

Features _

2.25	Watts	@	70°C						
		_		•					

- 50 Ohms to 5 Megohms
- Multiple Sections/Concentric Shafts
- UL Approved Switches
- Styles RV4, 2RV7
- Linear and Non-Linear Tapers
- Attenuators

Benefits.

- High Power Capabilities
- Wide Resistance Range
- Independent Control of Two Circuits
- Approved for Switching Primary Power
- Meets MIL-R-94 Requirements
- Versatility
- Versatility

AVAILABILITY

Groupings _

The Type J Hot-Molded Panel Potentiometers are divided into two groups.

OEM standard components—These OEM components (Bushing/Resistance/Taper Combinations and Bushing/ Shaft/Taper Combinations (listed in the table on Page 196) are stocked as components at our manufacturing facilities.

They offer a wider range of possible combinations than the distributor stocked potentiometers but do require assembly.

All custom components—All other components listed are available. Since they are not stocked, they require fabrication. Contact factory for information.

General -

Temperature range -55° C to $+120^{\circ}$ C.

Total resistance values – 50 ohms to 5.0 megohms.

Total resistance tolerances – $\pm 10\%$ or $\pm 20\%$.

Tapers – Available in the following resistance ranges:

TAPER	TOTAL RESISTANCE RANGE				
U	50 Ohms to 5.0 Megohms				
A, B, S & DB	250 Ohms to 5.0 Megohms				

See chart on Page 193 for explanation of tapers. Special tapers, where practical, can be be supplied.

End resistance — See chart on Page 193.

Switches – Single pole, single throw snap switch that "closes at start of clockwise rotation". Underwriter rating 2 amperes 125 volts RMS 60 Hertz. Underwriter Laboratories approval file number E-10392. Also rated 10 amperes 10 volts direct current noninductive. Meets 3 ampere 117 volts MIL-R-94 specification. Switches can be operated 5000 mechanical cycles at full rating.

Attentuators – See Page 292 for L, Bridged-T, Straight-T and Bridged-H pads.

Applicable military specification – Many of the single variable resistors listed herein may be ordered as Style RV4 of MIL-R-94: and many of the duals may be ordered as Style 2RV7 of MIL-R-94.

Electrical ____

Power -2.25 watts maximum at $+70^{\circ}$ C (single resistors only) provided voltage rating is not exceeded.

Power derating – Derate power linearly from $+70^{\circ}$ C to zero at $+120^{\circ}$ C. Derate 50 percent for non-metallic mounting and for resistors with "A," "B," "S," and "DB" tapers. For rheostat applications see Page 193.

For derating of Dual and Triple resistors refer to Page 193.

Voltage – 500 volts maximum working voltage (RMS or DC), or as determined by $E_{max.} = \sqrt{PR}$, whichever is less (at sea level).

Dielectric withstanding voltage – Maximum continuous voltage 500 volts RMS at sea level, 300 volts RMS at 3.4 inches (86,36 mm) mercury. Will withstand a one second

test of 1000 volts RMS at sea level or 500 volts RMS at 3.4 inches (86,36 mm) mercury.

Taps – Single or multiple electrical taps are available at 35 percent ± 3 percent, 50 percent ± 3 percent, or 65 percent ± 3 percent of mechanical rotation. Unless otherwise specified, low series tap resistance is provided. See dimensions on Page 200 for tap terminal locations. Consult factory for other available taps.

Capacitance - See Page 193 for explanation.

Operational _____

Load life — 10 percent maximum change in total resistance as a result of a 1000 hour test at rated power across entire element in still air at $+70^{\circ}$ C (1.5 hours "ON", 0.5 hour "OFF").

Rotational life -10 percent maximum change in total resistance as a result of a 100,000 mechanical cycle life test without load (single section resistors only).

Mechanical ____

Shafts – Diameter of single or outer concentric shaft 0.250 inch (6,35mm); diameter of inner concentric shafts 0.125 inch (3,17mm). Minimum length 0.125 inch (3,17mm) longer than bushing. Maximum length 6.000 inches (152,40mm).

Lengths available in 1/64 inch (0,40mm) increments. All shaft lengths are measured from the mounting surface of the resistor to the free end of the shaft with plain, screwdriver slotted, or flatted shaft endings available. Special shaft endings can be supplied.

