis on the output signal to make it relatively immune to potential noise that may be present in the voltage signal as it reaches and passes the threshold value. This is accomplished with feedback resistor R10. From basic op-amp theory, it can be shown that the amount of hysteresis is computed as follows:

$$V_H = Vout *[1-(10 / (R10 + R pot-eff))]$$

Where:

- VH is the output voltage attenuation, due to hysteresis, in volts
- Vout is the output voltage (railed hi or low)
- R10 is the feedback resistor, = 50K
- Rpot-eff is the effective potentiometer resistance

 $\ensuremath{\text{V}_{\text{H}}}$ may vary depending on the particular value of the potentiometer.

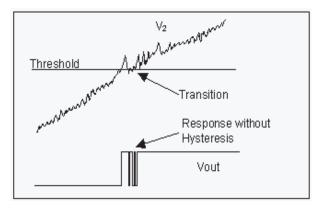


Figure 5. Output Transition without Hysteresis

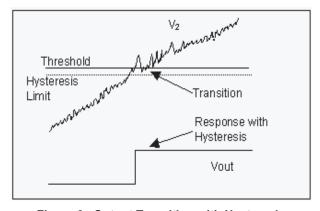


Figure 6. Output Transition with Hysteresis

To take an example, suppose that the supply voltage, Vs is 5 volts, and the threshold is set to 60 percent of Vs, or 3 volts. This corresponds to one leg of the 1K potentiometer set to 0.4K while the other is set to 0.6K. Thus the effective pot resistance is 0.4K // 0.6K = 0.24K.

Therefore,

$$V_H = 5V^* [1- (50K/(50K + 0.24K))] = 24 \text{ mV}.$$

Under these conditions, V signals passing through the threshold will not cause Vout to oscillate between Vs and Ground as long as noise and signal variations in V are less than 24mV during the transition. Figure 5 illustrates the benefit of having a hysteresis feedback resistor.

GAIN CUSTOMIZATION

The low-pressure evaluation board comes with default gains for both G1 and G2. G1 is factory set at 101, while G2 is set to 1. Jumpers JP1, JP2 and JP3 physically connect the resistors that produce these default gains. Three resistor sockets (R11, R41 and R51) are provided in parallel with R1, R4 and R5, respectively. By removing jumpers JP1, JP2 and JP3, and soldering different resistor values in the appropriate sockets, different gain values can be achieved. The limit on the largest overall gain that can be used is determined by opamp saturation. Thus if gain values are chosen such that the output would be larger than the supply voltage, then the opamp would saturate, and the pressure would not be accurately reflected. Table 2 outlines the jumper settings for customizing the gain.

Table 2. Resistor and Jumper Settings for Gain Customization

Ga	Gain		Resistors			Jumpers		Remarks
G1	G2	R11	R41	R51	JP1	JP2	JP3	
101	2	no load	no load	no load	In	In	In	Default
User Set	2	load	load	no load	Out	Out	In	R11=R41
101	User Set	no load	no load	load	In	In	Out	
User Set	User Set	load	load	load	Out	Out	Out	R11=R41

DESIGN CONSIDERATIONS

Since the evaluation board is primarily intended for lowpressure gage and differential applications, large gain values can be utilized for pressures less than 1.0 kPa. For example if G1 is set to 101, and G2 set to 6, then the total gain is 606.

Inherent in the MPX2010 family of pressure sensors is a zero-pressure offset voltage, which can be up to 1 mV. This offset is amplified by the circuit and appears as a DC offset at Vout with no pressure applied. The op-amp also has a voltage offset specification, though for the recommended op-amp this value is small and does not contribute significantly to the Vout offset.

For example, if the evaluation board is being used under the following conditions:

Vs = 3V

G1 = 101

G2 = 6

MPX2010 zero pressure offset = 0.3mV

At this supply voltage, VOFFSET can be calculated to be $6.7\% \times 3V = 0.2V$. The voltage V, due simply to the zero pressure sensor offset voltage of 0.3mV, can be calculated from equation (1):

$$V_1 = 0.3 \text{mV} * 101 + 0.2 \text{V} = 0.23 \text{V}$$

The voltage after the second gain stage comes from equation (2),

$$V_2 = 6 \times 0.23 V = 1.38 V.$$

Therefore, before any pressure is applied to the sensor, a 1.38V DC signal will appear at V. Since the supply voltage is 3V, the available signal for actual pressure is 1.62 V. With a total gain of G1 x G2 = 606, the largest raw pressure signal that can be accurately measured would be 1.62V/606 = 2.67 mV. For the MPX2010 family operating at Vs = 3V, this corresponds to roughly 3.5 kPa.

The board lends itself well to system integration via an A/D converter and microprocessor. For particular applications, general knowledge of the expected pressure signal can aid in choosing the proper customized gain. This will avoid op-amp saturation and will also ensure that the full-scale output signal is suitable for A/D conversion. To take another example, suppose that a particular application has the following constraints:

Supply Voltage, Vs = 5.0 V,

(thus VOFFSET = $6.7\% \times 5 = 0.335 \text{ V}$)

Sensor zero-pressure offset voltage, $V_{7P} = 0.3 \text{mV}$

Expected Pressure range = 0-2 kPa,

(corresponds to $\Delta V_{SENSOR-MAX} = 2.5 \text{mV} @ 5 \text{V}$)

Desired maximum output range, $\Delta V_{2MAX} = 2V$

(assume VMIN = 2V, V_{2MAX} = 4V for reasonable

A/D resolution)

By manipulating equations (1) and (2) it can be shown that,

 $\Delta V_{2MAX} = G_T \times \Delta V_{SENSOR-MAX}$

where GT is the total gain, equal to G1G2.

Thus GT = 2V/2.5mV = 800

To find G1 and G2, evaluate $V_{2\text{MIN}}$ at the zero pressure condition.

 $V_{2MIN} = G2 V_{1MIN}$

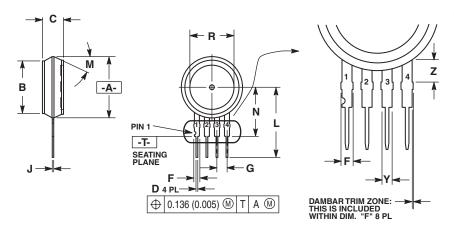
But $V_{1MIN} = G1 V_{ZP} + V_{OFFSET}$

Thus $V_{2MIN} = G_T V_{7P} + G2 V_{OFFSET}$

Solving for G2, G2 = $(V_{2MIN} - G_T V_{ZP})/V_{OFFSET}$

numerically, G2 = (2V - (800x.0003V))/.335V

G2 = 5.2, and G1 = GT/G2 = 152

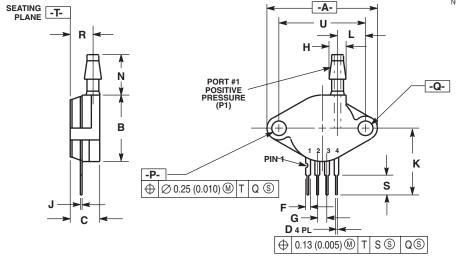

BOARD LAYOUT & CONTENT

The low-pressure evaluation board has been designed using standard components. The only item that requires careful selection is the operation amplifier IC. Because the selected gain may be relatively high as in the previous example, it is essential that this device have a low offset voltage. A device with a typical voltage offset of 35 mV has been selected. Even with a gain of 1500, this will result in a 52mV offset. Table 3 is a parts list for the board layout shown in Figure 1.

Table 3. Parts List

Ref.	Qty.	Description	Value	Vendor	Part No.
X1	1	Pressure Sensor	10 Kpa	Freescale	MPX2010 MPXC2011
C1	1	Vcc Cap	1 uF	Generic	
C2	1	Op-Amp Cap	0.1 uF	Generic	
C3	1	2nd stage cap	4700 pF	Generic	
D1	1	LED		Generic	
for U1	1	Op-Amp socket		Generic	
U1	1	Op-Amp		Analog Devices	OP496GP
R1, R4	2	1/4 W Resistor	100K	Generic	
R2,R3, R5,R6	4	1/4 W Resistor	1K	Generic	
R7	1	1/4 W Resistor	6.8K	Generic	
R8	1	1/4 W Resistor	510	Generic	
R9	1	Potentiometer	1K	Bourns	3386P-102
R10	1	1/4 W Resistor	51K	Generic	
R11	1	1/4 W Resistor	custom	Generic	
R12	1	1/4 W Resistor	2K	Generic	
R41	1	1/4 W Resistor	custom	Generic	
R51	1	1/4 W Resistor	custom	Generic	
JP1 - JP7	7	Jumper		Generic	
J1	1	3 Pos Connector		Phoenix	MKDS1

Package Dimensions

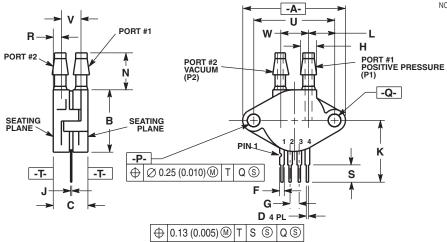

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
 V14 FM 1994
- Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSION -A- IS INCLUSIVE OF THE MOLD STOP RING. MOLD STOP RING NOT TO EXCEED 16.00 (0.630).

	INC	HES	MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.595	0.630	15.11	16.00	
В	0.514	0.534	13.06	13.56	
С	0.200	0.220	5.08	5.59	
D	0.016	0.020	0.41	0.51	
F	0.048	0.064	1.22	1.63	
G	0.100	BSC	2.54 BSC		
J	0.014	0.016	0.36	0.40	
L	0.695	0.725	17.65	18.42	
M	30°	NOM	30° 1	MOV	
N	0.475	0.495	12.07	12.57	
R	0.430	0.450	10.92	11.43	
Υ	0.048	0.052	1.22	1.32	
Z	0.106	0.118	2.68	3.00	

STYLE 1: PIN 1. GROUND 2. + OUTPUT 3. + SUPPLY 4. - OUTPUT STYLE 2: PIN 1. Voc 2. - SUPPLY 3. + SUPPLY 4. GROUND STYLE 3:
 PIN 1. GND
 2. -VOUT
 3. VS
 4. +VOUT

CASE 344-15 ISSUE AA SMALL OUTLINE PACKAGE

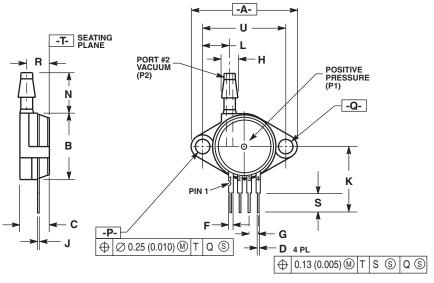

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.145	1.175	29.08	29.85	
В	0.685	0.715	17.40	18.16	
C	0.305	0.325	7.75	8.26	
D	0.016	0.020	0.41	0.51	
F	0.048	0.064	1.22	1.63	
G	0.100	BSC	2.54	BSC	
Н	0.182	0.194	4.62	4.93	
J	0.014	0.016	0.36	0.41	
K	0.695	0.725	17.65	18.42	
L	0.290	0.300	7.37	7.62	
N	0.420	0.440	10.67	11.18	
Р	0.153	0.159	3.89	4.04	
Q	0.153	0.159	3.89	4.04	
R	0.230	0.250	5.84	6.35	
S	0.220	0.240	5.59	6.10	
U	0.910	BSC	23.11	BSC	

STYLE 1: PIN 1. GROUND 2. + OUTPUT 3. + SUPPLY 4. - OUTPUT

CASE 344B-01 ISSUE B SMALL OUTLINE PACKAGE

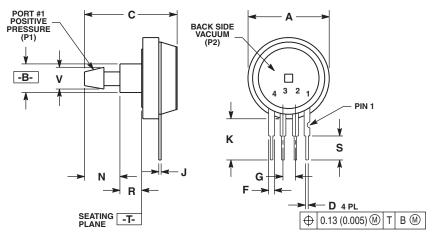

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCI	HES	MILLIN	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX		
Α	1.145	1.175	29.08	29.85		
В	0.685	0.715	17.40	18.16		
С	0.405	0.435	10.29	11.05		
D	0.016	0.020	0.41	0.51		
F	0.048	0.064	1.22	1.63		
G	0.100	BSC	2.54	BSC		
Н	0.182	0.194	4.62	4.93		
J	0.014	0.016	0.36	0.41		
K	0.695	0.725	17.65	18.42		
L	0.290	0.300	7.37	7.62		
N	0.420	0.440	10.67	11.18		
Р	0.153	0.159	3.89	4.04		
Q	0.153	0.159	3.89	4.04		
R	0.063	0.083	1.60	2.11		
S	0.220	0.240	5.59	6.10		
U	0.910	BSC	23.11	1 BSC		
٧	0.248	0.278	6.30	7.06		
W	0.310	0.330	7.87	8.38		

STYLE 1: PIN 1. GROUND 2. + OUTPUT 3. + SUPPLY 4. - OUTPUT

CASE 344C-01 ISSUE B SMALL OUTLINE PACKAGE


NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.145	1.175	29.08	29.85	
В	0.685	0.715	17.40	18.16	
С	0.305	0.325	7.75	8.26	
D	0.016	0.020	0.41	0.51	
F	0.048	0.064	1.22	1.63	
G	0.100	BSC	2.54 BSC		
Н	0.182	0.194	4.62	4.93	
J	0.014	0.016	0.36	0.41	
K	0.695	0.725	17.65	18.42	
L	0.290	0.300	7.37	7.62	
N	0.420	0.440	10.67	11.18	
Р	0.153	0.159	3.89	4.04	
Q	0.153	0.158	3.89	4.04	
R	0.230	0.250	5.84	6.35	
S	0.220	0.240	5.59	6.10	
U	0.910	BSC	23.11	BSC	

STYLE 1: PIN 1. GROUND 2. + OUTPUT 3. + SUPPLY 4. - OUTPUT

CASE 344D-01 ISSUE B SMALL OUTLINE PACKAGE

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETERS		
DIM	MIN MAX		MIN	MAX	
Α	0.690	0.720	17.53	18.28	
В	0.245	0.255	6.22	6.48	
С	0.780	0.820	19.81	20.82	
D	0.016	0.020	0.41	0.51	
F	0.048	0.064	1.22	1.63	
G	0.100	BSC	2.54	BSC	
J	0.014	0.016	0.36	0.41	
K	0.345	0.375	8.76	9.53	
N	0.300	0.310	7.62	7.87	
R	0.178	0.186	4.52	4.72	
S	0.220	0.240	5.59	6.10	
V	0.182	0.194	4.62	4.93	

STYLE 1: PIN 1. GROUND 2. + OUTPUT 3. + SUPPLY 4. - OUTPUT

1. DIMENSIONING AND TOLERANCING PER ANSI

0.630 0.650 16.00 **D** 0.016 0.020 0.41

INCHES MILLIMETERS DIM MIN MAX MIN MAX

27.43

18.80

4.06

5.59

3.81

28.45

19.30

0.51

4.57

1.63

0.41

6.10

4.06

4.06

11.68

18.42

2. CONTROLLING DIMENSION: INCH.

A 1.080 1.120

B 0.740 0.760

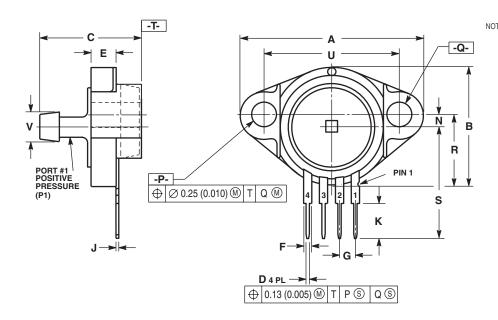
E 0.160 0.180 **F** 0.048 0.064

N 0.070 0.080 P 0.150 0.160

0.100 BSC J 0.014 0.016 0.36 K 0.220 0.240 5.59

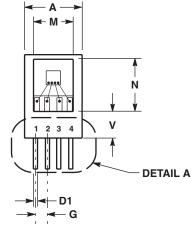
Q 0.150 0.160 3.81 R 0.440 0.460 11.18

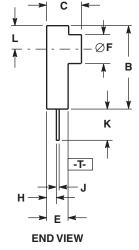
S 0.695 0.725 17.65

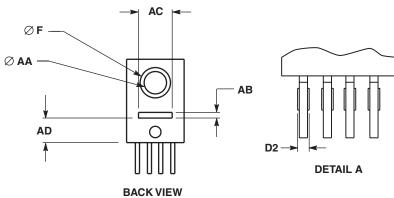

 U
 0.840
 0.860
 21.34
 21.84

 V
 0.182
 0.194
 4.62
 4.92

Y14.5M, 1982.

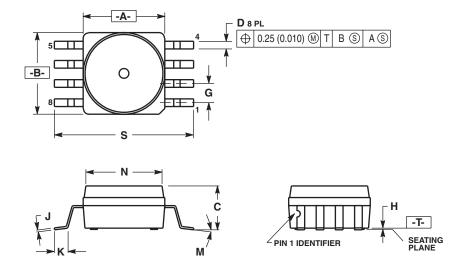

G


CASE 344E-01 ISSUE B SMALL OUTLINE PACKAGE


STYLE 1: PIN 1. GROUND 2. V (+) OUT 3. V SUPPLY 4. V (-) OUT

CASE 344F-01 ISSUE B SMALL OUTLINE PACKAGE

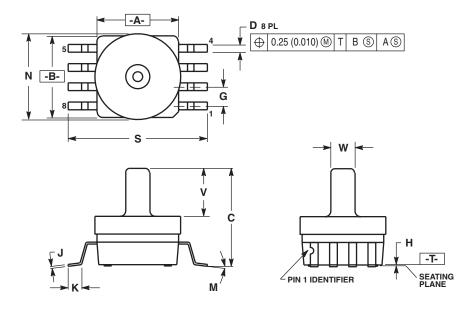
FRONT VIEW


- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

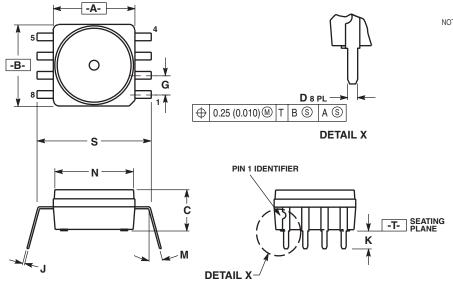
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.240	0.260	6.10	6.60
В	0.350	0.370	8.89	9.40
С	0.140	0.150	3.56	3.81
D1	0.012	0.020	0.30	0.51
D2	0.014	0.022	0.36	0.56
E	0.088	0.102	2.24	2.59
F	0.123	0.128	3.12	3.25
G	0.045	0.055	1.14	1.40
Н	0.037	0.047	0.94	1.19
J	0.007	0.011	0.18	0.28
K	0.120	0.140	3.05	3.56
L	0.095	0.105	2.41	2.67
M	0.165	0.175	4.19	4.45
N	0.223	0.239	5.66	6.07
V	0.105	0.115	2.67	2.92
AA	0.095	0.107	2.41	2.72
AB	0.015	0.035	0.38	0.89
AC	0.120	0.175	3.05	4.45
AD	0.100	0.115	2.54	2.92


CASE 423A-03 ISSUE C CHIP PAK PACKAGE

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
 5. ALL VERTICAL SURFACES 5' TYPICAL DRAFT.

	INCHES		MILLIMETERS	
	INCHES			
DIM	MIN	MAX	MIN	MAX
Α	0.415	0.425	10.54	10.79
В	0.415	0.425	10.54	10.79
С	0.212	0.230	5.38	5.84
D	0.038	0.042	0.96	1.07
G	0.100	BSC	2.54 BSC	
Н	0.002	0.010	0.05	0.25
۲	0.009	0.011	0.23	0.28
K	0.061	0.071	1.55	1.80
M	0°	7°	0°	7°
N	0.405	0.415	10.29	10.54
S	0.709	0.725	18.01	18 41


CASE 482-01 ISSUE O SMALL OUTLINE PACKAGE

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).
 5. ALL VERTICAL SURFACES 5' TYPICAL DRAFT.

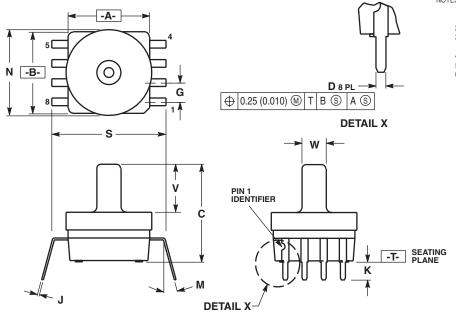
	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.415	0.425	10.54	10.79
В	0.415	0.425	10.54	10.79
С	0.500	0.520	12.70	13.21
D	0.038	0.042	0.96	1.07
G	0.100	BSC	2.54 BSC	
Н	0.002	0.010	0.05	0.25
J	0.009	0.011	0.23	0.28
K	0.061	0.071	1.55	1.80
M	0°	7°	0°	7°
N	0.444	0.448	11.28	11.38
S	0.709	0.725	18.01	18.41
٧	0.245	0.255	6.22	6.48
W	0.115	0.125	2.92	3.17

CASE 482A-01 ISSUE A SMALL OUTLINE PACKAGE

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MOLD PHO I ROSION.

 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006).

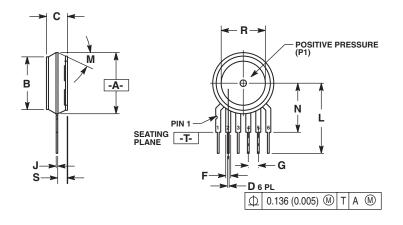

 5. ALL VERTICAL SURFACES 5' TYPICAL DRAFT.

 6. DIMENSION S TO CENTER OF LEAD WHEN

١.	DIMENSION S TO CENTER OF LEAD V
	FORMED PARALLEL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.415	0.425	10.54	10.79
В	0.415	0.425	10.54	10.79
С	0.210	0.220	5.33	5.59
D	0.026	0.034	0.66	0.864
G	0.100	BSC	2.54 BSC	
J	0.009	0.011	0.23	0.28
K	0.100	0.120	2.54	3.05
M	0°	15°	0°	15°
N	0.405	0.415	10.29	10.54
S	0.540	0.560	13.72	14.22

CASE 482B-03 ISSUE B SMALL OUTLINE PACKAGE



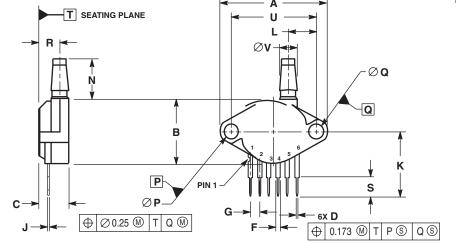
NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006).
- 5. ALL VERTICAL SURFACES 5' TYPICAL DRAFT.
 6. DIMENSION S TO CENTER OF LEAD WHEN
- FORMED PARALLEL.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.415	0.425	10.54	10.79
В	0.415	0.425	10.54	10.79
С	0.500	0.520	12.70	13.21
D	0.026	0.034	0.66	0.864
G	0.100	BSC	2.54 BSC	
J	0.009	0.011	0.23	0.28
K	0.100	0.120	2.54	3.05
M	0°	15°	0°	15°
N	0.444	0.448	11.28	11.38
S	0.540	0.560	13.72	14.22
٧	0.245	0.255	6.22	6.48
W	0.115	0.125	2.92	3.17

CASE 482C-03 ISSUE B SMALL OUTLINE PACKAGE

STYLE 1:
PIN 1. VOUT
2. GROUND
3. VCC
4. V1
5. V2
6. VEX

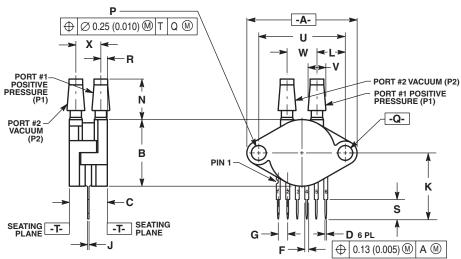

STYLE 2: PIN 1. OPEN 2. GROUND 3. -VOUT 4. VSUPPLY 5. +VOUT 6. OPEN STYLE 3:
PIN 1. OPEN
2. GROUND
3. +VOUT
4. +VSUPPLY
5. -VOUT
6. OPEN

CASE 867-08 ISSUE N UNIBODY PACKAGE

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982.
- 2. CONTROLLING DIMENSION: INCH.
- DIMENSION -A- IS INCLUSIVE OF THE MOLD STOP RING. MOLD STOP RING NOT TO EXCEED 16.00 (0.630).

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.595	0.630	15.11	16.00
В	0.514	0.534	13.06	13.56
С	0.200	0.220	5.08	5.59
D	0.027	0.033	0.68	0.84
F	0.048	0.064	1.22	1.63
G	0.100	BSC	2.54 BSC	
J	0.014	0.016	0.36	0.40
L	0.695	0.725	17.65	18.42
M	30° N	MON	30° N	MOM
N	0.475	0.495	12.07	12.57
R	0.430	0.450	10.92	11.43
S	0.090	0.105	2.29	2.66

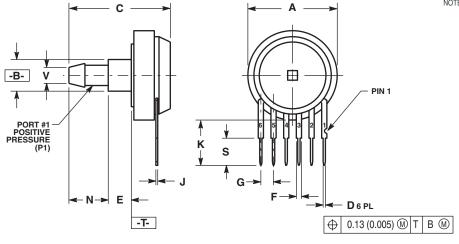

NOTES:

- DIMENSIONS ARE IN MILLIMETERS.
 DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994.

DIM A B	MIN 29.08 17.4 7.75	29.85 18.16
В	17.4	18.16
	7.75	0.00
С		8.26
D	0.68	0.84
F	1.22	1.63
G	2.54	BSC
J	0.36	0.41
K	17.65	18.42
L	7.37	7.62
N	10.67	11.18
Р	3.89	4.04
Q	3.89	4.04
R	5.84	6.35
S	5.59	6.1
U	23.11	BSC
٧	4.62	4.93

STYLE 1:
PIN 1. Vout
2. GROUND
3. Vcc
4. V1
5. V2
6. Vex

CASE 867B-04 ISSUE F UNIBODY PACKAGE

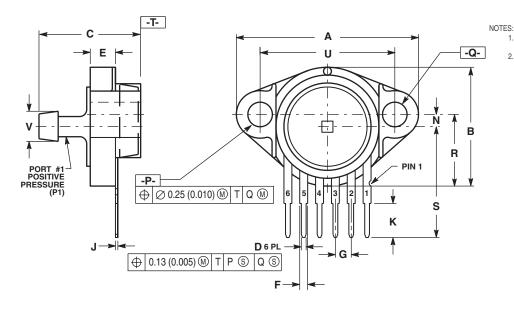

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCH.

OTTO DE LA DIMENTO DE LA TROPIA					
	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	1.145	1.175	29.08	29.85	
В	0.685	0.715	17.40	18.16	
С	0.405	0.435	10.29	11.05	
D	0.027	0.033	0.68	0.84	
F	0.048	0.064	1.22	1.63	
G	0.100 BSC		2.54 BSC		
J	0.014	0.016	0.36	0.41	
K	0.695	0.725	17.65	18.42	
L	0.290	0.300	7.37	7.62	
Ν	0.420	0.440	10.67	11.18	
Р	0.153	0.159	3.89	4.04	
Q	0.153	0.159	3.89	4.04	
R	0.063	0.083	1.60	2.11	
S	0.220	0.240	5.59	6.10	
U	0.910 BSC		23.11 BSC		
٧	0.182	0.194	4.62	4.93	
W	0.310	0.330	7.87	8.38	
Χ	0.248	0.278	6.30	7.06	

- STYLE 1:
 PIN 1. Vout
 2. GROUND
 3. Vcc
 4. V1
 5. V2
 6. Vex

CASE 867C-05 ISSUE F UNIBODY PACKAGE

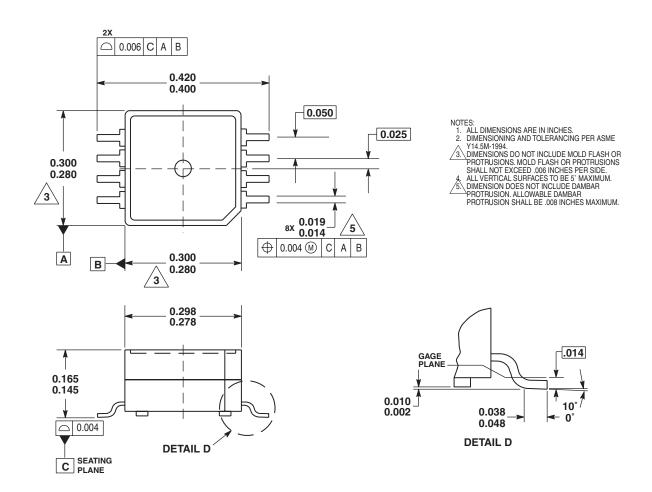


NOTES:

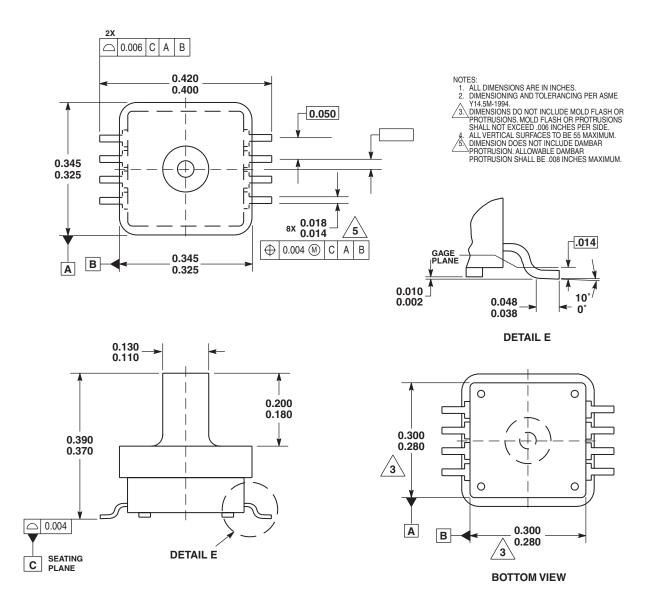
- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.690	0.720	17.53	18.28
В	0.245	0.255	6.22	6.48
С	0.780	0.820	19.81	20.82
D	0.027	0.033	0.69	0.84
Е	0.178	0.186	4.52	4.72
F	0.048	0.064	1.22	1.63
G	0.100	BSC	2.54 BSC	
J	0.014	0.016	0.36	0.41
K	0.345	0.375	8.76	9.53
N	0.300	0.310	7.62	7.87
S	0.220	0.240	5.59	6.10
٧	0.182	0.194	4.62	4.93

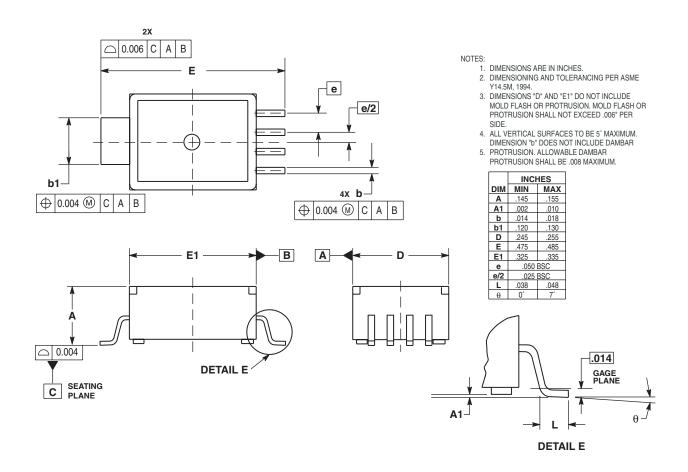
- STYLE 1:
 PIN 1. V_{OUT}
 2. GROUND
 3. V_{CC}
 4. V1
 5. V2
 6. V_{EX}
- **CASE 867E-03 ISSUE D UNIBODY PACKAGE**

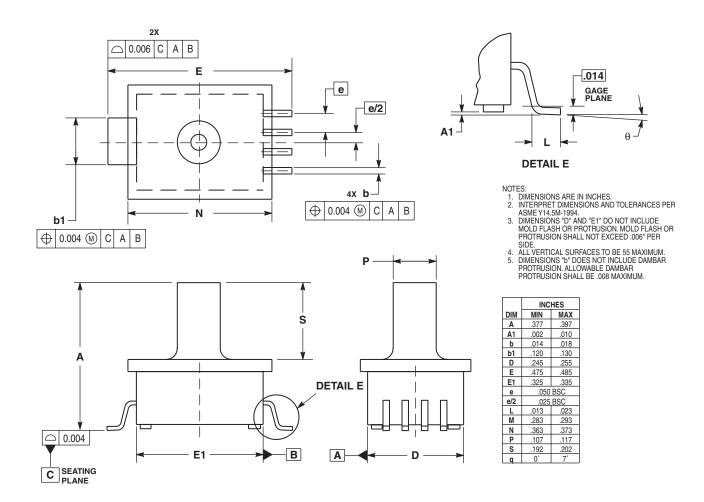


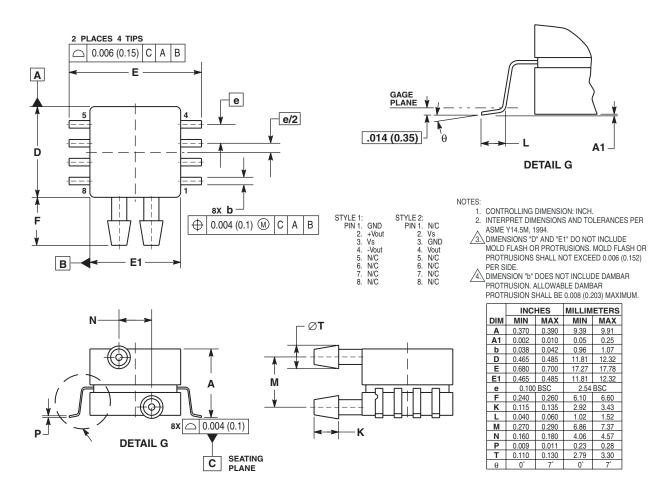
DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.

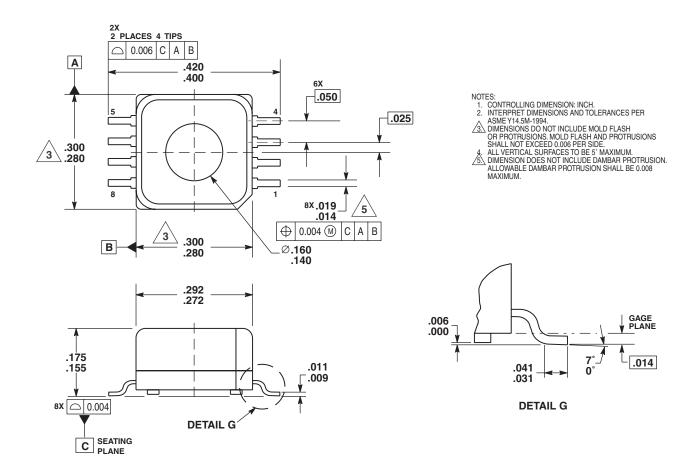

	INCHES		MILLIMETER	
DIM	MIN	MAX	MIN	MAX
Α	1.080	1.120	27.43	28.45
В	0.740	0.760	18.80	19.30
С	0.630	0.650	16.00	16.51
D	0.027	0.033	0.68	0.84
Е	0.160	0.180	4.06	4.57
F	0.048	0.064	1.22	1.63
G	0.100	BSC	2.54 BSC	
J	0.014	0.016	0.36	0.41
K	0.220	0.240	5.59	6.10
N	0.070	0.080	1.78	2.03
Р	0.150	0.160	3.81	4.06
Q	0.150	0.160	3.81	4.06
R	0.440	0.460	11.18	11.68
S	0.695	0.725	17.65	18.42
U	0.840	0.860	21.34	21.84
٧	0.182	0.194	4.62	4.93

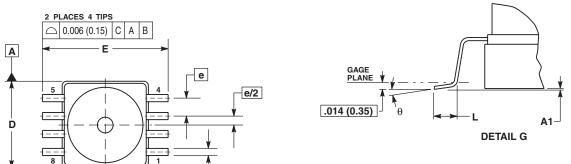
STYLE 1:
PIN 1. Vout
2. GROUND
3. Vcc
4. V1
5. V2
6. Vex


CASE 867F-03 ISSUE D UNIBODY PACKAGE

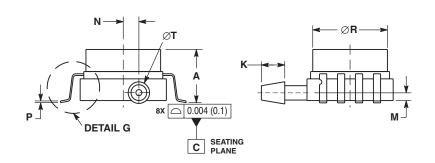

CASE 1317-04 ISSUE D SUPER SMALL OUTLINE PACKAGE


CASE 1317A-01 ISSUE A SUPER SMALL OUTLINE PACKAGE

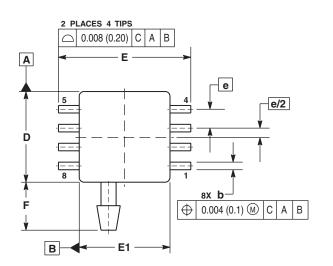

CASE 1320-02 ISSUE A MPAK PACKAGE

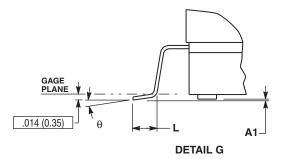

CASE 1320A-02 ISSUE O MPAK PACKAGE

CASE1351-01 ISSUE O SMALL OUTLINE PACKAGE



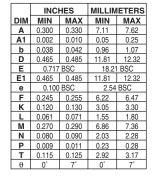
CASE 1352-03 ISSUE B SUPER SMALL OUTLINE PACKAGE

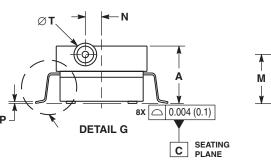

8x **b** STYLE 1:
PIN 1. GND
2. +Vout
3. Vs
4. -Vout
5. N/C
6. N/C
7. N/C
8. N/C STYLE 2:
PIN 1. N/C
2. Vs
3. GND
4. Vout
5. N/C
6. N/C
7. N/C
8. N/C \oplus 0.004 (0.1) M C A B E1 В

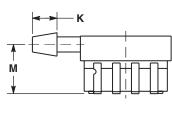

NOTES:
1. CONTROLLING DIMENSION: INCH.
2. INTERPRET DIMENSIONS AND TOLERANCES PER
ASME Y14.5M-1994.
3. DIMENSIONS "D" AND "E1" DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR
PROTRUSIONS SHALL NOT EXCEED 0.006 (0.152)
PER SIDE.
4. DIMENSION "b" DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.008 (0.203) MAXIMUM.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.280	0.300	7.11	7.62
A1	0.002	0.010	0.05	0.25
b	0.038	0.042	0.96	1.07
D	0.465	0.485	11.81	12.32
Е	0.690) BSC	17.52	BSC
E1	0.465	0.485	11.81	12.32
е	0.100) BSC	2.54	BSC
F	0.240	0.260	6.10	6.60
K	0.115	0.135	2.92	3.43
L	0.040	0.060	1.02	1.52
M	0.035	0.055	1.90	2.41
N	0.075	0.095	0.89	1.39
Р	0.009	0.011	0.23	0.28
Т	0.110	0.130	2.79	3.30
R	0.405	0.415	10.28	10.54
θ	0°	7°	0°	7°

CASE 1368-01 ISSUE 0 SMALL OUTLINE PACKAGE






NOTES:

- CONTROLLING DIMENSION: INCH.
 INTERPRET DIMENSIONS AND TOLERANCES PER
 - MITERFIRET DIMENSIONS AND TOLERANGES FER
 ASME Y14.5M, 1994.
 DIMENSIONS "D" AND "E1" DO NOT INCLUDE
 MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006 (0.152)
- PRO INDIGIONS STALL NOT EXCELS SHOULD PER SIDE.