Bushings – All bushings have a 32-NEF-2A thread and are .375 inch (9,52mm) in diameter.

All bushing lengths are measured from the mounting surface.

Standard locking bushings will prevent shaft rotation with torques up to 40 inch-ounces (2,88 kgf-cm) after lock nuts have been tightened with a torque of 10 inch pounds (11,52 kgf-cm).

Hardware — Resistors are normally supplied with one mounting nut, M-2786, and one internal tooth lock washer, M-2898. Resistors with standard locking bushings are normally supplied with one lock nut, B-13750, in addition to the above. Standard locking bushings with MAXIMUM shaft extension of .125 inch (3,18 mm) beyond the bushing can be supplied with acorn lock nut, M-3236, instead of lock nut, B-13750. Unless otherwise specified, all hardware shipped in bulk. For hardware dimensions see Page 200.

Mechanical (continued)

Locating lugs – Two locating lugs are available so resistors may be indexed with respect to the surface on which they are mounted. Lug option 1 standard. See dimensions on Page 200.

Turning torque – at $+25^{\circ}$ C minimum torque 1 inchounce (0,07 kgf-cm). Maximum torque as follows:

Single - 6 inch-ounces (0,43 kgf-cm)

Dual - 12 inch-ounces (0,86 kgf-cm)

Dual concentric types have a maximum torque of 6 inch-ounces (0,43 kgf-cm) on each shaft. Triple concentric types have a maximum torque of 6 inch-ounces (0,43 kgf-cm) on the outer shaft and 12 inch-ounces (0,86 kgf-cm) on the inner shaft. Immersion sealed types require an additional torque up to 6 inch-ounces (0,43 kgf-cm). Maximum additional torque required to actuate switch is 15 inch-ounces (1,08 kgf-cm).

Stop torque – 12 inch-pounds (13,82 kgf-cm) minimum.

Immersion (Immersion sealed types only) – No continuous stream of bubbles (4 or more) emanating from the resistor as a result of the immersion test (1 minute in water at $+85^{\circ}$ C).

Rotation – Mechanical rotation without switch is 312° ±3°; with switch 333° ± 3°. Electrical rotation is 292° nominal.

Backlash – Maximum backlash: single resistors $\pm 1\frac{1}{2}$ °, dual resistors ± 3 °, triple resistors ± 6 °.

Construction – Materials are essentially non-magnetic; terminals are treated for easy soldering.

Immersion sealed types, commonly referred to as "water-tight", are optional. These immersion sealed types incorporate an internal "O" ring between the shaft and bushing. External surfaces are given special treatment so that the entire resistor is immersion sealed. This feature is not available when concentric shafts or switches are required.

A panel watertight bushing is also optional. This option is provided with an external "O" ring plus the features of the immersion sealed type. This feature is not available when concentric shafts are required. When furnished with a switch the assembly is not immersion sealed.

Marking — Clarostat part number and nominal total resistance are marked in two lines. Other marking possible, limited to maximum of 13 characters in each of two lines. "Type J" always included.

Environmental.

Vibration – 2 percent maximum total resistance change and 5 percent maximum resistance setting change. (Single and dual resistors tested per method 204, condition "C" of MIL-STD-202. Triple resistors tested per method 204, condition "A" of MIL-STD-202.)

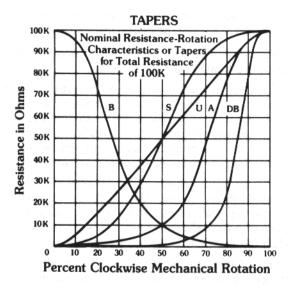
Shock –2 percent maximum total resistance change and 5 percent maximum resistance setting change. (Single and dual resistors tested per method 213, condition "I" of MIL-STD-202. Triple resistors tested per method 213, condition "G" of MIL-STD-202.

Moisture resistance – 10 percent maximum total resistance change. (Tested per method 106 of MIL-STD-202. Resistors with solid shafts only.)

Corrosion resistance – Tested per Method 101 of MIL-STD-202.

Effect of soldering -2 percent maximum change in total resistance as a result of immersing the terminals in 350° C solder to within 0.125 inch (3,18 mm) of the resistor body for 5 seconds.