 4. DIMENSION "b" DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.008 (0.203) MAXIMUM.

CASE 1369-01 ISSUE O SMALL OUTLINE PACKAGE

Reference Tables

FLOW EQUIVALENTS

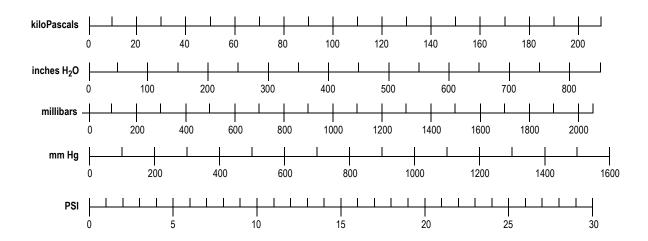
1 Cu. Ft./Hr.		1 Cu. Ft./Min.		1 CC/Min.		1 CC/Hr.	
0.0166	Cu. Ft./Min	60	Cu. Ft./Min	60	CC/Hr.	0.0167	CC/Min.
0.4719	LPM	28.316	LPM	0.000035	Cu. Ft./Min	0.0000005	Cu. Ft./Min
28.316	LPH	1699	LPH	0.0021	Cu. Ft./Hr.	0.00003	Cu. Ft./Hr.
471.947	CC/Min.	28317	CC/Min.	0.001	LPM	0.000017	LPM
28317	CC/Hr.	1,699,011	CC/Hr.	0.06	LPH	0.001	LPH
0.1247	Gal/Min.	7.481	Gal/Min.	0.00026	Gal/Min.	0.000004	Gal/Min.
7.481	Gal/Hr.	448.831	Gal/Hr.	0.0159	Gal/Hr.	0.00026	Gal/Hr.
1	LPM	1 LPH		1 Gal/Min.		1 Gal/Hr.	
60	LPH	0.0166	LPH	60	Gal/Hr.	0.0167	Gal/Min.
0.035	Cu. Ft./Min.	0.00059	Cu. Ft./Min.	0.1337	Cu. Ft./Min.	0.002	Cu. Ft./Min.
2.1189	Cu. Ft./Hr.	0.035	Cu. Ft./Hr.	8.021	Cu. Ft./Hr.	0.1337	Cu. Ft./Hr.
1000	CC/Min.	16.667	CC/Min.	3.785	LPM	0.063	LPM
60,002	CC/Hr.	1000	CC/Hr.	227.118	LPH	3.785	LPH
0.264	Gal/Min.	0.004	Gal/Min.	3,785.412	CC/Min.	63.069	CC/Min.
15.851	Gal/Hr.	0.264	Gal/Hr.	227,125	CC/Hr.	3785	CC/Hr.

Airspeed

Inches of Mercury	
0.1727	
0.3075	
0.4814	
0.5832	
0.6950	
0.8168	
0.9488	
1.0910	
1.4918	
1.9589	
2.4943	
3.1002	
3.7792	
4.5343	
5.3687	
6.2859	
7.2900	

Inches of Mercury
8.3850
9.5758
10.8675
12.2654
13.7756
15.4045
17.1590
19.0465
21.0749
25.5893
30.7642
36.5662
42.9378
49.8423
57.2554
73.5454

Altitude (Feet)	Equivalent Pressure (Inches of Mercury)
-1,000	31.0185
-900	30.9073
0	29.9213
500	29.3846
1,000	28.8557
1,500	28.3345
2,000	27.8210
3,000	26.8167
4,000	25.8418
6,000	23.9782
8,000	22.2250
10,000	20.5770
12,000	19.0294


Altitude (Feet)	Equivalent Pressure (Inches of Mercury)
14,000	17.5774
16,000	16.2164
18,000	14.9421
20,000	13.7501
22,000	12.6363
25,000	11.1035
30,000	8.88544
35,000	7.04062
40,000	5.53802
45,000	4.35488
49,900	3.44112 (EST)
50,000	3.42466
	, ,

Reference Tables (continued)

CONVERSION TABLE FOR COMMON UNITS OF PRESSURE

	kiloPascals	mm Hg	millibars	inches H ₂ O	PSI
1 atm	101.325	760.000	1013.25	406.795	14.6960
1 kiloPascal	1.00000	7.50062	10.0000	4.01475	0.145038
1 mm Hg	0.133322	1.00000	1.33322	0.535257	0.0193368
1 millibar	0.100000	0.750062	1.00000	0.401475	0.0145038
1 inch H ₂ O	0.249081	1.86826	2.49081	1.00000	0.0361
1 PSI	6.89473	51.7148	68.9473	27.6807	1.00000
1 hectoPascal	0.100000	0.75006	1.00000	0.401475	0.0145038
1 cm H ₂ O	0.09806	0.7355	9.8 x 10 ⁻⁷	0.3937	0.014223

QUICK CONVERSION CHART FOR COMMON UNITS OF PRESSURE

Mounting and Handling Suggestions for the Unibody Pressure Sensor Package

.114 .047 0 .125 .075 .037R .021

Figure 1. O-Ring to Sensor Cell Interface Dimensions

CUSTOM PORT ADAPTOR INSTALLATION TECHNIQUES

The Freescale Semiconductor MPX silicon pressure sensor is available in a basic chip carrier cell which is adaptable for attachment to customer specific housings/ports (Case 344 for 4-pin devices and Case 867 for 6-pin devices). The basic cell has chamfered shoulders on both sides which will acceptan O-ring such as Parker Seal's silicone O-ring (p/n#2-015-S-469-40). Refer to Figure 1 for the recommended O-ring to sensor cell interface dimensions.

The sensor cell may also be glued directly to a custom housing or port using many commercial grade epoxies or RTV adhesives which adhere to grade Valox 420, reinforced polyester resin plastic polysulfone (MPX2040D only). The epoxy should be dispensed in a continuous bead around the cell-to-port interface shoulder. Refer to Figure 2. Care must be taken to avoid gaps or voids in the adhesive bead to help ensure that a complete seal is made when the cell is joined to the port. After cure, a simple test for gross leaks should be performed to ensure the integrity of the cell to port bond. Submerging the device in water for 5 seconds with full rated pressure applied to the port nozzle and checking for air bubbles will provide a good indication. Be sure device is thoroughly dried after this test.

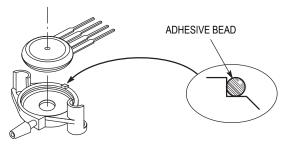
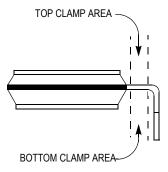


Figure 2. Glueing of Sensor Cell

STANDARD PORT ATTACH CONNECTION

Freescale Semiconductor also offers standard port options designed to accept readily available silicone, vinyl, nylon or polyethylene tubing for the pressure connection. The inside dimension of the tubing selected should provide a snug fit over the port nozzle. Dimensions of the ports may be found in the case outline drawings. Installation and removal of tubing from the port nozzle must be parallel to the nozzle to avoid undue stress which may break the nozzle from the port base. Whether sensors are used with Freescale Semiconductor's standard ports or customer specific housings, care must be taken to ensure that force is uniformly distributed to the package or offset errors may be induced.

ELECTRICAL CONNECTION


The MPX series pressure sensor is designed to be installed on a printed circuit board (standard 0.100" lead spacing) or to accept an appropriate connector if installed on a baseplate. The leads of the sensor may be formed at right angles for assembly to the circuit board, but one must ensure that proper leadform techniques and tools are employed. Hand or "needlenose" pliers should never be used for leadforming unless they are specifically designed for that purpose. Industrial leadform tooling is available from various companies including Janesville Tool & Manufacturing (608-868-4925). Refer to Figure 3 for the recommended leadform technique. It is also important that once the leads are formed, they should not be straightened and reformed without expecting reduced durability. The recommended connector for off-circuit board applications may be supplied by JST Corp. (1-800-292-4243) in Mount Prospect, IL.

The part numbers for the housing and pins are:

4 Pin Housing: SMP-04V-BC6 Pin Housing: SMP-06V-BC

Pin: SHF-01T-0.8SS

• The crimp tool part number is: YC12.

Leads should be securely clamped top and bottom in the area between the plastic body and the form being sure that no stress is being put on plastic body. The area between dotted lines represents surfaces to be clamped.

Figure 3. Leadforming

Standard Warranty Clause

Seller warrants that its products sold hereunder will at the time of shipment be free from defects in material and workmanship, and will conform to Seller's approved specifications. If products are not as warranted, Seller shall, at its option and as Buyer's exclusive remedy, either refund the purchase price, or repair, or replace the product, provided proof of purchase and written notice of nonconformance are received within the applicable periods noted below and provided said nonconforming products are, with Seller's written authorization, returned in protected shipping containers FOB Seller's plant within thirty (30) days after expiration of the warranty period unless otherwise specified herein. If product does not conform to this warranty, Seller will pay for the reasonable cost of transporting the goods to and from Seller's plant. This warranty shall not apply to any products Seller determines have been, by Buyer or otherwise, subjected to improper testing, or have been the subject of mishandling or misuse.

THIS WARRANTY EXTENDS TO BUYER ONLY AND MAY BE INVOKED BY BUYER ONLY FOR ITS CUSTOMERS. SELL-ER WILL NOT ACCEPT WARRANTY RETURNS DIRECTLY FROM BUYER'S CUSTOMERS OR USERS OF BUYER'S PRODUCTS. THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS, IMPLIED OR STATUTORY INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Seller's warranty shall not be enlarged, and no obligation or liability shall arise out of Seller's rendering of technical advice and/or assistance.

- A Time periods, products, exceptions and other restrictions applicable to the above warranty are:
 - 1 Unless otherwise stated herein, products are warranted for a period of one (1) year from date of shipment.
 - 2 Device Chips/Wafers. Seller warrants that device chips or wafers have, at shipment, been subjected to electrical test/probe and visual inspection. Warranty shall apply to products returned to Seller within ninety (90) days from date of shipment. This warranty shall not apply to any chips or wafers improperly removed from their original shipping container and/or subjected to testing or operational procedures not approved by Seller in writing.
- B Development products and Licensed Programs are licensed on an "AS IS" basis. IN NO EVENT SHALL SELLER BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.

Glossary of Terms

Absolute Pressure Sensor

A sensor which measures input pressure in relation to a zero pressure (a total vacuum on one side of the diaphragm) reference.

Analog Output

An electrical output from a sensor that changes proportionately with any change in input pressure.

Accuracy — also see Pressure Error

A comparison of the actual output signal of a device to the true value of the input pressure. The various errors (such as linearity, hysteresis, repeatability and temperature shift) attributing to the accuracy of a device are usually expressed as a percent of full scale output (FSO).

Altimetric Pressure Transducer A barometric pressure transducer used to determine altitude from the pressure-altitude profile.

Barometric Pressure Transducer An absolute pressure sensor that measures the local ambient atmospheric pressure.

Burst Pressure

The maximum pressure that can be applied to a transducer without rupture of either the sensing element or transducer case.

Calibration

A process of modifying sensor output to improve output accuracy.

Chip

A die (unpackaged semiconductor device) cut from a silicon wafer, incorporating semiconductor circuit elements such as resistors, diodes, transistors, and/or capacitors

Compensation

Added circuitry or materials designed to counteract known sources of error.

Diaphragm

The membrane of material that remains after etching a cavity into the silicon sensing chip. Changes in input pressure cause the diaphragm to deflect.

Differential Pressure Sensor

A sensor which is designed to accept simultaneously two independent pressure sources. The output is proportional to the pressure difference between the two sources.

Diffusion

A thermochemical process whereby controlled impurities are introduced into the silicon to define the piezoresistor. Compared to ion implantation, it has two major disadvantages: 1) the maximum impurity concentration occurs at the surface of the silicon rendering it subject to surface contamination, and making it nearly impossible to produce buried piezoresistors; 2) control over impurity concentrations and levels is about one thousand times poorer than obtained with ion implantation.

Drift

An undesired change in output over a period of time, with constant input pressure applied.

End Point Straight Line Fit

Freescale Semiconductor's method of defining linearity. The maximum deviation of any data point on a sensor output curve from a straight line drawn between the end data points on that output curve.

Error

The algebraic difference between the indicated value and the true value of the input pressure. Usually expressed in percent of full scale span, sometimes expressed in percent of the sensor output reading.

Error Band

The band of maximum deviations of the output values from a specified reference line or curve due to those causes attributable to the sensor. Usually expressed as "± % of full scale output." The errorband should be specified as applicable over at least two calibration cycles, so as to include repeatability, and verified accordingly.

Excitation Voltage (Current) — see Supply Voltage (Current)

The external electrical voltage and/or current applied to a sensor for its proper operation (often referred to as the supply circuit or voltage). Freescale Semiconductor specifies constant voltage operation only.

Full Scale Output

The output at full scale pressure at a specified supply voltage. This signal is the sum of the offset signal plus the full scale span.

Full Scale Span

The change in output over the operating pressure range at a specified supply voltage. The SPAN of a device is the output voltage variation given between zero differential pressure and any given pressure. FULL SCALE SPAN is the output variation between zero differential pressure and when the maximum recommended operating pressure is applied.

Hysteresis — also see Pressure Hysteresis and Temperature Hysteresis HYSTERESIS refers to a transducer's ability to reproduce the same output for the same input, regardless of whether the input is increasing or decreasing. PRESSURE HYSTERESIS is measured at a constant temperature while TEMPERATURE HYSTERESIS is measured at a constant pressure in the operating pressure range.

Input Impedance (Resistance)

The impedance (resistance) measured between the positive and negative (ground) input terminals at a specified frequency with the output terminals open. For Freescale Semiconductor X-ducer, this is a resistance measurement only.

Glossary of Terms (Continued)

Ion Implantation A process whereby impurity ions are accelerated to a specific energy level and impinged upon the

silicon wafer. The energy level determines the depth to which the impurity ions penetrate the silicon. Impingement time determines the impurity concentration. Thus, it is possible to independently control these parameters, and buried piezoresistors are easily produced. Ion implantation is increasingly used throughout the semiconductor industry to provide a variety of products with

improved performance over those produced by diffusion.

Laser Trimming (Automated) A method for adjusting the value of thin film resistors using a computer-controlled laser system.

Leakage Rate The rate at which a fluid is permitted or determined to leak through a seal. The type of fluid, the differential pressure across the seal, the direction of leakage, and the location of the seal must be

specified.

Linearity Error The maximum deviation of the output from a straight line relationship with pressure over the

operating pressure range, the type of straight line relationship (end point, least square

approximation, etc.) should be specified.

Load Impedance The impedance presented to the output terminals of a sensor by the associated external circuitry.

Null The condition when the pressure on each side of the sensing diaphragm is equal.

Null Offset The electrical output present, when the pressure sensor is at null.

Null Temperature Shift The change in null output value due to a change in temperature.

Null Output See ZERO PRESSURE OFFSET Offset See ZERO PRESSURE OFFSET

Operating Pressure Range The range of pressures between minimum and maximum pressures at which the output will meet

the specified operating characteristics.

The range of temperature between minimum and maximum temperature at which the output will **Operating Temperature Range**

meet the specified operating characteristics.

Output Impedance The impedance measured between the positive and negative (ground) output terminals at a

specified frequency with the input open.

Overpressure The maximum specified pressure which may be applied to the sensing element of a sensor without

causing a permanent change in the output characteristics.

Piezoresistance A resistive element that changes resistance relative to the applied stress it experiences (e.g., strain

gauge).

Pressure Error The maximum difference between the true pressure and the pressure inferred from the output for

any pressure in the operating pressure range.

Pressure Hysteresis The difference in the output at any given pressure in the operating pressure range when this

pressure is approached from the minimum operating pressure and when approached from the

At a given supply voltage, sensor output is a proportion of that supply voltage. Ratiometricity error is

maximum operating pressure at room temperature.

Pressure Range — also see **Operating Pressure Range**

Ratiometric

The pressure limits over which the pressure sensor is calibrated or specified.

Pressure Sensor A device that converts an input pressure into an electrical output.

Proof Pressure See OVERPRESSURE

Ratiometric Ratiometricity refers to the ability of the transducer to maintain a constant sensitivity, at a constant

pressure, over a range of supply voltage values.

a percent of full scale output.

(Ratiometricity Error) the change in this proportion resulting from any change to the supply voltage. Usually expressed as

See OPERATING PRESSURE RANGE Range

Repeatability The maximum change in output under fixed operating conditions over a specified period of time.

Resolution The maximum change in pressure required to give a specified change in the output.

Response Time The time required for the incremental change in the output to go from 10% to 90% of its final value

when subjected to a specified step change in pressure.

Room Conditions Ambient environmental conditions under which sensors most commonly operate.

Sensing Element That part of a sensor which responds directly to changes in input pressure.

Glossary of Terms (Continued)

Sensitivity The change in output per unit change in pressure for a specified supply voltage or current.

Sensitivity Shift A change in sensitivity resulting from an environmental change such as temperature.

Stability The maximum difference in the output at any pressure in the operating pressure range when this

pressure is applied consecutively under the same conditions and from the same direction.

The range of temperature between minimum and maximum which can be applied without causing **Storage Temperature Range**

the sensor to fail to meet the specified operating characteristics.

Strain Gauge A sensing device providing a change in electrical resistance proportional to the level of applied

stress.

Supply Voltage (Current) The voltage (current) applied to the positive and negative (ground) input terminals.

Temperature Coefficient of

Full Scale Span

The percent change in full scale span per unit change in temperature relative to the full scale span

at a specified temperature.

Temperature Coefficient of The percent change in the DC input impedance per unit change in temperature relative to the DC Resistance

input impedance at a specified temperature.

Temperature Error The maximum change in output at any pressure in the operating pressure range when the

temperature is changed over a specified temperature range.

Temperature Hysteresis The difference in output at any temperature in the operating temperature range when the

temperature is approached from the minimum operating temperature and when approached from

the maximum operating temperature with zero pressure applied.

Thermal Offset Shift See TEMPERATURE COEFFICIENT OF OFFSET

Thermal Span Shift See TEMPERATURE COEFFICIENT OF FULL SCALE SPAN

Thermal Zero Shift See TEMPERATURE COEFFICIENT OF OFFSET

Thin Film A technology using vacuum deposition of conductors and dielectric materials onto a substrate

(frequently silicon) to form an electrical circuit.

Vacuum A perfect vacuum is the absence of gaseous fluid.

Zero Pressure Offset The output at zero pressure (absolute or differential, depending on the device type) for a specified

supply voltage or current.

Symbols, Terms and Definitions

The following are the most commonly used letter symbols, terms and definitions associated with solid state silicon pressure sensors.

P _{burst}	Burst Pressure	The maximum pressure that can be applied to a transducer without rupture of either the sensing element or transducer case.
I _o	Supply Current	The current drawn by the sensor from the voltage source.
I _{O+}	Output Source Current	The current sourcing capability of the pressure sensor.
kPa	Kilopascals	Unit of pressure. 1 kPa = 0.145038 PSI.
	Linearity	The maximum deviation of the output from a straight line relationship with pressure over the operating pressure range, the type of straight line relationship (end point, least square approximation, etc.) should be specified.
mm Hg	Millimeters of Mercury	Unit of pressure. 1 mmHg = 0.0193368 PSI.
P _{max}	Overpressure	The maximum specified pressure which may be applied to the sensing element without causing a permanent change in the output characteristics.
P _{OP}	Operating Pressure Range	The range of pressures between minimum and maximum temperature at which the output will meet the specified operating characteristics.
_	Pressure Hysteresis	The difference in the output at any given pressure in the operating pressure range when this pressure is approached from the minimum operating pressure and when approached from the maximum operating pressure at room temperature.
PSI	Pounds per Square Inch	Unit of pressure. 1 PSI = 6.89473 kPa.
_	Repeatability	The maximum change in output under fixed operating conditions over a specified period of time.
R _o	Input Resistance	The resistance measured between the positive and negative input terminals at a specified frequency with the output terminals open.
T _A	Operating Temperature	The temperature range over which the device may safely operate.
TCR	Temperature Coefficient of Resistance	The percent change in the DC input impedance per unit change in temperature relative to the DC input impedance at a specified temperature (typically +25°C).
TCV _{FSS}	Temperature Coefficient of Full Scale Span	The percent change in full scale span per unit change in temperature relative to the full scale span at a specified temperature (typically +25°C).
TCV _{off}	Temperature Coefficient of Offset	The percent change in offset per unit change in temperature relative to the offset at a specified temperature (typically +25°C).
T _{stg}	Storage Temperature	The temperature range at which the device, without any power applied, may be stored.
t _R	Response Time	The time required for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
_	Temperature Hysteresis	The difference in output at any temperature in the operating temperature range when the temperature is approached from the minimum operating temperature and when approached from the maximum operating temperature with zero pressure applied.
V _{FSS}	Full Scale Span Voltage	The change in output over the operating pressure range at a specified supply voltage.
V _{off}	Offset Voltage	The output with zero differential pressure applied for a specified supply voltage or current.
V _S	Supply Voltage DC	The dc excitation voltage applied to the sensor. For precise circuit operation, a regulated supplyshould be used.
V _{Smax}	Maximum Supply Voltage	The maximum supply voltage that may be applied to a circuit or connected to the sensor.
Z _{in}	Input Impedance	The resistance measured between the positive and negative input terminals at a specified frequency with the output terminals open. For Freescale Semiconductor X-ducer, this is a resistance measurement only.
Z _{out}	Output Impedance	The resistance measured between the positive and negative output terminals at a specifiedfrequency with the input terminals open.
Δ V /Δ P	Sensitivity	The change in output per unit change in pressure for a specified supply voltage.

4-1

Section Four

Safety and Alarm Integrated Circuits Overview

Freescale's Safety and Alarm Integrated Circuits (ICs) are low power, CMOS devices designed to meet a wide range of smoke detector applications at very competitive prices. Freescale has been producing both photoelectric and ionization safety and alarm ICs for more than 25 years. Found in consumer and commercial applications worldwide, these integrated circuits can be operated using a battery or AC power. In addition, these devices are designed to be used in stand-alone units or as an interconnected system of up to 40 units. All of Freescales's safety and alarm ICs have component recognition from Underwriter's Laboratories and the newest devices meet the NFPA's new temporal - new tone horn pattern.

Safety and alarm Integrated Circuits Products

Mini Selector Guide	4-2
Data Sheets	4-3
Application Notes	4-66
Package Dimensions	4-72

Mini Selector Guide

Safety and Alarm Integrated Circuits

Smoke Ion

Product	Operating Voltage (V)	Horn Tone	Interconnectable	Primary Power Source	Ordering Suffix ⁽¹⁾
MC14467	6 to 12	Continuous - Old Tone - 4/6	No	DC	P1
MC14468	6 to 12	Continuous - Old Tone - 4/6	Yes	AC/DC	Р
MC14568	6 to 12	Continuous - Old Tone - 4/6	Yes	AC/DC	Р
MC145017	6 to 12	Temporal - New Tone - NFPA Tone	No	DC	Р
MC145018	6 to 12	Temporal - New Tone - NFPA Tone	Yes	AC/DC	Р

Smoke Photo

Product	Operating Voltage (V)	Horn Tone	Interconnectable	Primary Power Source	Ordering Suffix ⁽¹⁾
MC145010	6 to 12	Continuous - Old Tone - 4/6	Yes	AC/DC	P, DW, DWR2
MC145011	6 to 12	Continuous - Old Tone - 4/6	Yes	AC	P, DW, DWR2
MC145012	6 to 12	Temporal - New Tone - NFPA Tone	Yes	AC/DC	P, DW, DWR2

Comparator

Product	Operating Voltage (V)	Description	Horn Modulation	Primary Power Source	Ordering Suffix ⁽¹⁾
MC14578	3.5 to 14	Micro-Power Comparator Plus Voltage Follower	No Horn Driver	AC/DC	Р

General Alarm

Product	Operating Voltage (V)	Description	Horn Tone(ms)	Primary Power Source	Ordering Suffix ⁽¹⁾
MC14600	6.0 to 12	Alarm Detection, Horn Driver, Low Battery Detection, LED Driver	Continuous - Old Tone - 4/6	AC/DC	P, DW, DWR2

NOTES:

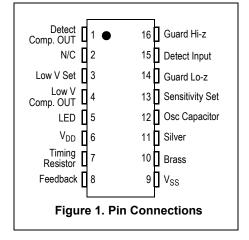
^{1.} P or P1 = 16-pin DIP, DW = SOIC 16-pin, DWR2 = SOIC 16-pin tape & reel

Low-Power CMOS Ionization Smoke Detector IC

The MC14467-1, when used with an ionization chamber and a small number of external components, will detect smoke. When smoke is sensed, an alarm is sounded via an external piezoelectric transducer and internal drivers. This circuit is designed to operate in smoke detector systems that comply with UL217 and UL268 specifications.

Features

- · Ionization Type with On-Chip FET Input Comparator
- · Piezoelectric Horn Driver
- · Guard Outputs on Both Sides of Detect Input
- · Input-Production Diodes on the Detect Input
- · Low-Battery Trip Point, Internally Set, can be Altered Via External Resistor
- · Detect Threshold, Internally Set, can be Altered Via External Resistor
- · Pulse Testing for Low Battery Uses LED for Battery Loading
- Comparator Outputs for Detect and Low Battery
- · Internal Reverse Battery Protection


ORDERING INFORMATION					
Device	Case No.	Package			
MC14467P1	648-08	Plastic Dip			

MC14467-1

LOW-POWER CMOS IONIZATION SMOKE DETECTOR IC

P SUFFIX 16-LEAD PLASTIC DIP CASE 648-08

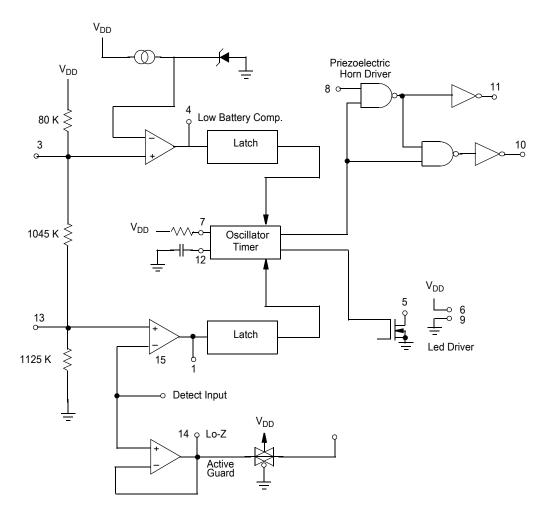


Figure 2. Block Diagram

Table 1. Maximum Ratings⁽¹⁾ (Voltages referenced to V_{SS})

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{DD}	-0.5 to + 15	V
Input Voltage, All Inputs Except Pin 8	V _{in}	-0.25 to V _{DD} + 0.25	V
DC Current Drain per Input Pin, Except Pin 15 = 1 mA	I	10	mA
DC Current Drain per Output Pin	I	30	mA
Operating Temperature Range	T _A	-10 to +60	°C
Storage Temperature Range	T _{stg}	-55 to + 125	°C
Reverse Battery Time	t _{RB}	5.0	s

Maximum Ratings are those values beyond which damage to the device may occur. This device contains circuitry to protect the inputs
against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of
any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that except for pin 8,
V_{in} and V_{out} be constrained to the range V_{SS} ≤ (V_{in} or V_{out}) V_{DD}. For pin 8, refer to the Electrical Characteristics.

Table 2. Recommended Operating Conditions

(Voltages referenced to V_{SS})

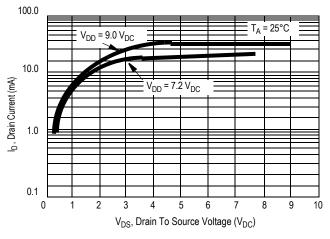
Parameter	Symbol	Value	Unit
Supply Voltage	V_{DD}	9.0	V
Timing Capacitor	_	0.1	μF
Timing Resistor	_	8.2	MΩ
Battery Load (Resistor or LED)	_	10	mA

Table 3. Electrical Characteristics

(Voltages referenced to V_{SS} , $T_A = 25$ °C)

Characteristic	Symbol	V _{DD} V _{DC}	Min	Typ ⁽¹⁾	Max	Unit
Operating Voltage	V _{DD}	_	6.0	_	12	V
Output Voltage Piezoelectric Horn Drivers (I_{OH} = -16 mA) Comparators (I_{OH} = -30 μ A) Piezoelectric Horn Drivers (I_{OL} = +16 mA) Comparators (I_{OL} = +30 μ A)	V _{OH}	7.2 9.0 7.2 9.0	6.3 8.5 —	 8.8 0.1	— — 0.9 0.5	V
Output Voltage - LED Driver, I _{OL} = 10 mA	V _{OL}	7.2	_	_	3.0	V
Output Impedance, Active Guard Pin 14 Pin 16	Lo-Z Hi-Z	9.0 9.0	_	1 1	10 1000	kΩ
Operating Current ($R_{bias} = 8.2 \text{ M}\Omega$)	I _{DD}	9.0 12.0		5.0 —	9.0 12.0	μΑ
Input Current - Detect (40% R.H.)	I _{in}	9.0	_	_	±1.0	pA
Internal Set Voltage Low Battery Sensitivity	V _{low} V _{set}	9.0 —	7.2 47	— 50	7.8 53	V %V _{DD}
Hysteresis	V _{hys}	9.0	75	100	150	mV
Offset Voltage (measured at Vin = VDD/2 Active Guard Detect Comparator	V _{OS}	9.0 9.0	_		±100 ±50	mV
Input Voltage Range, Pin 8	V _{in}	_	VSS - 10	_	VDD + 10	V
Input Capacitance	C _{in}	_	_	5.0	_	pF
Common Mode Voltage Range, Pin 15	V _{cm}	_	0.6	_	VDD - 2	V

^{1.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.


Table 4. Timing Parameters

(C = 0.1 μ F, R_{bias} = 8.2 M Ω , V_{DD} = 9.0 V, T_A = 25 $^{\circ}$ C, See Figure 7)

Characteristics		Symbol	Min	Typ ⁽¹⁾	Max	Units
Oscillator Period	No Smoke Smoke	t _{CI}	1.34 32	1.67 40	2.0 48	s ms
Oscillator Rise Time		t _r	8.0	10	12	ms
Horn Output	On Time	PW _{on}	120	160	208	ms
(During Smoke)	Off Time	PW _{off}	60	80	104	ms
LED Output	Between Pulses	t _{LED}	32	40	48	s
	On Time	PW _{on}	8.0	10	12	ms
Horn Output	On Time	t _{on}	8.0	10	12	ms
(During Low Battery)	Between Pulses	t _{off}	32	40	48	s

10.0

^{1.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

1.0 V_{DD} = 9.0 V_{DC} or 7.2 V_{DC}

1.0 V_{DD} = 9.0 V_{DC} or 7.2 V_{DC}

P-CH Source And N-CH Sink Current

O.01 V_{DS}, Drain To Source Voltage (V_{DC})

Figure 3. Typical LED Output I-V Characteristic

Figure 4. Typical Comparator Output I-V Characteristic

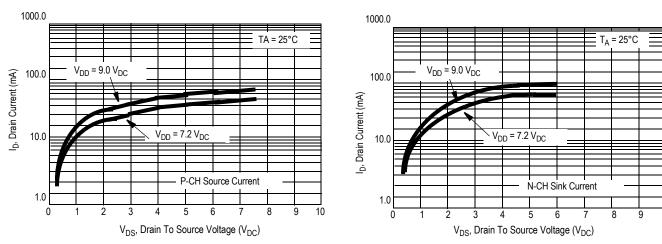


Figure 5. Typical P Horn Driver Output I-V Characteristic

DEVICE OPERATION

Timing

The internal oscillator of the MC14467-1 operates with a period of 1.67 seconds during no-smoke conditions. Each 1.67 seconds, internal power is applied to the entire IC and a check is made for smoke, except during LED pulse, Low Battery Alarm Chirp, or Horn Modulation (in smoke). Every 24 clock cycles a check is made for low battery by comparing V_{DD} to an internal zener voltage. Since very small currents are used in the oscillator, the oscillator capacitor should be of a low leakage type.

Detect Circuitry

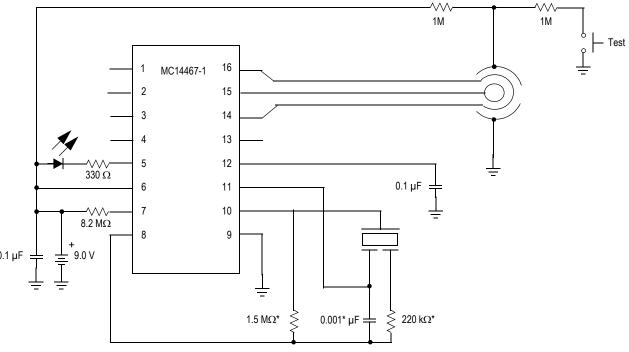
If smoke is detected, the oscillator period becomes 40 ms and the piezoelectric horn oscillator circuit is enabled. The horn output is modulated 160 ms on, 80 ms off. During the off time, smoke is again checked and will inhibit further horn output if no smoke is sensed. During smoke conditions the low battery alarm is inhibited, but the LED pulses at a 1.0 Hz rate.

An active guard is provided on both pins adjacent to the detect input. The voltage at these pins will be within 100 mV of the input signal. This will keep surface leakage currents to a minimum and provide a method of measuring the input voltage without loading the ionization chamber. The active guard op amp is not power strobed and thus gives constant protection from surface leakage currents. Pin 15 (the Detect input) has internal diode protection against static damage.

Sensitivity/Low Battery Thresholds

Both the sensitivity threshold and the low battery voltage levels are set internally by a common voltage divider (please see Figure 2) connected between V_{DD} and V_{SS} . These voltages can be altered by external resistors connected from pins 3 or 13 to either V_{DD} or V_{SS} . There will be a slight interaction here due to the common voltage divider network. The sensitivity threshold can also be set by adjusting the smoke chamber ionization source.

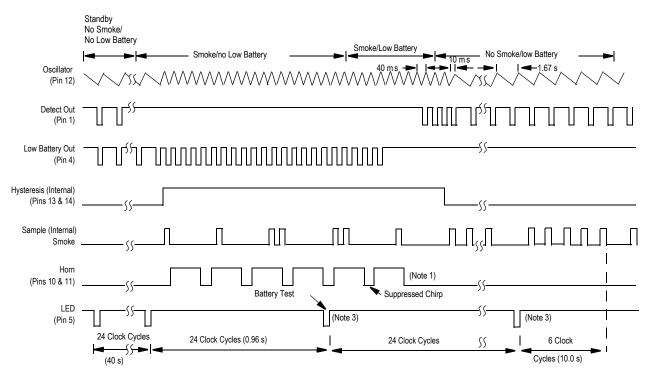
Test Mode


Since the internal op amps and comparators are power strobed, adjustments for sensitivity or low battery level could be difficult and/or time-consuming. By forcing Pin 12 to V_{SS} , the power strobing is bypassed and the outputs, Pins 1 and 4, constantly show smoke/no smoke and good battery/low battery, respectively. Pin 1 = V_{DD} for smoke and Pin 4 = V_{DD} for low battery. In this mode and during the 10 ms power strobe, chip current rises to approximately 50 μ A.

LED Pulse

The 9-volt battery level is checked every 40 seconds during the LED pulse. The battery is loaded via a 10 mA pulse for 10 ms. If the LED is not used, it should be replaced with an equivalent resistor such that the battery loading remains at 10 mA.

Hysteresis


When smoke is detected, the resistor/divider network that sets sensitivity is altered to increase sensitivity. This yields approximately 100 mV of hysteresis and reduces false triggering.

*NOTE: Component values may change depending on type of piezoelectric horn used.

Figure 6. Typical Application as Ionization Smoke Detector

MC14467-1

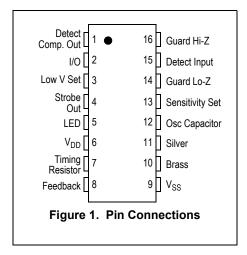
- Notes:
 1. Horn modulation is self-completing. When going from smoke to no smoke, the alarm condition will terminate only when horn is off.
 2. Comparators are strobed on once per clock cycle (1.67 s for no smoke, 40 ms for smoke).
 3. Low battery comparator information is latched only during LED pulse.
 4. ~ 100 mVp-p swing.

Figure 7. Timing Diagram

Low-Power CMOS Ionization Smoke Detector IC with Interconnect

The MC14468, when used with an ionization chamber and a small number of external components, will detect smoke. When smoke is sensed, an alarm is sounded via an external piezoelectric transducer and internal drivers. This circuit is designed to operate in smoke detector systems that comply with UL217 and UL268 specifications.