Temperature cycling -3 percent maximum change in total resistance as a result of the temperature cycling test (five cycles -55° C to $+120^{\circ}$ C).


Low temperature operation -3 percent maximum change in total resistance as a result of the low temperature operation test (-55° C for two hours without load and 45 minutes with rated load).

Low temperature storage -2 percent maximum change in total resistance as a result of the storage test (24 hours at -63°C).

Temperature characteristics – Maximum percent temporary total resistance change from the +25°C value. See table below.

Nominal	Degrees Celsius — "U" Linear Taper									
Resistance	- 55°	- 25°	0°	+ 25°	+55°	+85°	+ 120°			
100 Ohms	+ 4.5	+2.5	+1.5	0	±1.0	±1.5	+3.5			
1,000 Ohms		+3.0	+1.5	0	±1.0	±2.0	+4.5			
10,000 Ohms	+ 7.0	+3.5	+2.0	0	± 1.0	±2.5	+5.5			
100,000 Ohms					±1.5	± 3.0	+6.0			
1 Megohm	+ 10.0	+5.0	+2.5	0	±1.5	±3.5	+7.5			

For "S," "A," "B" and "DB" tapers multiply percentage figures shown above by 1.25.

Tapers A, DB, S and U are measured between the wiper and the counter-clockwise terminals; taper B is measured between the wiper and the clockwise terminals.

END RESISTANCE

Administration of the Control of the		
	MINIMUM RESISTANCE BETWEEN	MINIMUM RESISTANCE BETWEEN
	TERMINALS	TERMINALS
TAPER	1 and 2	2 and 3
U&S	0	0
Α	0	2
В	2	D
DB	3	2

- Less than .004% of total resistance, or less than 4 ohms, whichever is greater.
- Less than 1% of total resistance, or less than 4 ohms, whichever is greater.
- 3 Less than 4 ohms.

Additional Ratings _

Multiple resistor power derating — The permissible power dissipation in one resistor element is a function of the power dissipation in the other elements. Maximum continuous power rating in watts with entire resistor elements in the circuit are as follows:

$$\left(\frac{W_1}{2.25}\right)^2 + \left(\frac{W_2}{1.8}\right)^2 + \left(\frac{W_3}{1.8}\right)^2 = 1 \text{ (Maximum)}$$

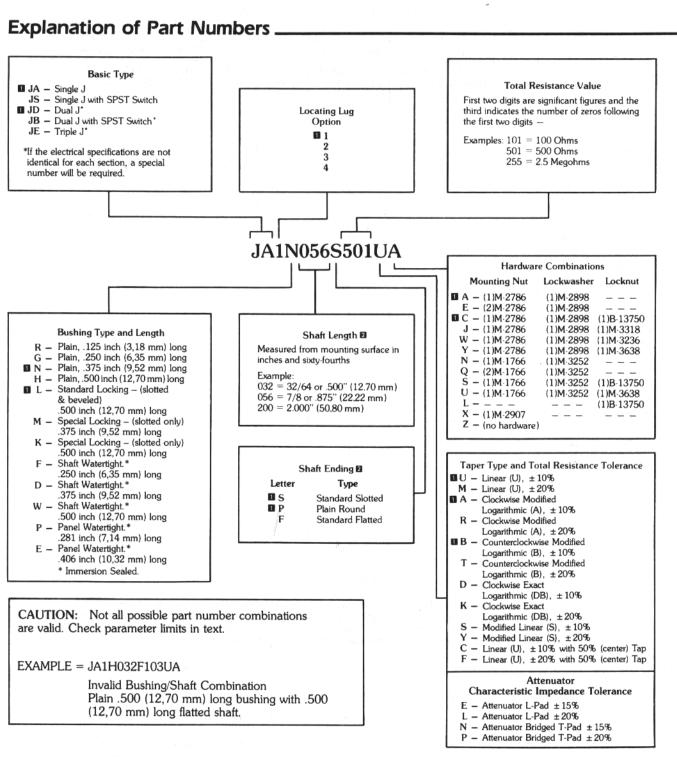
Where W_1 = Watts in entire first or panel resistor element. W_2 = Watts in entire second or middle resistor element.

W3=Watts in entire third or rear resistor element.

	First or Panel Resistor Element W1	Second or Middle Resistor Element W2	Third or Rear Resistor Element W3
DUAL SECTION	2.25 Watts 2.00 Watts 1.75 Watts 1.50 Watts 1.25 Watts 1.00 Watts 0.75 Watts 0.50 Watts 0.25 Watts 0 Watt	0 Watt 0.83 Watt 1.13 Watts 1.34 Watts 1.49 Watts 1.61 Watts 1.70 Watts 1.76 Watts 1.79 Watts 1.80 Watts	
TRIPLE SECTION	2.0 Watts 1.5 Watts 1.5 Watts 1.0 Watt 1.0 Watt 1.0 Watt 0.5 Watt 0.5 Watt 0.5 Watt	0.5 Watt 1.0 Watt 0.5 Watt 1.5 Watts 1.0 Watt 0.5 Watt 1.5 Watt 1.5 Watts 1.0 Watt 0.5 Watt	0.65 Watt 0.89 Watt 1.24 Watts 0.59 Watt 1.27 Watts 1.53 Watts 0.90 Watt 1.44 Watts 1.68 Watts

Derating with respect to rotation - rheostat application

Percent Rotation	Multiply Wattage Rating By	Percent Rotation	Multiply Wattage Rating By
100	1.00	40	0.81
90	0.99	30	0.68
80	0.98	20	0.49
70	0.96	10	0.23
60	0.93	0	0.11
50	0.89		


Capacitance – The capacitance between terminals #1 and #3 with terminal #2 "floating" is approximately 2 to 3 pF at 1 KHz.

The capacitance between terminal #1 (grounded to bushing) and terminal #3 (shaft in extreme clockwise position) is approximately 10 to 12 pF at 1 KHz.

The capacitance between all terminals shorted together and the bushing is approximately 15 to 20 pF at 1 KHz.

In all cases capacitance indicated is for the potentiometer only and does not include capacitance of connecting wires.

Hot-Molded Panel Potentiometers

- THESE CONFIGURATIONS ARE AVAILABLE AS A SPECIAL ORDER ONLY.
- CONCENTRIC AND SPECIAL SHAFTS REQUIRE SPECIAL PART NUMBERS ISSUED BY THE FACTORY.

Available Catalog Order Number Values _

	***									No	n-Linear	
Taper	"U" Linear								"A'	,	"B"	
Basic Type		Single J Dual J 🗓								Single J		
Bushing Lengt	h, Inches	1/4	1/2	3/8	3/8	3/8	3/8	3/8	3/8	3/8 3/8		3/8
Bushing Type		Plain	Lock.	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain	Plain
Shaft Length,	Inches	5/8	5/8	1/2	5/8	3/4	7/8	2	2	7/8	2	2
Shaft Ending		Slot.	Slot.	Slot.	Slot.	Slot.	Slot.	Plain	Plain	Slot.	Plain	Plain
Resistance (ohms)	Code	JA1G 040S	JA1L © 040S	JA1N 4 032S	JA1N 040S	JA1N 048S	JA1N 5 056S	JA1N 200P	JD1N 200P	JA1N ₫056S	JA1N 200P	JA1N 200P
100 1,000 10,000 100,000 1,000,000	101 102 103 104 105				- - - -	_ _ _ _	- - - -	- - - -	- - - - -	* - - -	* - - -	*
150 1,500 15,000 150,000	151 152 153 154	_ _ _ _	_ _ _ _	- - -	- - -	- - - -	- - -	_ _ _	- - - -	* - -	* - -	* - -
200 2,000 20,000 200,000 2,000,000	201 202 203 204 205		- - - - -			- - - - -		_ _ _ _	- - - -	* - - -	* - - -	*
250 2,500 25,000 250,000 2,500,000	251 252 253 254 255	- 1 - 1 - 1		- - - -	- - - -		- - - -	- - -	- - - -	- - - -		- - - -
350 3,500 35,000 350,000 3,500,000	351 352 353 354 355	_ _ _ _	_ _ _ _	7 — — — —	_ _ _ _		_ _ _ _	- - - - -	- - - -	- - - -	_ _ _ _	- - -
50 500 5,000 50,000 500,000 5,000,000	500 501 502 503 504 505					- - - - - -		- - - -	- - - - -	- - - - -	*	*
750 7,500 75,000 750,000	751 752 753 754		= [_ _ _				- - - -	_ _ _ _ _	_ _ _ _	_ _ _ _