Features


- · Ionization Type with On-Chip FET Input Comparator
- · Piezoelectric Horn Driver
- · Guard Outputs on Both Sides of Detect Input
- · Input-Production Diodes on the Detect Input
- · Low-Battery Trip Point, Internally Set, can be Altered Via External Resistor
- · Detect Threshold, Internally Set, can be Altered Via External Resistor
- · Pulse Testing for Low Battery Uses LED for Battery Loading
- Comparator Output for Detect
- Internal Reverse Battery Protection
- Strobe Output for External Trim Resistors
- I/O Pin Allows Up to 40 Units to be Connected for Common Signaling
- · Power-On Reset Prevents False Alarms on Battery Change

ORDERING INFORMATION					
Device	Temperature Range	Case No.	Package		
MC14468P	–10° to 60°C	648-08	Plastic Dip		

MC14468

LOW-POWER CMOS IONIZATION SMOKE DETECTOR IC WITH INTERCONNECT

To Other Units

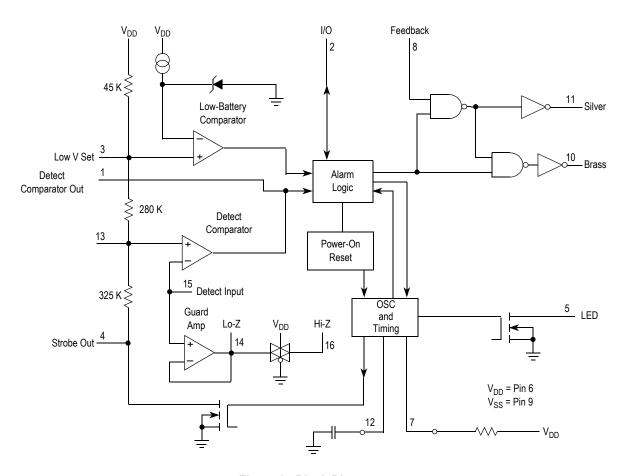


Figure 2. Block Diagram

Table 1. Maximum Ratings⁽¹⁾ (Voltages referenced to VSS)

Rating	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-0.5 to +15	V
Input Voltage, All Inputs Except Pin 8	V _{in}	-0.25 to V _{DD} + 0.25	V
DC Current Drain per Input Pin, Except Pin 15 = 1 mA	I	10	mA
DC Current Drain per Output Pin	I	30	mA
Operating Temperature Range	T _A	-10 to +60	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C
Reverse Battery Time	t _{RB}	5.0	S

Maximum Ratings are those values beyond which damage to the device may occur. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended V_{in} and V_{out} be constrained to the range V_{SS} ≤ (V_{in} or V_{out}) ≤ V_{DD}.

Table 2. Recommended Operating Conditions

(Voltages Referenced to V_{SS})

Parameter	Symbol	Value	Unit
Supply Voltage	V _{DD}	9.0	V
Timing Capacitor	_	0.1	μF
Timing Resistor	_	8.2	MΩ
Battery Load (Resistor or LED)	_	10	mA

Table 3. Electrical Characteristics

 $(T_A = 25^{\circ}C)$

Characteristic	Symbol	V _{DD} V _{DC}	Min	Type ⁽¹⁾	Max	Unit
Operating Voltage	V_{DD}	_	6.0		12	V
Output Voltage Piezoelectric Horn Drivers (I_{OH} = -16 mA) Comparators (I_{OH} = -30 μ A) Piezoelectric Horn Drivers (I_{OL} = +16 mA) Comparators (I_{OL} = +30 μ A)	V _{OH}	7.2 9.0 7.2 9.0	6.3 8.5 —	— 8.8 — 0.1	— — 0.9 0.5	V
Output Voltage — LED Driver, I _{OL} = 10 mA	V _{OL}	7.2	_	_	3.0	V
Output Impedance, Active Guard Pin 14 Pin 16	Lo-Z Hi-Z	9.0 9.0	_ _		10 1000	kΩ
Operating Current (R_{bias} = 8.2 M Ω)	I _{DD}	9.0 12.0	_	5.0 —	9.0 12.0	μА
Input Current — Detect (40% R.H.)	I _{in}	9.0	_		±1.0	pA
Input Current, Pin 8	I _{in}	9.0	_		±0.1	μΑ
Input Current @ 50°C, Pin 15	I _{in}	_	_		±6.0	pA
Internal Set Voltage Low Battery Sensitivity	V _{low} V _{set}	9.0	7.2 47	— 50	7.8 53	V %V _{DD}
Hysteresis	V _{hys}	9.0	75	100	150	mV
Offset Voltage (Measured at V _{in} = V _{DD} /2) Active Guard Detect Comparator	V _{OS}	9.0 9.0		_ _	±100 ±50	mV
Input Voltage Range, Pin 8	V _{in}	_	V _{SS} – 10	_	V _{DD} + 10	V
Input Capacitance	C _{in}	_	_	5.0	_	pF
Common Mode Voltage Range, Pin 15	V _{cm}		0.6		V _{DD} – 2	V
I/O Current, Pin 2 Input, $V_{IH} = V_{DD} - 2$ Output, $V_{OH} = V_{DD} - 2$	I _{IH} I _{OH}		25 -4.0		100 –16	μA mA

^{1.} Data labelled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

Table 4. Timing Parameters

(C = 0.1 μ F, R_{bias} = 8.2 M Ω , V_{DD} = 9.0 V, T_A = 25°C, See Figure 7)

Characteristics		Symbol	Min	Typ ⁽¹⁾	Max	Units
Oscillator Period	No Smoke Smoke	t _{Cl}	1.34 32	1.67 40	20 48	s ms
Oscillator Rise Time		t _r	8.0	10	12	ms
Horn Output	On Time	PW _{on}	120	160	208	ms
(During Smoke)	Off Time	PW _{off}	60	80	104	ms
LED Output	Between Pulses	t _{LED}	32	40	48	s
	On time	PW _{on}	8.0	10	12	ms
Horn Output	On Time	t _{on}	8.0	10	12	ms
(During Low Battery)	Between Pulses	t _{off}	32	40	48	s

^{1.} Data labelled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

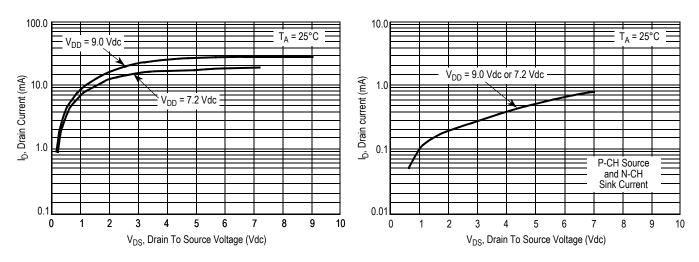


Figure 3. Typical LED Output I-V Characteristic

Figure 4. Typical Comparator Output I-V Characteristic

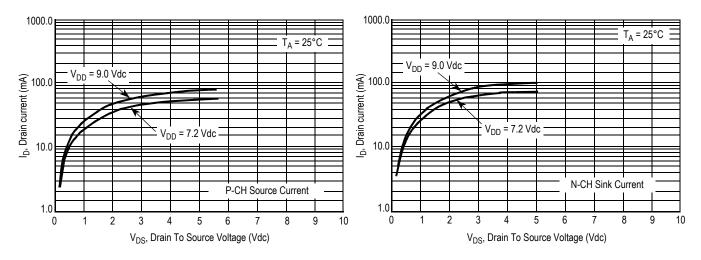


Figure 5. Typical P Horn Driver Output I-V Characteristic

DEVICE OPERATION

Timing

The internal oscillator of the MC14468 operates with a period of 1.67 seconds during no-smoke conditions. Each 1.67 seconds, internal power is applied to the entire IC and a check is made for smoke, except during LED pulse, Low Battery Alarm Chirp, or Horn Modulation (in smoke). Every 24 clock cycles a check is made for low battery by comparing V_{DD} to an internal zener voltage. Since very small currents are used in the oscillator, the oscillator capacitor should be of a low leakage type.

Detect Circuitry

If smoke is detected, the oscillator period becomes 40 ms and the piezoelectric horn oscillator circuit is enabled. The horn output is modulated 160 ms on, 80 ms off. During the off time, smoke is again checked and will inhibit further horn output if no smoke is sensed. During local smoke conditions the low battery alarm is inhibited, but the LED pulses at a 1.0 Hz rate. In remote smoke, the LED is inhibited as well.

An active guard is provided on both pins adjacent to the detect input. The voltage at these pins will be within 100 mV of the input signal. This will keep surface leakage currents to a minimum and provide a method of measuring the input voltage without loading the ionization chamber. The active guard op amp is not power strobed and thus gives constant protection from surface leakage currents. Pin 15 (the Detect input) has internal diode protection against static damage.

Interconnect

The I/O (Pin 2), in combination with V_{SS} , is used to interconnect up to 40 remote units for common signaling. A Local Smoke condition activates a current limited output driver, thereby signaling Remote Smoke to interconnected units. A small current sink improves noise immunity during non-smoke conditions. Remote units at lower voltages do not draw excessive current from a sending unit at a higher

voltage. The I/O is disabled for three oscillator cycles after power up, to eliminate false alarming of remote units when the battery is changed.

Sensitivity/Low Battery Thresholds

Both the sensitivity threshold and the low battery voltage levels are set internally by a common voltage divider (please see Figure 2) connected between V_{DD} and $V_{SS}.$ These voltages can be altered by external resistors connected from pins 3 or 13 to either V_{DD} or $V_{SS}.$ There will be a slight interaction here due to the common voltage divider network. The sensitivity threshold can also be set by adjusting the smoke chamber ionization source.

Test Mode

Since the internal op amps and comparators are power strobed, adjustments for sensitivity or low battery level could be difficult and/or time-consuming. By forcing Pin 12 to V_{SS} , the power strobing is bypassed and the output, Pin 1, constantly shows smoke/no smoke. Pin 1 = V_{DD} for smoke. In this mode and during the 10 ms power strobe, chip current rises to approximately 50 μ A.

LED Pulse

The 9-volt battery level is checked every 40 seconds during the LED pulse. The battery is loaded via a 10 mA pulse for 10 ms. If the LED is not used, it should be replaced with an equivalent resistor such that the battery loading remains at 10 mA.

Hysteresis

When smoke is detected, the resistor/divider network that sets sensitivity is altered to increase sensitivity. This yields approximately 100 mV of hysteresis and reduces false triggering.

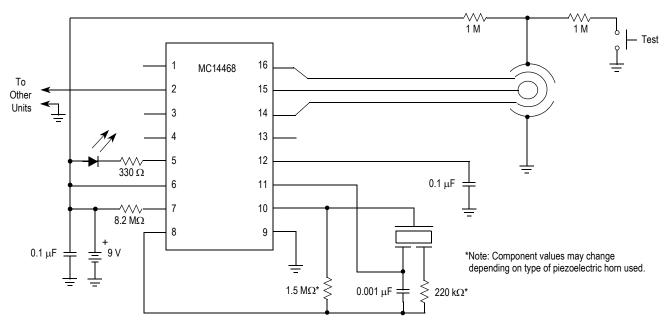
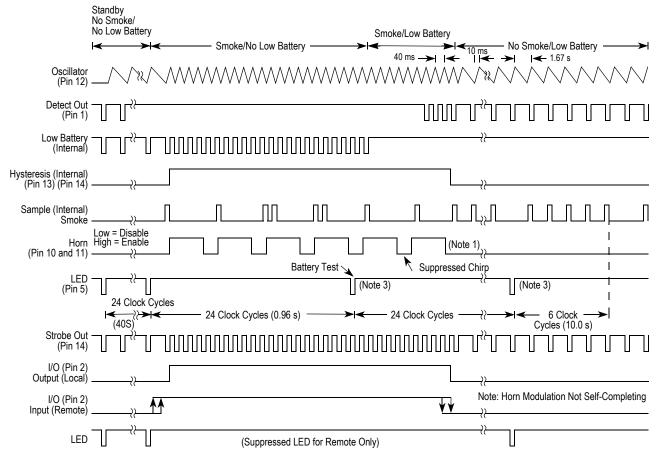



Figure 6. Typical Application as Ionization Smoke Detector

MC14468

Notes:

- 1. Horn modulation is self-completing. When going from smoke to no smoke, the alarm condition will terminate only when horn is off.
- Comparators are strobed on once per clock cycle (1.67 s for no smoke, 40 ms for smoke).
 Low battery comparator information is latched only during LED pulse.
 ~ 100 mV p-p swing.

Figure 7. Timing Diagram

Technical Data

CMOS Micro-Power Comparator plus Voltage Follower

The MC14578 is an analog building block consisting of a very-high input impedance comparator. The voltage follower allows monitoring the noninverting input of the comparator without loading.

Four enhancement-mode MOSFETs are also included on chip. These FETs can be externally configured as open-drain or totem-pole outputs. The drains have on-chip static-protecting diodes. Therefore, the output voltage must be maintained between V_{SS} and V_{DD} .

The chip requires one external component. A 3.9 M Ω ±10% resistor must be connected from the R_{bias} pin to V_{DD}. This circuit is designed to operate in smoke detector systems that comply with UL217 and UL268 specifications.

Features

Applications:

Pulse Shapers Line-Powered Smoke Detectors
Threshold Detectors Liquid/Moisture Sensors

Low-Battery Detectors CO Detector and Micro Interface

Operating Voltage Range: 3.5 to 14 V

Operating Temperature Range: -30° to 70°C

Input Current (IN + Pin): ±1 pA @ 25°C (DIP Only)

Quiescent Current: 10 μA @ 25°C

Electrostatic Discharge (ESD) Protection Circuitry on All Pins

ORDERING INFORMATION					
Device Temperature Case No. Package					
MC14578P	-30° to 70°C	648-08	Plastic Dip		

MC14578

CMOS MICRO-POWER COMPARATOR PLUS VOLTAGE FOLLOWER

P SUFFIX PLASTIC DIP CASE 648-08

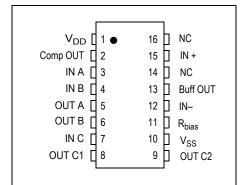


Figure 1. Pin Connections

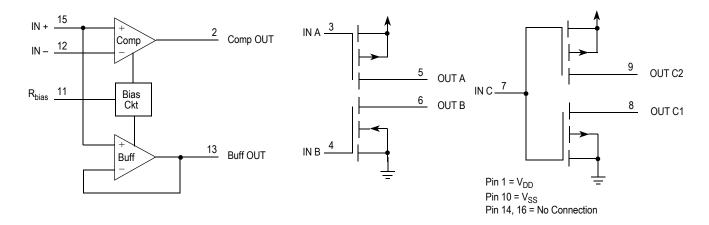


Figure 2. Block Diagram

Table 1. Maximum Ratings⁽¹⁾ (Voltages Referenced to V_{SS})

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{DD}	-0.5 to +14	V
DC Input Voltage	V _{in}	-0.5 to V _{DD} +0.5	V
DC Output Voltage	V _{out}	-0.5 to V _{DD} +0.5	V
DC Input Current, Except IN +	I _{in}	±10	mA
DC Output Current, IN +	I _{in}	±1.0	mA
DC Output Current, per Pin	I _{out}	±25	mA
DC Supply Current, V _{DD} and V _{SS} Pins	I _{DD}	±50	mA
Power Dissipation, per Package	P _D	500	mW
Storage Temperature	T _{stg}	-65 to + 150	°C
Lead Temperature (10-Second Soldering)	T _L	260	°C

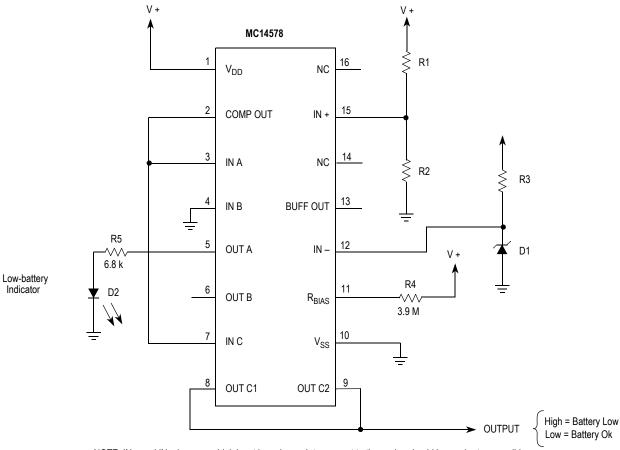

Maximum Ratings are those values beyond which damage to the device may occur. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range V_{SS} ≤ (V_{in} or V_{out}) ≤ V_{DD}. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

Table 2. Electrical Characteristics

(Voltages Referenced to V_{SS}, R_{bias} = 3.9 M Ω to V_{DD}, T_A = -30 $^{\circ}$ to 70 $^{\circ}$ C Unless Otherwise Indicated)

Characteristic	Symbol	Test Condition	V _{DD} V _{DC}	Guaranteed Limit	Unit
Power Supply Voltage Range	V_{DD}		_	3.5 to 14.0	V
Maximum Low-Level Input Voltage, MOSFETs Wired as Inverters; i.e., IN A tied to IN B, OUT A to OUT B, OUT C1 to OUT C2	V _{IL}	V_{out} = 9.0 V, $II_{out}I$ <1 μ A	10.0	2.0	V
Minimum High-Level Input voltage, MOSFETs Wired as Inverters; i.e., IN A tied to IN B, OUT A to OUT B, OUT C1 to OUT C2	V _{IH}	V _{out} = 1.0 V, II _{out} I <1 μA	10.0	8.0	V
Comparator Input Offset Voltage	V _{IO}	T _A = 25°C, Over Common Mode Range	10.0	±50	mV
		T _A = 0° to 50°C, Over Common Mode Range	3.5 to 14.0	±75	
Comparator Common Mode Voltage Range	V _{CM}		3.5 to 14.0	0.7 to V _{DD} – 1.5	V
Maximum Low-Level Comparator Output Voltage	V _{OL}	$\begin{aligned} &\text{IN +: V}_{\text{in}} = \text{V}_{\text{SS}}, \text{IN -: V}_{\text{in}} = \text{V}_{\text{DD}}, \\ &\text{I}_{\text{out}} = 30 \mu\text{A} \end{aligned}$	10.0	0.5	V
Minimum High-Level Comparator Output Voltage	V _{OH}	$\begin{aligned} &\text{IN +: V}_{\text{in}} = \text{V}_{\text{DD}}, \text{ IN -: V}_{\text{in}} = \text{V}_{\text{SS}}, \\ &\text{I}_{\text{out}} = -30 \mu\text{A} \end{aligned}$	10.0	9.5	V
Buffer Amp Output Offset Voltage	mp Output Offset Voltage V_{OO} $R_{load} = 10 \text{ M}\Omega$ to V_{DD} or V_{SS} , Over Common Mode Range		_	±100	mV
Maximum Low-Level Input Voltage, MOSFETs	V _{OL}	OUT C1, OUT C2, I _{out} = 1.1 mA	10.0	0.5	V
Wired as Inverters; i.e., IN A tied to IN B, OUT A to OUT B, OUT C1 to OUT C2		OUT A, OUT B, I _{out} = 270 μA	10.0	0.5	V
Minimum High-Level Input Voltage, MOSFETs	V _{OH}	OUT C1, OUT C2, I _{out} = -1.1 mA	10.0	9.5	V
Wired as Inverters; i.e., IN A tied to IN B, OUT A to OUT B, OUT C1 to OUT C2		OUT A, OUT B, I _{out} = 270 μA	10.0	9.5	V
Maximum Input Leakage IN + (DIP Only) Current	I _{in}	T _A = 25°C, 40% R.H., V _{in} = V _{SS} or V _{DD}	10.0	±1.0	pA
IN + (DIP Only)		$T_A = 50$ °C, $V_{in} = V_{SS}$ or V_{DD}	10.0	±6.0	
IN + (SOG), IN A, IN B, IN C, IN -		$V_{in} = V_{SS}$ or V_{DD}	10.0	±40	nA
Maximum Off-State MOSFET Leakage Current	I _{OZ}	IN A, IN C: V _{in} = V _{DD} , OUT A, OUT C2: V _{out} = V _{SS} or V _{DD}	10.0	±100	nA
		IN B, IN C: V _{in} = V _{SS} , OUT B, OUT C1: V _{out} = V _{SS} or V _{DD}	10.0	±100	
Maximum Quiescent Current		$\begin{split} T_A &= 25^{\circ}C\\ \text{IN A, IN B, IN C: V}_{\text{in}} &= \text{V}_{\text{SS}} \text{ or V}_{\text{DD}},\\ \text{IV}_{\text{IN}} &+ -\text{V}_{\text{IN}} - \text{I} = 100 \text{ mV}\\ \text{I}_{\text{out}} &= 0 \mu\text{A} \end{split}$	10.0	10	μА
Maximum Input Capacitance IN + Other Inputs	C _{in}	f = 1 kHz	_	5.0 15	pF

APPLICATIONS INFORMATION

NOTE: IN + and IN - have very high input impedance. Interconnect to these pins should be as short as possible.

Figure 3. Low-Battery Detector

EXAMPLE VALUES

Near the switchpoint, the comparator output in the circuit of Figure 3. may chatter or oscillate. This oscillation appears on the signal labelled OUTPUT. In some cases, the oscillation in the transition region will not cause problems. For example, an MPU reading OUTPUT could sample the signal two or three times to ensure a solid level is attained. But, in a low battery detector, this probably is not necessary.

To eliminate comparator chatter, hysteresis can be added as shown in Figure 4. The circuit of Figure 4. requires slightly more operating current than the Figure 3. arrangement.

R1	R2	R3	Nominal Tip Point
470 kΩ	1.3 MΩ	20 kΩ	4.08 V
820 kΩ	1.2 MΩ	39 kΩ	5.05 V
1.2 MΩ	1.2 MΩ	62 kΩ	6.00 V

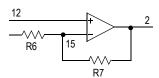
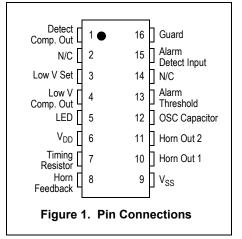


Figure 4. Adding Hysteresis

Low-Power CMOS ALARM IC with Horn Driver

The MC14600 Alarm IC is designed to simplify the process of interfacing an alarm level voltage condition to a piezoelectric horn and/or LED. With an extremely low average current requirement and an integrated low battery detect feature, the part is ideally suited to battery operated applications. The MC14600 is easily configured with a minimum number of external components to serve a wide range of applications and circuit configurations. Typical applications include intrusion alarms, moisture or water ingress alarms, and personal safety devices.

Features


- · High Impedance, FET Input Comparator
- Comparator Outputs for Low Battery and Alarm Detect
- Alarm Detect Threshold Easily Established with 2 Resistors
- Integrated Oscillator and Piezoelectric Horn Driver
- Low Battery Trip Point Set Internally (Altered Externally)
- · Horn "Chirp" During Low Battery Condition
- · Pulsed LED Drive Output
- · Reverse Battery Protection
- · Input Protection Diodes on the Detect Input
- Average Supply Current: 9 μA

ORDERING INFORMATION				
Device	Case No.	Package		
MC14600P	648-08	Plastic Dip		
MC14600DW	751G-04	SOIC		
MC14600DWR2	751G-04	SOIC Tape & Reel		

MC14600

LOW-POWER CMOS ALARM IC WITH HORN DRIVER

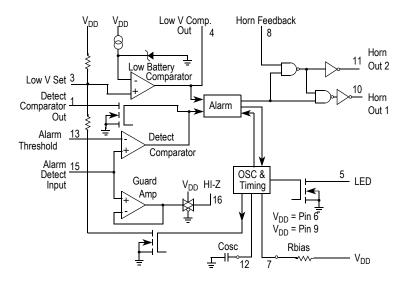


Figure 2. Block Diagram

Table 1. Maximum Ratings⁽¹⁾ (Voltages referenced to V_{SS})

Rating	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-0.5 to +15	V
Input Voltage, All Inputs Except Pin 8	V _{IN}	-0.25 to VDD +0.25	V
DC Current Drain per Input Pin Except Pin 15 = 1 mA	I	10	mA
DC Current Drain per Output Pin	I	30	mA
Operating Temperature Range	T _A	-10 to +60°C	°C
Storage Temperature Range	T _{STG}	-55 to +125	°C
Reverse Battery Time	t _{RB}	5.0	S

Maximum Ratings are those values beyond which damage to the device may occur.
 This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation, it is recommended V_{IN} and V_{OUT} be constrained to the range V_{SS} ≤ (V_{IN} or V_{OUT}) ≤ V_{DD}.

Table 2. Recommended Operating Conditions

(Voltages referenced to V_{SS})

Parameter	Symbol	Value	Unit
Supply Voltage	V _{DD}	9.0	V
LED Load (Pin 5)	_	10	mA

Table 3. Electrical Characteristics

(Voltages referenced to V_{CC} , $T_A = 25$ °C)

Characteristics	Symbol	V _{DD} /V _{DC}	Min	Typ ⁽¹⁾	Max	Unit
Operating Voltage	V _{DD}	_	6.0	_	12	V
Output Voltage Piezoelectric Horm Drivers (I_{OH} = +16 mA), Pins 10, 11 Comparators (I_{OH} = +30 μ A), Pin 4 Piezoelectric Horn Drivers (I_{OL} = -16 mA), Pins 10, 11 Comparators (I_{OL} = -30 μ A), Pin 4 (I_{OL} = -200 μ A), Pin 1	V _{OH}	7.4 9.0 7.4 9.0	6.5 8.5 — —	 8.8 0.1 	— 0.9 0.5 0.5	V
Output Voltage — LED Driver, I _{OL} = 10 mA, Pin 5	V _{OL}	7.2	_	_	2.0	V
Output Inpedance, Active Guard, Pin 16	HI-Z	9.0	_	_	1000	kΩ
Standby Current ($R_{BIAS} = 8.2 M\Omega$)	I _{DD}	9.0 12.0	_	5.0 —	9.0 12.0	μА
Input Leakage Current Pin 1 Pin 8 Pin 13	 I _{IN} 	9.0 9.0 9.0	_ _ _	_ _ _	±30 ±0.1 ±30	nA μA nA
Detect Comparator Out , Pin 1 V = 3.0 V V = 9.0 V			2.50 —		 8.00	mA mA
Low Battery Threshold Voltage (Pin 3 Open), Pin 6	V_{LOW}	9.0	7.2	_	7.8	V
Offset Voltage (Measured at V _{IN} = V _{DD} /2) Active Guard Detect Comparator	V _{OS}	9.0 9.0			±100 ±50	mV
Input Voltage Range, Pin 8	V _{IN}	_	V _{SS} -10	_	V _{DD} +10	V
Input Capacities (to V _{SS} @ 1 khz), Pin 15	C _{IN}	_	_	5.0	_	pF
Common Mode Voltage Range, Pins 13, 15	V _{CM}	_	1.5	_	V _{DD} -2	V
Breakdown Voltage, All Pins Except 15	_	_	±500	_	_	V
Human Body Models/MIL–STD–883 Method 3015, Pin 15	_	_	±400	_	_	

^{1.} Data labelled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

Table 4. Timing Parameters (C_OSC = 0.1 $\mu F,~R_{BIAS}$ = 8.2 $M\Omega,~V_{DD}$ = 9.0 V, T_A = 25°C, see Figure 3.)

Characteristic		Pin#	Symbol	Min	Max	Units
Oscillator Period (1 Clock Cycle = 1 Oscillator Period)	12	t _{CI}	1.25 30	2.25 52	s ms	
Oscillator Pulse Width (No Alarm and Alarm Condition)	3, 4, 5, 13	t _r	7.0	13	ms	
LED Output Period	No Alarm Alarm	5	t _{LED}	30 .71	52 1.25	s ms
Alarm Horn Output	Hi Time Low Time	10, 11	t _{ON} t _{OFF}	120 60	208 104	ms ms
Low Battery Horn OutpuT Bet	Hi Time ween Pulses	10, 11	t _{ON} t _{OFF}	7.0 30	13 52	ms s

DEVICE OPERATION

Timing

The internal oscillator of the MC14600 operates with a period of 1.65 seconds during no-alarm conditions. Each 1.65 seconds, internal power is applied to the entire IC and a check is made for an alarm input level except during LED pulse, Low Battery Alarm Chirp, or Horn Modulation (in alarm). Every 24 clock cycles a check is made for low battery by comparing V_{DD} to an internal zener voltage. Since very small currents are used in the oscillator, the oscillator capacitor should be of a low leakage type.

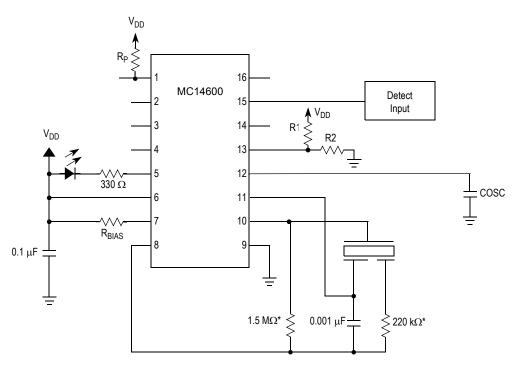
Detect Circuitry

If an alarm condition is detected, the oscillator period becomes 41.67 ms and the piezoelectric horn oscillator circuit is enabled. The horn output is modulated 167 ms on, 83 ms off. During the off time, alarm detect input (Pin 15) is again checked and will inhibit further horn output if no alarm condition is sensed. During alarm conditions the low battery chirp is inhibited, and the LED pulses at a 1.0 Hz rate.

An active guard is provided on a pin adjacent to the detect input (Pin 16). The voltage at this pin will be within 100 mV of the input signal. Pin 16 will allow monitoring of the input signal at pin 15 through a buffer. The active guard op amp is not

power strobed and thus gives constant protection from surface leakage currents. Pin 15 (the Detect input) has internal diode protection against static damage.

Low Battery Threshold


The low battery voltage level is set internally by a voltage divider connected between V_{DD} and V_{SS} . This voltage can be altered by external resistors connected from pin 3 to either V_{DD} or V_{SS} . A resistor to V_{DD} will decrease the threshold while a resistor to GND will increase it.

Alarm Threshold (Sensitivity)

The alarm condition voltage level is set externally through Pin 13. A voltage divider can be used to set the alarm trip point. Pin 13 is connected internally to the negative input of the detect comparator.

LED Pulse

The 9-volt battery level is checked every 40 seconds during the LED pulse. The battery is loaded via a 10 mA pulse for 10 ms. If the LED is not used, it should be replaced with an equivalent resistor so that the battery loading remains at 10 mA.

*Note: Component values may change depending on the type of piezoelectric horn used.

Figure 3. Typical Application Components

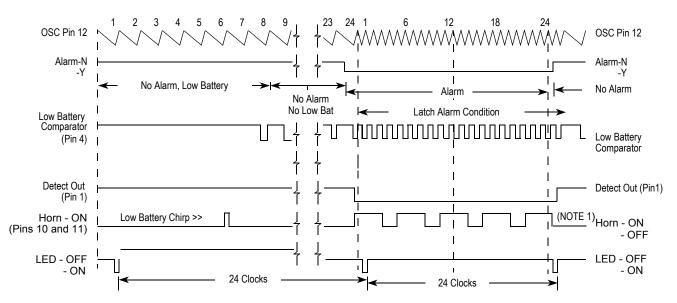


Figure 4. MC14600 Timing Diagram

NOTE:

- 1. Horn modulation is self-completing. When going from Alarm to No Alarm, the alarm condition will terminate only when horn is off.
- 2. Comparators are strobed once per cycle.
- 3. Low Battery comparator information is latched only during LED pulse.
- 4. Current source required into Pin 1.
- 5. Alarm Condition can initiate on any clock pulse except 1 and 7.

Photoelectric Smoke Detector IC with I/O

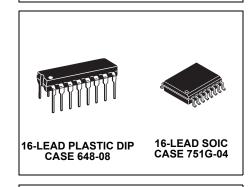
The CMOS MC145010 is an advanced smoke detector component containing sophisticated very-low-power analog and digital circuitry. The IC is used with an infrared photoelectric chamber. Detection is accomplished by sensing scattered light from minute smoke particles or other aerosols. When detection occurs, a pulsating alarm is sounded via on-chip push-pull drivers and an external piezoelectric transducer.

The variable-gain photo amplifier allows direct interface to IR detectors (photodiodes). Two external capacitors, C1 and C2, C1 being the larger, determine the gain settings. Low gain is selected by the IC during most of the standby state. Medium gain is selected during a local-smoke condition. High gain is used during push button test. During standby, the special monitor circuit which periodically checks for degraded chamber sensitivity uses high gain, also.

The I/O pin, in combination with V_{SS} , can be used to interconnect up to 40 units for common signaling. An on-chip current sink provides noise immunity when the I/O is an input. A local-smoke condition activates the short-circuit-protected I/O driver, thereby signaling remote smoke to the interconnected units. Additionally, the I/O pin can be used to activate escape lights, enable auxiliary or remote alarms, and/or initiate auto-dialers.

While in standby, the low-supply detection circuitry conducts periodic checks using a pulsed load current from the LED pin. The trip point is set using two external resistors. The supply for the MC145010 can be a 9 V battery.

A visible LED flash accompanying a pulsating audible alarm indicates a local-smoke condition. A pulsating audible alarm with no LED flash indicates a remote-smoke condition. A beep or chirp occurring virtually simultaneously with an LED flash indicates a low-supply condition. A beep occurring half-way between LED flashes indicates degraded chamber sensitivity. A low-supply condition does not affect the smoke detection capability if $V_{DD} \ge 6 \text{ V}$. Therefore, the low-supply condition and degraded chamber sensitivity can be further distinguished by performing a push button (chamber) test.


Features

- Circuit is designed to operate in smoke detector systems that comply with UL217 and UL268 Specifications
- Operating Voltage Range: 6 to 12 V
- Operating Temperature Range: 10 to 60°C
- Average Supply Current: 12 μA
- Power-On Reset Places IC in Standby Mode (Non-Alarm State)
- Electrostatic Discharge (ESD) and Latch Up Protection Circuitry on All Pins
- Chip Complexity: 2000 FETs, 12 NPNs, 16 Resistors, and 10 Capacitors
- · Ideal for battery powered applications.

ORDERING INFORMATION							
Device Temp. Range Case No. Package							
MC145010P	-55 to +125°C	648-08	Plastic Dip				
MC145010DW	-55 to +125°C	751G-04	SOIC				

MC145010

PHOTOELECTRIC SMOKE DETECTOR IC WITH I/O

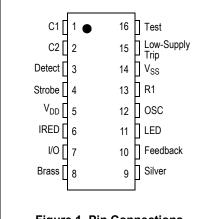


Figure 1. Pin Connections

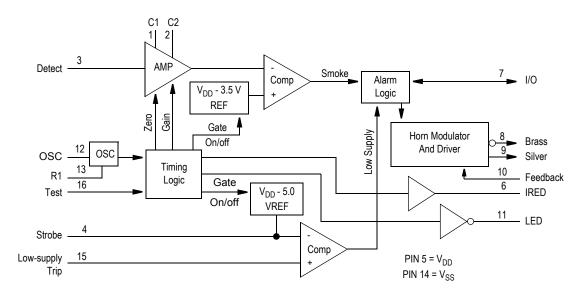


Figure 2. Block Diagram

Table 1. Maximum Ratings⁽¹⁾

(Voltages referenced to V_{SS})

Rating	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-0.5 to +15	V
DC Input Voltage C1, C2, Detect OSC, Low-Supply Trip I/O Feedback Test	V _{IN}	-0.25 to V _{DD} +0.25 -0.25 to V _{DD} +0.25 -0.25 to V _{DD} +10 -15 to +25 -1.0 to V _{DD} +0.25	V
DC Input Current per Pin	I _{IN}	±10	mA
DC Output Current per Pin	I _{OUT}	±25	mA
DC Supply Current, VDD and VSS Pins	I _{DD}	+25 / -150	mA
Power Dissipation in Still Air 5 Seconds Continuous	P _D	1200 ⁽²⁾ 350 ⁽³⁾	mW
Storage Temperature Range	T _{STG}	-55 to +125	°C
Lead Temperature, 1 mm From Case for 10 Seconds	T _L	5.0	°C

^{1.} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables.

^{2.} Derating: -12 mW/°C from 25° to 60°C.

^{3.} Derating -3.5 mW/°C from 25° to 60°C.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation, it is recommended V_{IN} and V_{OUT} be constrained to the range $V_{SS} \le (V_{IN} \text{ or } V_{OUT}) \le V_{DD}$.

Table 2. Electrical Characteristics

(T_A = -10 to 60°C unless otherwise indicated. Voltages referenced to V_{SS} .)

Characteristics	Symbol	V _{DD} /V _{DC}	Min	Тур	Max	Unit
Operating Voltage	V_{DD}	_	6.0	_	12.0	V
Supply Threshold voltage, Low-Supply Alarm Low-Supply Trip: VIN = VDD/3	V _{TH}	_	6.5	_	7.8	V
Average Operating Supply Current (per Package) Standby Configured per Figure 8	I _{DD}	12.0	_	_	12.0	μΑ
Peak Supply Current (per Package) During Strobe ON, IRED OFF Configured per Figure 8 During Strobe ON, IRED ON Configured per Figure 8	i _{DD}	12.0 12.0			2.0 3.0	mA
Low-Level Input Voltage I/O Feedback Test	V _{IL}	9.0 9.0 9.0	_ _ _	_ _ _	1.5 2.7 7.0	V
High-Level Input Voltage I/O Feedback Test	V _{IH}	9.0 9.0 9.0	3.2 6.3 8.5	_ _ _	_ _ _	V
$ \begin{array}{l} \text{Input Current} \\ \text{OSC, Detect} - \text{V}_{\text{IN}} = \text{V}_{\text{SS}} \text{ or V}_{\text{DD}} \\ \text{Low-Supply Trip} - \text{V}_{\text{IN}} = \text{V}_{\text{SS}} \text{ or V}_{\text{DD}} \\ \text{Feedback} - \text{V}_{\text{IN}} = \text{V}_{\text{SS}} \text{ or V}_{\text{DD}} \end{array} $	I _{IN}	12.0 12.0 12.0	_ _ _	_ _ _	±100 ±100 ±100	nA
Low -Level Input Current Test – V _{IN} = V _{SS} or V _{DD}	I _{IL}	12.0	_	_	-1.0	μΑ
Pull-Down Current $Test - V_{IN} = V_{DD}$ $I/O - No Local Smoke, V_{IN} = V_{DD}$ $I/O - No Local Smoke, V_{IN} = 17 V$	I _{IН}	9.0 9.0 12.0	0.5 25.0 —	=	10 100 140	μΑ
Low-Level Output Voltage LED – I _{OUT} = 10 mA Silver, Brass – I _{OUT} = 16 mA	V _{OL}	6.5 6.5		_	0.6 1.0	V
High-Level Output Voltage Silver, Brass – I _{OUT} = 16 mA	V _{OH}	6.5	5.5	_	_	V
Output Voltage (For Line Regulations, See Pin Descriptions) Strobe – Inactive, I_{OUT} = -1 μ A Active, I_{OUT} = 100 μ A to 500 μ A (Load Regulation) IRED – Inactive, I_{OUT} = 1 μ A Active, I_{OUT} = 6 μ A (Load Regulation)	V _{OUT}	9.0 — 9.0	$V_{DD} - 0.1$ $V_{DD} - 4.40$ $ 2.25^{(1)}$		— V _{DD} – 5.30 0.1 3.75 ¹	V
High-Level Output Current I/O – Local Smoke, V _{OUT} = 4.5 V I/O – Local Smoke, V _{OUT} = V _{SS} (Short Circuit Current)	I _{OH}	6.5 12.0	-4 —		<u> </u>	mA
Off-State Output Leakage Current LED – V _{OUT} = V _{SS} or V _{DD}	I _{OZ}	12.0	_		±1.0	XA
Common Mode C1, C2, Detect, Voltage Range – Local Smoke, Push Button Test, or Chamber Sensitivity Test	V _{IC}		V _{DD} – 4	_	V _{DD} – 2	V
Smoke Comparator Internal Reference Voltage – Local Smoke, Push Button Test, or Chamber Sensitivity Test	V _{REF}	_	V _{DD} – 3.08	_	V _{DD} – 3.92	V

^{1.} $T_A = 25^{\circ}C$ only.

Table 3. AC Electrical Characteristics

Reference Timing Diagram Figure 6 and Figure 7. (T_A = 25°C, V_{DD} = 9.0 V, Component values from Figure 8: R1 = 100.0 K Ω , C3 = 1500.0 pF, R2 = 10.0 M Ω .)

No.	Characteristics	Symbol	Clocks	Min	Max	Unit
1	Oscillator Period ⁽¹⁾ Free-Running Sawtooth Measured at Pin 12	1/f _{OSC}	1	9.5	11.5	ms
2 3 4	LED Pulse Period No Local Smoke, and No Remote Smoke Remote Smoke, but No Local Smoke Local Smoke or Push Button Test	t _{LED}	4096 — 64	38.9 — 0.60	47.1 — 0.74	S
5	LED Pulse Width and Strobe Pulse Width	t _{w(LED)} , t _{w(STB)}	1	9.5	11.5	ms
6 7 8	Chamber Sensitivity Test without Local Smoke		1024 4096 32	9.67 38.9 0.302	11.83 47.1 0.370	S
9	IRED Pulse Width	t _{w(IRED)}	T _f ¹	94	116	μs
10	IRED Rise Time IRED Fall Time	t _r t _f	_	_	30 200	μs
11	Silver and Brass Modulation Period Local or Remote Smoke	t _{MOD}	_	297	363	ms
11 12	Silver and Brass Duty Cycle Local or Remote Smoke	t _{ON} /t _{MOD}	_	73	77	%
13	Silver and Brass Chirp Pulse Period Low Supply or Degraded Chamber Sensitivity	t _{CH}	4096	38.9	47.1	S
14	Silver and Brass Chirp Pulse Width Low Supply or Degraded Chamber Sensitivity	tw _(CH)	1	9.5	11.5	ms
15	Rising Edge on I/O to Smoke Alarm Response Time Remote Smoke, No Local Smoke	t _{RR}	_	_	800	ms
16 17 18 19	Strobe Out Pulse Period Smoke Test Chamber Sensitivity Test without Local Smoke Low Supply Test without Local Smoke Push Button Test	t _{STB}	1024 4096 4096 —	9.67 38.9 38.9 0.302	11.83 47.1 47.1 0.370	S

^{1.} Oscillator Period T (= T_r + T_f) is determined by the external components R1, R2, and C3 where T_r = (0.6931) R_2 x C_3 and $T_f = (0.6031) \, R_1 \, x \, C_3.$ The other timing characteristics are some multiple of the oscillator timing shown in the table.

Table 4. Pin Description

Pin	Symbol	Description
1	C1	A capacitor connected to this pin, shown in Figure 8, determines the gain of the on-chip photo amplifier during push button test and chamber sensitivity test (high gain). The capacitor value is chosen such that the alarm is tripped from background reflections in the chamber during push button test. $A_{\rm V}$ a 1 + (C1/10) where C1 is in pF. CAUTION: The value of the closed-loop gain should not exceed 10,000.
2	C2	A capacitor connected to this pin as shown in Figure 8 determines the gain of the on-chip photo amplifier except during push button or chamber sensitivity tests. $A_v \approx 1 + (C2/10)$ where C2 is in pF. This gain increases about 10% during the IRED pulse, after two consecutive local smoke detections. Resistor R14 must be installed in series with C2. R14 \approx [1/(12 $\sqrt{C2}$)] - 680 where R14 is in ohms and C2 is in farads.
3	DETECT	This input to the high-gain pulse amplifier is tied to the cathode of an external photodiodes. The photodiodes should have low capacitance and low dark leakage current. The diode must be shunted by a load resistor and is operated at zero bias. The Detect input must be ac/dc decoupled from all other signals, V _{DD} , and V _{SS} . Lead length and/or foil traces to this pin must be minimized, also. See Figure 9.
4	STROBE	This output provides a strobed, regulated voltage referenced to V_{DD} . The temperature coefficient of this voltage is \pm 0.2%. °C maximum from - 10° to 60°C. The supply-voltage coefficient (line regulation) is \pm 0.2%/V maximum from 6 to 12 V. Strobe is tied to external resistor string R8, R9, and R10.
5	V _{DD}	This pin is connected to the positive supply potential and may range from +6 to +12 V with respect to V_{SS} . CAUTION: In battery-powered applications, reverse-polarity protection must be provided externally.
6	IRED	This output provides pulsed base current for external NPN transistor Q1 used as the infrared emitter driver. Q1 must have $\beta \geq 100$. At 10 mA, the temperature coefficient of the output voltage is typically + 0.5%/°C from - 10° to 60°C. The supply-voltage coefficient (line regulation) is \pm 0.2%/V maximum from 6 to 12 V. The IRED pulse width (active-high) is determined by external components R1 and C3. With a 100 k $\Omega/1500$ pF combination, the nominal width is 105 μs . To minimize noise impact, IRED is not active when the visible LED and horn outputs are active. IRED is active near the end of Strobe pulses for Smoke Tests, Chamber Sensitivity Test, and Push button Test.
7	I/O	This pin can be used to connect up to 40 units together in a wired-OR configuration for common signaling. $V_{\rm SS}$ is used as the return. An on-chip current sink minimizes noise pick up during non-smoke conditions and eliminates the need for an external pull-down resistor to complete the wired-OR. Remote units at lower supply voltages do not draw excessive current from a sending unit at a higher supply voltage. I/O can also be used to activate escape lights, auxiliary alarms, remote alarms, and/or auto-dialers. As an input, this pin feeds a positive-edge-triggered flip-flop whose output is sampled nominally every 625 ms during standby (using the recommended component values). A local-smoke condition or the push button-test mode forces this current-limited output to source current. All input signals are ignored when I/O is sourcing current. I/O is disabled by the on-chip power-on reset to eliminate nuisance signaling during battery changes or system power-up. If unused, I/O must be left unconnected.
8	BRASS	This half of the push-pull driver output is connected to the metal support electrode of a piezoelectric audio transducer and to the horn-starting resistor. A continuous modulated tone from the transducer is a smoke alarm indicating either local or remote smoke. A short beep or chirp is a trouble alarm indicating a low supply or degraded chamber sensitivity.
9	SILVER	This half of the push-pull driver output is connected to the ceramic electrode of a piezoelectric transducer and to the horn-starting capacitor.
10	FEEDBA CK	This input is connected to both the feedback electrode of a self-resonating piezoelectric transducer and the horn-starting resistor and capacitor through current-limiting resistor R4. If unused, this pin must be tied to V _{SS} or V _{DD} .
11	LED	This active-low open-drain output directly drives an external visible LED at the pulse rates indicated below. The pulse width is equal to the OSC period. The load for the low-supply test is applied by this output. This low-supply test is non-coincident with the smoke tests, chamber sensitivity test, push button test, or any alarm signals. The LED also provides a visual indication of the detector status as follows, assuming the component values shown in Figure 8: Standby (includes low-supply and chamber sensitivity tests) - Pulses every 43 seconds (nominal) Local Smoke - Pulses every 0.67 seconds (nominal) Remote Smoke - No pulses Push button Test - Pulses every 0.67 seconds (nominal)
12	osc	This pin is used in conjunction with external resistor R2 (10 M Ω) to V _{DD} and external capacitor C3 (1500 pF) to V _{DD} to form an oscillator with a nominal period of 10.5 ms.
13	R1	This pin is used in conjunction with resistor R1 (100 k Ω) to pin 12 and C3 (1500 pF, see pin 12 description) to determine the IRED pulse width. With this RC combination, the nominal pulse width is 105 μ s.
14	VSS	This pin is the negative supply potential and the return for the I/O pin. Pin 14 is usually tied to ground.
15	LOW- SUPPLY TRIP	This pin is connected to an external voltage which determines the low-supply alarm threshold. The trip voltage is obtained through a resistor divider connected between the V_{DD} and LED pins. The low-supply alarm threshold voltage (in volts) \approx (5R7/R6) + 5 where R6 and R7 are in the same units.

Table 4. Pin Description (Continued)

Pin	Symbol	Description
16	TEST	This input has an on-chip pull-down device and is used to manually invoke a test mode. The <i>Push Button Test</i> mode is initiated by a high level at pin 16 (usually depression of a S.P.S.T. normally-open push button switch to $V_{\rm DD}$). After one oscillator cycle, IRED pulses approximately every 336 ms, regardless of the presence of smoke. Additionally, the amplifier gain is increased by automatic selection of C1. Therefore, the background reflections in the smoke chamber may be interpreted as smoke, generating a simulated-smoke condition. After the second IRED pulse, a successful test activates the horn-driver and I/O circuits. The active I/O allows remote signaling for system testing. When the Push Button Test switch is released, the Test input returns to $V_{\rm SS}$ due to the on-chip pull-down device. After one oscillator cycle, the amplifier gain returns to normal, thereby removing the simulated-smoke condition. After two additional IRED pulses, less than a second, the IC exits the alarm mode and returns to standby timing.

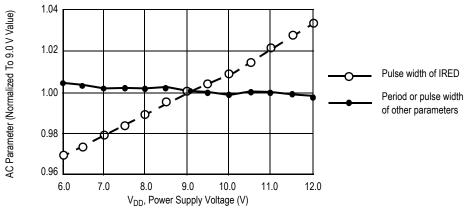


Figure 3. AC Characteristics vs. Supply

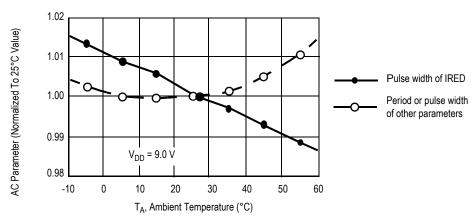


Figure 4. AC Characteristics vs. Temperature

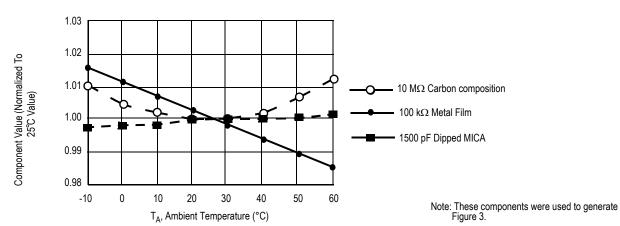


Figure 5. RC Component Variation Overtemperature

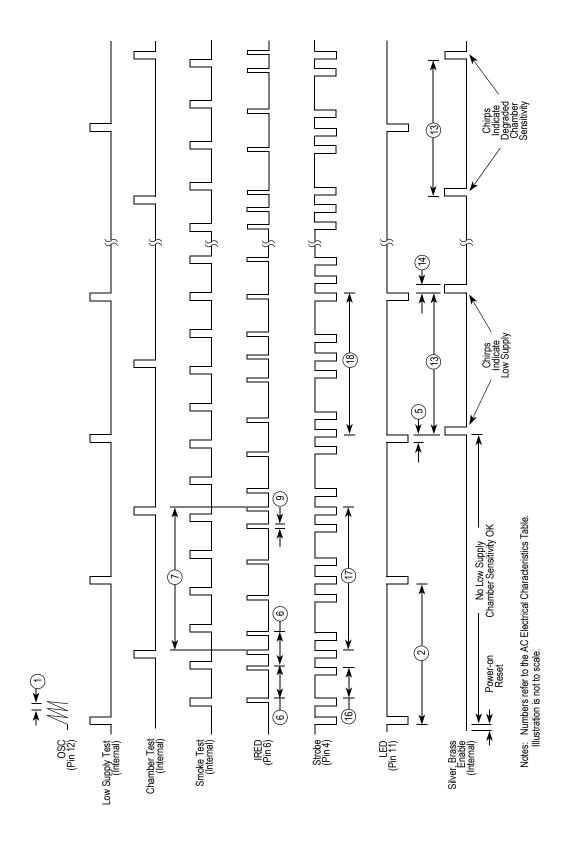
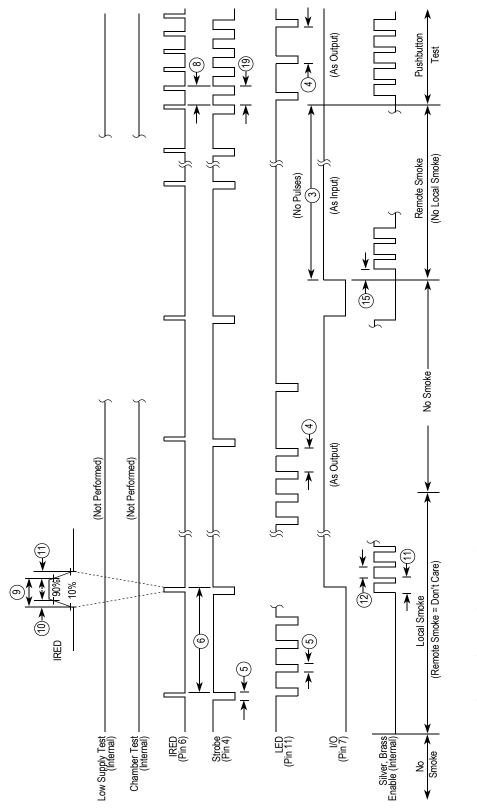
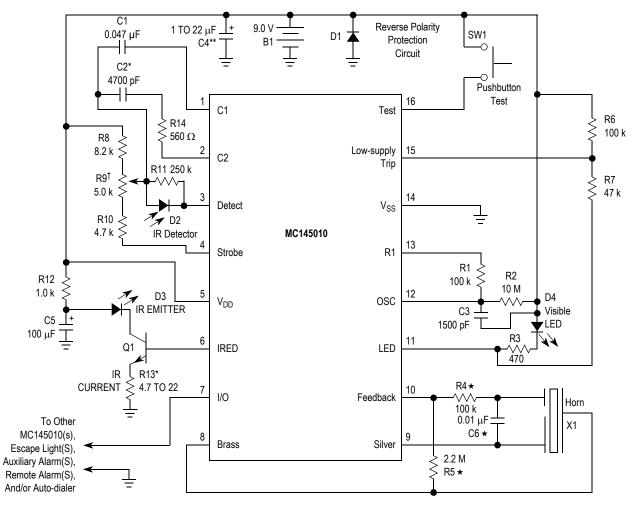




Figure 6. Standby Timing Diagram

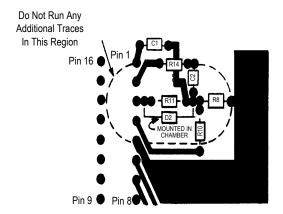
Notes: Numbers refer to the AC Electrical Characteristics Table. Illustration is not to scale.

Figure 7. Smoke Timing Diagram

- ★Values for R4, R5, and C6 may differ depending on type of piezoelectric horn used.
- * C2 and R13 are used for coarse sensitivity adjustment. Typical values are shown.
- † R9 is for fine sensitivity adjustment (optional). If fixed resistors are used, R8 = 12 k, R10 is 5.6 k to 10 k, and R9 is eliminated. When R9 is used, noise pickup is increased due to antenna effects. Shielding may be required.
- **C4 should be 22 μF if B1 is a carbon battery. C4 could be reduced to 1 μF when an alkaline battery is used.

Figure 8. Typical Battery-Powered Application

CALIBRATION


To facilitate checking the sensitivity and calibrating smoke detectors, the MC145010 can be placed in a calibration mode. In this mode, certain device pins are controlled/reconfigured as shown in Table 5. To place the part in the calibration mode, pin 16 (Test) must be pulled below the $V_{\rm SS}$

pin with 100 μ A continuously drawn out of the pin for at least one cycle on the OSC pin. To exit this mode, the Test pin is floated for at least one OSC cycle.

In the calibration mode, the IRED pulse happens at every clock cycle and strobe is always on (active low). Also, Low Battery and supervisory tests are disabled in this mode.

Table 5. Configuration of Pins in the Calibration Mode

Description	Pin	Comment
I/O	7	Disabled as an output. Forcing this pin high places the photo amp output on pin 1 or 2, as determined by Low-Supply Trip. The amp's output appears as pulses and is referenced to V_{DD} .
Low-Supply Trip	15	If the I/O pin is high, pin 15 controls which gain capacitor is used. Low: normal gain, amp output on pin 1. High: supervisory gain, amp output on pin 2.
Feedback	10	Driving this input high enables hysteresis (10% gain increase) in the photo amp; pin 15 must be low.
OSC	12	Driving this input high brings the internal clock high. Driving the input low brings the internal clock low. If desired, the RC network for the oscillator may be left intact; this allows the oscillator to run similar to the normal mode of operation.
Silver	9	This pin becomes the smoke comparator output. When the OSC pin is toggling, positive pulses indicate that smoke has been detected. A static low level indicates no smoke.
Brass	8	This pin becomes the smoke integrator output. That is, two consecutive smoke detections are required for ON (static high level) and two consecutive no-detections for "off" (static low level).

NOTES:

Illustration is bottom view of layout using a Dip. Top view for SOIC layout is mirror image. Optional potentionmeter R9 is not illustrated. Drawing is not to scale.

Leads on D2, R11, R8, and R10 and their associated traces must be kept as short as possible. This practice minimizes noise pick-up. Pin 3 must be decoupled from all other traces.

Figure 9. Recommended PCB Layout

Photoelectric Smoke Detector IC with I/O For Line-Powered Applications

The CMOS MC145011 is an advanced smoke detector component containing sophisticated very-low-power analog and digital circuitry. The IC is used with an infrared photoelectric chamber. Detection is accomplished by sensing scattered light from minute smoke particles or other aerosols. When detection occurs, a pulsating alarm is sounded via on-chip push-pull drivers and an external piezo-electric transducer.

The variable-gain photo amplifier allows direct interface to IR detectors (photo-diodes). Two external capacitors C1 and C2, C1 being the larger, determine the gain settings. Low gain is selected by the IC during most of the standby state. Medium gain is selected during a local-smoke condition. High gain is used during pushbutton test. During standby, the special monitor circuit which periodically checks for degraded chamber sensitivity uses high gain, also.

The I/O pin, in combination with V_{SS} , can be used to interconnect up to 40 units for common signaling. An on-chip current sink provides noise immunity when the I/O is an input. A local-smoke condition activates the short-circuit-protected I/O driver, thereby signaling remote smoke to the interconnected units. Additionally, the I/O pin can be used to activate escape lights, enable auxiliary or remote alarms, and/or initiate auto-dialers.

While in standby, the low-supply detection circuitry conducts periodic checks using a load current from the LED pin. The trip point is set using two external resistors. The supply for the MC145011 must be a dc power source capable of supplying 35 mA continuously and 45 mA peak. When the MC145011 is in standby, an external LED is continuously illuminated to indicate that the device is receiving power.

An extinguished LED accompanied by a pulsating audible alarm indicates a local-smoke condition. A pulsating audible alarm with the LED illuminated indicates a remote-smoke condition. A beep or chirp indicates a low-supply condition or degraded chamber sensitivity. A low-supply condition does not affect the smoke detection capability if $V_{DD}\!\ge\!6$ V. Therefore, the low-supply condition and degraded chamber sensitivity can be distinguished by performing a pushbutton (chamber) test. This circuit is designed to operate in smoke detector systems that comply with UL217 and UL268 specifications.

Features

- Operating Voltage Range: 6 to 12 V
- Operating Temperature Range: -10 to 60°C
- Average Standby Supply Current (Visible LED Illuminated): 20 mA
- Power-On Reset Places IC in Standby Mode (Non-Alarm State)
- Electrostatic Discharge (ESD) and Latch Up Protection Circuitry on All Pins
- Chip Complexity: 2000 FETs, 12 NPNs, 16 Resistors, and 10 Capacitors

ORDERING INFORMATION				
Device	Package			
MC145011P	Plastic Dip			
MC145011DW	Soic Package			

MC145011

PHOTOELECTRIC SMOKE DETECTOR IC WITH I/O FOR LINE-POWERED APPLICATIONS

P SUFFIX PLASTIC DIP CASE 648-08

DW SUFFIX PLASTIC SOIC CASE 751G-04

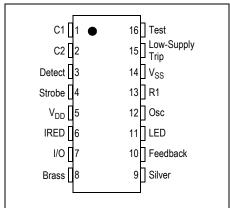


Figure 1. Pin Connections

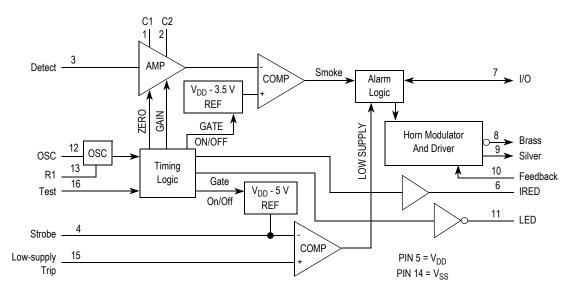


Figure 2. Block Diagram

Table 1. Maximum Ratings⁽¹⁾

(Voltages referenced to V_{SS})

Parameter		Symbol	Value	Unit
DC Supply Voltage		V_{DD}	-0.5 to +12	V
DC Input Voltage	C1, C2, Detect Osc, Low-Supply Trip I/O Feedback Test	V _{in}	-0.25 to V _{DD} +0.25 -0.25 to V _{DD} +0.25 -0.25 to V _{DD} +10 -15 to +25 -1.0 to V _{DD} +0.25	V
DC Input Current, per Pin		I _{in}	±10	mA
DC Output Current, per Pin		I _{out}	±25	mA
DC Supply Current, V _{DD} and V _{SS} Pins		I _{DD}	+25 / -150	mA
Power Dissipation in Still Air	5 Seconds Continuous	P_{D}	1200 ⁽²⁾ 350 ⁽³⁾	mW
Storage Temperature		T _{stg}	-55 to +125	°C
Lead Temperature, 1 mm from Case for 10 S	T _L	260	°C	

- 1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables.
- 2. Derating: -12 mW/°C from 25° to 60°C.
- 3. Derating: 3.5 mW/°C from 25° to 60°C.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$ except for the I/O, which can exceed V_{DD} , and the Test input, which can go below V_{SS} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs and/or an unused I/O must be left open.

Table 2. Electrical Characteristics

(T_A = -10 to 60°C Unless Otherwise Indicated, Voltages Referenced to V_{SS})

Characteris	tic	Symbol	Test Condition	V_{DD}/V_{DC}	Min	Max	Unit
Power Supply Voltage Rang	е	V _{DD}		_	6.0	12	V
Supply Threshold Voltage, L	ow-Supply Alarm	V_{TH}	Low-Supply Trip: $V_{in} = V_{DD}/3$	_	6.5	7.8	V
Average Operating Supply Current, Excluding the Visible LED Current (per Package)		I _{DD}	Standby Configured per Figure 8	12.0	_	12	μА
Peak Supply Current, Excluding the Visible LED Current (per Package)		i _{DD}	During Strobe On, IRED Off Configured per Figure 8	12.0	_	2.0	mA
			During Strobe On, IRED On Configured per Figure 8	12.0	_	3.0	
Low-Level Input Voltage	I/O Feedback Test	V _{IL}		9.0 9.0 9.0	_ _ _	1.5 2.7 7.0	V
High-Level Input Voltage	I/O Feedback Test	V _{IH}		9.0 9.0 9.0	3.2 6.3 8.5	_ _ _	V
Input Current	Osc, Detect Low-Supply Trip Feedback	I _{in}	$V_{in} = V_{SS}$ or V_{DD} $V_{in} = V_{SS}$ or V_{DD} $V_{in} = V_{SS}$ or V_{DD}	12.0 12.0 12.0	_ _ _	±100 ±100 ± 00	nA
Low-Level Input Current	Test	I _{IL}	$V_{in} = V_{SS}$	12.0	_	-1	μΑ
Pull-Down Current	Test I/O	I _{IH}	$V_{in} = V_{DD}$ No Local Smoke, $V_{in} = V_{DD}$ No Local Smoke, $V_{in} = 17 \text{ V}$	9.0 9.0 12.0	0.5 25 —	10 100 140	μА
Low-Level Output Voltage	LED Silver, Brass	V _{OL}	I _{out} = 10 mA I _{out} = 16 mA	6.5 6.5	_	0.6 1.0	V
High-Level Output Voltage	Silver, Brass	V _{OH}	I _{out} = -16 mA	6.5	5.5	_	V
Output Voltage (For Line Regulation, see Pin Descriptions)	Strobe	V _{out}	Inactive, I _{out} = -1 μA Active, I _{out} = 100 μA to 500 μA (Load Regulation)	9.0	V _{DD} - 0.1 V _{DD} - 4.4	— V _{DD} - 5.6	V
	IRED		Inactive, I _{out} = 1 μA Active, I _{out} = 6 mA (Load Regulation)	9.0	2.25 ⁽¹⁾	0.1 3.75 ⁽¹⁾	
High-Level Output Current	I/O	I _{OH}	Local Smoke, V _{out} = 4.5 V	6.5	-4	_	mA
			Local Smoke, V _{out} = V _{SS} (Short Circuit Current)	12.0	_	-16	
Off-State Output Leakage C	urrent LED	I _{OZ}	V _{out} = V _{SS} or V _{DD}	12.0	_	±1	μΑ
Common Mode Voltage Range	C1, C2, Detect	V _{IC}	Local Smoke, Pushbutton Test, or Chamber Sensitivity Test	_	V _{DD} - 4	V _{DD} - 2	V
Smoke Comparator Reference Voltage	Internal	V _{ref}	Local Smoke, Pushbutton Test, or Chamber Sensitivity Test	_	V _{DD} - 3.08	V _{DD} - 3.92	V

^{1.} $T_A = 25^{\circ}C$ only.

Table 3. AC Electrical Characteristics

(Reference Timing Diagram Figure 6 and Figure 7) (T_A = 25°C, V_{DD} = 9.0 V, Component Values from Figure 8: R1 = 100.0 K Ω , C3 = 1500.0 pF, R2 = 10.0 M Ω)

No.	Characteristic	Symbol	Test Condition	Min	Max	Unit
1	Oscillator Period ⁽¹⁾	1/f _{osc}	Free-Running Sawtooth Measured at Pin 12	9.5	11.5	ms
2	LED Status	t _{LED}	No Local Smoke, and No Remote Smoke	Illuminated		
3			Remote Smoke, but No Local Smoke	Illumi	inated	
4			Local Smoke or Pushbutton Test	Exting	uished	
5	Strobe Pulse Width	t _{w(stb)}		9.5	11.5	ms
6	IRED Pulse Period	t _{IRED}	Smoke Test	9.67	11.83	S
7			Chamber Sensitivity Test, without Local Smoke	38.9	47.1	
8			Pushbutton Test	0.302	0.370	
9	IRED Pulse Width	t _{w(IRED)}		94	116	μS
10	IRED Rise Time	t _r		_	30	μS
	IRED Fall Time	t _f		_	200	
11	Silver and Brass Modulation Period	t _{mod}	Local or Remote Smoke	297	363	ms
11, 12	Silver and Brass Duty Cycle	t _{on} /t _{mod}	Local or Remote Smoke	73	77	%
13	Silver and Brass Chirp Pulse Period	t _{CH}	Low Supply or Degraded Chamber Sensitivity	38.9	47.1	S
14	Silver and Brass Chirp Pulse Width	t _{w(CH)}	Low Supply or Degraded Chamber Sensitivity	9.5	11.5	ms
15	Rising Edge on I/O to Smoke Alarm Response Time	t _{RR}	Remote Smoke, No Local Smoke	_	800	ms
16	Strobe Pulse Period	t _{stb}	Smoke Test	9.67	11.83	S
17			Chamber Sensitivity Test, without Local Smoke	38.9	47.1	
18			Low Supply Test, without Local Smoke	38.9	47.1	
19			Pushbutton Test	0.302	0.370	

^{1.} Oscillator period T (= $T_r + T_f$) is determined by the external components R1, R2, and C3 where $T_r = (0.6931)$ R2 C3 and $T_f = (0.6931)$ R1 C3. The other timing characteristics are some multiple of the oscillator timing as shown in the table.

Table 4. Pin Description

Pin No.	Pin Name	Description
1	C1	A capacitor connected to this pin as shown in Figure 8. determines the gain of the on-chip photo amplifier during pushbutton test and chamber sensitivity test (high gain). The capacitor value is chosen such that the alarm is tripped from background reflections in the chamber during pushbutton test. $A_v \approx 1 + (C1/10)$ where C1 is in pF. CAUTION: The value of the closed-loop gain should not exceed 10,000.
2	C2	A capacitor connected to this pin as shown in Figure 8. determines the gain of the on-chip photo amplifier except during pushbutton or chamber sensitivity tests. $A_v \approx 1 + (C2/10)$ where C2 is in pF. This gain increases about 10% during the IRED pulse, after two consecutive local smoke detections. Resistor R14 must be installed in series with C2. R14 $\approx [1/(12\sqrt{C2})]$ - 680 where R14 is in ohms and C2 is in farads.
3	DETECT	This input to the high-gain pulse amplifier is tied to the cathode of an external photodiode. The photodiode should have low capacitance and low dark leakage current. The diode must be shunted by a load resistor and is operated at zero bias. The Detect input must be ac/dc decoupled from all other signals, V _{DD} , and V _{SS} . Lead length and/or foil traces to this pin must be minimized, also. See Figure 9.

MC145011

Table 4. Pin Description (Continued)

Pin No.	Pin Name	Description
4	STROBE	This output provides a strobed, regulated voltage referenced to V_{DD} . The temperature coefficient of this voltage is $\pm0.2\%$ °C maximum from - 10° to 60°C. The supply-voltage coefficient (line regulation) is $\pm0.2\%$ /V maximum from 6 to 12 V. Strobe is tied to external resistor string R8, R9, and R10.
5	VDD	This pin is connected to the positive supply potential and may range from + 6 to + 12 V with respect to V _{SS} .
6	IRED	This output provides pulsed base current for external NPN transistor Q1 used as the infrared emitter driver. Q1 must have $\beta \geq 100$. At 10 mA, the temperature coefficient of the output voltage is typically + 0.5%/°C from - 10° to 60°C. The supply-voltage coefficient (line regulation) is \pm 0.2%/V maximum from 6 to 12 V. The IRED pulse width (active-high) is determined by external components R1 and C3. With a 100 k $\Omega/1500$ pF combination, the nominal width is 105 μs . To minimize noise impact, IRED is not active when the visible LED and horn outputs are active. IRED is active near the end of Strobe pulses for Smoke Tests, Chamber Sensitivity Test, and Pushbutton Test.
7	I/O	This pin can be used to connect up to 40 units together in a wired-OR configuration for common signaling. V _{SS} is used as the return. An on-chip current sink minimizes noise pick up during non-smoke conditions and eliminates the need for an external pull-down resistor to complete the wired-OR. Remote units at lower supply voltages do not draw excessive current from a sending unit at a higher supply voltage. I/O can also be used to activate escape lights, auxiliary alarms, remote alarms, and/or auto-dialers. As an input, this pin feeds a positive-edge-triggered flip-flop whose output is sampled nominally every 625 ms during standby (using the recommended component values). A local-smoke condition or the pushbutton-test mode forces this current-limited output to source current. All input signals are ignored when I/O is sourcing current. If unused, I/O must be left unconnected.
8	BRASS	This half of the push-pull driver output is connected to the metal support electrode of a piezoelectric audio transducer and to the horn-starting resistor. A continuous modulated tone from the transducer is a smoke alarm indicating either local or remote smoke. A short beep or chirp is a trouble alarm indicating a low supply or degraded chamber sensitivity.
9	SILVER	This half of the push-pull driver output is connected to the ceramic electrode of a piezoelectric transducer and to the horn-starting capacitor.
10	FEEDBACK	This input is connected to both the feedback electrode of a self-resonating piezoelectric transducer and the horn-starting resistor and capacitor through current-limiting resistor R4. If unused, this pin must be tied to V_{SS} or V_{DD} .
11	LED	This active-low open-drain output directly drives an external visible LED. The load for the low-supply test is applied by this output. This low-supply test is non-coincident with the smoke tests, chamber sensitivity test, pushbutton test, or any alarm signals. The LED also provides a visual indication of the detector status as follows, assuming the component values shown in Figure 8: Standby (includes low-supply and chamber sensitivity tests) - constantly illuminated Local Smoke - constantly extinguished Remote Smoke - constantly illuminated Pushbutton Test - constantly extinguished (system OK); constantly illuminated (system problem)
12	OSC	This pin is used in conjunction with external resistor R2 (10 M Ω) to V _{DD} and external capacitor C3 (1500 pF) to V _{DD} to form an oscillator with a nominal period of 10.5 ms.
13	R1	This pin is used in conjunction with resistor R1 (100 k Ω) to pin 12 and C3 (1500 pF, see pin 12 description) to determine the IRED pulse width. With this RC combination, the nominal pulse width is 105 μ s.
14	VSS	This pin is the negative supply potential and the return for the I/O pin. Pin 14 is usually tied to ground.
15	LOW- SUPPLY TRIP	This pin is connected to an external voltage which determines the low-supply alarm threshold. The trip voltage is obtained through a resistor divider connected between the V_{DD} and LED pins. The low-supply alarm threshold voltage (in volts) \approx (5R7/R6) + 5 where R6 and R7 are in the same units.
16	TEST	This input has an on-chip pull-down device and is used to manually invoke a test mode. The $Pushbutton\ Test$ mode is initiated by a high level at pin 16 (usually depression of a S.P.S.T. normally-open pushbutton switch to V_{DD}). After one oscillator cycle, IRED pulses approximately every 336 ms, regardless of the presence of smoke. Additionally, the amplifier gain is increased by automatic selection of C1. Therefore, the background reflections in the smoke chamber may be interpreted as smoke, generating a simulated-smoke condition. After the second IRED pulse, a successful test activates the horn-driver and I/O circuits. The active I/O allows remote signaling for system testing. When the Pushbutton Test switch is released, the Test input returns to V_{SS} due to the on-chip pull-down device. After one oscillator cycle, the amplifier gain returns to normal, thereby removing the simulated-smoke condition. After two additional IRED pulses, less than a second, the IC exits the alarm mode and returns to standby timing.

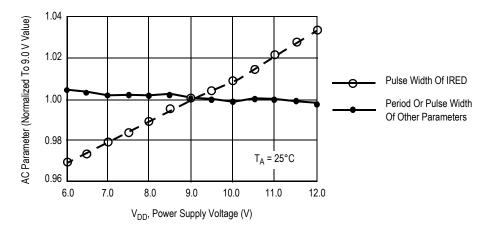
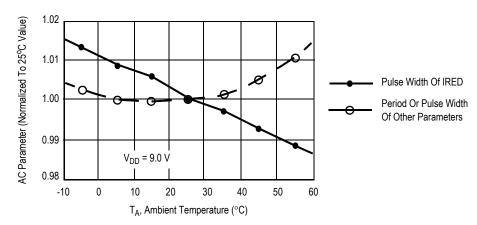
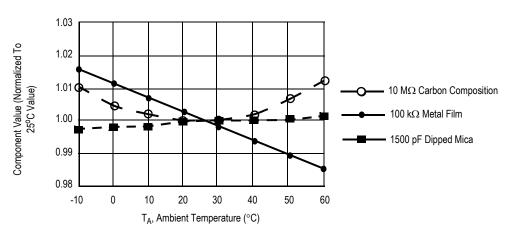




Figure 3. AC Characteristics versus Supply

NOTE: Includes external component variations. See Figure 5.

Figure 4. AC Characteristics versus Temperature

NOTE: These components were used to generate Figure 4.

Figure 5. RC Component Variation Over Temperature

Freescale Semiconductor

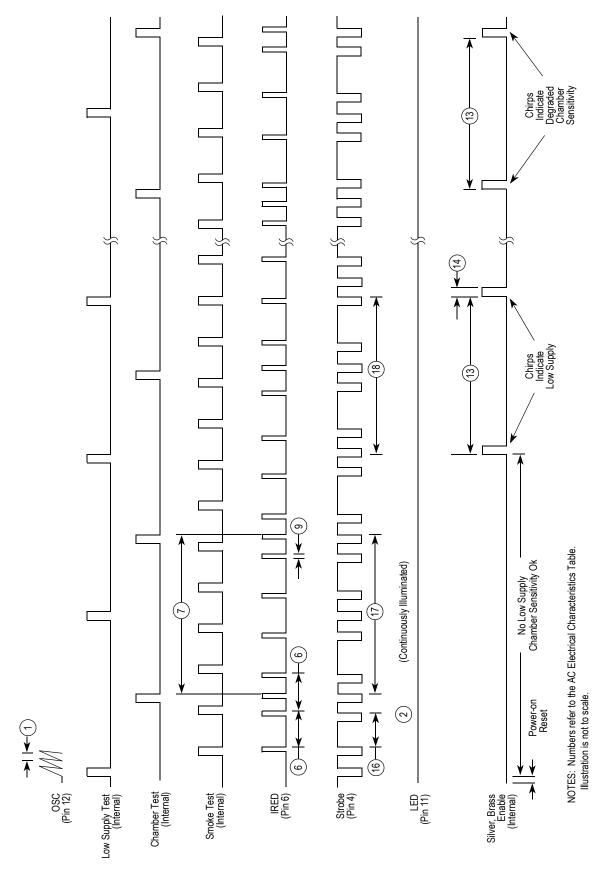
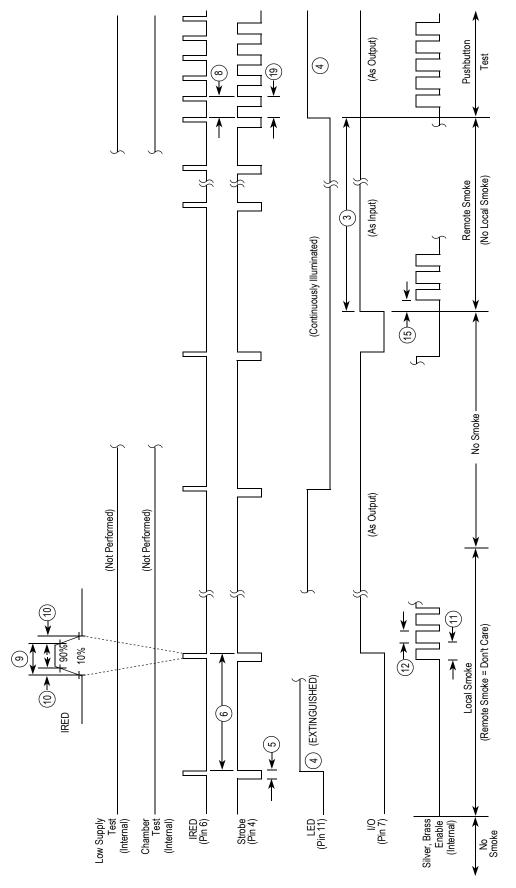
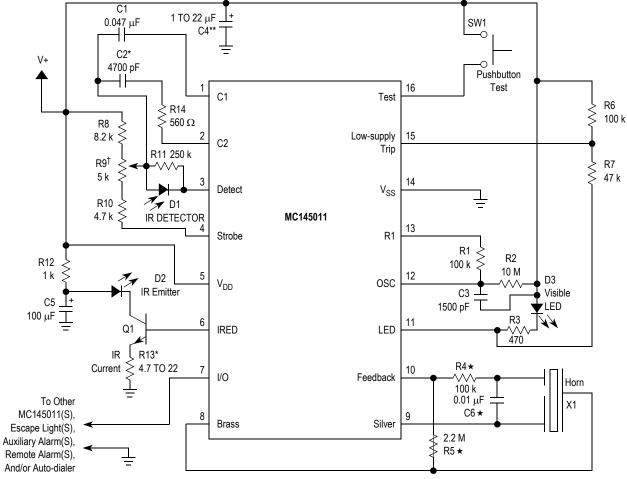




Figure 6. Standby Timing Diagram

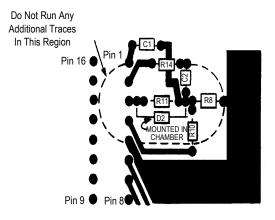
NOTES: Numbers refer to the AC Electrical Characteristics Table. Illustration is not to scale.