- Dual J potentiometers have the same resistance value and taper in each element.
- "Code" as listed in the table above represents the Clarostat potentiometer part number in three segments. The listings in the horizontal row to the right of the "Code" heading are the prefix. The listings in the vertical column below the "Code" heading are the middle segment. The letter representing the taper, listed in the top horizontal row, is the suffix. All three segments must be added together to form a part number. Refer to Page 194 for additional Explanation of Part Numbers.
- For the Style RV4 Military Version add the desired ohmic code number to RV4LAYSA---A in place of the dashes.
- 4 For the Style RV4 Military Version add the desired ohmic code number to RV4NAYSB---A in place of the dashes.
- 5 For the Style RV4 Military Version add the desired ohmic code number to RV4NAYSD- -- A in place of the dashes.
- 6 For the Style RV4 Military Version add the desired ohmic code number to RV4NAYSB- -- C in place of the dashes.

^{- =} Available as a Special Order only. Contact factory for information.

^{* =} Not Available.

TABLE 1 - BUSHING/RESISTANCE/TAPER COMBINATIONS

Taper		"U" Lin	Non-Linear						
Bushing Lengt	h, Inches	1/4	3/8	1/2	2nd-3rd Decks	3/8	3/8		
Bushing	Туре	Plain	Plain	Lock.	Y///	Plain	Plain		
Resistance						77	777,		
(ohms)	Code						<i>\//</i>		
100	101	_	<u> </u>		da <u>a</u> f o	*	*		
1,000	102	-	_	_	_		_		
10,000	103	-	_	-	_	-	_		
100,000 1,000,000	104 105	-	-	-	-	-	-		
1,000,000	105		_			_	_		
150	151	-	-	_	_	*	*		
1,500 15,000	152 153	_	-	_	-	_	-		
150,000	154	_	-	_	-	_	-		
200	201	-	-	_	_	*	*		
2,000 20,000	202	-	_	_	-	-	_		
200,000	203 204	_	_	_	_	-	-		
2.000,000	204	_	_	_	_	_	-		
							_		
250 2,500	251 252	-	-	_	_	_	-		
25,000	253	_	_	_	_	_	-		
250,000	254	_		_		· -	-		
2,500,000	255	-	-	_		_	_		
350	351		_						
3,500	352	_	_	_		_	_		
35,000	353	-		_	_	_	_		
350,000	354	-	-	_	-	_	_		
3,500,000	355	_	-		-	_	_		
50	500	_	_	_	_	*	*		
500	501	-	_	-	-	_	_		
5,000	502	-	-	-	-	-	_		
50,000 500,000	503 504					1 - 1	-		
5,000,000	504 505	_	_	_	_	_	_		
750 7,500	751 752	_	-	-	-	-	_		
75,000	753	_	_	_	_	_	_		
750,000	754	_	_	_	_	_	_		
						_	_		

TABLE 2 · BUSHING/SHAFT LENGTH COMBINATIONS

Bushing Le Inches	1/	4	3.	/8	1/2		
Shaft End	Plain	Slot.	Plain	Slot.	Plain	Slot.	
Shaft Length (Inches	Code						
3/8	024	*	_	*	*	*	*
1/2	032	7 <u></u>	<u> </u>	*		*	*
5/8	040	_	_	_	_	*	Α
3/4	048	_	_	_	_	_	_
7/8	056	_	_	_	_	_	_
1	100	_		_		_	_
1-1/4	116	_		·	_	_	_
2	200	_	_				_

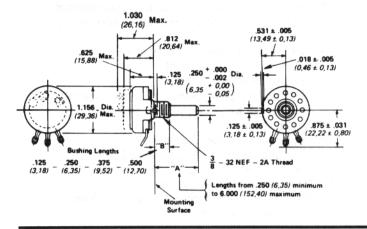
 ⁼ Available as a Special Order only. Contact factory for information.