Figure 7. Smoke Timing Diagram

- ★ Values for R4, R5, and C6 may differ depending on type of piezoelectric horn used.
- * C2 and R13 are used for coarse sensitivity adjustment. Typical values are shown.
- † R9 is for fine sensitivity adjustment (optional). If fixed resistors are used, R8 = 12 k, R10 is 5.6 k to 10 k, and R9 is eliminated. When R9 is used, noise pickup is increased due to antenna effects. Shielding may be required.
- ** C4 should be 22 μ F if B1 is a carbon battery. C4 could be reduced to 1 μ F when an alkaline battery is used.

Figure 8. Typical Application

CALIBRATION


To facilitate checking the sensitivity and calibrating smoke detectors, the MC145011 can be placed in a calibration mode. In this mode, certain device pins are controlled/reconfigured as shown in Table 5. To place the part in the calibration mode, Pin 16 (Test) must be pulled below the V_{SS}

pin with 100 μ A continuously drawn out of the pin for at least one cycle on the OSC pin. To exit this mode, the Test pin is floated for at least one OSC cycle.

In the calibration mode, the IRED pulse rate is increased to one for every OSC cycle. Also, Strobe is always active low.

Table 5. Configuration of Pins in the Calibration Mode

Pin	Description	Comment
7	1/0	Disabled as an output. Forcing this pin high places the photo amp output on pin 1 or 2, as determined by Low-Supply Trip. The amp's output appears as pulses and is referenced to V _{DD} .
15	Low-Supply Trip	If the I/O pin is high, pin 15 controls which gain capacitor is used. Low: normal gain, amp output on pin 1. High: supervisory gain, amp output on pin 2.
10	Feedback	Driving this input high enables hysteresis (10% gain increase) in the photo amp; pin 15 must be low.
12	Osc	Driving this input high brings the internal clock high. Driving the input low brings the internal clock low. If desired, the RC network for the oscillator may be left intact; this allows the oscillator to run similar to the normal mode of operation.
9	Silver	This pin becomes the smoke comparator output. When the OSC pin is toggling, positive pulses indicate that smoke has been detected. A static low level indicates no smoke.
8	Brass	This pin becomes the smoke integrator output. That is, 2 consecutive smoke detections are required for "on" (static high level) and 2 consecutive no-detections for "off" (static low level).

NOTES: Illustration is bottom view of layout using a DIP. Top view for SOIC layout is mirror image. Optional potentiometer R9 is not included.

Drawing is not to scale.

Leads on D1, R11, R8, and R10 and their associated traces must be kept as short as possible.

This practice minimizes noise pick up.

Pin 3 must be decoupled from all other traces.

Figure 9. Recommended PCB Layout

Photoelectric Smoke Detector IC with I/O and Temporal Pattern Horn Driver

The CMOS MC145012 is an advanced smoke detector component containing sophisticated very-low-power analog and digital circuitry. The IC is used with an infrared photoelectric chamber. Detection is accomplished by sensing scattered light from minute smoke particles or other aerosols. When detection occurs, a pulsating alarm is sounded via on-chip push-pull drivers and an external piezoelectric transducer.

The variable-gain photo amplifier allows direct interface to IR detectors (photodiodes). Two external capacitors, C1 and C2, C1 being the larger, determine the gain settings. Low gain is selected by the IC during most of the standby state. Medium gain is selected during a local-smoke condition. High gain is used during push-button test. During standby, the special monitor circuit which periodically checks for degraded chamber sensitivity uses high gain also.

The I/O pin, in combination with V_{SS} , can be used to interconnect up to 40 units for common signaling. An on-chip current sink provides noise immunity when the I/O is an input. A local-smoke condition activates the short-circuit-protected I/O driver, thereby signaling remote smoke to the interconnected units. Additionally, the I/O pin can be used to activate escape lights, enable auxiliary or remote alarms, and/or initiate auto-dialers.

While in standby, the low-supply detection circuitry conducts periodic checks using a pulsed load current from the LED pin. The trip point is set using two external resistors. The supply for the MC145012 can be a 9.0 V battery.

A visible LED flash accompanying a pulsating audible alarm indicates a local-smoke condition. A pulsating audible alarm with no LED flash indicates a remote-smoke condition. A beep or chirp occurring virtually simultaneously with an LED flash indicates a low-supply condition. A beep or chirp occurring halfway between LED flashes indicates degraded chamber sensitivity. A low-supply condition does not affect the smoke detection capability if $V_{DD} \ge 6.0 \text{ V}$. Therefore, the low-supply condition and degraded chamber sensitivity can be further distinguished by performing a push-button (chamber) test.

Features

- Circuit is designed to operate in smoke detector systems that comply with UL217 and UL268 Specifications
- Operating Voltage Range: 6.0 V to 12 V
- Operating Temperature Range: 10 to 60°C
- Average Supply Current: 8 μA
- I/O Pin Allows Units to be Interconnected for Common Signalling
- Power-On Reset Places IC in Standby Mode (Non-Alarm State)
- Electrostatic Discharge (ESD) and Latch Up Protection Circuitry on All Pins
- Chip Complexity: 2000 FETs, 12 NPNs, 16 Resistors, and 10 Capacitors
- Supports NFPA 72, ANSI S3.41, and ISO 8201 Audible Emergency Evacuation Signals
- Ideal for battery-powered applications

ORDERING INFORMATION					
Device	Package				
MC145012P	PLASTIC DIP				
MC145012DW	SOIC				

MC145012

PHOTOELECTRIC SMOKE DETECTOR IC WITH I/O AND TEMPORAL PATTERN HORN DRIVER

P SUFFIX PLASTIC DIP CASE 648-08

DW SUFFIX SOIC PACKAGE CASE 751G-04

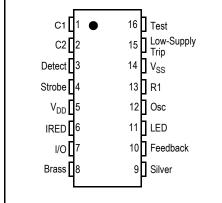


Figure 1. Pin Connections

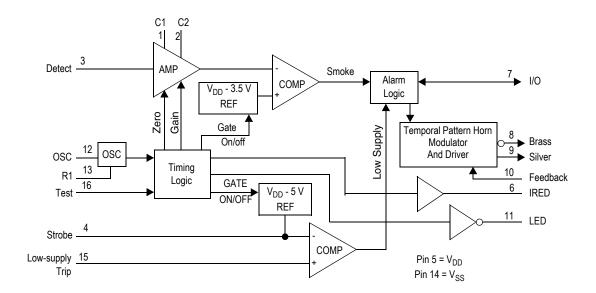


Figure 2. Block Diagram

Table 1. Maximum ratings⁽¹⁾

(Voltages referenced to V_{SS})

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{DD}	-0.5 to +12	V
DC Input Voltage C1, C2, Detect Osc, Low-Supply Trip I/O Feedback Test	V _{in}	-0.25 to V _{DD} +0.25 -0.25 to V _{DD} +0.25 -0.25 to V _{DD} +10 -15 to +25 -1.0 to V _{DD} +0.25	V
DC Input Current, per Pin	l _{in}	±10	mA
DC Output Current, per Pin	l _{out}	±25	mA
DC Supply Current, V _{DD} and V _{SS} Pins	I _{DD}	+25 / -150	mA
Power Dissipation in Still Air 5 Seconds Continuous	P _D	1200 ⁽²⁾ 350 ⁽³⁾	mW
Storage Temperature	T _{stg}	-55 to +125	°C
Lead Temperature, 1 mm from Case for 10 Seconds	T _L	260	°C

- 1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables.
- 2. Derating: -12 mW/°C from 25° to 60°C.
- 3. Derating: -3.5 mW/°C from 25° to 60°C.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$ except for the I/O, which can exceed V_{DD} , and the Test input, which can go below V_{SS} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs and/or an unused I/O must be left open.

Table 2. Electrical Characteristics

(Voltages Referenced to V_{SS} , $T_A = -10$ to 60° C Unless Otherwise Indicated).

Characteristic	Symbol	Test Condition	V _{DD}	Min	Max	Unit
Power Supply Voltage Range	V_{DD}		_	6.0	12	V
Supply Threshold Voltage, Low-Supply Alarm	V_{TH}	Low-Supply Trip: V _{in} = V _{DD} /3	_	6.5	7.8	V
Average Operating Supply Current (per Package) (Does Not Include Current through D3-IR Emitter)	I _{DD}	Standby Configured per Figure 8	12.0	_	8.0	μА
Peak Supply Current (per Package) (Does Not Include IRED Current into Base of Q1)	i _{DD}	During Strobe On, IRED Off Configured per Figure 8	12.0	_	2.0	mA
		During Strobe On, IRED On Configured per Figure 8	12.0	_	3.0	
Low-Level Input Voltage I/O Feedback Test	V _{IL}		9.0 9.0 9.0	_ _ _	1.5 2.7 7.0	V
High-Level Input Voltage I/O Feedback Test	V _{IH}		9.0 9.0 9.0	3.2 6.3 8.5	_ _ _	V
Input Current OSC, Detect Low-Supply Trip Feedback	I _{in}	$V_{in} = V_{SS} \text{ or } V_{DD}$ $V_{in} = V_{SS} \text{ or } V_{DD}$ $V_{in} = V_{SS} \text{ or } V_{DD}$	12.0 12.0 12.0	_ _ _	± 100 ± 100 ± 100	nA
Low-Level Input Current Test	I _{IL}	V _{in} = V _{SS}	12.0	- 100	- 1.0	μА
Pull-Down Current Test I/O	I _{IH}	$V_{in} = V_{DD}$ No Local Smoke, $V_{in} = V_{DD}$ No Local Smoke, $V_{in} = 17 \text{ V}$	9.0 9.0 12.0	0.5 25 —	10 100 140	μА
Low-Level Output Voltage LED Silver, Brass	V _{OL}	I _{out} = 10 mA I _{out} = 16 mA	6.5 6.5	_	0.6 1.0	V
High-Level Output Voltage Silver, Brass	V _{OH}	I _{out} = - 16 mA	6.5	5.5	_	V
Output Voltage Strobe (For Line Regulation, See Pin Descriptions)	V _{out}	Inactive, I_{out} = 1 μ A Active, I_{out} = 100 μ A to 500 μ A (Load Regulation)	9.0	V _{DD} - 0.1 V _{DD} - 4.40	— V _{DD} - 5.30	V
IRED		Inactive, $I_{out} = 1 \mu A$ Active, $I_{out} = 6 mA$ (Load Regulation)	9.0	2.25 ⁽¹⁾	0.1 3.75 ⁽¹⁾	
High-Level Output Current I/O	I _{OH}	Local Smoke, V _{out} = 4.5 V	6.5	-4.0	_	mA
		Local Smoke, V _{out} = V _{SS} (Short Circuit Current)	12.0	_	-16	
Off-State Output Leakage Current LED	I _{OZ}	V _{out} = V _{SS} or V _{DD}	12.0	_	±1.0	μА
Common Mode C1, C2, Detect Voltage Range	V _{IC}	Local Smoke, Push-button Test, or Chamber Sensitivity Test	_	V _{DD} - 4.0	V _{DD} - 2.0	٧
Smoke Comparator Internal Reference Voltage	V _{ref}	Local Smoke, Push-button Test, or Chamber Sensitivity Test	_	V _{DD} - 3.08	V _{DD} - 3.92	٧

^{1.} T_A = 25°C only.

Table 3. AC Electrical Characteristics

(Reference Timing Diagram Figure 6 and Figure 7)

 $(T_A = 25^{\circ}C, V_{DD} = 9.0 \text{ V}, \text{ Component Values from Figure 8: R1 = 100.0 K}\Omega, C3 = 1500.0 \text{ pF}, R2 = 7.5 M}\Omega).$

No.	Parameter	Symbol	Test Condition Clocks Min ⁽¹⁾ Typ ⁽²⁾		Max ⁽¹⁾	Unit		
1	Oscillator Period	1/f _{osc}	Free-Running Sawtooth Measured at Pin 12	1.0	7.0	7.9	8.6	ms
2	LED Pulse Period	t _{LED}	No Local Smoke, and No Remote Smoke	4096	28.8	32.4	35.2	s
3			Remote Smoke, but No Local Smoke	_	E	xtinguishe	ed	
4			Local Smoke	64	0.45	_	_	
5			Push-button Test	64	0.45	_	_	
6	LED Pulse Width and Strobe Pulse Width	t _{w(LED)} , t _{w(stb)}		1.0	7.0	_	8.6	ms
7	IRED Pulse Period	t _{IRED}	Smoke Test	1024	7.2	8.1	8.8	s
8	IRED Pulse Period	t _{IRED}	Chamber Sensitivity Test, without Local Smoke	4096	28.8	32.4	35.2	s
9			Push-button Test	128	0.9	1.0	1.1	
10	IRED Pulse Width	t _{w(IRED)}		T _f *	94	_	116	μS
11	IRED Rise Time	t _r		_	_	_	30	
12	IRED Fall Time	t _f		_	_	_	200	μS
13	Silver and Brass Temporal	t _{on}		64	0.45	0.5	0.55	S
14	Modulation Pulse Width	t _{off}			0.45	0.5	0.55	
15		t _{offd}		192	1.35	1.52	1.65	
16	Silver and Brass Chirp Pulse Period	t _{CH}	Low Supply or Degraded Chamber Sensitivity	4096	28.8	32.4	35.2	s
17	Silver and Brass Chirp Pulse Width	t _{wCH}		1	7.0	7.9	8.6	ms
18	Rising Edge on I/O to Smoke Alarm Response Time	t _{RR}	Remote Smoke, No Local Smoke	_	_	2.0 ⁽³⁾	_	S
19	Strobe Out Pulse Period	t _{stb}	Smoke Test	1024	7.2	8.1	8.8	s
20			Chamber Sensitivity Test, without Local Smoke	4096	28.8	32.4	35.2	
21			Low Supply Test, without Local Smoke	4096	28.8	32.4	35.2	
22			Push-button Test			1.0	_	

^{1.} Oscillator period T (= $T_r + T_f$) is determined by the external components R1, R2, and C3 where $T_r = (0.6931) R_2 C_3$ and $T_f = (0.6931) R_1 * C_3$. The other timing characteristics are some multiple of the oscillator timing as shown in the table. The timing shown should accommodate the NFPA 72, ANSI S3.41, and ISO 8201 audible emergency evacuation signals.

^{2.} Typicals are not guaranteed.

^{3.} Time is typical - depends on what point in cycle signal is applied.

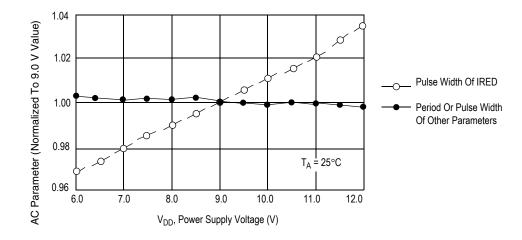


Figure 3. AC Characteristics versus Supply

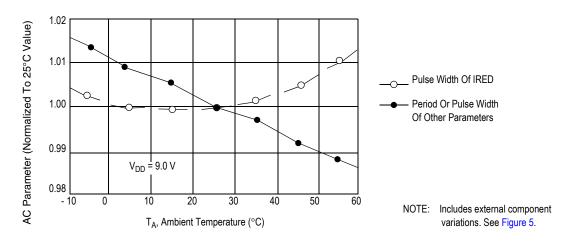


Figure 4. AC Characteristics versus Temperature

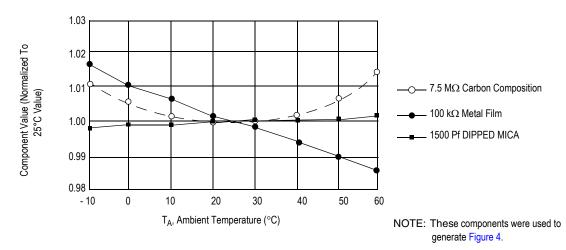


Figure 5. RC Component Variation Over Temperature

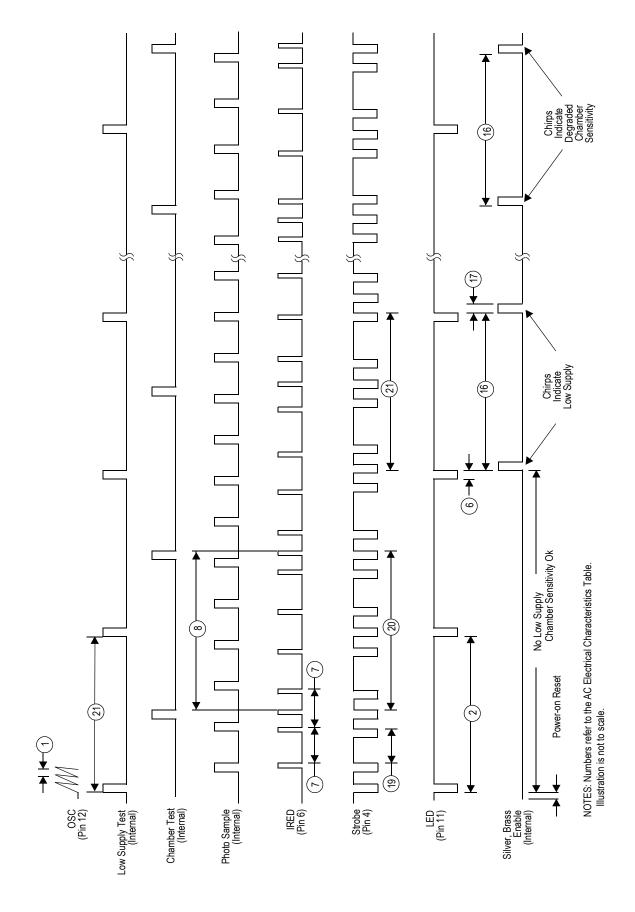


Figure 6. Typical Standby Timing

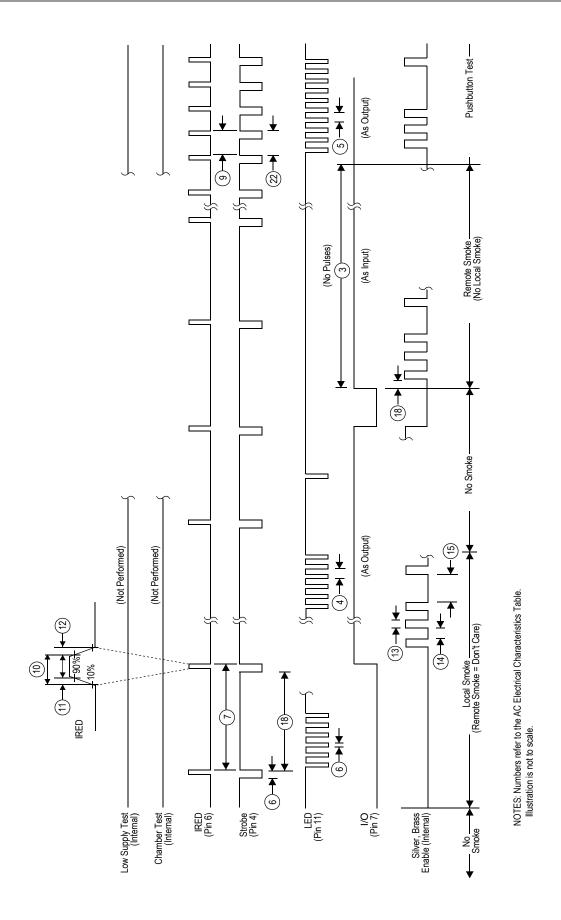
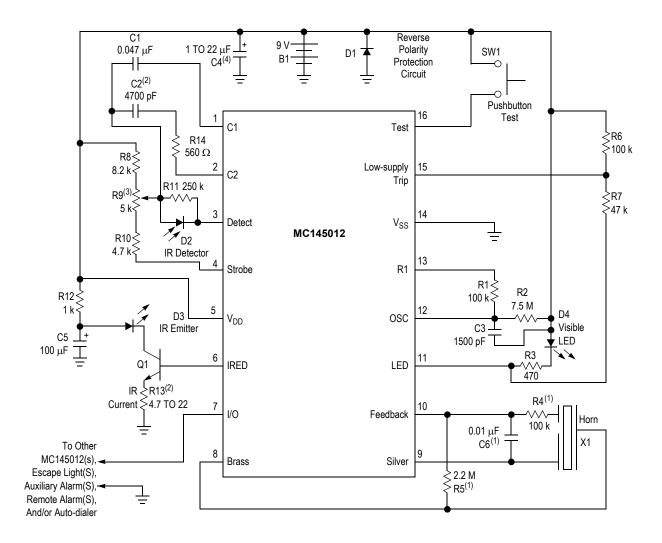



Figure 7. Typical Local Smoke Timing

- 1. Values for R4, R5, and C6 may differ depending on type of piezoelectric horn used.
- 2. C2 and R13 are used for coarse sensitivity adjustment. Typical values are shown.
- 3. R9 is for fine sensitivity adjustment (optional). If fixed resistors are used, R8 = 12 k, R10 is 5.6 k to 10 k, and R9 is eliminated. When R9 is used, noise pickup is increased due to antenna effects. Shielding may be required.
- 4. C4 should be 22 μ F if B1 is a carbon battery. C4 could be reduced to 1 μ F when an alkaline battery is used.

Figure 8. Typical Battery-Powered Application

Table 4. Pin Description

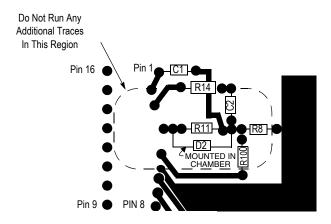
Pin No.	Pin Name	Description
1	C1	A capacitor connected to this pin as shown in Figure 8 determines the gain of the on-chip photo amplifier during push-button test and chamber sensitivity test (high gain). The capacitor value is chosen such that the alarm is tripped from background reflections in the chamber during push-button test. $A_{v}\approx 1+(C1/10) \text{ where } C1 \text{ is in pF. CAUTION: The value of the closed-loop gain should not exceed } 10,000.$
2	C2	A capacitor connected to this pin as shown in Figure 8 determines the gain of the on-chip photo amplifier except during push-button or chamber sensitivity tests. $A_{v}\approx 1+(C2/10) \text{ where C2 is in pF. This gain increases about 10% during the IRED pulse, after two consecutive local smoke detections.}$ Resistor R14 must be installed in series with C2. R14 \approx [1/(12 $\sqrt{C2}$)] - 680 where R14 is in ohms and C2 is in farads.
3	Detect	This input to the high-gain pulse amplifier is tied to the cathode of an external photodiode. The photodiode should have low capacitance and low dark leakage current. The diode must be shunted by a load resistor and is operated at zero bias. The Detect input must be AC/DC decoupled from all other signals, V _{DD} , and V _{SS} . Lead length and/or foil traces to this pin must be minimized, also. See Figure 9.

MC145012

Table 4. Pin Description (Continued)

Pin No.	Pin Name	Description
4	STROBE	This output provides a strobed, regulated voltage referenced to V_{DD} . The temperature coefficient of this voltage is \pm 0.2%/°C maximum from - 10° to 60°C. The supply-voltage coefficient (line regulation) is \pm 0.2%/V maximum from 6.0 V to 12 V. Strobe is tied to external resistor string R8, R9, and R10.
5	VDD	This pin is connected to the positive supply potential and may range from + 6.0 V to + 12 V with respect to V _{SS} CAUTION : In battery-powered applications, reverse-polarity protection must be provided externally.
6	IRED	This output provides pulsed base current for external NPN transistor Q1 used as the infrared emitter driver. Q1 must have $\beta \geq 100$. At 10 mA, the temperature coefficient of the output voltage is typically + 0.5%/°C from - 10° to 60°C. The supply-voltage coefficient (line regulation) is \pm 0.2%/V maximum from 6.0 V to 12 V. The IRED pulse width (active-high) is determined by external components R1 and C3. With a 100 k Ω /1500 pF combination, the nominal width is 105 μ s. To minimize noise impact, IRED is not active when the visible LED and horn outputs are active. IRED is active near the end of strobe pulses for smoke tests, chamber sensitivity test, and push-button test.
7	I/O	This pin can be used to connect up to 40 units together in a wired-OR configuration for common signaling. V_{SS} is used as the return. An on-chip current sink minimizes noise pick up during non-smoke conditions and eliminates the need for an external pull-down resistor to complete the wired-OR. Remote units at lower supply voltages do not draw excessive current from a sending unit at a higher supply voltage. I/O can also be used to activate escape lights, auxiliary alarms, remote alarms, and/or auto-dialers. As an input, this pin feeds a positive-edge-triggered flip-flop whose output is sampled nominally every 1 second during standby (using the recommended component values). A local-smoke condition or the push-button-test mode forces this current-limited output to source current. All input signals are ignored when I/O is sourcing current. I/O is disabled by the on-chip power-on reset to eliminate nuisance signaling during battery changes or system power-up. If unused, I/O must be left unconnected.
8	BRASS	This half of the push-pull driver output is connected to the metal support electrode of a piezoelectric audio transducer and to the horn-starting resistor. A continuous modulated tone from the transducer is a smoke alarm indicating either local or remote smoke. A short beep or chirp is a trouble alarm indicating a low supply or degraded chamber sensitivity.
9	SILVER	This half of the push-pull driver output is connected to the metal support electrode of a piezoelectric audio transducer and to the horn-starting resistor. A continuous modulated tone from the transducer is a smoke alarm indicating either local or remote smoke. A short beep or chirp is a trouble alarm indicating a low supply or degraded chamber sensitivity.
10	FEEDBACK	This input is connected to both the feedback electrode of a self-resonating piezoelectric transducer and the horn-starting resistor and capacitor through current-limiting resistor R4. If unused, this pin must be tied to V_{SS} or V_{DD} .
11	LED	This active-low open-drain output directly drives an external visible LED at the pulse rates indicated below. The pulse width is equal to the OSC period. The load for the low-supply test is applied by this output. This low-supply test is non-coincident with the smoke tests, chamber sensitivity test, push-button test, or any alarm signals. The LED also provides a visual indication of the detector status as follows, assuming the component values shown in Figure 8: Standby (includes low-supply and chamber sensitivity tests) — Pulses every 32.4 seconds (typical) Standby (includes low-supply and chamber sensitivity tests) — Pulses every 32.4 seconds (typical) Local Smoke — Pulses every 0.51 seconds (typical) Remote Smoke — No pulses Push-button Test — Pulses every 0.51 seconds (typical)
12	OSC	This pin is used in conjunction with external resistor R2 (7.5 M Ω) to V _{DD} and external capacitor C3 (1500 pF) to V _{DD} to form an oscillator with a nominal period of 7.9 ms (typical).
13	R1	This pin is used in conjunction with resistor R1 (100 k Ω) to Pin 12 and C3 (1500 pF, see Pin 12 description) to determine the IRED pulse width. With this RC combination, the nominal pulse width is 105 μ s.
14	VSS	This pin is the negative supply potential and the return for the I/O pin. Pin 14 is usually tied to ground.
15	LOW- SUPPLY TRIP	This pin is connected to an external voltage which determines the low-supply alarm threshold. The trip voltage is obtained through a resistor divider connected between the V_{DD} and LED pins. The low-supply alarm threshold voltage (in volts) \approx (5R7/R6) + 5 where R6 and R7 are in the same units.
16	TEST	This input has an on-chip pull-down device and is used to manually invoke a test mode. The $Push-button\ Test$ mode is initiated by a high level at Pin 16 (usually depression of a S.P.S.T. normally-open push-button switch to V_{DD}). After one oscillator cycle, IRED pulses approximately every 1.0 second, regardless of the presence of smoke. Additionally, the amplifier gain is increased by automatic selection of C1. Therefore, the background reflections in the smoke chamber may be interpreted as smoke, generating a simulated-smoke condition. After the second IRED pulse, a successful test activates the horn-driver and I/O circuits. The active I/O allows remote signaling for system testing. When the Push-button Test switch is released, the Test input returns to V_{SS} due to the on-chip pull-down device. After one oscillator cycle, the amplifier gain returns to normal, thereby removing the simulated-smoke condition. After two additional IRED pulses, less than three seconds, the IC exits the alarm mode and returns to standby timing.

CALIBRATION


To facilitate checking the sensitivity and calibrating smoke detectors, the MC145012 can be placed in a calibration mode. In this mode, certain device pins are controlled/reconfigured as shown in Table 5. To place the part in the calibration mode, Pin 16 (Test) must be pulled below the V_{SS}

pin with 100 μ A continuously drawn out of the pin for at least one cycle on the OSC pin. To exit this mode, the Test pin is floated for at least one OSC cycle.

In the calibration mode, the IRED pulse rate is increased to one for every OSC cycle. Also, Strobe is always active low.

Table 5. Configuration of Pins in the Calibration Mode

Description	Pin	Comment	
I/O	7	Disabled as an output. Forcing this pin high places the photo amp output on Pin 1 or 2, as determined by Les Supply Trip. The amp's output appears as pulses and is referenced to V_{DD} etc.	
Low-Supply Trip	15	If the I/O pin is high, Pin 15 controls which gain capacitor is used. Low: normal gain, amp output on Pin 1. High supervisory gain, amp output on Pin 2.	
Feedback	10	Driving this input high enables hysteresis (10% gain increase) in the photo amp; Pin 15 must be low.	
OSC	12	Driving this input high brings the internal clock high. Driving the input low brings the internal clock low. If desired, the RC network for the oscillator may be left intact; this allows the oscillator to run similar to the normal mode of operation.	
Silver	9	This pin becomes the smoke comparator output. When the OSC pin is toggling, positive pulses indicate that moke has been detected. A static low level indicates no smoke.	
Brass	8	This pin becomes the smoke integrator output. That is, 2 consecutive smoke detections are required for "on" (static high level) and 2 consecutive no-detections for "off" (static low level).	

NOTES: Illustration is bottom view of layout using a DIP. Top view for SOIC layout is mirror image.

Optional potentiometer R9 is not included.

Drawing is not to scale.

Leads on D2, R11, R8, and R10 and their associated traces must be kept as short as possible. This practice minimizes noise pick up.

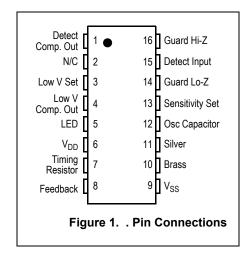
Pin 3 must be decoupled from all other traces.

Figure 9. Recommended PCB Layout

Low-Power CMOS Ionization Smoke Detector IC with Temporal Pattern Horn Driver

The MC145017, when used with an ionization chamber and a small number of external components, will detect smoke. When smoke is sensed, an alarm is sounded via an external piezoelectric transducer and internal drivers. This circuit is designed to operate in smoke detector systems that comply with UL217 and UL268 specifications.

Features


- Ionization Type with On-Chip FET Input Comparator
- · Piezoelectric Horn Driver
- · Guard Outputs on Both Sides of Detect Input
- · Input-Production Diodes on the Detect Input
- · Low-Battery Trip Point, Internally Set, can be Altered Via External Resistor
- · Detect Threshold, Internally Set, can be Altered Via External Resistor
- · Pulse Testing for Low Battery Uses LED for Battery Loading
- · Comparator Outputs for Detect and Low Battery
- · Internal Reverse Battery Protection
- Supports NFPA 72, ANSi 53.41, and ISO 8201 Audible Emergency Evacuation Signals

ORDERING INFORMATION							
Device	Case No.	Package					
MC145017P	648-08	Plastic Dip					

MC145017

LOW-POWER CMOS IONIZATION SMOKE DETECTOR IC WITH TEMPORAL PATTERN HORN DRIVER

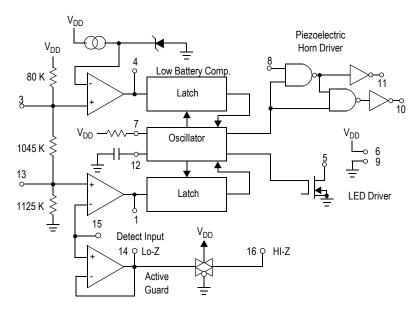


Figure 2. Block Diagram

Table 1. Maximum Ratings⁽¹⁾ (Voltages referenced to V_{SS})

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{DD}	-0.5 to + 15	V
Input Voltage, All Inputs Except Pin 8	V _{in}	-0.25 to V _{DD} +0.25	V
DC Current Drain per Input Pin, Except Pin 15 = 1 mA	1	10	mA
DC Current Drain per Output Pin	1	30	mA
Operating Temperature Range	T _A	-10 to +60	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C
Reverse Battery Time	t _{RB}	5.0	S

^{1.} Maximum Ratings are those values beyond which damage to the device may occur.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.

Table 2. Recommended Operating Conditions

(Voltages referenced to V_{SS})

Parameter	Symbol	Value	Unit
Supply Voltage	V _{DD}	9.0	V
Timing Capacitor	_	0.1	μF
Timing Resistor	_	8.2	ΜΩ
Battery Load (Resistor or LED)	_	10	mA

Table 3. Electrical Characteristics⁽¹⁾

(Voltages referenced to V_{SS} , $T_A = 25^{\circ}C$)

Characteristic	Symbol	V _{DD} V _{DC}	Min	Тур	Max	Unit
Operating Voltage	V _{DD}	_	6.0	_	12	V
Output Voltage Piezoelectric Horn Drivers (I_{OH} = -16 mA) Comparators (I_{OH} = -30 μ A) Piezoelectric Horn Drivers (I_{OL} = +16 mA) Comparators (I_{OL} = +30 μ A)	V _{OH}	7.2 9.0 7.2 9.0	6.3 8.5 —	8.8 — 0.1	— 0.9 0.5	V
Output Voltage — LED Driver, I _{OL} = 10 mA	V _{OL}	7.2		_	3.0	V
Output Impedance, Active Guard Pin 14 Pin 16	Lo-Z Hi-Z	9.0 9.0	_	_	10 1000	kΩ
Operating Current (R_{bias} = 8.2 M Ω)	I _{DD}	9.0 12.0	_	3.2	7.0 10.0	μА
Input Current — Detect (40% R.H.)	I _{in}	9.0	_	_	±1.0	pA
Input Current, Pin 8	I _{in}	9.0	_	_	±0.1	μА
Input Current @ 50°C, Pin 15	I _{in}	_	_	_	±6.0	pA
Internal Set Voltage Low Battery Sensitivity	V _{low} V _{set}	9.0	7.2 47	— 50	7.8 53	V %V _{DD}
Hysteresis	v _{hys}	9.0	75	100	150	mV
Offset Voltage (measured at V _{in} = V _{DD} /2 Active Guard Detect Comparator	V _{OS}	9.0 9.0	_	_	±100 ±50	mV
Input Voltage Range, Pin 8	V _{in}	_	V _{SS} -10	_	V _{DD} + 10	V
Input Capacitance	C _{in}	_	_	5.0	_	pF
Common Mode Voltage Range, Pin 15	V _{cm}	_	0.6	_	V _{DD} - 2	V

^{1.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Table 4. Timing Parameters

(C = 0.1 μ F, R_{bias} = 8.2 M Ω , V_{DD} = 9.0 V, T_A = 25°C, See Figure 7)

Characteris	stics	Symbol	Min	Max	Units
Oscillator Period	No Smoke Smoke	t _{CI}	1.46 37.5	1.85 45.8	s ms
Oscillator Rise Time		t _r	10.1	12.3	ms
Horn Output	On Time	PW _{on}	450	550	ms
(During Smoke)	Off Time	PW _{off}	450	550	ms
LED Output	Between Pulses	t _{LED}	35.0	44.5	s
	On Time	PW _{on}	10.1	12.3	ms
Horn Output	On Time	t _{on}	10.1	12.3	ms
(During Low Battery)	Between Pulses	t _{off}	35.0	44.5	s

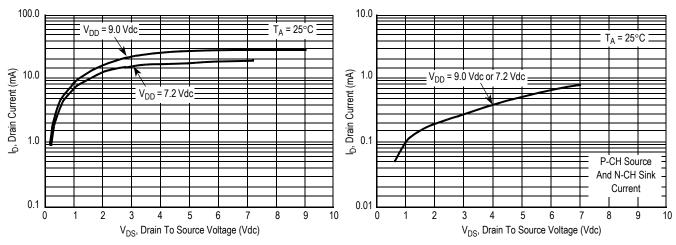


Figure 3. Typical LED Output I-V Characteristic

Figure 4. Typical Comparator Output I-V Characteristic

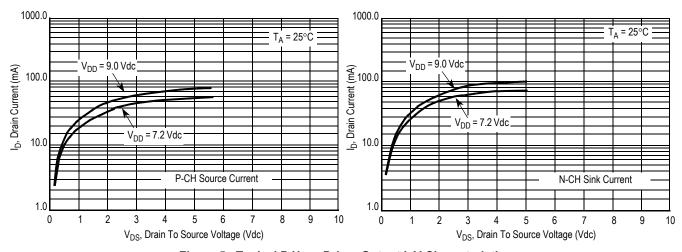


Figure 5. Typical P Horn Driver Output I–V Characteristic

DEVICE OPERATION

Timing

The internal oscillator of the MC145017 operates with a period of 1.65 seconds during no-smoke conditions. Each 1.65 seconds, internal power is applied to the entire IC and a check is made for smoke, except during LED pulse, Low Battery Alarm Chirp, or Horn Modulation (in smoke). Every 24 clock cycles a check is made for low battery by comparing V_{DD} to an internal zener voltage. Since very small currents are used in the oscillator, the oscillator capacitor should be of a low leakage type.

Detect Circuitry

If smoke is detected, the oscillator period becomes 41.67 ms and the piezoelectric horn oscillator circuit is enabled. The horn output is modulated 500 ms on, 500 ms off. During the off time, smoke is again checked and will inhibit further horn output if no smoke is sensed. During smoke conditions the low battery alarm is inhibited, but the LED pulses at a 1.0 Hz rate.

An active guard is provided on both pins adjacent to the detect input. The voltage at these pins will be within 100 mV of the input signal. This will keep surface leakage currents to

a minimum and provide a method of measuring the input voltage without loading the ionization chamber. The active guard op amp is not power strobed and thus gives constant protection from surface leakage currents. Pin 15 (the Detect input) has internal diode protection against static damage.

Sensitivity/Low Battery Thresholds

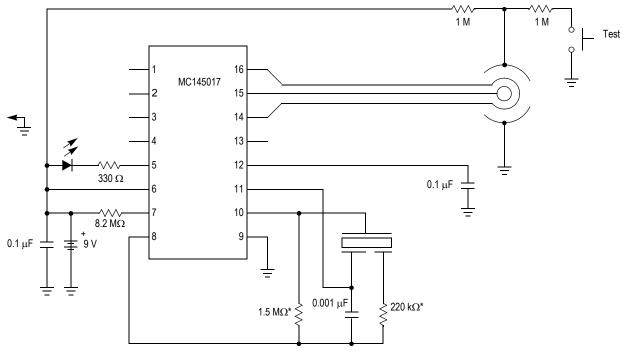
Both the sensitivity threshold and the low battery voltage levels are set internally by a common voltage divider (please see Figure 2) connected between V_{DD} and $V_{SS}.$ These voltages can be altered by external resistors connected from pins 3 or 13 to either V_{DD} or $V_{SS}.$ There will be a slight interaction here due to the common voltage divider network. The sensitivity threshold can also be set by adjusting the smoke chamber ionization source.

Test Mode

Since the internal op amps and comparators are power strobed, adjustments for sensitivity or low battery level could be difficult and/or time-consuming. By forcing Pin 12 to V_{SS} , the power strobing is bypassed and the outputs, Pins 1 and 4, constantly show smoke/no smoke and good battery/low

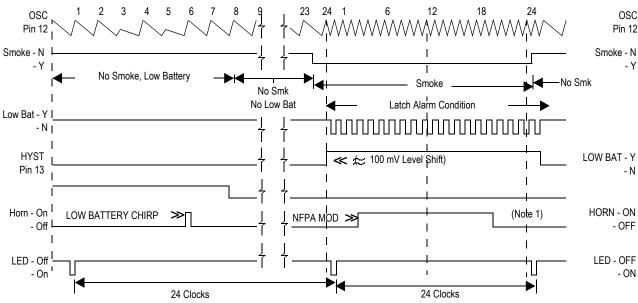
MC145017

battery, respectively. Pin 1 = V_{DD} for smoke and Pin 4 = V_{DD} for low battery. In this mode and during the 10 ms power strobe, chip current rises to approximately 50 μ A.


Led Pulse

The 9-volt battery level is checked every 40 seconds during the LED pulse. The battery is loaded via a 10 mA pulse for 11.6 ms. If the LED is not used, it should be replaced

with an equivalent resistor such that the battery loading remains at 10 mA.


Hysteresis

When smoke is detected, the resistor/divider network that sets sensitivity is altered to increase sensitivity. This yields approximately 100 mV of hysteresis and reduces false triggering.

*NOTE: Component values may change depending on type of piezoelectric horn used.

Figure 6. Typical Application as Ionization Smoke Detector

NOTES:

- 1. Horn modulation is self-completing. When going from smoke to no smoke, the alarm condition will terminate only when horn is off.
- 2. Comparators are strobed once per cycle (1.65 sec for no smoke, 40 msec for smoke).

Figure 7. MC145017 Timing Diagram

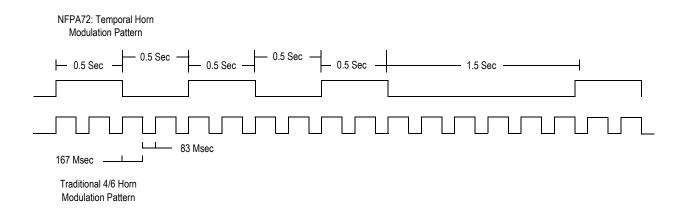
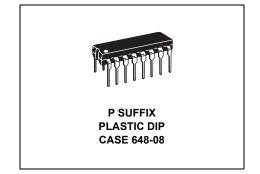
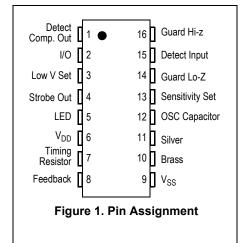


Figure 8. Horn Modulation

Low-Power CMOS Ionization Smoke Detector IC with Interconnect and Temporal Horn Driver

The MC145018, when used with an ionization chamber and a small number of external components, will detect smoke. When smoke is sensed, an alarm is sounded via an external piezoelectric transducer and internal drivers. This circuit is designed to operate in smoke detector systems that comply with UL217 and UL268 specifications.


Features


- · Ionization Type with On-Chip FET Input Comparator
- Piezoelectric Horn Driver
- · Guard Outputs on Both Sides of Detect Input
- · Input-Protection Diodes on the Detect Input
- · Low-Battery Trip Point, Internally Set, can be Altered Via External Resistor
- · Detect Threshold, Internally Set, can be Altered Via External Resistor
- · Pulse Testing for Low Battery Uses LED for Battery Loading
- · Comparator Output for Detect
- · Internal Reverse Battery Protection
- · Strobe Output for External Trim Resistors
- I/O Pin Allows Up to 40 Units to be Connected for Common Signaling
- Supports NFPA 72, ANSi 53.41, and ISO 8201 Audible Emergency Evacuation Signals
- · Power-On Reset Places IC in Standby Mode

ORDERING INFORMATION				
Device Case No. Package				
MC145018P	648-08	Plastic Dip		

MC145018

IONIZATION SMOKE DETECTOR
IC WITH INTERCONNECT AND
TEMPORAL HORN DRIVER

To Other Units

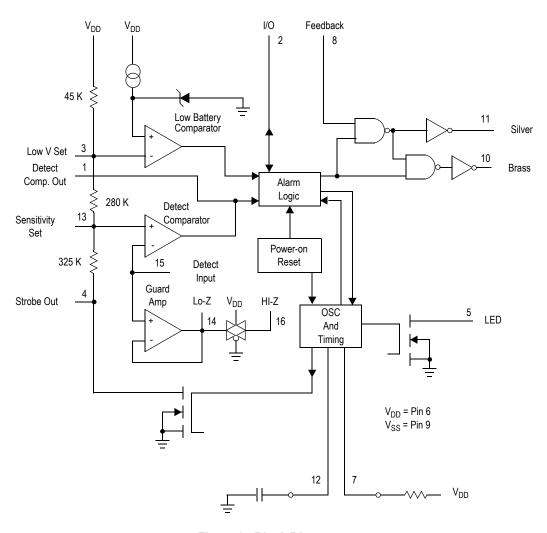


Figure 2. Block Diagram

Table 1. Maximum Ratings⁽¹⁾ (Voltages referenced to V_{SS})

Rating	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-0.5 to + 15	V
Input Voltage, All Inputs Except Pin 8	V _{in}	-0.25 to V _{DD} + 0.25	V
DC Current Drain per Input Pin, Except Pin 15 = 1 mA	I	10	mA
DC Current Drain per Output Pin	I	30	mA
Operating Temperature Range	T _A	-10 to + 60	°C
Storage Temperature Range	T _{stg}	-55 to + 125	°C
Reverse Battery Time	t _{RB}	5.0	s

^{1.} Maximum Ratings are those values beyond which damage to the device may occur.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

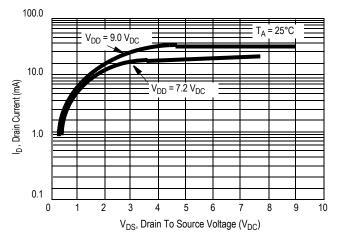
Table 2. Recommended Operating Conditions

(Voltages referenced to V_{SS})

Parameter	Symbol	Value	Unit
Supply Voltage	V _{DD}	9.0	V
Timing Capacitor	_	0.1	μF
Timing Resistor	_	8.2	MΩ
Battery Load (Resistor or LED)	_	10	mA

Table 3. Electrical Characteristics

(Voltages referenced to V_{SS} , TA = 25°C)


Characteristic	Symbol	V _{DD} V _{DC}	Min	Typ ⁽¹⁾	Max	Unit
Operating Voltage	V_{DD}	_	6.0	_	12	V
Output Voltage Piezoelectric Horn Drivers (I_{OH} = -16 mA) Comparators (I_{OH} = -30 μ A) Piezoelectric Horn Drivers (I_{OL} = $+$ 16 mA) Comparators (I_{OL} = $+30$ μ A)	V _{OH}	7.2 9.0 7.2 9.0	6.3 8.5 —	— 8.8 — 0.1	 0.9 0.5	V
Output Voltage - LED Driver, I _{OL} = 10 mA	V _{OL}	7.2	_	_	3.0	V
Output Impedance, Active Guard Pin 14 Pin 16	Lo-Z Hi-Z	9.0 9.0	_		10 1000	kΩ
Operating Current (R_{bias} = 8.2 M Ω)	I _{DD}	9.0 12.0		5.0 —	9.0 12.0	μА
Input Current - Detect (40% R.H.)	I _{in}	9.0	_	_	±1.0	pA
Input Current, Pin 8	I _{in}	9.0	_	_	±0.1	μΑ
Input Current @ 50°C, Pin 15	I _{in}	_	_	_	±6.0	pA
Internal Set Voltage Low Battery Sensitivity	V _{low} V _{set}	9.0	7.2 47	— 50	7.8 53	V %V _{DD}
Hysteresis	V _{hys}	9.0	75	100	150	mV
Offset Voltage (measured at Vin = VDD/2) Active Guard Detect Comparator	V _{OS}	9.0 9.0	_		±100 ±50	mV
Input Voltage Range, Pin 8	V _{in}	_	VSS -10	_	VDD + 10	V
Input Capacitance	C _{in}	_	_	5.0	_	pF
Common Mode Voltage Range, Pin 15	V _{cm}	_	0.6	_	VDD –2	V
I/O Current, Pin 2 Input, V _{IH} = VDD –2 Output, V _{OH} = VDD –2	I _{IH} I _{OH}	_	25 -4.0	_ _	100 —16	μA mA

^{1.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Table 4. Timing Parameters

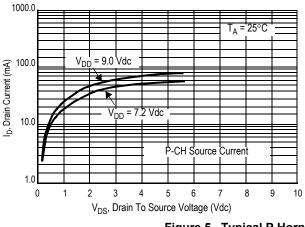
(C = 0.1 μ F, R_{bias} = 8.2 M Ω , V_{DD} = 9.0 V, T_A = 25°C, See Figure 7)

Characteri	stics	Symbol	Min	Max	Units
Oscillator Period	No Smoke Smoke	t _{Cl}	1.46 37.5	1.85 45.8	s ms
Oscillator Rise Time		t _r	10.1	12.3	ms
Horn Output	On Time	PW _{on}	450	550	ms
(During Smoke)	Off Time	PW _{off}	450	550	ms
LED Output	Between Pulses	t _{LED}	35.0	44.5	s
	On Time	PW _{on}	10.1	12.3	ms
Horn Output	On Time	t _{on}	10.1	12.3	ms
(During Low Battery)	Between Pulses	t _{off}	35.0	44.5	s

10.0

VDD = 9.0 VDC or 7.2 VDC

VDD = 9.0 VDC or 7.2 VDC


And N-CH

Sink Current

VDS, Drain To Source Voltage (VDC)

Figure 3. Typical LED Output I-V Characteristic

Figure 4. Typical Comparator Output I-V Characteristic

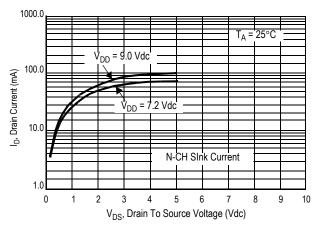


Figure 5. Typical P Horn Driver Output I-V Characteristic

DEVICE OPERATION

Timing

The internal oscillator of the MC145018 operates with a period of 1.65 seconds during no-smoke conditions. Each 1.65 seconds, internal power is applied to the entire IC and a check is made for smoke, except during LED pulse, Low Battery Alarm Chirp, or Horn Modulation (in smoke). Every 24 clock cycles a check is made for low battery by comparing

 V_{DD} to an internal zener voltage. Since very small currents are used in the oscillator, the oscillator capacitor should be of a low leakage type.

Detect Circuitry

If smoke is detected, the oscillator period becomes 41.67 ms and the piezoelectric horn oscillator circuit is

MC145018

enabled. The horn output is modulated 500 ms on, 500 ms off. During the off time, smoke is again checked and will inhibit further horn output if no smoke is sensed. During local smoke conditions the low battery alarm is inhibited, but the LED pulses at a 1.0 Hz rate. In remote smoke, the LED is inhibited as well.

An active guard is provided on both pins adjacent to the detect input. The voltage at these pins will be within 100 mV of the input signal. This will keep surface leakage currents to a minimum and provide a method of measuring the input voltage without loading the ionization chamber. The active guard op amp is not power strobed and thus gives constant protection from surface leakage currents. Pin 15 (the Detect input) has internal diode protection against static damage.

Interconnect

The I/O (Pin 2), in combination with V_{SS} , is used to interconnect up to 40 remote units for common signaling. A Local Smoke condition activates a current limited output driver, thereby signaling Remote Smoke to interconnected units. A small current sink improves noise immunity during non-smoke conditions. Remote units at lower voltages do not draw excessive current from a sending unit at a higher voltage. The I/O is disabled for three oscillator cycles after power up, to eliminate false alarming of remote units when the battery is changed.

Sensitivity/Low Battery Thresholds

Both the sensitivity threshold and the low battery voltage levels are set internally by a common voltage divider (see Figure 2) connected between V_{DD} and V_{SS} . These voltages can be altered by external resistors connected from pins 3 or 13 to either V_{DD} or V_{SS} . There will be a slight interaction here due to the common voltage divider network. The sensitivity threshold can also be set by adjusting the smoke chamber ionization source.

Test Mode

Since the internal op amps and comparators are power strobed, adjustments for sensitivity or low battery level could be difficult and/or time-consuming. By forcing Pin 12 to V_{SS} , the power strobing is bypassed and the output, Pin 1, constantly shows smoke/no smoke. Pin 1 = V_{DD} for smoke. In this mode and during the 10 ms power strobe, chip current rises to approximately 50 μ A.

LED Pulse

The 9-volt battery level is checked every 40 seconds during the LED pulse. The battery is loaded via a 10 mA pulse for 11.6 ms. If the LED is not used, it should be replaced with an equivalent resistor such that the battery loading remains at 10 mA.

Hysteresis

When smoke is detected, the resistor/divider network that sets sensitivity is altered to increase sensitivity. This yields approximately 100 mV of hysteresis and reduces false triggering.

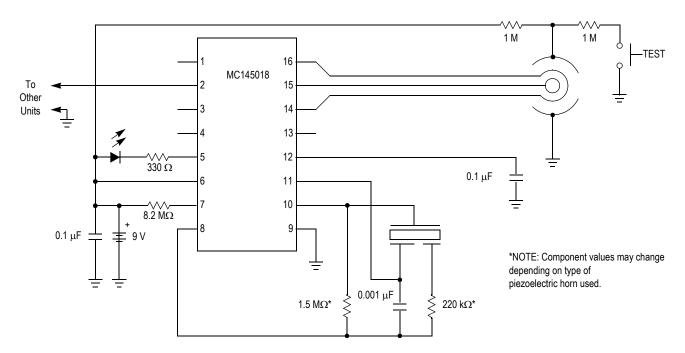


Figure 6. Typical Application as Ionization Smoke Detector

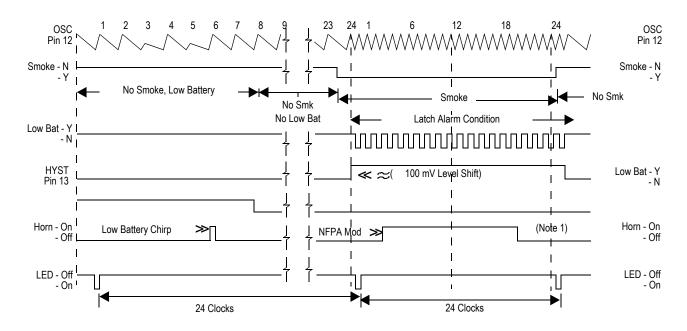


Figure 7. MC145017 Timing Diagram

NOTE:

1. Horn modulation is self-completing. When going from smoke to no smoke, the alarm condition will terminate only when horn is off.

Comparators are strobed once per cycle (1.65 sec for no smoke, 40 msec for smoke).

For timing under remote conditions, refer to MC14468 data sheet.

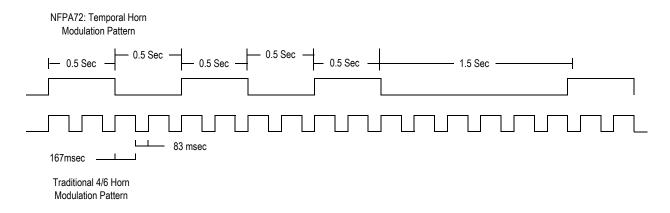


Figure 8. Horn Modulation

Alarm IC General Applications Overview

by: Leticia Gomez and Diana Pelletier, Sensor Applications Engineering Sensor Products, Systems and Applications Engineering

INTRODUCTION

The MC14600, an IC designed for alarm applications, is a versatile part that can easily be configured with a minimum number of external components to serve a wide range of alarm applications and circuit configurations. For example, the MC14600 can be used in systems that detect pressure and temperature change, liquid levels, motion or intrusion. This application note presents considerations in interfacing external components to the MC14600 and an approach for configuring it with a latch.

The MC14600 Alarm IC can be simply described as a comparator that determines whether an alarm condition exists and in response drives a piezo horn. As illustrated in Figure 1 the MC14600 is more than a comparator and a horn driver. It drives an LED to indicate the device is working and has internal low battery detection circuitry. In the event of a low

battery the MC14600 provides the signal to chirp the piezo horn. It also has a logical output that can be used to drive other outputs such as an LED. The MC14600 alarm threshold and oscillator speed are set externally providing system design flexibility. Figure 2 is a detailed block diagram of the MC14600 that includes the pin numbers referenced in this document.

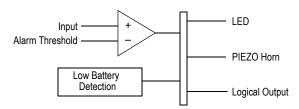


Figure 1. Alarm IC Concept



Figure 2. MC14600 Block Diagram

ALARM THRESHOLD ADJUSTMENTS

The alarm trigger point (alarm threshold) is set externally to any voltage level with a simple voltage divider connected to pin 13. For instance, to connect the Alarm IC to a sensor that has an output of 1.0 V during a no alarm condition and 4.0 V during an alarm condition, the alarm threshold voltage could be set to 3.0 V using a 2 $M\Omega$ and a 1 $M\Omega$ resistor connected between V_{DD} and ground (See Figure 3). Pin 13 connects internally to the negative input of the Detect Comparator. Based on the input impedance of the Detect Comparator the maximum suggested total resistance for the threshold voltage divider is 10 $M\Omega$.

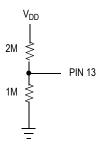


Figure 3. Alarm Threshold Voltage Divider

OSCILLATOR

The master clock frequency for the MC14600 is determined by the external components Rbias (pin 7) and Cosc (pin 12). This RC network provides the timing for the various functions conducted by the IC. The oscillator timing affects the period between LED pulses, alarm signal sampling, and the horn output pulses and power consumption. A standard RC network for the MC14600 oscillator uses an 8.2 M resistor (Rbias) connected from V_{DD} to pin 7 and a 0.1 µF capacitor (Cosc) connected from pin 12 to ground. This configuration will provide a period of approximately 1.65 sec in standby and 41.67 msec in alarm. A change in oscillator speed is accomplished by changing the resistor and capacitor values previously stated. Changing the oscillator timing will not change the horn pattern but it will change the speed at which it's delivered. The table below lists examples of RC values and measured sampling periods achieved with those values (deviation from theoretical values are due to tolerance in components).

Table 1. Oscillator Period vs. R_{bias} and C_{osc} Value

R _{bias}	C _{osc}	Period (no Alarm)	Period (Alarm)
5.6 MΩ	0.01 µF	93 ms	2.3 ms
8.2 MΩ	0.01 µF	142 ms	3.4 ms
10 MΩ	0.01 µF	172 ms	3.9 ms
5.6 MΩ	0.1 µF	1.4 s	32 ms
8.2 MΩ	0.1 µF	2.2 s	50 ms
10 MΩ	0.1 µF	2.7 s	60 ms
8.2 MΩ	1.0 μF	20.1 s	456 ms

PIEZO HORN INTERFACE

The MC14600 contains on-board horn driver circuitry to drive three leaded piezo horns. A three leaded horn is considered self-driven, having a feedback pin that is connected to a closed loop oscillation circuit. The MC14600 uses pin 8 (Horn Feedback), pin 10 (Horn Out 1) and pin 11 (Horn Out 2) to interface to a piezo horn and achieve the drive circuit. Pin 10 and pin 11 alternate their output providing the oscillation for the horn. Three external components are required to interface a piezo horn to the Alarm IC: R1, C1 and R2 (Figure 4). R1 is usually around 1.5 M Ω and is the least critical component as it only biases the horn. R2 and C1 are critical to achieve maximum horn output. The two components must be set so that the value of 1/(R2*C1) is close to the resonant frequency of the horn being used. Table 2 lists a common horn frequency and potential external components that can be used for R2 and C1.

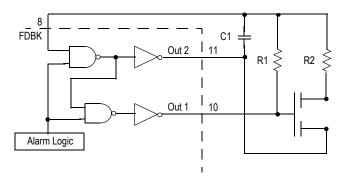


Figure 4. Piezo Horn Interface to MC14600

Table 2. External Components for a 3.4 kHz Three Leaded Piezo Horn

Horn OSC Frequency	R1	R2	C1	1/(R2*C1)
3.4 ± 0.4 kHz	1.5 MΩ	200 kΩ	1.5 nF	3.33 kHz
	820 kΩ	200 kΩ	1.5 nF	3.33 kHz
	1.5 MΩ	120 kΩ	2.2 nF	3.79 kHz
	1.5 MΩ	100 kΩ	2.2 nF	4.55 kHz

LOW BATTERY THRESHOLD ADJUSTMENTS

The Alarm IC has a typical internal low battery reference voltage of 6 V. An internal resistor divider string provides a voltage of 80% of V_{DD} which is compared to the 6 V reference voltage (See Figure 5). This results in a low battery condition and horn chirp if the V_{DD} level is decreased to approximately 7.5 V. The percentage of V_{DD} that is compared can be changed by adding a resistor to pin 3. A resistor from pin 3 to V_{DD} will lower the percentage while a resistor from pin 3 to GND will increase the percentage. The low battery comparator information will be latched only during the LED pulse. Testing of the voltage at pin 3 should be done during the LED pulse for confirmation. It should also be measured through a high impedance buffer to avoid altering the voltage level.

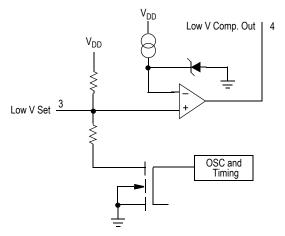


Figure 5. Low Battery Detection Circuitry

ALARM LATCHING APPROACHES

There are detection applications where the event that triggers the alarm can be instantaneous, such as shock or motion. In this case the Alarm IC would alarm for the brief moment that the event occurred and then stop. This is not always desirable, in particular during events where safety is of concern.

A latch can be implemented using the concept of hysteresis to alter the alarm threshold level and therefore remain in an alarm condition. It is very simple as it requires only one resistor, R3, connected to pin 1 (Detect Comp. Out.) and added in series to the alarm threshold voltage divider, R1 and R2, on pin 13 (See Figure 6). During a no alarm condition pin 1 is high which makes the alarm threshold voltage divider look like it would without R3 connected, keeping the alarm threshold at the initial desired point. When an alarm condition occurs pin 1 goes low, which in turn dramatically lowers the threshold voltage into the alarm comparator. When the alarm signal ends and the input voltage into pin 15 decreases, the alarm condition does not end because the alarm threshold has been lowered to below a standby voltage level. The MC14600 will continue in an alarm condition until the unit is RESET or pin 15 receives a signal below this alarming threshold. A RESET is implemented by connecting a switch to pin 1 that will toggle to V_{DD} through a resistor. This solution has the possibility that it will not latch on to the alarm condition indefinitely. As described above it is essentially just lowering the alarm threshold voltage so if the output from the sensor during a no alarm condition is below this threshold the latch will not work.

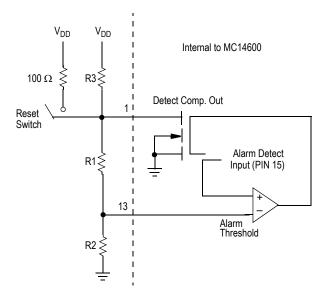


Figure 6. Latch Using Resistor in Series with Threshold Divider

SAMPLE DETECTION INPUTS

The MC14600 is a versatile device because its high impedance input pin allows it to be connected to a variety of systems and input signals. All that is required for an input is a device or circuit that will produce a change in voltage that corresponds to an environmental change. For example, a simple circuit around a thermistor could cause the MC14600 to alarm when the temperature gets too high. A photo transistor could be connected to cause an alarm for either the absence or existence of light.

Freescale also has sensors, specifically accelerometers and pressure sensors, that could be used as the input to the MC14600. An accelerometer, such as the MMA1201P, could be used to sense a shock or vibration. A possible solution is shown in Figure 7. The MC7805 is a voltage regulator that provides the 5 V supply required by the MMA1201P. Since the output of the MMA1201P resulting from a shock or vibration is very short some simple peak detection circuitry is required to keep the signal high long enough for the MC14600 to latch onto the alarm condition.

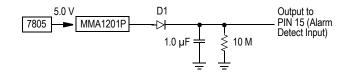
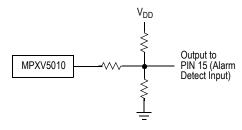



Figure 7. Shock and Vibration Detection Circuit

Freescale's pressure sensors can also provide the input to the MC14600. The MPX5000 series includes a wide variety of compensated and integrated pressure sensors with different pressure ranges, packaging and measurement options. One possible sensor is the MPXV5010. The output of the MPXV5010 can be fed directly into the input of the MC14600 (pin 15). If the latch described above is used with a pressure sensor resistors may be required at the output of the MPXV5010 to scale the output voltage (See Figure 8). This is because the output voltage for pressure sensors in the MPX5000 series under no pressure is 0.2 V, which may be below the lowered alarm threshold. (See previous section.)

Figure 8. Pressure Detection Circuit

CONCLUSION

The MC14600 offers a simple solution for use in a wide variety of alarm applications. With a high impedance input pin it can be connected to many types of sensor devices. For sensor inputs that require a latched alarm condition there are several simple ways to add this option to the MC14600. It has the feature of not having a predetermined alarm threshold which gives it the flexibility of being set to any level as required by the application. The MC14600 has an internal horn driver that can drive a three leaded piezo horn with the addition of two resistors and one capacitor. The MC14600 integrates the features desired in alarm devices into a small and simple package that is still flexible enough for all types of alarm applications.

Alarm IC Sample Applications

by: Rudi Lenzen
Applications Engineer, Toulouse France

INTRODUCTION

The MC14600 is an integrated circuit (IC) designed for low-cost applications requiring an alarm to be triggered and heard. This device affords the designer a low-cost, easy-to-integrate solution, where board space and design time are at a premium. The Alarm IC can be used in multiple applications, such as personal, home and auto safety/security devices; door, gate and pool alarms; and even toys, where lasers and motion are employed, for example. However, this paper's purpose is to introduce you to just a few applications for which the MC14600 is a perfect fit.

GAS SENSOR APPLICATION

The MC14600, used with a flammable gas sensor and a few added components, provides a reliable solution for gas detection.

When gas leakage is detected, the sensing resistor decreases typically by a factor 3 or 4 as the gas concentration reaches 10 percent of the lower explosive limit. During the calibration sequence (test under gas), a variable resistor is used to set the trigger level of the Alarm IC comparator which, in response, drives a piezo horn.

By adding a thermistor—with negative temperature coefficient (NTC) in this case—in the detection circuit, the variation of the sensor resistance with temperature is easily compensated, avoiding false alarms when the room temperature increases.

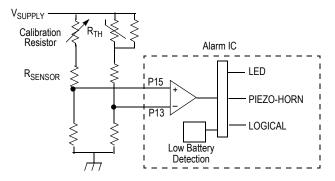


Figure 1. Gas Detection Example

The logical output is useful to signal a remote control station that a gas leakage has been detected.

When using a low power sensor, the circuit is fully compliant with a portable solution enhanced by the integrated low battery comparator indicating the state of the power supply.

TEMPERATURE LEVEL DETECTOR

When connected to a simple network of thermistor and resistors, the Alarm IC provides a portable solution for temperature control and supervision. The example hereafter uses an NTC thermistor.

An audible alarm will sound when the threshold value at the comparator input is reached. A logic output is usable for starting either a fan or a heater depending upon the required temperature.

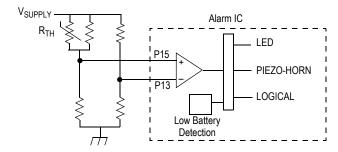


Figure 2. Temperature Level Example

WATER LEVEL DETECTOR

A single probe connected directly on the detection pin of the Alarm IC provides a portable solution for water level detection.

When liquid enters in contact with the probe, the resistor between the detection pin and the supply drops from an open circuit to a measurable value. With an appropriate choice of bridge resistors, the presence of liquid will trigger the comparator. The logic level can be connected to any monitoring system allowing pump starting, floodgate closing and others. This simple system is useful for numerous applications, such as swimming pool water level alarms, defrosting water level detectors, and in-house flood alarms.

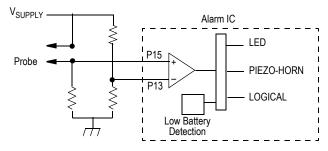


Figure 3. Water-Level Detection Example

MOTION INDICATOR

The Alarm IC can be used to detect motion and can be integrated into products, such as an ordinary clothes iron, where this is critical. Used with a low G accelerometer and a few logic components, the device can signal the user that there is a risk of clothes burning during use and that the iron must be shut off from the AC power after use. At the output of the accelerometer, a simple peak detection circuit is required to keep the signal active long enough.

When no movement is detected, the output comparator is low and the counter starts. A first "beep" is heard after a few seconds to advise that there is a risk of clothes burning. If no movement is detected, the counting continues and drives a flip-flop connected to pin 15 of the Alarm IC. The alarm is triggered and will continue on until a new movement is detected, resetting the counter.

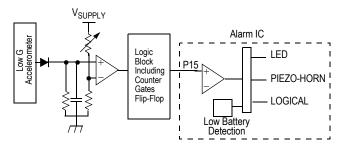


Figure 4. Motion Indicator Example

FILTER MONITOR

An ideal solution for air cleanliness control is provided when the Alarm IC is directly connected to an MPX5000 series pressure sensor. This sensor family is compensated in temperature and has its output signal directly exploitable (internally amplified). Therefore, the sensor can be connected to the detection pin of the circuit without any additional component. When a certain level of dust affects the efficiency of the filter, a differential pressure is measured and the Alarm IC comparator is triggered.

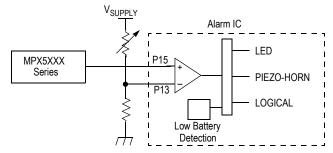
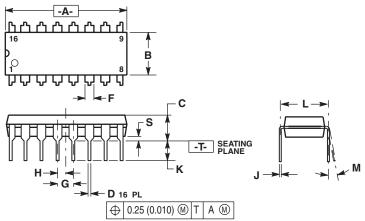
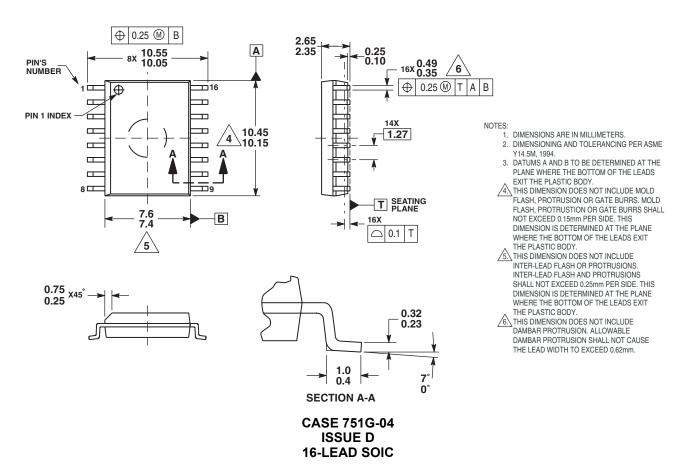



Figure 5. Pressure Change (Filter) Example

Package Dimensions

STYLE 1:
PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
6. CATHODE
8. CATHODE
10. ANODE
11. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE
15. ANODE
16. ANODE


STYLE 2:
PIN 1. COMMON DRAIN
2. COMMON DRAIN
3. COMMON DRAIN
4. COMMON DRAIN
5. COMMON DRAIN
6. COMMON DRAIN
7. COMMON DRAIN
8. COMMON DRAIN
8. COMMON DRAIN
9. GATE
10. SOURCE
11. GATE
12. SOURCE
13. GATE
14. SOURCE
15. GATE
16. SOURCE

CASE 648-08 ISSUE R 16-LEAD PLASTIC DIP

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
- DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INCHES		MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54	BSC	
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0	10	0	10	
S	0.020	0.040	0.51	1.01	

PACKAGE DIMENSIONS (CONTINUED)

5-1

Section Five

Electric Field Sensor Overview

Freescale's electric field (E-field) sensor is intended for applications where non-contact sensing of objects is desired. It contains circuitry necessary to generate a low level electric field and measure the field loading caused by objects moved into the field. The sensor is intended for use in detecting objects in an electric field associated with an electrode. When connected to external electrodes, an electric field is created. The IC generates a low frequency sine wave. The frequency is adjustable by using an external resistor and is optimized for 125 kHz. The sine wave has very low harmonic content to avoid the generation of harmonic interference. The internal generator produces a nominal 5.0 V peak-to-peak output which is passed through an internal resistor of about 22 kOhm. The sensor contains support circuits for an MCU to allow the construction of a 2 chip E-field system.

Freescale's electric field sensor is economical and can be used for touch panel applications, liquid sensing and proximity detection

Electric Field Sensor Products

Mini Selector Guide	5-2
MC33794	5-3
AN1985	5-20
Package Dimensions	5-35

Mini Selector Guide

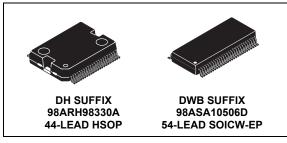
E-Field Sensing

Device	Description	Main Characteristics	No. of Channels	Current Limit (mA)	Max Voltage	Communications	Packaging	Status
MC33794	Electric Field	125 kHz generator, shield	11	75	40	ISO-9141	44-pin	Production
	Imaging Devices	drive, 9 electrodes + 2 V _{REF}					HSOP	EVB
		outputs, detector, 5 V regulator,					54-pin	
		MCU support					SOICW	

Electric Field Imaging Device

The 33794 is intended for applications where noncontact sensing of objects is desired. When connected to external electrodes, an electric field is created.

The 33794 is intended for use in detecting objects in this electric field. The IC generates a low-frequency sine wave. The frequency is adjustable by using an external resistor and is optimized for 120 kHz. The sine wave has very low harmonic content to reduce harmonic interference.


The 33794 also contains support circuits for a microcontroller unit (MCU) to allow the construction of a two-chip E-field system.

Features

- · Supports up to 9 Electrodes and 2 References or Electrodes
- Shield Driver for Driving Remote Electrodes Through Coaxial Cables
- · +5.0 V Regulator to Power External Circuit
- · ISO-9141 Physical Layer Interface
- · Lamp Driver Output
- · Watchdog and Power-ON Reset Timer
- Critical Internal Nodes Scaled and Selectable for Measurement
- High-Purity Sine Wave Generator Tunable with External Resistor

33794

ELECTRIC FIELD IMAGING DEVICE

ORDERING INFORMATION					
Device Temperature Range (T _A) Package					
	44 HSOP				
-40°C to 85°C	54 SOICW-EP				
	Temperature				

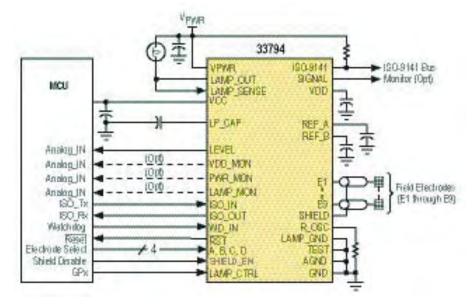


Figure 1. 33794 Simplified Application Diagram

MC33794

INTERNAL BLOCK DIAGRAM

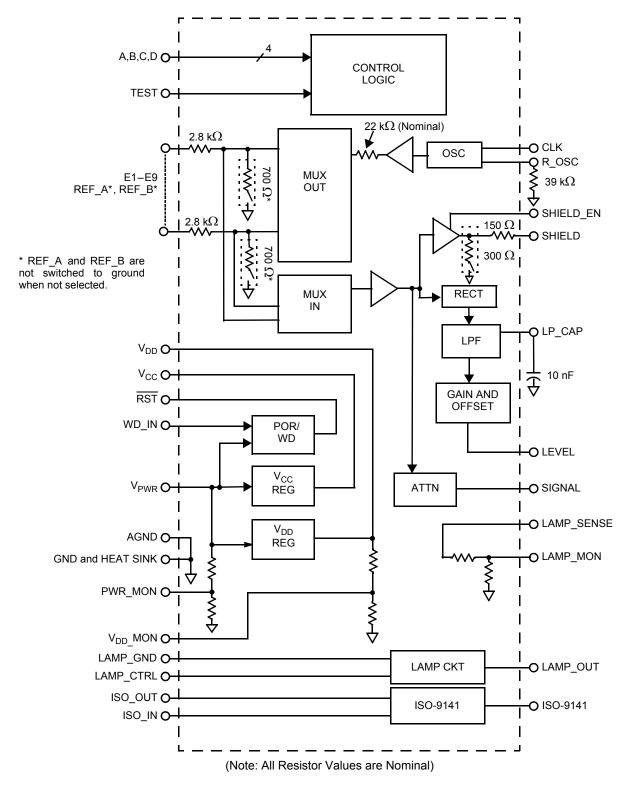
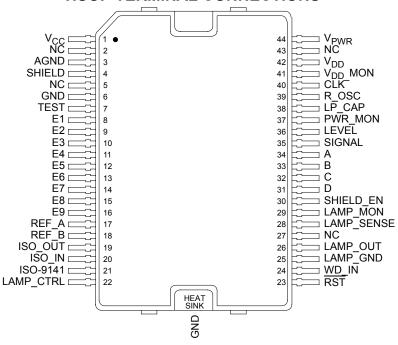



Figure 2. 33794 Simplified Internal Block Diagram

HSOP TERMINAL CONNECTIONS

Figure 3. HSOP Terminal Connections

Table 1. HSOP Terminal Definitions

Terminal	Terminal Name	Formal Name	Definition
1	V _{CC}	5.0 V Regulator Output	This output terminal requires a 47 μ F capacitor and provides a regulated 5.0 V for the MCU and for internal needs of the 33794.
2, 5, 27, 43	NC	No connect	These terminals may be used at some future date and should be left open.
3	AGND	Analog Ground	This terminal is connected to the ground return of the analog circuitry. This ground should be kept free of transient electrical noise like that from logic switching. Its path to the electrical current return point should be kept separate from the return for GND.
4	SHIELD	Shield Driver	This terminal connects to cable shields to cancel cable capacitance.
6, Heat Sink	GND	Ground	This terminal and metal backing is the IC power return and thermal radiator/conductor.
7	TEST	Test Mode Control	This terminal is normally connected to circuit ground. There are special operating modes associated with this terminal when it is not at ground.
8–16	E1-E9	Electrode Connections	These are the electrode terminals. They are connected either directly or through coaxial cables to the electrodes for measurements. When not selected, these outputs are grounded through the internal resistance.
17, 18	REF_A, REF_B (E10, E11)	Reference Connections (Or as additional electrodes)	These terminals can be individually selected to measure a known capacitance value. Unlike E1-E9, these two inputs are not grounded when not selected.
19	ISO_OUT	ISO-9141 Output	This terminal translates ISO-9141 receive levels to 5.0 V logic levels for the MCU.