Ordering Information

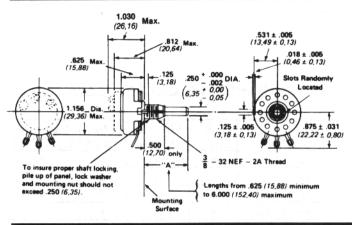
- 1. Type (Single, dual or triple).
- 2. Taper (each element on multi-section controls).
- Total resistance value (each element on multi-section controls) in ohms.
- 4. Bushing type (plain, locking, shaft watertight, or panel and shaft watertight).
- 5. Bushing length in inches.
- 6. Shaft ending (plain, slotted, flatted, or special).
- 7. Shaft length from mounting surface in inches.
- 8. Switch required?
- 9. Locating lug option (1,2,3 or 4).
- 10. Mounting hardware (A-B Standard or Other).
- 11. Part number you have assigned, if any.
- 12. Marking required on the part.
- 13. Special features.* (Includes concentric shafts, non-standard tapers, etc.)

Cross-Reference Guide _____

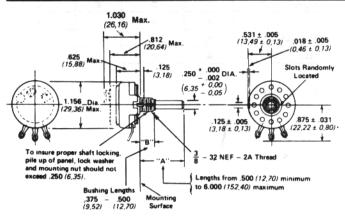
A-B Type J	Clarostat Type 380	PEC Type K	Panasonic Type EV/EW
			- E - 15
	• .		
	*** •		
	•		

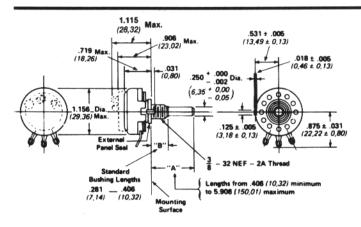

= Available.

^{* =} Not Available.

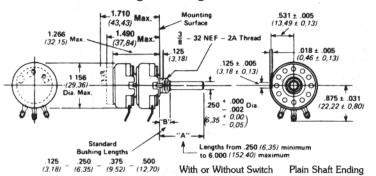

^{*}Forward complete detailed specifications to the factory.

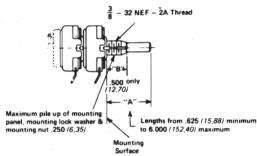
DIMENSIONS


Single Section Resistors


With or Without Switch Plain Shaft Ending With Plain bushing or Shaft Watertight Bushing

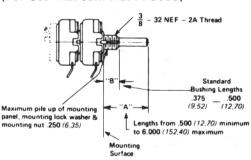
With or Without Switch Plain Shaft Ending With Standard Locking Bushing


With or Without Switch Plain Shaft Ending With Special Locking Bushing (For Use with Jam Nut M-3638)

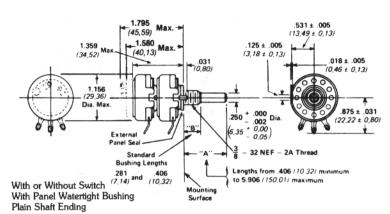

With or Without Switch Plain Shaft Ending With Panel Watertight Bushing

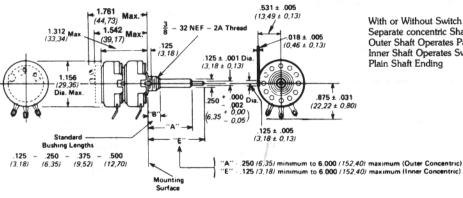
Dual Section Resistors.

Plain or Shaft Watertight Bushing

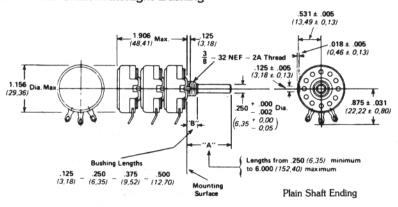


Standard Locking Bushing



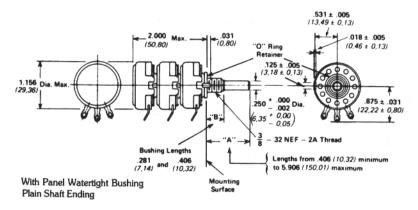

Four randomly located slots on all locking bushings.

Special Locking Bushing (For Use with Jam Nut M-3638)

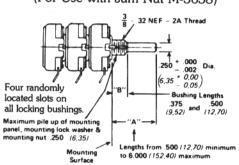

Four randomly located slots on all locking bushings.