Table 1. HSOP Terminal Definitions(continued)

Terminal	Terminal Name	Formal Name	Definition
20	ISO_IN	ISO-9141 Input	This terminal accepts data from the MCU to be sent over the ISO-9141 communications interface. It translates the 5.0 V logic levels from the MCU to transmit levels on the ISO-9141 bus.
21	ISO-9141	ISO-9141 Bus	This terminal connects to the ISO-9141 bus. It provides the drive and detects signaling on the bus and translates it from the bus level to logic levels for the MCU.
22	LAMP_CTRL	Lamp Control	This signal is used to control the lamp driver. A high logic level turns on the lamp
23	RST	Reset	This output is intended to generate the reset function of a typical MCU. It has a delay for Power-ON Reset, level detectors to force a reset when V _{CC} is out-of-range high or low, and a watchdog timer that will force a reset if WD_IN is not asserted at regular intervals. Timing is derived from the oscillator and will change with changes in the resistor attached to R_OSC.
24	WD_IN	Watchdog Input	This terminal must be asserted and deasserted at regular interval in order to prevent RST from being asserted. By having the MCU program perform this operation more often the allowed time, a check that the MCU is running and executing its program is assured. If this doesn't occur, the MCU will be reset. If the watchdog function is not desired, this terminal may be connected to CLK to prevent a reset from being issued.
25	LAMP_GND	Lamp Ground	This is the ground for the current from the lamp. The current into LAMP_OUT flows out through this terminal.
26	LAMP_OUT	Lamp Driver	This is an active low output capable of sinking current of a typical indicator lamp. One end of the lamp should be connected to a positive supply (for example, battery voltage) and the other side to this terminal. The current is limited to prevent damage to the IC in the case of a short or surge during lamp turn-on or burn-out.
28	LAMP_SENSE	Lamp Sense	This terminal is normally connected to the LAMP_OUT terminal. The voltage at this terminal is reduced and sent to LAMP_MON so the voltage at the lamp terminal is brought into the range of the analog-to-digital converter (ADC) in the MCU.
29	LAMP_MON	Lamp Monitor	This terminal is connected through a voltage divider to the LAMP_SENSE terminal. The voltage divider scales the voltage at this terminal so that battery voltage present when the lamp is off is scaled to the range of the MCU ADC. With the lamp off, this terminal will be very close to battery voltage if the lamp is not burned out and the terminal is not shorted to ground. This is useful as a lamp check.
30	SHIELD_EN	Shield Driver Disable	This terminal is used to enable the shield signal. The shield is disabled when SHIELD_EN is at a logic low (ground).
34–31	A, B, C, D	Selector Inputs	These input terminals control which electrode or reference is active. Selection values are shown in Table 1, Electrode Selection, page <u>15</u> . These are logic level inputs.
35	SIGNAL	Undetected Signal	This is the undetected signal being applied to the detector. It has a DC level with the low radio frequency signal superimposed on it. Care must be taken to minimize DC loading of this signal. A shift of DC will change the center point of the signal and adversely affect the detection of the signal.
36	LEVEL	Detected Level	This is the detected, amplified, and offset representation of the signal voltage on the selected electrode. Filtering of the rectified signal is performed by a capacitor attached to LP_CAP.

Table 1. HSOP Terminal Definitions(continued)

Terminal	Terminal Name	Formal Name	Definition			
37	PWR_MON	Power Monitor	This is connected through a voltage divider to V_{PWR} . It allows reduction of the voltage so it will fall within the range of the ADC on the MCU.			
38	LP_CAP	Low-Pass Filter Capacitor	A capacitor on this terminal forms a low pass filter with the internal series resistance from the detector to this terminal. This terminal can be used to determine the detected level before amplification or offset is applied. A 10 r capacitor connected to this terminal will smooth the rectified signal. More capacitance will increase the response time.			
39	R_OSC	Oscillator Resistor	A resistor from this terminal to circuit ground determines the operating freque of the oscillator. The 33794 is optimized for operation around 120 kHz.			
40	CLK	Clock	This terminal provides a square wave output at the same frequency as the internal oscillator. The edges of the square wave coincide with the peaks (positive and negative) of the sine wave.			
41	V _{DD} _MON	V _{DD} Monitor	This is connected through a voltage divider to V_{DD} . It allows reduction of the voltage so it will fall within the range of the ADC on the MCU.			
42	V _{DD}	V _{DD} Capacitor	A capacitor is connected to this terminal to filter the internal analog regulated supply. This supply is derived from V_{PWR} .			
44	V _{PWR}	Positive Power Supply Input	12 V power applied to this terminal will be converted to the regulated voltages needed to operate the part. It is also converted to 5.0 V (V_{CC}) and 8.5 V (V_{DD}) to power the MCU and external devices.			

SOICW-EP TERMINAL CONNECTIONS

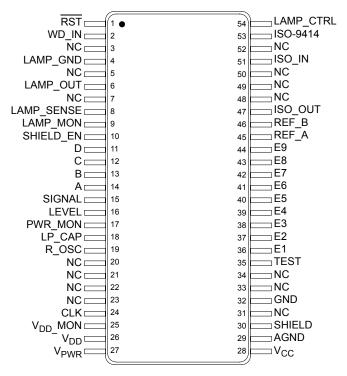


Figure 4. SOICW-EP Terminal Connections

Table 2. SOICW-EP TERMINAL FUNCTION DESCRIPTION

Terminal	Terminal Name	Formal Name	Definition
1	RST	Reset	This output is intended to generate the reset function of a typical MCU. It has a delay for Power-ON Reset, level detectors to force a reset when V _{CC} is out-of-range high or low, and a watchdog timer that will force a reset if WD_IN is not asserted at regular intervals. Timing is derived from the oscillator and will change with changes in the resistor attached to R_OSC.
2	WD_IN	Watchdog In	This terminal must be asserted and deasserted at regular interval in order to prevent RST from being asserted. By having the MCU program perform this operation more often the allowed time, a check that the MCU is running and executing its program is assured. If this doesn't occur, the MCU will be reset. If the watchdog function is not desired, this terminal may be connected to CLK to prevent a reset from being issued.
3, 5, 7, 20–23, 31, 33, 34, 48–50, 52	NC	No connect	These terminals may be used at some future date and should be left open.
4	LAMP_GND	Lamp Ground	This is the ground for the current from the lamp. The current into LAMP_OUT flows out through this terminal.
6	LAMP_OUT	Lamp Driver	This is an active low output capable of sinking current of a typical indicator lamp. One end of the lamp should be connected to a positive supply (for example, battery voltage) and the other side to this terminal. The current is limited to prevent damage to the IC in the case of a short or surge during lamp turn-on or burn-out.

Table 2. SOICW-EP TERMINAL FUNCTION DESCRIPTION (continued)

Terminal	Terminal Name	Formal Name	Definition
8	LAMP_SENSE	Lamp Sense	This terminal is normally connected to the LAMP_OUT terminal. The voltage at this terminal is reduced and sent to LAMP_MON so the voltage at the lamp terminal is brought into the range of the analog-to-digital converter (ADC) in the MCU.
9	LAMP_MON	Lamp Monitor	This terminal is connected through a voltage divider to the LAMP_SENSE terminal. The voltage divider scales the voltage at this terminal so that battery voltage present when the lamp is off is scaled to the range of the MCU ADC. With the lamp off, this terminal will be very close to battery voltage if the lamp is not burned out and the terminal is not shorted to ground. This is useful as a lamp check.
10	SHIELD_EN	Shield Driver	This terminal is used to enable the shield signal. The shield is disabled when SHIELD_EN is a logic low (ground)
14–11	A, B, C, D	Selector Inputs	These input terminals control which electrode or reference is active. Selection values are shown in Table 1, Electrode Selection, page 15. These are logic level inputs.
15	SIGNAL	Undetected Signal	This is the undetected signal being applied to the detector. It has a DC level with the low radio frequency signal superimposed on it. Care must be taken to minimize DC loading of this signal. A shift of DC will change the center point of the signal and adversely affect the detection of the signal.
16	LEVEL	Detected Level	This is the detected, amplified, and offset representation of the signal voltage on the selected electrode. Filtering of the rectified signal is performed by a capacitor attached to LP_CAP.
17	PWR_MON	Power Monitor	This is connected through a voltage divider to V_{PWR} . It allows reduction of the voltage so it will fall within the range of the ADC on the MCU.
18	LP_CAP	Low-Pass Filter Capacitor	A capacitor on this terminal forms a low pass filter with the internal series resistance from the detector to this terminal. This terminal can be used to determine the detected level before amplification or offset is applied. A 10 nF capacitor connected to this terminal will smooth the rectified signal. More capacitance will increase the response time.
19	R_OSC	Oscillator Resistor	A resistor from this terminal to circuit ground determines the operating frequency of the oscillator. The 33794 is optimized for operation around 120 kHz.
24	CLK	Clock	This terminal provides a square wave output at the same frequency as the internal oscillator. The edges of the square wave coincide with the peaks (positive and negative) of the sine wave.
25	V _{DD} MON	V _{DD} Monitor	This is connected through a voltage divider to V_{DD} . It allows reduction of the voltage so it will fall within the range of the ADC on the MCU.
26	V _{DD}	V _{DD} Capacitor	A capacitor is connected to this terminal to filter the internal analog regulated supply. This supply is derived from V _{PWR} .
27	V _{PWR}	Positive Power Supply	12 V power applied to this terminal will be converted to the regulated voltages needed to operate the part. It is also converted to 5.0 V (V_{CC}) and 8.5 V (V_{DD}) to power the MCU and external devices.
28	V _{CC}	5.0 V Regulator Output	This output terminal requires a 47 μF capacitor and provides a regulated 5.0 V for the MCU and for internal needs of the 33794.
29	AGND	Analog Ground	This terminal is connected to the ground return of the analog circuitry. This ground should be kept free of transient electrical noise like that from logic switching. Its path to the electrical current return point should be kept separate from the return for GND.
30	SHIELD	Shield Driver	This terminal connects to cable shields to cancel cable capacitance.
32	GND	Ground	This terminal and metal backing is the IC power return and thermal radiator/conductor.

Table 2. SOICW-EP TERMINAL FUNCTION DESCRIPTION (continued)

Terminal	Terminal Name	Formal Name	Definition
35	TEST	Test Mode Control	This terminal is normally connected to circuit ground. There are special operating modes associated with this terminal when it is not at ground.
36-44	E1-E9	Electrode Connections	These are the electrode terminals. They are connected either directly or through coaxial cables to the electrodes for measurements. When not selected, these outputs are grounded through the internal resistance.
45, 46	REF_A, REF_B (E10, E11)	Reference Connections (Or as additional electrodes)	These terminals can be individually selected to measure a known capacitance value. Unlike E1-E9, these two inputs are not grounded when not selected.
47	ISO_OUT	ISO-9141 Output	This terminal translates ISO-9141 receive levels to 5.0 V logic levels for the MCU.
51	ISO_IN	ISO-9141 Input	This terminal accepts data from the MCU to be sent over the ISO-9141 communications interface. It translates the 5.0 V logic levels from the MCU to transmit levels on the ISO-9141 bus.
53	ISO-9141	ISO-9141 Bus	This terminal connects to the ISO-9141 bus. It provides the drive and detects signaling on the bus and translates it from the bus level to logic levels for the MCU.
54	LAMP_CTRL	Lamp Control	This signal is used to control the lamp driver. A high logic level turns on the lamp.

MAXIMUM RATINGS

Table 3. Maximum Ratings

All voltages are with respect to ground unless otherwise noted.

Rating	Symbol	Value	Unit
Peak VPWR Voltage	V _{PWRPK}	40	V
Double Battery	V_{DBLBAT}		V
1 Minute Maximum T _A = 30°C		26.5	
ESD Voltage			V
Human Body Model (1)	V _{ESD1}	±2000	
Machine Model (2)	V _{ESD2}	±200	
Storage Temperature	T _{STG}	-55 to 150	°C
Operating Ambient Temperature	T _A	-40 to 85	°C
Operating Junction Temperature	T_J	-40 to 125	°C
Thermal Resistance			°C/W
Junction-to-Ambient (3)	$R_{ hetaJA}$	41	
Junction-to-Case ⁽⁴⁾	$R_{ heta JC}$	0.2	
Junction-to-Board ⁽⁵⁾	$R_{ heta JB}$	3.0	
Lead Soldering Temperature (for 10 Seconds)	T _{SOLDER}	260	°C

Notes

- 1. ESD1 performed in accordance with the Human Body Model (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω).
- 2. ESD2 performed in accordance with the Machine Model (C_{ZAP} = 200 pF, R_{ZAP} = 0 Ω).
- 3. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. In accordance with SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 4. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MILSPEC 883 Method 1012.1) with the cold plate temperature used for the case temperature.
- 5. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

STATIC ELECRTICAL CHARACTERISTICS

Table 4. Static Electrical Caracteristics

Characteristics noted under condition -40°C $\leq T_{J} \leq 125^{\circ}C.$ Voltages are relative to GND unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
Voltage Regulators			1	1	
5.0 V Regulator Voltage 7.0 V \leq V _{PWR} \leq 18 V, 1.0 mA \leq I _L \leq 75 mA, C _{FILT} = 47 μ F	V _{CC}	4.75	5.0	5.25	V
Analog Regulator Voltage 9.0 V \leq V _{PWR} \leq 18 V, C _{FILT} = 47 μ F	V _{ANALOG}	8.075	8.5	8.925	V
VCC Out-of-Range Voltage Detector			1	1	•
5.0 V Low Voltage Detector	V_{LV5}	4.0	4.52	4.72	V
5.0 V High Voltage Detector	V _{HV5}	5.26	5.55	5.83	V
5.0 V Out-of-Range Voltage Detector Hysteresis	V _{HYS5}	-	0.05	-	V
ISO-9141 Communications Interface			1	1	
Input Low Level (6)	VIF _{INLO}	0.30	0.33	_	V/V
Input High Level ⁽⁶⁾	VIF _{INHI}	-	0.53	0.7	V/V
Input Hysteresis ⁽⁶⁾	VIF _{INHYS}	-	0.2	-	V/V
Output Low ⁽⁶⁾	VIF _{OLO}	-	_	0.2	V/V
Output High ⁽⁶⁾	VIF _{OHI}	0.8	_	_	V/V
Output Breakdown I _{OUT} = 20 mA	VIF _Z	40	_	_	V
Output Resistance I _{OUT} = 40 mA	RIF _{ON}	-	58	-	Ω
Current Limit Sinking Current with V _{OUT} < 0.3 V _{PWR IN}	IIF _{LIM}	60	90	120	mA
Output Propagation Delay Out to ISO-9141, C _{LOAD} = 20 pF	TIF _{DLY}	-	-	8.0	μS
ISO In					
Logic Output Low I _{SINK} = 1.0 mA	VIF _{OLO}	_	_	1.0	V
Logic Output Pull-Up Current V _{OUT} = 0 V	IIF _{PU}	100	-	_	μА
Input to Output Propagation Delay ISO-9141 to ISO_IN, R _L = 10 k Ω , C _L = 470 pF, 7.0 V \leq V _{PWR} \leq 18 V	TIF _{DLY}	-	-	5.4	μ\$

Notes

6. Ratio to V_{PWR}

Table 4. Static Electrical Caracteristics (continued)

Characteristics noted under condition -40°C $\leq T_{J} \leq 125^{\circ}C.$ Voltages are relative to GND unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
Electrode Signals	1		1	•	1
Total Variance Between Electrode Measurements ⁽⁷⁾ All C _{LOAD} = 15 pF	ELV _{VAR}	-	_	3.0	%
Electrode Maximum Harmonic Level Below Fundamental $^{(8)}$ 5.0 pF \leq C _{LOAD} \leq 100 pF	EL _{HARM}	-	-20	-	dB
Electrode Transmit Output Range $5.0 \text{ pF} \leq C_{LOAD} \leq 100 \text{ pF}$	EL _{TXV}	1.0	-	8.0	V
Receive Input Voltage Range	RX_V	0	-	9.0	V
Grounding Switch on Voltage I _{SW} = 1.0 mA	SW _{VON}	-	-	5.0	V
Shield Driver	1		1	•	1
Shield Driver Output Level $0 \text{ pF} \leq C_{LOAD} \leq 500 \text{ pF}$	SD _{TXV}	1.0	_	8.0	V
Shield Driver Input Range	SD _{IN}	0	_	9.0	V
Grounding Switch on Voltage ⁽⁹⁾	SW _{VON}	_	_	1.5	V
Logic I/O					1
CMOS Logic Input Low Threshold	V _{THL}	0.3	_	_	V _{CC}
Logic Input High Threshold	V _{THH}	-	-	0.7	V _{CC}
Voltage Hysteresis	V _{HYS}	-	0.06	_	V _{CC}
Input Current $V_{IN} = V_{CC}$ $V_{IN} = 0 V$	I _{IN}	10 -5.0		50 5.0	μА
Signal Detector			•	•	•
Detector Output Resistance	DET _{RO}	_	50	_	kΩ
LP_CAP to LEVEL Gain	A _{REC}	3.6	4.0	4.4	A _V
LP_CAP to LEVEL Offset	V _{RECOFF}	-3.3	-3.0	-2.7	V

Notes

- 7. Verified by design. Not tested in production.8. Verified by design and characterization. Not tested in production.
- 9. Current into grounded terminal under test = 1.0 mA.

Table 4. Static Electrical Caracteristics (continued)

Characteristics noted under condition -40°C $\leq T_{J} \leq 125^{\circ}C.$ Voltages are relative to GND unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
LAMP DRIVER					
On Resistance	RLD _{DSON}				Ω
I _{IN} = 400 mA		-	1.75	3.5	
Current Limit	ILD _{LIM}				Α
V _{OUT} = 1.0 V		0.7	-	1.7	
On-Voltage	VLD _{ON}				V
I _{OUT} = 400 mA		-	-	1.4	
Breakdown Voltage	VLD _Z				V
I _{OUT} = 100 μA, Lamp Off		40	-	_	
VOLTAGE MONITORS					
LAMP_MON to LAMP_SENSE Ratio	LMP _{MON}	0.1950	0.20524	0.2155	V/V
PWR_MON to V _{PWR} Ratio	PWR _{MON}	0.2200	0.2444	0.2688	V/V
V _{DD} MON to V _{DD} Ratio	V _{DDMON}	0.45	0.5	0.55	V/V
SUPPLY					
$I_{DD}(V_{PWR} = 14 \text{ V})^{(10)}$	I _{DD}	6.0	7.0	8.0	mA
(Quiescent supply current measured over temperature. Assumes					
that no external devices connected to internal voltage regulators)					

DYNAMIC ELECTRICAL CHARACTERISTICS

Table 5. Dynamic Electrical Characteristics

Characteristics noted under condition -40 $^{\circ}$ C \leq T $_{J}$ \leq 125 $^{\circ}$ C. Voltages are relative to GND unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
osc					
OSC Frequency Stability (10), (11)	f _{STAB}	-	-	10	%
OSC Center Frequency R_OSC = $39 \text{ k}\Omega$	fosc	_	120	_	kHz
Harmonic Content ⁽¹⁰⁾ 2nd through 4th Harmonic Level 5th and Higher	OSCH _{ARM}	_ _	_ _	-20 -60	dB
Shield Driver					
Shield Driver Maximum Harmonic level below Fundamental $^{(10)}$ 10 pF $\leq C_{LOAD} \leq 500$ pF	SD _{HARM}	_	-20	_	dB
Shield Driver Gain Bandwidth Product ⁽¹⁰⁾ Measured at 120 kHz	SD _{GBW}	_	4.5	_	MHz
POR	-1	1	1	•	1
POR Time-Out Period	t _{PER}	9.0	_	50	ms
WATCHDOG					'
Watchdog Time-Out Period	t _{WDPER}	50	68	250	ms
Watchdog Reset Hold Time	t _{WDHLD}	9.0	_	50	ms
Lamp Driver					
Short Circuit to Battery Survival Time	t _{SCB}	3.0	_	_	ms

Notes

- 10. Verified by design and characterization. Not tested in production.
- 11. Does not include errors in external reference parts.

ELECTRODE SELECTION

Table 6. Electrode Selection

TERMINAL/SIGNAL	D	С	В	Α
Source (internal)	0	0	0	0
E1	0	0	0	1
E2	0	0	1	0
E3	0	0	1	1
E4	0	1	0	0
E5	0	1	0	1
E6	0	1	1	0
E7	0	1	1	1

Table 6. Electrode Selection (continued)

TERMINAL/SIGNAL	D	С	В	Α
E8	1	0	0	0
E9	1	0	0	1
REF_A	1	0	1	0
REF_B	1	0	1	1
Internal OSC	1	1	0	0
Internal OSC after 22 kΩ	1	1	0	1
Internal Ground	1	1	1	0
Reserved	1	1	1	1

SYSTEM/APPLICATION INFORMATION

INTRODUCTION

The 33794 is intended for use in detecting objects using an electric field. The IC generates a low radio frequency sine wave. The frequency is set by an external resistor and is optimized for 120 kHz. The sine wave has very low harmonic content to reduce potential interference at higher harmonically related frequencies. The internal generator produces a nominal 5.0 V peak-to-peak output that is passed through an internal resistor of about 22 k Ω . An internal multiplexer routes the signal to one of 11 terminals under control of the ABCD input terminals. A receiver multiplexer simultaneously connected to the selected electrode routes its signal to a detector, which converts the sine wave to a DC level. This DC level is filtered by an external capacitor and is multiplied and offset to increase sensitivity. All of the unselected electrode outputs are grounded by the device. The current flowing between the selected electrode and the other grounded electrodes plus other grounded objects around the electrode causes a voltage drop across the

internal resistance. Objects brought into or out of the electric field change the current and resulting voltage at the IC terminal, which in turn reduces the voltage at LP_CAP and LEVEL.

A shield driver is included to minimize the effect of capacitance caused by using coaxial cables to connect to remote electrodes. By driving the coax shield with this signal, the shield voltage follows that of the center conductor, significantly reducing the effective capacitance of the coax and maintaining sensitivity to the capacitance at the electrode.

The 33794 is made to work with and support a microcontroller. It provides two voltage regulators, a Power-ON-reset/out-of-range voltage detector, watchdog circuit, lamp driver and sense circuit, and a physical layer ISO-9141 communications interface.

BLOCK DIAGRAM COMPONENTS

Refer to Figure 2, 33794 Internal Block Diagram, page 4, for a graphic representation of the block diagram information in this section.

osc

This section generates a high purity sine wave. The center frequency is controlled by a resistor attached to R_OSC. The normal operating frequency is around 120 kHz. A square wave version of the frequency output is available at CLK. Timing for the Power-ON Reset and watchdog (POR/WD) circuit are derived from this oscillator's frequency.

MUX OUT

This circuit directs the output of the sine wave to one of nine possible electrode outputs or two reference terminals. All unused terminals are automatically grounded (except the two reference terminals). The selected output is controlled by the ABCD inputs.

ELECTRODES E1-E9

These are the electrode terminals. They are connected either directly or through coaxial cables to the electrodes for measurements. Every electrode has a 2.8K (\pm 20%) resistor in series with the external pad and the internal electronics. Only one of these electrodes can be selected at a time for capacitance measurement. All of the other unselected electrodes are switched to ground by an internal switch that has an internal on-resistance of approximately 700 Ω . The signal at the selected electrode terminal is routed to the shield driver amplifier by an internal switch. All of the coaxial cable shields should be isolated from ground and connected SHIELD.

REF_A & REF_B ELECTRODES

These terminals can be individually selected like E1 through E9. Unlike E1 through E9, these terminals are not grounded when not selected. Both terminals have a 2.8K (\pm 20%) resistor in series with the external pad and the internal electronics. The purpose of these terminals is to allow known capacitors to be measured. By using capacitors at the low and high end of the expected range, absolute values for the capacitance on the electrodes can be computed. These terminals can be used for electrodes E10 and E11 with the only difference is that these two electrodes will not be grounded when not selected.

SHIELD DRIVE

This circuit connects provides a buffered version of the returned AC signal from the electrode. Since it nearly has the same amplitude and phase as the electrode signal, there is little or no potential difference between the two signals thereby cancelling out any electric field. In effect, the shield drive and isolate the electrode signal from external virtual grounds. A common application is to connect the Shield Drive to the shield of a coax cable used to connect an electrode to the corresponding electrode terminal. Another typical use is to drive a ground plane that is used behind an array of touch senors electrodes in order to cancel out any virtual grounds that could attenuate the AC signal.

MUX IN

This circuit connects the selected electrode, reference, or one of two internal nodes to an amplifier/detector. The selection is controlled by the ABCD inputs and follows the driven electrode/reference when one is selected.

RECT

The rectifier circuit detects the level from MUX IN by offsetting the midpoint of the sine wave to zero volts and inverting the waveform when it is below the midpoint. It is important to avoid DC loading of the signal, which would cause a shift in the midpoint voltage of the signal.

LPF

The rectified sine wave is filtered by a low pass function formed by an internal resistance and an external capacitance attached to LP_CAP. The nominal value of the internal resistance is 50 k Ω . The value of the external capacitor is selected to provide filtering of noise while still allowing the desired settling time for the detector output. A 10 nF capacitor would allow 99% settling in less than 5.0 ms. In practice, it is recommended you wait at least 1.5 ms after selecting an electrode before reading LEVEL.

GAIN AND OFFSET

This circuit multiplies the detected and filtered signal by a gain and offsets the result by a DC level. This results in an output range that covers 1.0 V to 4.0 V for capacitive loading of the field in the range of 10 pF to 100 pF. This allows higher sensitivity for a digital-to-analog converter with a 0 V-to-5.0 V input range.

ATTN

This circuit passes the undetected signal to SIGNAL for external use.

SHIELD_EN

A logic low on this input disables the shield drive. The purpose of doing this is to be able to detect that the shield signal is not working or the connection to the coax shields is broken. If either of these conditions exists, there will be little or no change in the capacitance measured when the SHIELD_EN is changed. If the SHIELD output is working and properly connected, the capacitance of the coax will not be cancelled when this terminal is asserted and the measured capacitance will appear to change by approximately the capacitance between the center conductor and the shield in the coax.

LAMP CKT

This section controls the operation of the LAMP_OUT terminal. When LAMP_CTRL is asserted, LAMP_OUT is pulled to LAMP_GND. If one side of an indicator lamp or LED

(with appropriate current setting resistor) is connected to a positive voltage source and the other is connected to LAMP_OUT, and LAMP_GND is connected to ground, the lamp will light. This circuit provides current limiting to prevent damage to itself in the case of a shorted lamp or during a high-surge condition typical of an incandescent lamp burnout.

LAMP_GND should always be connected to ground even if the lamp circuit is not used.

ISO-9141

This circuit connects to an ISO-9141 bus to allow remote communications. ISO_IN is data from the bus to the MCU and ISO_OUT is data to drive onto the bus from the MCU.

POR/WD

This circuit is a combined Power-ON Reset and watchdog timer. The \overline{RST} output is held low until a certain amount of time after the V_{CC} output has remained above a minimum operating threshold. If V_{CC} falls below the level at any time, \overline{RST} is pulled low again and held until the required time after V_{CC} has returned high. An over voltage circuit is also included, which will force a reset if V_{CC} rises above a maximum voltage. The watchdog function also can force \overline{RST} low if too long an interval is allowed to pass between positive transitions on WD IN.

V_{CC} REG

This circuit converts an unregulated voltage from VIN to a regulated 5.0 V source, which is used internally and available for other components requiring a regulated voltage source.

V_{DD} **REG**

This is a regulator for analog devices that require more than 5.0 V. This is used by the device and some current is available to operate op-amps and other devices. By having this higher voltage available, some applications can avoid the need for a rail-to-rail output amplifier and still achieve the 0 V-to-5.0 V output for a digital-to-analog converter input. $V_{\rm DDMON}$ is a divided output from $V_{\rm DD}$, which allows a 0 V-to-5.0 V ADC to measure $V_{\rm DD}$. Normal value for $V_{\rm DD}$ is 8.5 Volts.

CONTROL LOGIC

This contains the logic that decodes and controls the MUXes and some of the test modes

APPLICATION INFORMATION

The 33794 is intended to be used where an object's size and proximity are to be determined. This is done by placing electrodes in the area where the object will be. The proximity of an object to an electrode can be determined by the increase in effective capacitance as the object gets closer to the electrode and modifies the electric field between the

electrode and surrounding electrically common objects. The shape and size of an object can be determined by using multiple electrodes over an area and observing the capacitance change on each of the electrodes. Those that don't change have nothing near them, and those that do change have part of the object near them.

33794

A "capacitor" can be formed between the driving electrode and the object, each forming a "plate" that holds the electric charge. Capacitance is directly proportional to the area of the electrode plates. Doubling the area doubles the capacitance. Capacitance is also directly proportional to the *dielectric constant* of the material between the plates. Air typically has a dielectric constant of 1 (unity) whereas water can have a dielectric constant of 80 (which means the capacitance is roughly 80 times larger). Plastics and glass that are commonly used in touch panel applications have dielectric constants greater than unity. A third consideration is that capacitance is *inversely proportional* to the distance between the plates. Doubling the distance between the two plates will reduce capacitance by four. This property can be exploited in cases where small distances need to be measured.

Form the above, it can be seen that increased detection sensitivity is a function of the plate size, the dielectric constant of the material between the plates, and the distance between them.

The voltage measured at LEVEL is an inverse function of the capacitance between the electrode being measured and the surrounding electrodes and other objects in the electric field surrounding the electrode. Increasing capacitance results in decreasing voltage. The value of series resistance (22 k Ω) was chosen to provide a nearly linear relationship at 120 kHz over a range of 10 pF to 100 pF.

The measured value may change with any change in frequency, series resistance, driving voltage, the dielectric constant of the capacitor, or detector sensitivity. These can change with temperature and time. There are several ways to compensate for these changes. One method uses the REF_A and REF_B capacitors. Another method may use long term averages to set a baseline value.

Using REF_A and REF_B, a typical measurement algorithm would start by measuring the voltage for two known value capacitors (attached to REF_A and REF_B). The value of these capacitors would be chosen to be near the minimum and maximum values of capacitance expected to be seen at the electrodes. These reference voltages and the known capacitance values are then used with the electrode

measurement voltage to determine the capacitance seen by the electrode. This method can be used to detect short- and long-term changes due to objects in the electric field and significantly reduce the effect of temperature-and timeinduced changes.

Another approach is to run long term averaging of the electrode values. Long term, in this case, may mean several seconds. These long term averages are then used as a set point so that short term changes in the field intensity can be reliably determined. This is typically the method used for touch panel applications.

The 33794 does not contain an ADC. It is intended to be used with an MCU that contains one. Offset and gain have been added to the 33794 to maximize the sensitivity over the range of 0 pF to 100 pF. An 8-bit ADC can resolve around 0.4 pF of change and a 10-bit converter around 0.1 pF. Higher resolution results in more distant detection of smaller objects. Due to the relatively slow data access resquirements (approximately 2 ms per electrode), digitial over-sampling techniques can be used to extend the resolution of 8- or 10-bit converters by 2 or 3 bits.

DC loading on the electrodes should be avoided. A typical situation where this might occur is if moisture gets in direct contact between electrodes, or between an electrode and ground or shield drive. The signal is generated with a DC offset that is more than half the peak-to-peak level. This keeps the signal positive above ground at all times. The detector uses this voltage level as the midpoint for detection. All signals below this level are inverted and added to all signals above this level. Loading of the DC level will cause some of the positive half of the signal to be inverted and added and will change the measurement.

If it is not possible to assure that the electrodes will always have a high DC resistance to ground source, a series capacitor of about 10 nF should be connected between the IC electrode terminals and the electrodes. This capacitor will block an DC bias voltages to the detector. Note that it is also advisable to add a DC blocking capacitor in series with the Shield Driver output as well.

EXAMPLE APPLICATION DIAGRAM

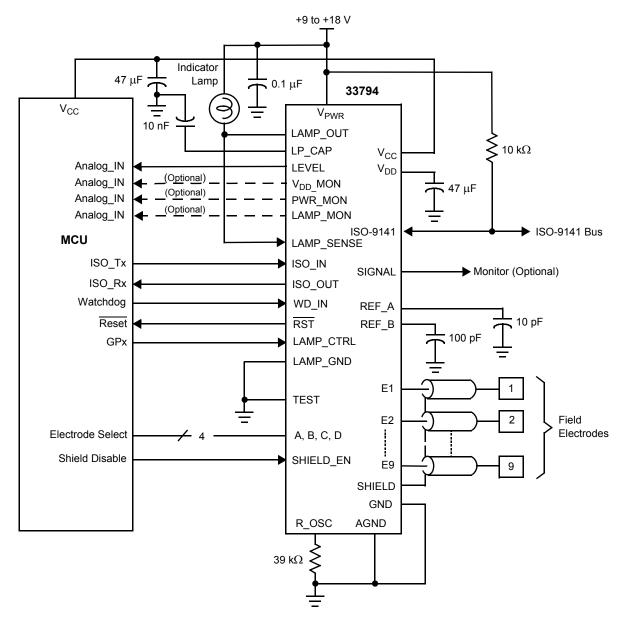


Figure 5. Example Application Diagram

Touch Panel Applications Using the MC33794 E-Field IC

E-FIELD SENSING: AN ALTERNATIVE SOLUTION TO CONTROL PANEL APPLICATIONS

Human touch can be a useful tool. Control panels, appliances, heavy machinery, toys, lighting controls, and anything that has a mechanical switch or push button requires some sort of human interaction to operate. Traditionally, pushbuttons are made out of mechanical switches and/or multilayer resistive touchpads that can deteriorate and become less dependable over time. This is because most of these switches require physical displacement and pressure which are susceptible to wear-out, contact bounce, corrosion and arcing.

The MC33794 Electric Field Imaging device from Freescale Semiconductor, Inc. offers an alternative to mechanical pushbuttons for control panel applications. The MC33794 Integrated Circuit (IC) contains the circuitry necessary to generate a low level electric field and measure the field loading caused by objects moving into or out of the field. It is ideal for applications that desire non-contact sensing, proximity detection, and three-dimensional E-field imaging. The IC integrates support for a microcontroller and up to nine electrodes, which can be used independently to determine the size or location of an object in a weak electric field.

With the MC33794, membrane switches and resistive touchpads can be replaced with an array of touchpads consisting of conductive electrodes embedded beneath an insulating surface. Since it has the capability of sensing touch and proximity through the insulating surface, without direct electrical contact with the electrode metal, problems of wear, contamination, and corrosion are eliminated. This capability is also important for sophisticated touch control applications, including a user interface panel that is sensitive to different degrees of proximity - enabling the system to go from standby to active mode as a finger approaches the panel.

Further, one of the MC33794 key features that surpass simple capacitive based sensors is its on-board shield driver. Touchpads do not have to be combined and located at one centralized location. With proper shielding, coaxial cables or PCB layers can be used to connect remote touchpads up to a few meters away, while obtaining measurements as accurately as if the touchpads were directly connected to the IC. The MC33794 does this by driving a signal on the shield of the coax or a PCB trace which closely follows the signal conductor voltage. The current which flows through the electric field between two conductors is proportional to the voltage difference between them. With little or no voltage difference

between them, there is little or no current flow between the electrode conductor and the shielding trace or coax shield. In a cook top application, for example, this capability allows the activation touchpad for an individual burner to be in different places, rather than at the usual centralized location, without requiring a separate IC at each location. The same IC could be used to activate the down-draft vent and oven with their touch control near what they are controlling.

The potential for the chip goes well beyond touch panel applications. Target applications of the IC includes appliances, machine tools, security systems, and automotive safety systems. From liquid level sensing, to occupant classification, to theft detection, the applications list for the MC33794 is growing.

HOW THE MC33794 E-FIELD SENSOR WORKS

The MC33794 electric field is derived by the oscillator circuitry within the IC which generates a high purity, low frequency, 5 V peak-to-peak sine wave. This frequency is tunable by an external resistor and is optimized for 120 kHz. This AC signal is fed through an internal 22 k Ω resistor, to a multiplexer which directs the signal to the selected electrode or reference pin or to an internal measurement node. Unselected electrodes are automatically connected to the circuit ground by the IC.

These deselected electrodes can act as the return path needed to create the electric field current, since in order to create current flow, the current must follow a complete path: out of the electrode pin and back to the common ground of the IC GND pin. Thus, an electric field will cause a current to flow between the active electrode and any object with an electrical path to the IC ground, including deselected electrodes.

The current flowing between the electrode and its surrounding grounds will result in a voltage drop across the internal resistance. This, in turn, results in a voltage change at the pin. An on-board detector in the IC converts the AC signal to DC level. The DC level is then low-pass filtered using an internal series resistor and an external parallel capacitor. This DC voltage is multiplied, offset and sent to the LEVEL pin of the IC.

To help reduce application development cycle times, Freescale offers an evaluation module for the MC33794, called a KIT33794DWB. The kit includes an MC33794DWB, a preprogrammed 68HC908QY4CDW 8-bit microcontroller, an RS-232 communication IC, and other passive supporting components on a Printed Circuit Board. The 8-bit

microcontroller converts the analog signal from the MC33794 into an 8-bit byte. The MCU transmits this value to a computer via its COM port. A Windows type program called EFLD is included in the kit. This program displays the measured A-to-D value in real time along with its corresponding analog bar graph. The program can be made to scan all of the electrodes, references and internal nodes of the MC33794 or any combination of them.

USING THE MC33794 FOR TOUCH CONTROL APPLICATIONS

The MC33794 can detect anything that is either conductive or has different dielectric properties than the electrodes' surroundings. Human beings are well suited for E-field imaging. This is because the human body is composed mainly of water that has a high dielectric constant and contains ionic matter which gives it good conductivity. The body also provides good electrical coupling to earth ground which can be connected to the ground return of the IC. Thus, when a finger is brought close to a metal electrode, an electrical path is formed, producing a change in electric field current that is

detected by the MC33794 and translated to a different output voltage.

The things which need to be determined in the development of an MC33794 touch panel application are:

- 1. Touch pad electrode layout and design.
- The different dielectric materials for the surface of the panel.
- The effect on E-field measurements of various environmental conditions.

The above matters were investigated using the available KIT33794DWB evaluation module. Figure 1 displays the general setup using the kit.

Throughout the tests, all the generated data was obtained using a "calibrated" artificial finger equivalent to medium pressure applied by a finger based on actual tests and data. The artificial finger was designed to make the pressure applied to the panel consistent. The artificial finger was connected to ground and made from a copper rod with a surface area of 0.26 in² and mass of 62 grams.

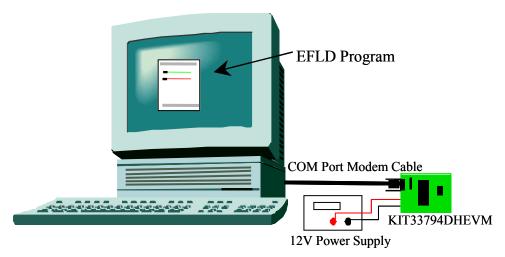


Figure 1. E-Field Evaluation Module Setup

Electrode Design

To understand how electrode designs effect the IC's capabilities, it is important to understand the basic definition of a capacitor. A common capacitor uses an electric field and an insulating dielectric to allow current conduction to occur. It can be made by placing two metal plates in parallel with each other. If the plates are separated by a distance "d" with each plate having an area of "A."

The capacitance of the capacitor can be calculated using the formula:

 $C = (kA\epsilon)/d$

where:

C is the capacitance of the capacitor in Farads
A is the area of the plates in meter²
d is the distance between the plates in meters
k is the dielectric constant of the material between the plates

 ε is the permittivity (8.85 x 10⁻¹² F/m)

From the above equation, it can be seen that area (A), distance/spacing (d), and the dielectric constant (k) are the three factors that affect the magnitude of the capacitance. At a given frequency and voltage of an applied signal, the capacitance controls the resulting electric field current flow. The output of the MC33794 responds to variations in this current.

Size Matters

An electrode can be anything that is electrically conductive. When designing the electrodes for any application, one must take into account the physical size of the conductive electrode. The larger the electrode, the more range and sensitivity will be obtained. However, as the electrode size is increased, so is its susceptibility to interference, electrical noise, and "stray" electric-field paths in its surroundings. One of the key practices regarding electrode design is for the

AN1985

electrode's area to correspond the surface area of the object being detected. Touchpads for touch panel applications, for example, would only require a size that suits the surface area of a finger.

Spacing

The area of the touchpad only needs to accommodate the contact area of the finger. This limits its useable size. Therefore, the distance or spacing factor will play a significant role on how the electrode should be laid out. Another factor

which needs to be considered is how the fringing between the patterns adds to electric field current.

Some of the electric field current will flow in the fringing field between a pair of electrodes. Figure 2 shows the direct field path between two conductors which are end-to-end and a few of the fringing field paths between the electrodes. If the ratio of the fringing field path to the direct path is held constant, the height of the fringing field relative to the plane of the electrodes increases in direct proportion with the spacing. Figure 2 shows pictorially how the height of the fringing field relative to the electrodes becomes greater as the two electrodes are moved further away from each other.

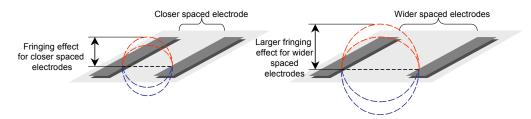


Figure 2. Fringing Fields and the Effects of Spacing

This fringing field allows an ungrounded object to be sensed in the "third" dimension above the essentially two dimensional array of electrodes, and the relative sensitivity for a given height above the plane of the electrodes increases with electrode spacing. It is important to note that the total current flow decreases with increased spacing. The point of this is that there is interaction between electrode size and spacing and their ability to sense objects in the third dimension. In the case of a grounded object, the fringing field will not play as much of a role since some of the current will flow directly to the grounded object from the electrode, but good electrode design should keep both of these effects in mind.

The MC33794 works best when the total capacitance between an electrode and ground or another electrode close to 50 pF, when the finger is in the "activate" range. The total system capacitance should be below 100 pF and preferably below 75 pF for best sensitivity. This includes the IC pin, PWB trace, wire, and any other stray capacitance. Large electrodes should be used when distances are great, and small electrodes when distances are small.

Significance of Ground—Single Electrode Sensing

The placement of ground is important. As mentioned earlier, electric field currents can exist between the active electrode and any grounded object. By intertwining the electrode with ground, the essential ground source needed to create an E -field is directly accessible to the electrode. This path is less variable than the path through a body and earth and provides a more predictable and less noisy path.

To investigate how variables in ground can effect the E-field measurement, we tested the ground phenomena with a two electrode design, a spiral and an inter-digitated layout. In addition, the width of the ground electrode intertwined with a signal electrode was varied to determine how much ground area affects the readings. One electrode-ground test configuration was designed with ground having the same width as the electrode, and another with the ground electrode thinner than the signal electrode. We designed a touchpad which had an area large enough to accommodate a typical finger in a square shape with a length and width of 0.6 in. The dimensions of the electrodes are displayed in Figure 3.

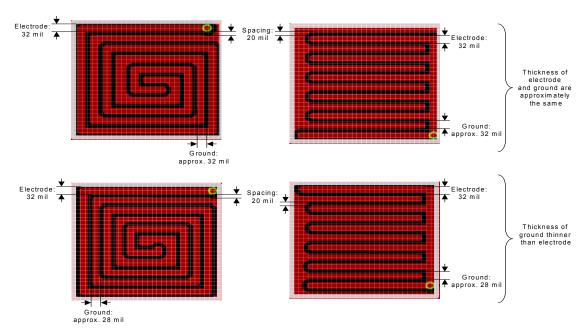


Figure 3. Intertwined Electrode and Ground Designs and Dimensions

The E-field loading for each touch pad is displayed in Figure 4. This figure shows the difference in measurement, not the absolute reading of the electrodes. A 4.5 mil (".0045) thick vinyl film was used as an insulator over the patterns. The 2 top bars show the readings for a ground with the same width as the electrodes. The bottom 2 are for the electrodes where the grounded electrode is thinner than the signal electrode. The bar graph shows that the layout with the narrower ground electrode provided a slightly greater amount of difference in comparison to the design with ground having the same width.

The practice of intertwining electrodes with ground is more important when the electrodes connected to the IC's pins are at a distance from each other. When electrodes are close to each other, the adjacent electrodes could act as the ground source needed to create the field current. This is due to the IC connecting the deselected electrodes to ground; making the deselected electrode often act as the ground return path needed to allow an electric field current to flow.

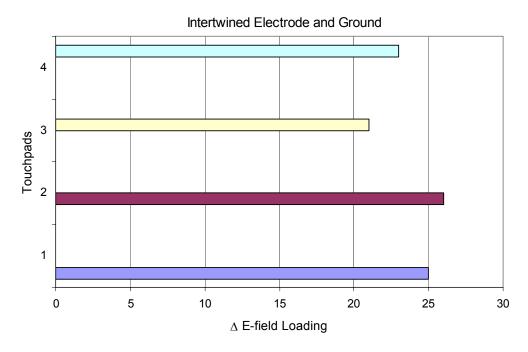


Figure 4. Results of Electrode-Ground Configuration Multiplexed Electrodes

AN1985

Multiplexed Electrodes

A single MC33794 can support as many as 9 electrodes which can be used independently to map the location and area of an object. By employing multiple electrodes, it is possible to get an idea about the size and shape of an object influencing the MC33794's electric field depending on which electrodes indicate a change in their electric field current.

A panel that requires only a few push buttons could use a single electrode for each touchpad. Doing this would limit an application using a single MC33794 to a maximum of nine simple single element electrode buttons, corresponding to the nine available electrode pins in the IC. By intertwining multiple electrodes in each touchpad, many more touchpads could be supported by a single MC33794.

To determine the best method to maximize the use of the available electrode connections on the IC, a number of design layouts were analyzed. For this investigation, we designed touchpads that had two, three, and four intertwined electrodes.

When integrating multiple electrodes in one touchpad, the electrode was laid out so that when a finger is over a

touchpad, there is an even distribution of the finger's surface area over each of the electrodes. Numerous geometric arrangements and shapes were investigated to determine the best way to construct the electrodes in a square area. The Inter-digitated configuration like the two right side drawings in Figure 4 were found to be the best layout for intertwining two electrodes. This pattern had two comb-like patterns with the teeth of the combs meshed with each other but not touching each other. An Inter-digitated configuration allows for an exact distribution of each electrode and allows the system to detect the same loading from each electrode when in the presence of a finger.

Further extending this idea, two electrodes in a single touchpad could be organized by multiplexing the electrode following a column-row configuration. Increasing the number of rows and/or columns in the array will provide more electrode combinations. With this configuration, a single IC could detect as many as 20 individual push buttons. Figure 5 highlights the column-row configurations.

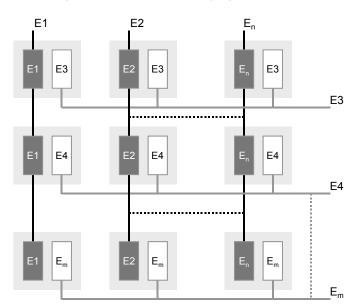


Figure 5. Multiplexed Electrodes Following a Column-Row Configuration

The electrode layout gets more complex as the number of electrodes in each touchpad increases. For three intertwined electrodes, a spiral like geometry is suitable as shown in . Although the exposed electrode surface areas are not exactly equal to each other, when a finger is placed over the center of the pad, the currents will be reasonably close to the same. For four intertwined electrodes, the layout design had electrodes following an 'S' shape. Again, when a finger is over the center of the pad, it would be able to cover the majority of each electrode's exposed area.

When intertwining five or more electrodes, the design gets more complex. One must take into account the size of the available area for the touchpad when determining the maximum number of electrodes in a touchpad. The number of electrodes is limited by the width and spacing requirements of

the electrodes and the minimum area of each electrode for the required sensitivity.

Earlier, we discussed electrodes which were intertwined with ground in order to form a path for the field current. In a multiplexing configuration, a separate ground does not have to be intertwined because the IC automatically connects the unselected electrodes to ground. For example, in the case of the two intertwined electrodes following an inter-digitated configuration and connected to E1 and E2, when E1 is selected, E2 (the deselected electrode) acts as the ground return to produce the field current between the two electrodes. After the system has gone through the measurement process for E1, the role of the two electrodes are then reversed (e.g., E2 is selected for measurement while E1 is connected to ground). The same phenomenon is present for touchpads with three and four intertwined electrodes.

These layouts were tested using a 4.5 mil vinyl covering. The difference in loading can be seen in the graph of Figure 6.

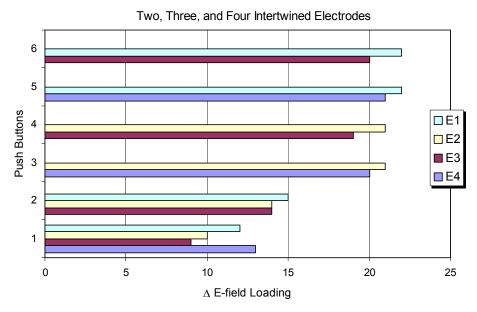


Figure 6. Difference in E-Field Loading Resulting from 2, 3, and 4 Intertwined Electrodes in a Push Button

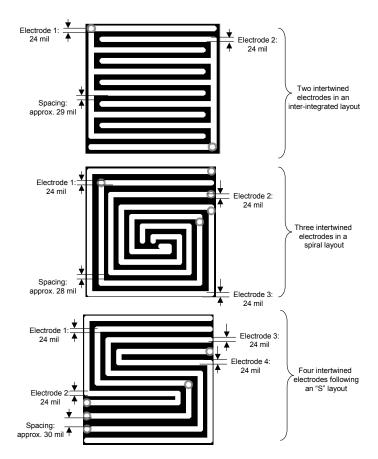


Figure 7. Two, Three, and Four Electrodes Ideally Intertwined to Form a Touchpad

The top four bar pairs of the graph display the value obtained having two intertwined electrodes (like Figure 3). The measurements are very similar to each other. For the three intertwined electrodes, the difference in measurement is still visible, having about a third less magnitude than the ones with two intertwined electrodes. The reading from a touchpad with four intertwined electrodes shows even lower sensitivity. The reduction in sensitivity as the number of intertwined electrodes is increased is due to the reduction of area in of each of the electrodes.

The reduction of sensitivity as the number of intertwined electrodes is increased can be offset by a thinner or higher dielectric constant cover over the touchpads. Conversely, the thickness and dielectric constant of the covering may limit the number of inter-twined electrodes.

The electrode layout and design used to measure the data in Figure 6 is displayed in . Where 2 bars are together in Figure 6, the bars are showing the difference measurements for each electrode when using 2 intertwined electrodes in the touchpad. Three bars together are for 3 inter-twined

electrodes and the group of four are for 4 intertwined electrodes in a touchpad.

The number of touchpads supported by the available electrode connections is more than a simple multiplexing scheme might appear to indicate. Touchpads made of 1, 2, 3, 4 or more electrodes can all be used in the same system. For instance *E1* could be intertwined with a circuit ground electrode to form a touchpad which would show only *E1* being affected when it is selected by a finger. In the same application *E1* and *E2* can be intertwined to form a touchpad so that a finger selecting it would affect both electrodes. Since both electrodes are affected in this touchpad and only *E1* was affected in the other touchpad, the one being selected can be determined.

Table 1 shows the 45 touchpad electrode combinations possible using 1 and 2 electrodes per touchpad with the 9 electrodes available on the MC33794. This gives some idea of the power of electric field multiplexing. If combinations of 1, 2 and 3 electrodes were used per touchpad, the number of possible unique touchpads a single MC33794 could support grows to 126!

Table 1. 1 and 2 Electrode Touch Pad Combinations

Electrode=>	Α	В	С	D	Е	F	G	Н	ı	Electrodes
TouchPad										TouchPad
\										↓
1	Х									1
2		Х								1
3			Х							1
4				Х						1
5					Х					1
6						Х				1
7							Х			1
8								Х		1
9									Х	1
10	Х	Χ								2
11	Х		Х							2
12	Х			Х						2
13	Х				Х					2
14	Х					Х				2
15	Х						Х			2
16	Х							Х		2
17	Х								Х	2
18		Х	Х							2
19		Χ		Х						2
20		Х			Х					2
21		Χ				Х				2
22		Χ					Х			2
23		Х						Х		2
24		Χ							Х	2
25			Х	Х						2
26			Х		Х					2
27			Х			Х				2
28			Х				Х			2
29			Х					Х		2
30			Χ						Χ	2

Table 1. 1 and 2 Electrode Touch Pad Combinations (Continued)

Electrode=>	Α	В	С	D	Е	F	G	Н	ı	Electrodes
31				Х	Х					2
32				Х		Х				2
33				Х			Х			2
34				Х				Х		2
35				Х					Х	2
36					Х	Х				2
37					Х		Х			2
38					Х			Х		2
39					Х				Х	2
40						Х	Х			2
41						Х		Х		2
42						Х			Х	2
43							Х	Χ		2
44							Х		Х	2
45								Х	Х	2

Electrode—Isolated or a unit?

Electrically conductive electrodes can be attached directly to the MC33794 electrode pins via wire or coax cable. The IC SHIELD pin allows coaxial cable to be used without reducing sensitivity or adding variations due to changes in the coax capacitance. The signal from the SHIELD pin is a buffered version of the signal driving the selected electrode. It has the same amplitude and phase. This reduces amplitude of the electric field between the center conductor and the shield of the coax to nearly 0. This results in nearly zero field current between them and doesn't add to the field current at the electrodes.

The electrodes of a touchpad can be formed directly on Printed Circuit Boards (PCB) using copper circuit traces. We formed the electrodes used in Figure 3 (electrode intertwined with ground) and Figure 6 (two, three, four intertwined electrodes) this way. The field current of the wires used to connect the IC pins to the electrodes was reduced by placing a copper layer connected to the shield pin over the signal traces. This is shown in Figure 8. This practice also hides the exposed wires from the plate to be contacted by the user. This prevents false indications of a touch when a finger touches as area above the routing traces.

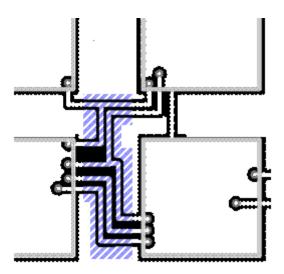


Figure 8. Wires Covered with Conductive Plate Connected to the SHIELD Pin to Minimize Effective Capacitance of Wire

Further, an electric current could flow in the field created from the touchpad to an object above or below it. Since we want the field to only propagate on top of the touchpad,

Figure 9 shows how we eliminated the effective capacitance

on the back side of the touchpad by placing a conductive layer under all of the touchpads and connected it to the shield driver pin of the IC.

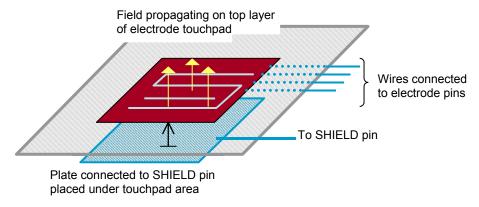


Figure 9. Shielded Conductive Plate Placed Under Touchpad to Remove Bottom Fringing Path

When touchpads are close together, it is possible that a finger could be over more than one touchpad at a time In this case, the analog levels from the IC can be used to determine which of the electrodes has more coverage. In a column-row configuration, for example, when a finger with its surface area distributed between buttons A and B (as in Figure 10), *E1* will

attain a great amount of loading, while *E3* and *E4* will also detect some difference in measurements. Software can determine which of the electrodes (*E3* or *E4*) will have a higher amount of loading difference. The higher reading of *E3* or *E4*, when combined with *E1* would then be chosen to perform whatever particular task was intended.

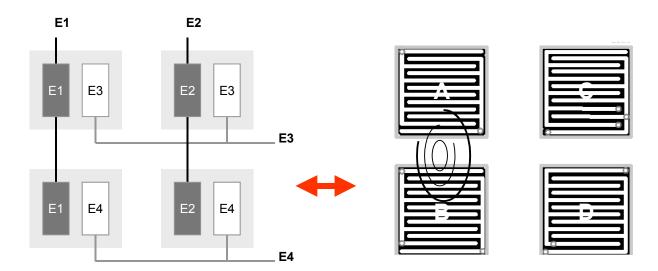


Figure 10. An Array of 2x2 Inter-Integrated Electrodes Following a Column-Row Configuration

Dielectric Material for Panel Coverings

In order to have a non-direct electrical connection, electrodes must be covered with an insulator. When selecting the proper material for the surface of the touch panel, one must take into consideration the thickness and the composition of the material. The thickness and the dielectric

constant of the insulator both play a significant role in the sensitivity of the system.

To determine how the E-field is affected by the insulator's thickness and composition, we tested the touch panel setup with the different materials and thicknesses listed in Table 2.

Table 2. Dielectric Materials With Different Thicknesses and Dielectric Constants

Dielectric Material	Thickness (mil)	k
Acrylic	84.5	2.7-4.5
Glass	74.5	7.5
Nylon Plastic	68.0	3.0-5.0
Polycarbonate	61.0	2.9-3
PVC (Polyvinyl chloride)	59.5	3.18
Polystyrene	43.0	2.4-2.6
Soft Neoprene Rubber	38.0	5
Polypropylene	14.0	1.5
Polyester Film	10.0	3.2
Flexible Vinyl Film	9.0	2.8-4.5

Data for Figure 11 through Figure 15 was obtained using an inter-digitated touchpad configuration with the same dimensions as in Figure 3. Note that throughout the experiment, the existence of air (k = 1) was minimized between the cover and the electrode in order to obtain the best results.

Dielectric Constant

A material with high dielectric constant (k) will help propagate the field through to the front of the panel better than a low dielectric constant material, enabling the system to better detect an object at the surface.

As seen in Figure 11, the difference in E-field measurements was quite noticeable between polypropylene, polyester film, and flexible vinyl film. Also notice that despite the greater thickness of the flexible neoprene rubber, a very large difference in loading was noted. This is due to its high dielectric constant and, perhaps, its pliable nature. Neoprene (k = 5) allows the field to propagate through it with around 3 times the magnitude of polypropylene plastic (k = 1.5).

In general, the results show what we would expect. Increasing thickness reduces sensitivity. Increasing dielectric

constant increases sensitivity. A good example is the comparison between glass and nylon. The glass is thicker than the nylon but shows a larger change because of its higher dielectric constant.

Insulation Thickness

An interesting exception to this generalization is Soft Neoprene Rubber. Its dielectric constant is, at best only twice that of flexible vinyl film but its thickness is more than 4 times as much. The sensitivity is around twice as much. It would be expected to be half as sensitive. One possible explanation for this is the compliance of the rubber and its porosity. As the rubber is compressed, the small internal air pockets get squeezed such that more of the path is through the solid part of the rubber which has a much higher dielectric constant. If this theory is correct, the dielectric constant effectively increases as pressure is put on it. Further, the thickness is reduced as pressure is put on the rubber which would also increase the amount of change. The bottom line is that Soft Neoprene Rubber would make a great covering for the electrodes.

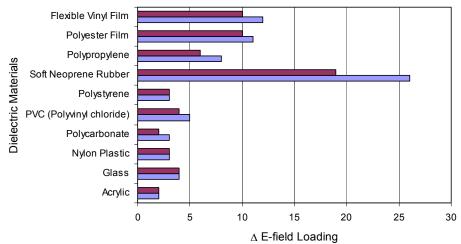


Figure 11. Difference in E-Field Loading With Varying Materials as Panel

AN1985

In general, the thinner the insulation, the more sensitive the touchpads are to touch. In order to investigate this more thoroughly, the same test was applied for polyester film (k = 3.2 with thicknesses that varied from 1 mil to 10 mils. The tests

where done using 2 inter-digitated electrodes. The results are shown in Figure 12. The strong relationship between thickness and sensitivity is quite visible in this curve.

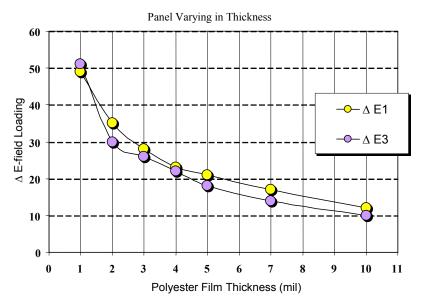


Figure 12. Data With Polyester Film (k = 3.2) Varying in Thickness

Environment Effects

The different dielectric materials from Table 1 were tested under various conditions to determine the effect of moisture or oil on the surface and for the effect of gloves. This was done to measure how naturally occurring conditions might affect an application using this technology. Moisture is often encountered in outdoor applications, and oils can build up when people touch the panel.

Influence of Oil and Moisture

Figure 13, shows the results obtained with oil on the surface. The oil did not significantly affect the readings, due to the low dielectric constant of oil (vegetable oil, k=3). Comparing the results with that of Figure 11, it can be seen that the oil film on top of the material actually improved the detection of the finger. This is due to the oil filling the airgaps in the finger print. Its higher dielectric constant increased the amount of current created by the field.

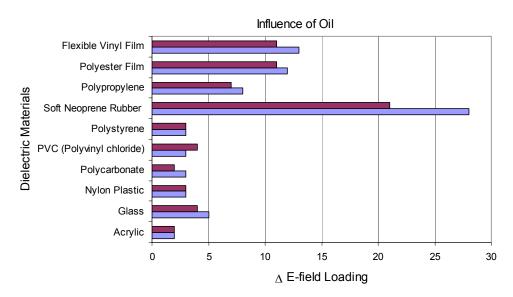


Figure 13. Difference in E-Field Loading Under Influence of Oil (k = 3)

Water was put on the surface of the panel and the data in Figure 14 was obtained. The amount of change in the output was better than when using oil. It was noticed that there was more effect on the adjacent touchpads. This is probably due to the higher current path provided by the high dielectric constant water from the finger to the other electrodes. This

could be problem requiring some change in the physical design of the panel. Wider separation of the touchpads reduces the effect. The slope of the panel to make water run off it would help. A material which "sheds" water might also be beneficial.

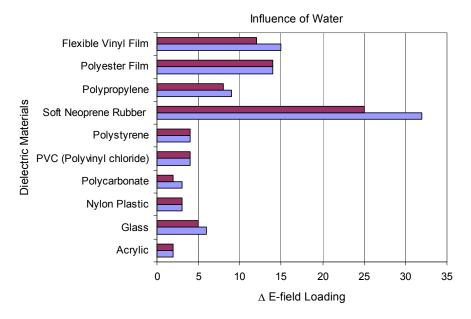


Figure 14. Difference in E-Field Loading Under the Influence of Water (k = 80)

Effect of Gloves

Another test applied to the system that of using a gloved finger. The data shows that a gloved finger is difficult to detect. The gloves add distance between the surface of the panel and the finger. The glove used in the experiment was rather thick and was made of cotton materials with dielectric constant close to air (k = 1.3-1.4). The data is shown in Figure 15.

For this application an electrode that is responsive to a degree of pressure would be more suitable. Instead of depending on the finger's capacitance, a conductive membrane could be embedded behind a flexible panel and would alter the reading based on the applied pressure.

Another option is based on the large amount of change that was detected from the soft neoprene rubber. This gave rise to another experiment. A piece of neoprene was placed on above the electrode in such a way that there was a gap of air between the electrode and the rubber. When pressure was placed on top of the rubber by a finger, the air between the rubber and the electrode was eliminated and a great amount of difference (almost a count of 40) was detected. This was because the field current is primarily limited by the low dielectric constant of air in the gap between the neoprene and the touchpad. When pressure was applied by the finger, the rubber closed this air-gap providing a lower impedance to the field current between the interwoven ground and sense electrodes.¹

AN1985

^{1.} All the generated data was obtained using a "calibrated" artificial finger equivalent to a medium pressure applied by a finger based on actual tests and data. The rod finger is designed in an effort to keep the pressure controlled. The artificial finger is connected to ground and is made out of copper rod with a surface area of 0.26 in² and mass of 61900.76 mg.

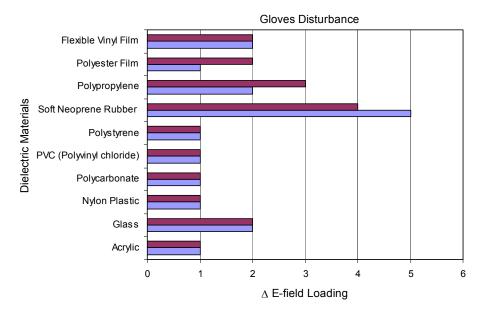


Figure 15. Difference in E-Field Loading Measured With the Presence of a Gloved Finger

Effects of Temperature

Another test that was conducted was observing how the MC33794 system was affected by heat and frost.

The first occurrence observed was how the references reach a particular value for every given temperature, as shown in Table 3.

Frequency and other component values may change over time or be affected by environmental variables such as temperature and humidity. To compensate for this, the MC33794 relies on two reference inputs, Ref A and Ref B, that would be connected to temperature stable capacitors. One capacitor is chosen with a capacitance near the expected

minimum capacitance, while the other is chosen with a capacitance near the maximum capacitance to be expected at the electrodes. These reference capacitances and their corresponding measured voltages provide a pair of value that can be used to correct errors in the electrode measurements caused by temperature, aging or other component related changes.

The curves in Figure 16 display the occurrence of increasing reference A and B values with decreasing temperature.

deg. Fahrenheit -5 -18 -7 deg. Celcius -20 -12 -1 Ref A Ref B

Table 3. Ref A and B versus Temperature Table

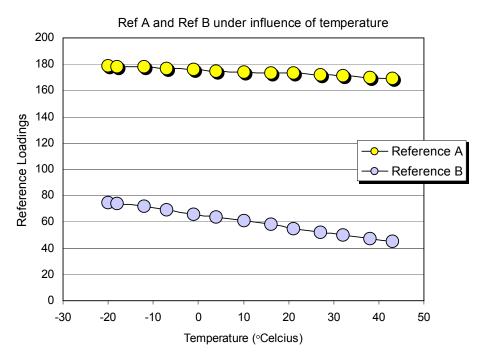
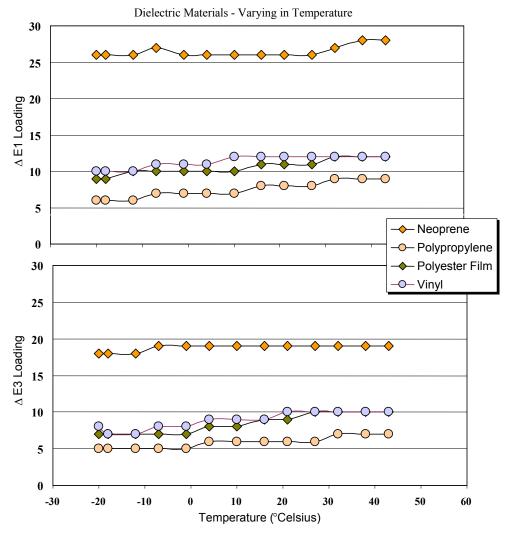


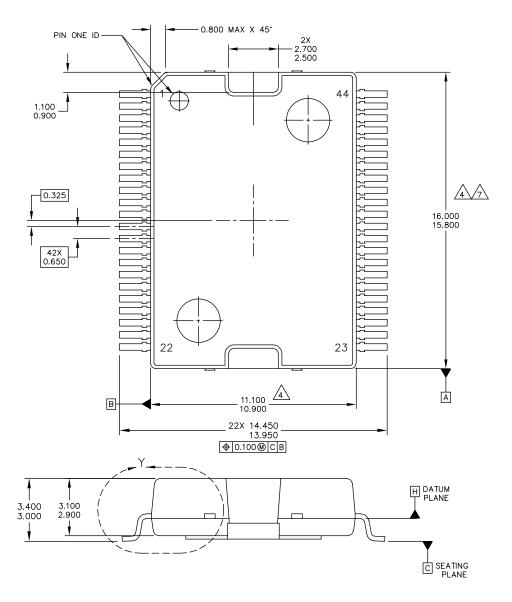
Figure 16. A-to-D Value of Ref A and Ref B Based on Varying Temperatures

From the above lists of materials, neoprene, polypropylene, polyester and vinyl film were also tested to determine the effect on E-field measurements with variations in temperature (43°C to -20°C).

Figure 17 highlights the difference in loading for a touchpad with inter-digitated electrodes for different insulation materials over varying temperature. Note that the curves in Figure 16 and Figure 17 have opposite temperature coefficients. This is how the correction can be done. Since the capacitors don't change their capacitance over temperature, the current

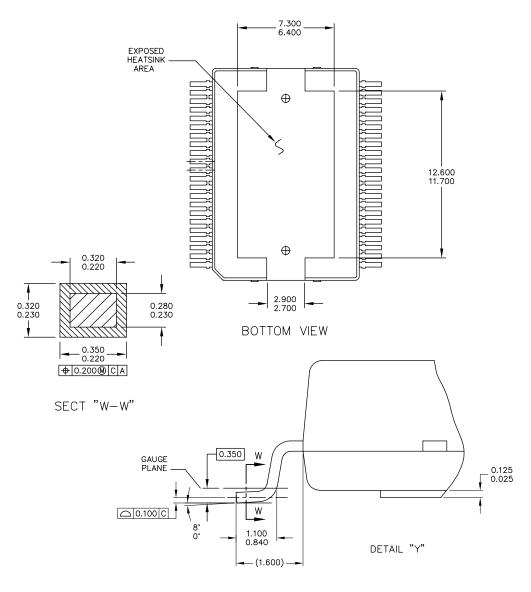
through them would be expected to stay the same. Since the readings do change, it can be assumed that the measurements of the unknown field currents would change a proportionate amount. The correction method is to subtract the change in the reference capacitor from the readings taken. In other words, if the reference readings go up by 3 counts, subtract 3 counts from the electrode values to obtain a "corrected" value. The best correction would use a "normalization" technique using the 2 reference values to correct for both offset and gain drift.




Figure 17. Difference in E-Field Loading With System Under the Influence of Varying Temperature SUMMARY

When developing a touch panel using the MC33794 IC the following key points should be kept in mind:

- The size of the electrode should correspond to the size of the object operating the panel, such as a finger or palm.
 The area of the electrodes should be made as large as possible within this constraint.
- The insulator over the touchpads should be as thin as possible with as high a dielectric constant as possible.
- Multiplexing can dramatically increase the number of touchpads supported by a single IC.
- If you anticipate that the device will be affected by excessive moisture make sure the panel is mounted at an angle to aid in water run-off.
- The reference correction method should be used to offset the effects of temperature and component drift.


The MC33794 can support many other things than touch controls. When using it for other things, maximize your use of it by adding touch control to the same object using any left over electrodes.

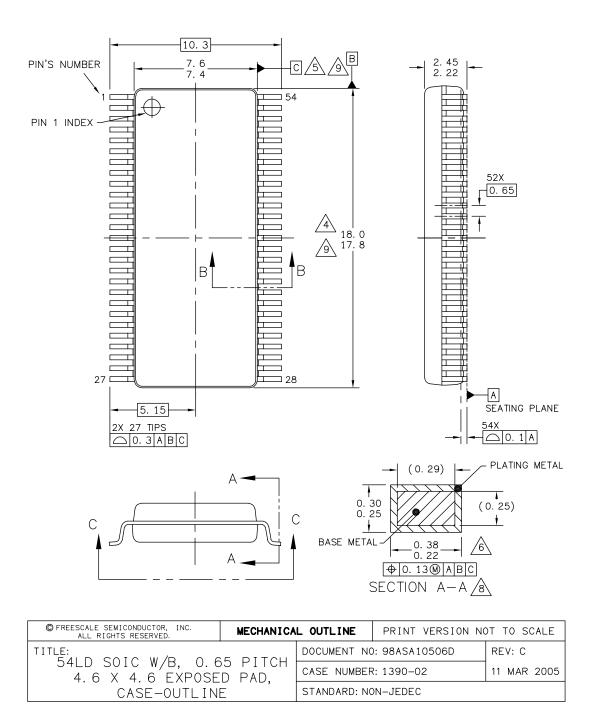
PACKAGE DIMENSION - DH SUFFIX

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: 44 FAD HSOP		DOCUMENT NO): 98ARH98330A	REV: B
W/PROTRUDING HEAT	SINIK	CASE NUMBER	R: 1291–02	16 MAR 2005
W/T NOTINO FIEAT	STANDARD: NO	N-JEDEC		

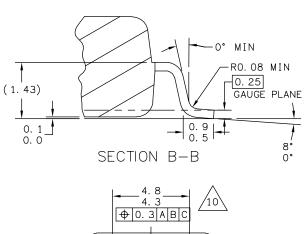
PACKAGE DIMENSION - DH SUFFIX (CONTINUED)

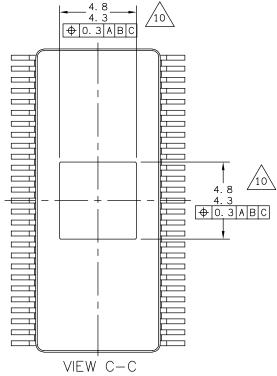
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	AL OUTLINE PRINT VERSION		IOT TO SCALE	
TITLE: 44 FAD HSOP	DOCUMENT NO	REV: B			
W/PROTRUDING HEAT	CASE NUMBER	2: 1291–02	16 MAR 2005		
, r. No mobilito me.	STANDARD: NO	N-JEDEC			

PACKAGE DIMENSION - DH SUFFIX (CONTINUED)


NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- 4. THIS DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.15 PER SIDE. THIS DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- 5. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.


THIS DIMENSIONS DOES NOT INCLUDE TIEBAR PROTRUSIONS. ALLOWABLE TIEBAR PROTRUSIONS ARE 0.15 PER SIDE.


© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: 44 LEAD HSOP		DOCUMENT NO: 98ARH98330A REV: B		REV: B
W/PROTRUDING HEAT	CASE NUMBER: 1291-02 16 MAR 2005			
11/11/07/10/21/21/21/21/21/21/21/21/21/21/21/21/21/	STANDARD: NO	N-JEDEC		

PACKAGE DIMENSION - DWB SUFFIX

PACKAGE DIMENSION - DWB SUFFIX (CONTINUED)

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:		DOCUMENT NO	: 98ASA10506D	REV: C
54LD SOIC W/B, 0.65 PITCH 4.6 X 4.6 EXPOSED PAD,	CASE NUMBER	: 1390-02	11 MAR 2005	
CASE-OUTLINE	,	STANDARD: NO	N-JEDEC	

5-39

PACKAGE DIMENSION - DWB SUFFIX (CONTINUED)

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- DATUMS B AND C TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.46 mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.
- A EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.1 mm AND 0.3 mm FROM THE LEAD TIP.
- THE PACKAGE TOP MAY BE SMALLER THAN THE PACKAGE BOTTOM. THIS DIMENSION IS DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE BAR BURRS, GATE BURRS AND INTER—LEAD FLASH, BUT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY.
- 1 THESE DIMENSIONS DEFINE THE PRIMARY SOLDERABLE SURFACE AREA.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE: 54LD SOIC W/B, 0.6	SE DITCH	DOCUMENT NO: 98ASA10506D REV: C		
4. 6 X 4. 6 EXPOSE		CASE NUMBER	R: 1390–02	11 MAR 2005
CASE-OUTL IN	•	STANDARD: NO	N-JEDEC	

How to Reach Us:

Home Page:

www.freescale.com

e-mail

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 1-800-521-6274 480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 303-675-2140 Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright license granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005. All rights reserved.

07/2005