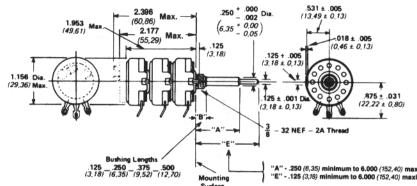
With or Without Switch Separate concentric Shafts for Independent Operation of Each Resistor Outer Shaft Operates Panel Section Inner Shaft Operates Switch and Rear Section Plain Shaft Ending

Triple Section Resistors. Plain or Shaft Watertight Bushing



Standard Locking Bushing



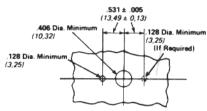

Four randomly located slots on all locking bushings.

Triple Section Resistors.

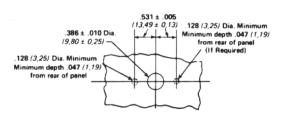
Special Locking Bushing (For Use with Jam Nut M-3638)

With or Without Switch With Concentric Shafts Outer Shaft Operates Panel Section Inner Shaft Operates Switch, Middle and Rear Sections Plain Shaft Ending

DIMENSIONS COMMON TO ALL UNITS

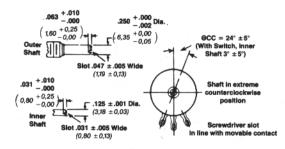

Basic dimensions in inches. Dimensions shown in parentheses are in millimeters.

TOLERANCES

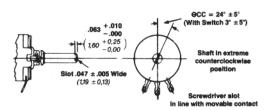

Dimensional tolerance $\pm .016$ (0,40) Angular tolerance ±5° Except as specified.

NOT TO SCALE

Mounting Holes.



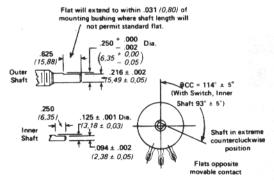
Mounting dimenions for resistors with plain bushings, shaft watertight bushings, and locking bushings.



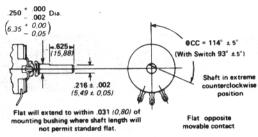
Mounting dimension for resistor with panel watertight bushings.

Standard Slotted Shaft Ending

Dimensions for resistors with concentric shafts.

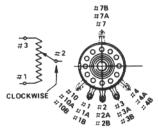


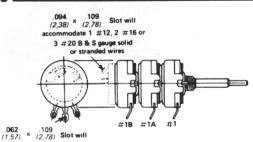
Dimensions for resistors with solid shafts.


All .250 (6,35) diameter shafts supplied with maximum chamfer .031 (0,80) x 45° at the shaft end.

All .125 (3,18) diameter shafts upplied with maximum chamfer .016 (0,40) x 45° at the shaft end.

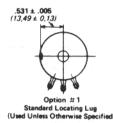
Standard Flatted Shaft Ending.


Dimensions for resistors with concentric shafts.

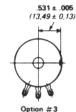

Dimensions for resistors with solid shafts

- All .250 (6,35) diameter shafts supplied with maximum chamfer .031 (0,80) x 45° at the shaft end.
- All .125 (3,18) diameter shafts supplied with maximum chamfer .016 (0,40) x 45° at the shaft end.

Terminal Connections to Resistance Elements.



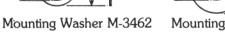
- #1 Extreme Counterclockwise End
- #2 Movable Contact Brush
- #3 Extreme Clockwise End
- #4 Tap 65% Effective or Special Betw 50% and 100%
- #7 Tap 50% Effective Clockwise
- #10 Tap 35% Effective Clockwise or Special Between 0 and 50%
 - Tap Location Tolerances ± 3%

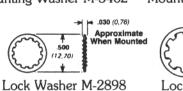


mmodate 2 #16 or 3 # 20 B & S gauge solid or stranded wires

Locating Lug Options

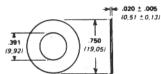
 $.531 \pm .005$ $(13,49 \pm 0,13)$ Option #2



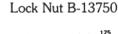


Mounting Hardware.

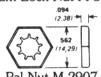
When specified, any of the hardware illustrated can be supplied.



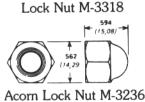
Mounting Nut M-2786



Lock Washer M-3252



(5,16)



Jam Lock Nut M-3638

(9,13)